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ABSTRACT

It is no secret that statistical modelling often involves making simplifying assumptions when attempting to study complex sto-

chastic phenomena. Spatial modelling of extreme values is no exception, with one of the most common such assumptions being

stationarity in the marginal and/or dependence features. If non-stationarity has been detected in the marginal distributions, it

is tempting to try to model this while assuming stationarity in the dependence, without necessarily putting this latter assump-

tion through thorough testing. However, margins and dependence are often intricately connected and the detection of non-

stationarity in one feature might affect the detection of non-stationarity in the other. This work is an in-depth case study of this

interrelationship, with a particular focus on a spatio-temporal environmental application exhibiting well-documented marginal

non-stationarity. Specifically, we compare and contrast four different marginal detrending approaches in terms of our post-

detrending ability to detect temporal non-stationarity in the spatial extremal dependence structure of a sea surface temperature

dataset from the Red Sea.

1 | Introduction

In environmental applications, it is not uncommon to observe
non-stationary behaviour in the extreme values of a random
variable. However, extreme value modelling often relies on
a simplifying assumption of stationarity. In practice, non-
stationarity may be present in different aspects of the data
generating process; the more aspects it affects, the greater the
degree of modelling complexity. Marginal non-stationarity re-
fers to the situation where realisations of a univariate random
variable are non-identically distributed. In environmental data,
this varying behaviour typically depends on time, although
other covariates, that themselves evolve with time, are normally
the drivers of change. Various methods for modelling marginal
non-stationarity of extremes have been well explored in the lit-
erature. One of the main approaches is to incorporate covariates
directly into the parameters of univariate models for extreme
value analysis. Typically, this will be the generalised Pareto
model for excesses of a high threshold: See, for example, Davison

and Smith (1990), Chavez-Demoulin and Davison (2005) and
Youngman (2019). Section 2.1 contains further details on these
and other methods for modelling non-stationarity.

Non-stationarity may also be encountered in the extremal de-
pendence structure of a random vector. That is, the extremal
dependence between two or more components of a random vec-
tor may change with covariates. In such instances, it is com-
mon in analyses of multivariate or spatial extremes to handle
marginal and dependence modelling as a two-step procedure,
implementing marginal detrending methods first and then ap-
plying non-stationary methods for dependence modelling to
the marginally detrended data. Although alternative methods
that model marginal and copula behaviour jointly in a single
step exist, they are not as numerous, and their application in
extreme value modelling is scarce in practice. One reason for
this is that univariate extreme value distributions are suited to
marginal upper tails, while multivariate extremal dependence
models rely on potentially different upper tail definitions. A
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mismatch between marginal and copula support impedes joint
modelling considerations. When the multivariate definition of
extremity follows as a direct generalisation of the univariate
one, as in the case of modelling maxima, Padoan, Ribatet, and
Sisson (2010) and Ribatet, Cooley, and Davison (2012) develop
such joint modelling procedures for max-stable processes, in a
frequentist and Bayesian realm respectively. In a similar man-
ner, multivariate generalised Pareto distributions (Rootzén
and Tajvidi 2006; Rootzén et al. 2018) allow for joint marginal-
dependence modelling, which could be extended to cover non-
stationarity, while similar ideas could potentially be applied
to spatial generalised Pareto processes (Buishand et al. 2008;
Ferreira and de Haan 2014). However, both max-stable and
generalised Pareto processes yield very restrictive dependence
structures and are therefore unlikely to capture the complex
dependence features often present in environmental applica-
tions (Huser and Wadsworth 2022). Even putting these issues
aside, pursuing joint marginal-copula modelling brings about
another important risk, even in the stationary case, that mis-
specification in one form — the margins or dependence —
can affect the other. Such spillover is likely worsened when
non-stationarity is present. In this paper, we adopt the more
established two-stage approach, thus making the task of dis-
entangling the relationship between margins and dependence,
which is the focus of this work, as clear and straightforward
as possible.

Available methods for non-stationary dependence modelling
include the following. In a bivariate setting, de Carvalho and
Davison (2014) develop a semi-parametric model that incorpo-
rates covariates into the modelling of the so-called spectral den-
sity, thus capturing the effect of explanatory variables on joint
extremes. In a multivariate setting, Castro-Camilo, de Carvalho,
and Wadsworth (2018) and Mhalla, de Carvalho, and Chavez-
Demoulin (2019) also focus on spectral density functions
with the former developing non-parametric regression-based
methods and the latter building a vector generalised additive
model to capture covariate-varying extremal dependence. Lee
et al. (2024) model covariate(time)-varying extremal depen-
dence in various summary statistics. Murphy-Barltrop and
Wadsworth (2024) model temporally varying extremal depen-
dence in a bivariate setting via non-stationary extensions of the
so-called angular dependence function and return curves, while
Mbhalla, Opitz, and Chavez-Demoulin (2019) also make use of
non-stationary angular dependence functions to account for co-
variate influence.

In a spatial setting, modelling changes in extremal depen-
dence using space-related covariates, which may be expected
when the spatial domain is large or morphologically diverse,
has received the most attention; see, for example, Huser and
Genton (2016), Blanchet and Davison (2011) and Richards and
Wadsworth (2021). Much less attention has been dedicated,
however, to time-related covariates, which, given the ongoing
climate crisis, may have considerable effects on the spatial ex-
tremal dependence structure over time, especially in applications
spanning a large temporal domain. A noteworthy exception of
research in this direction is that of Healy et al. (2024) who model
temporal non-stationarity in both marginal and dependence
features. They combine information on Irish temperatures from
both observational and climate-model sources and consider

time-varying dependence via the framework of r-Pareto pro-
cesses (Dombry and Ribatet 2015).

Of the aforementioned examples, Healy et al. (2024) is the only
one dealing with spatial aspects of time-varying extremal depen-
dence; the remaining do so in a multivariate setting. To the best
of our knowledge, there is no other contribution where this prob-
lem is tackled in a fully spatial context available in the literature.
What is more, Healy et al. (2024) focus on a class of models that
can only accommodate a particular type of dependence, namely
asymptotic dependence (see Section 2.2 for details), which, al-
though appropriate for their application, is often unrealistic for
similar spatial environmental datasets.

It is this lack of available literature that provided the initial mo-
tivation for the present work. Our study is focused on a data-
set with well documented marginal non-stationarities (Huser
and Genton 2016), which was also believed to showcase non-
stationary behaviour in its spatial extremal dependence struc-
ture. The data comprise daily sea surface temperature values
from the Gulf of Suez spanning across 31 years (1985 to 2015 in-
clusive). As is common in analyses of extremes, we focused our
attention on the summer data (July-August-September) from
that period, to reduce the degree of seasonality to be modelled,
while considering the period of highest temperatures. The orig-
inal data are available for the whole of the Red Sea, on a daily
basis and a very fine resolution grid of 0.05° x 0.05° (Donlon
et al. 2012). Initial analysis of spatial dependence changes over
time for this dataset suggested the need for adapting spatial de-
pendence models to account for time-varying dependence (see
top left plot of Figure 3).

However, following our initial exploratory analysis, we tested
various approaches to modelling marginal non-stationarity,
finding that subsequent results concerning changes in spatial
extremal dependence were highly sensitive to the marginal
model used. We thus came to the conclusion that the deciding
factor behind whether or not temporal non-stationarity is de-
tectable in the spatial extremal dependence structure of the data
critically relies on the marginal detrending approach pursued
and that any resultant analysis is, in our case, extremely sensi-
tive to marginal modelling choices. As such, instead of focus-
ing on adapting existing models to accommodate changes in
spatial dependence over time, the aim of this paper is to serve
as a cautionary tale of the misleading effects the marginal and
dependence structure interrelationship can have on analyses
of extremes. Our main objective is to investigate the effects of
four different marginal detrending approaches on spatial ex-
tremal dependence. In particular, we use graphical tools to as-
sess whether the apparent spatial extremal dependence changes
over time under each marginal detrending procedure. We note
here that the dataset in question displays strong autocorrelation;
such a feature will remain after modelling trends in the data,
but can affect visual assessment of stationarity. Graphical tools
should therefore be interpreted with some degree of caution. We
further assess the impact of each marginal model on the spa-
tial extremal dependence under a (potentially false) assumption
of temporal stationarity by applying the conditional spatial ex-
tremes model (Wadsworth and Tawn 2022) to all four margin-
ally treated versions of the Gulf of Suez dataset and comparing
model-based dependence features. This particular spatial model
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was selected because of its computational and modelling flexi-
bility, which allow for increased scalability (in terms of the num-
ber of spatial locations that can be handled) compared to most
alternative models available, as well as simpler characterisation/
modelling of different types of extremal dependence.

The remainder of the paper is outlined as follows. Section 2
provides background information for our statistical approach.
Section 3 describes the four marginal detrending methods em-
ployed. Section 4 is dedicated to the analysis of the Gulf of Suez
data. Finally, we conclude in Section 5 with a short discussion.

2 | Statistical Background
2.1 | Marginal Modelling of Extremes

Marginal modelling in extremes concerns the study of univariate
extreme values, which appear either in isolation, or as compo-
nents of a higher dimensional random vector. When studying a
random variable X, asymptotic theory dictates that the distribu-
tion of threshold exceedances X — u|X > u of a sufficiently high
threshold u can usually be approximated by the limiting form G
in (1), known as the generalised Pareto distribution (GPD):

G0 1-(1+&x/o,), %, for&#0,0,>0,x>0,
1-exp(-x/o,), foré—0,0,>0,x>0,

for a, =max(a,0); we write X —ulX >u ~ GPD(c,,&). The
GPD model is suitable for capturing the tail behaviour of sta-
tionary processes. When marginal non-stationarity is present,
Davison and Smith (1990) proposed incorporating covariates
into the parameters of the GPD. That is, given a marginally
non-stationary process {X,} with associated covariates Z,, one
can model (X, —ulX, >u,Z, =z,) ~ GPD(0,(2,),&(z,)) for a
high enough threshold u. Note that covariate modelling here
is performed according to the principles of generalised linear
models, where typically we set logo,(z,) = B,z &(z,) = B; 2,
Subsequent work has considered more flexible covariate formu-
lations, such as those provided by generalised additive models
(GAMs); see, for example, Chavez-Demoulin and Davison (2005)
and Youngman (2019).

One problem with such techniques is that their definition of
extremity often depends on a constant threshold, but under
non-stationarity, the extremes are suitably defined through the
corresponding covariate levels as well. To address this issue,
Northrop and Jonathan (2011) and Jonathan, Ewans, and
Randell (2013) define covariate-varying thresholds. Another
concern is that these techniques focus on modelling non-
stationary behaviour only in the tail of a process. However, it is
often of interest to model non-stationarity in the body of the data
as well, since extremes across components of a random vector do
not necessarily occur simultaneously. That is, we may observe
extremity in one component but moderate levels of another. If
marginal non-stationarity in the body of the distribution is ne-
glected, then we cannot model this dependence appropriately.

To overcome these issues, Eastoe and Tawn (2009) borrow tech-
niques from time-series modelling. They introduce a two-step

procedure comprising a pre-processing step, aiming to remove
most of the non-stationarity present in the body of the data, and
a non-stationary GPD step, to remove any leftover trends in the
tails. The pre-processing step consists of applying a Box-Cox
location-scale transformation of the form

Xﬂ(z[) ~1

@) = u(z,) + o(z,)R, @

to the marginally non-stationary process {X; }, where {R, } is ap-
proximately stationary and 4, u, and log(c) are linear functions
of covariates z,. The process {R, } is assigned a Gaussian distribu-
tion, so that specification (2) has a likelihood that is maximised
to provide parameter estimates. This is then followed by a non-
stationary GPD fit to the residual process {R, }, using the meth-
odology of Davison and Smith (1990). If any trends are identified
in the scale and shape parameters, 6,(z,) and &(z,) respectively,
they are removed via the probability integral transformation,
using a semi-parametric approach to estimation of the distribu-
tion of R, (Coles and Tawn 1991). This consists of a rank trans-
form for data below a high marginal threshold, u, which are
now assumed stationary, and the GPD cumulative distribution
function for values above u. To make things more explicit, let

ry, ... ,I,beobservations from the process{R, } at times1, ... ,n,
and define
=1 <n)/(n+1), r<u
Fp(rlZ,=z)= ~ . -1/&@)
1-(-w|t+e)r-w/e@)] L
+

where &,(z,) and E(zt) are the maximum likelihood estimates
of the scale and shape parameters respectively, which are es-
timated by the non-stationary GPD step. Applying ISR[ to the
marginal process {R,} achieves standardisation to a standard
uniform scale. Finally, we note that some more recent work
replaces Eastoe and Tawn (2009)'s pre-processing step with
a more elaborate one which, instead of assuming linear para-
metric forms for the covariate functions, makes use of the GAM
framework to allow parameters u(z,), 6(z,) of (2) and 6, £ of the
non-stationary version of (1) to vary smoothly with covariates
(Murphy-Barltrop and Wadsworth 2024). This extra flexibility is
desirable when the observed non-stationarities are too compli-
cated to be adequately captured by parametric forms.

2.2 | Measures of Extremal Dependence

A key endeavour of many multivariate analyses is to character-
ise the extremal dependence between D > 2 random variables.
Apart from the obvious exploratory benefits of understanding
the data better by uncovering its dependence structure before
attempting any modelling, another reason why such a task is
of importance is that many of the available models—and their
underpinning assumptions—can only accommodate data that
fall under a single category of dependence classes. Hence, D
-variate measures of extremal dependence are often examined
for dependence-class assessment and categorisation in multi-
variate analyses. In the spatial case however, one can often as-
sume that bivariate distributions (D = 2) of the spatial process at
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location pairs are very informative and, thus, looking at bivari-
ate versions of extremal dependence measures for different pairs
is all one needs to characterise the extremal dependence of the
process at given distances.

A widely used dependence measure in practice is the so-
called tail dependence coefficient, typically denoted by y. Let
{Y(s):s € S C R?} be a stationary and isotropic spatial random

field and (Y(s,), ... ,Y(sp)) the D-dimensional random vector
comprised of the realisations of {Y(s)} at the observed spatial
locations s;,i =1, ..., D. Letting Y(s;) ~ F denote the common

marginal distribution, the coefficient of tail dependence y(hy)is
given by )((hjk) = lirnu—>1 )(u(hjk), with

2u(h) = PL{F(Y(s)) > ulF(Y(s) > u}, ue[01],  (3)

where hj = ||s; — s || is the distance between sites j and
k(j#k,j, ke {1, ...,D}); we will take this to be the Euclidean
distance for the remainder of the paper. The quantity x(h)
is the limiting probability of the process being extreme at lo-
cation s; given that it is also extreme at location s, and char-
acterises the extremal dependence between the pair (j, k) at
distance hy apart. A process is said to be asymptotically de-
pendent (AD) in the spatial domain S if y(hy)>0 for all
hy.j,k € {1, ... ,D}. In practical terms, asymptotic depen-
dence (AD) means that the variables, or realisations of the spa-
tial process at different locations, can take their most extreme
values simultaneously. Conversely, the case where y(h;) =0
for all hjk,j,k € {1, ... ,D}, defines an asymptotically indepen-
dent (AI) process in the spatial domain S, which means that
the spatial extent of the extremes becomes more and more lo-
calised as the level of extremity increases. In such cases, the
measure y(hy ) does not give us any additional information on
the joint tail dependence. A complementary statistic to y(hy)
that is more informative under asymptotic independence (AI)
is the residual tail dependence coefficient, n(hy) € (0,1], of
Ledford and Tawn (1996), which may be defined through the
relation

Pr{F(Y(s)) > u, F(Y(s;)) > u} = LA — u)(1—w)"/"™"), u - 1,
@

where L is a slowly varying function such that L(cr)/L(r) — 1as
r — 0 for all positive constants c. Note that relation (4) implies
”(hjk) = limu—»lnu(h'jk)’ Wlth

log(1 —u)

) = g T s) > w F ) > a)

e [0,1], (5)

j#k,j,ke {1, ...,D}. The boundary case n(hjk)z 1 corre-
sponds to y(hy)=1lim, ;L£(1—u). Hence, when n(h;)=1
for all hy,j,k € {1, ... ,D}, and LA-u)»0asu—1we get
x(hy) >0 for all hy,j,k € {1, ... ,D}; that is, the process is
AD in the spatial domain S. The more interesting case where
either n(hy) <1 for all hy,j,k € {1, ... ,D}, or n(hy)=1 for
all hy,j.ke€ ({1, ...,D}, and L(Q—-u)—>0 as u—1, leads to
;((hjk)=0 for all hjk,j,k € {1, ...,D}, and signifies that the
process is Al in S, which can be further categorised into neg-
ative extremal association when n(hy,) € (0,1/2), near indepen-
dence when n(h;,) = 1/2 and positive extremal association when

n(hy) € (1/2,1]. The latter case is of particular interest to environ-
mental applications which usually exhibit positive dependence
over space. Because we cannot typically estimate the limiting
quantities (x(h), n(hy)), the behaviour of (yr,(hy), n,(hy)) as
u — 1is used instead to help inform us about the extremal de-
pendence structure of the process.

As already mentioned, distinguishing between extremal depen-
dence classes is important for modelling. Doing so in practice,
however, is a non-trivial task. With spatial data, for example, we
might have y,(h;) > 0 at all observable high quantiles, u, and
pairs of sites, but y, \, 0 asu / 1. It is frequently encountered
in practice that the dependence of environmental processes
weakens as events become more extreme with the very severe
extreme events becoming more spatially localised (Huser and
Wadsworth 2022). One might also observe that the dependence
class of the process is not the same for all distances, but changes
from AD to AI after a distance A, or with respect to other co-
variates. This creates additional modelling difficulties and
highlights the importance of thorough exploratory investigation
of the dependence structure as a first step to overcoming said
difficulties.

2.3 | Conditional Spatial Extremes Model

So-called conditional extremes methods for extremal depen-
dence modelling were first developed in a multivariate set-
ting by Heffernan and Tawn (2004) and further studied by
Heffernan and Resnick (2007). In contrast to previously ex-
isting methods that relied on the limiting behaviour of a D
-dimensional random vector when all of its components be-
come simultaneously extreme at the same rate, the authors
developed novel methodology based on a limiting assumption
on the joint tail of a vector given that one of its components is
extreme. This alternate limiting assumption of the Heffernan
and Tawn (2004) model is much less restrictive, allowing for
increased flexibility both in dependence modelling and in fit-
ting scalability. With these benefits in mind, Wadsworth and
Tawn (2022) extended the work of Heffernan and Tawn (2004)
and Heffernan and Resnick (2007) to a spatial setting, termed
the conditional spatial extremes (CSE) model.

Let {Y(s):s€ScCR?} be a stationary and isotropic spa-
tial random field with exponential-tailed margins, that
is, Pr(Y(s;)>x)~ce™, c¢>0, as x — oo; a typical marginal
choice is standard Laplace, which we also adopt in our subse-
quent analyses. For a high marginal threshold ¢, Wadsworth and
Tawn (2022) show that for many dependence structures, a rea-
sonable assumption is

(Y@1Y () > t:5 € S} ~{ay, (Y(sy)) + by_y, (Y(50)Z°(s):5 € S},
©)

vwhich can be used to model the behaviour of the process
{Y(s)} given an extreme value has occurred at some loca-
tion s,. Specifying functional forms for a,_, and b,_, where
a5, )R >R, ay(y) =y, and b;_; :R - (0,00), s €S, and a dis-
tributional form for the so-called residual process {Z°} — sat-
isfying the condition Z%(s,) = 0 — completes the model. The
dependence structure of the residual process {Z°} is assumed
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to be Gaussian in nature, while its margins are modelled via
the so-called delta-Laplace distribution. Inference for the
model in (6) is performed based on a composite likelihood
scheme, combining likelihood contributions stemming from
different conditioning locations (all or a subset of available
locations can be selected), thus overcoming the problem of
choice of conditioning location which is often not obvious in
applications. Additional details on the CSE model are given in
Appendix A.

3 | Marginal Detrending Methods

In Sections 3.1-3.4, we outline four approaches considered for
capturing marginal non-stationarities in our dataset. In each
case, our objective is to transform the data to follow a station-
ary standard Laplace distribution, that is, with distribution
function

0.5ex <
FL(X)={ px}, x <0,

1-0.5exp{—x}, x>0,
enabling subsequent application of the CSE model. We do
this in two steps. We first transform our data to the standard
uniform scale by implementing each detrending procedure
outlined below. Then, assuming all trends have been success-
fully removed and that, therefore, our data are now station-
ary, we apply F; %, the Laplace inverse cumulative distribution
function, to the uniform data to bring them to the required
marginal scale. Figure 2 displays the data on Laplace margins
following each of the four processing techniques. As noted in
Section 1, strong temporal dependence between observations
within a year can hinder visual assessment of stationarity
from such plots. All marginal detrending procedures are im-
plemented site-wise.

3.1 | Margins A

The first marginal detrending approach considered comes
from the simple but crude assumption that data are station-
ary within a year—facilitated by considering data only from
a single season—but that their distribution may change over
the years. It consists of a simple rank transform applied in
yearly blocks, whereby data corresponding to the same year
are grouped, rank-transformed together and collated post-
transformation. Implementing this transformation separately
for each year allows for long term and inter-annual trends—
which, according to Figure 1, both seem to be present for the
Gulf of Suez dataset—without the need to explicitly specify
the form of such trends.

The main merit of such an approach lies precisely in its simplic-
ity, which in turn leads to very fast and straightforward imple-
mentation. On the other hand, performing the rank operation
yearly could lead to cruder empirical approximations of the un-
derlying marginal distributions—given only 92 data points per
year are available in our case—and introduces the repeated val-
ues that can be seen in the top-left panel of Figure 2 across the
full, transformed time series.

29 } ’Ei
; TENEMA L
ST AT
BETUAMAR P
g if‘k" RN BH
5, X "Ji'if{&*. THAIGHHTIRE
ST R U
SYRE 1 IR LTI B A ¥
s 10 N 00 AERENE DI Y :
ERNEEAES S

1985 1990 1995 2000 2005 2010 2015
Date
FIGURE1 | Time series plot at location §;5 on the original marginal
scale.

3.2 | Margins B

The Eastoe and Tawn (2009) approach has been widely used
in applications to achieve data detrending at a marginal level
(e.g., Winter, Tawn, and Brown 2016; Winter et al. 2017). We
employ this, in particular, its more flexible GAM extension, as
our second detrending technique. As evidenced in Figure 1, the
Gulf of Suez dataset is characterised by strong temporal trends
of both cyclical (short-term) and linear (long-term) nature. We
endeavour to remove such trends site-wise, via the GAM mod-
elling framework of Wood (2017), as implemented in Murphy-
Barltrop and Wadsworth (2024).

To be precise, let us denote the temperature process by
{Y,(s)},t=1, ..., T. We are interested in applying detrend-
ing methods to all marginal time series Y;, = Y,(s;), for all
i€ {1, ...,D} ForeveryY;, weallow the location, u;, and scale, 5;,
parametersof (2)tovarysmoothlywith covariatesz, = {1, gmt,, d, },
where gmt, denotes global mean temperature anomalies! at time ¢
andd, = {1, ... ,92}denotes the day index of the process at time ¢.
The reason gmt, is chosen instead of ¢ is that we found it explained
more of the observed trends than simply t. Moreover, its use has
been advocated by others (e.g., D'’Arcy, Tawn, and Sifnioti 2022;
Healy et al. 2024) for better capturing long-term trends in environ-
mental applications. Note that we do not include a Box-Cox param-
eter in this procedure for simplicity, as there is no obvious need for a
changing shape parameter. Aiming to capture the long-term linear
trend, a thin plate regression spline is fitted for the covariate gmt,,
while a cubic regression spline of dimension 92—found to result
in the most stationary-looking data amongst a number of different
choices examined—is used to capture the seasonal trends through
the covariate d,. The y; and ¢; parameters are estimated by means
of the R package mgcv (Wood 2003; 2011) and subsequently re-
moved, resulting in residual time series R;, = (Y;, — p,(2,))/0,(2,)
for all i. We then proceed by applying a non-stationary GPD to R;
using a constant 90% marginal threshold, thus aiming to remove
any remaining trends in the tails. A likelihood ratio test is used to
determine whether no, linear, seasonal or both trends should be
added to the scale parameter of the GPD for each site s;. The shape
parameter in all margins is assumed to be invariant to temporal
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FIGURE2 | Time series forlocation s;5in standard Laplace margins. [Left to right and top to bottom] A-B-C-D margins. Detrending is performed
based on a 90% constant marginal threshold for margins A-C, while for margins D, an 83% threshold was automatically selected for this location.

trends. The detrended data are visualised on the standard Laplace
scale in the top right plot of Figure 2.

3.3 | Margins C

The third marginal detrending method examined is motivated
by the unsatisfactory degree of detrending achieved in margins
B. In particular, there seems to be an inconsistency in the num-
ber of exceedances of a fixed high threshold observed per year,
with some years experiencing multiple exceedances and some
very few, if any. It appears therefore that the detrending method
described in Section 3.2 fails to capture the full structural com-
plexity of the margins, resulting in leftover marginal ‘irreg-
ularities’ manifesting as inter-year variability. Eastoe (2019)
and Clarkson, Eastoe, and Leeson (2023) have reported similar
findings in their analyses of a river flow and a US temperature
dataset, respectively. To account for leftover inter-year variabil-
ity they develop a random-effects-based methodology. Inspired
by their method, we introduce an additional intermediate step
to the aforementioned margins B procedure, acting as a crude
approximation of the Eastoe (2019) approach.

Let Y, denote thesetoftime pointst correspondingtoyeark, where
k={1, ... ,31}.Sinceeachyeariscomprised of92summer-month

observations, Y, ={1, ...,92},Y,=1{93, ...,184}, and so
forth. The residual process {R;,} is then adapted as follows:

{Rit}iey, — M
Sk

) ™)

where my, is the yearly mean and s, is the yearly standard de-
viation. Both quantities are estimated over all locations
ie {1, ...,D} and using all data points corresponding to time
t € Y. The transformationin (7)isapplied toeachi € {1, ... ,D}.
This intermediate step is then followed by the final GPD step, for
which we introduce a high but constant 90% marginal thresh-
old, similar to our approach for margins B.

3.4 | Margins D

Our final detrending scheme builds upon the methodology for
margins C, replacing the constant high marginal threshold fea-
ture with the automated threshold selection routine of Murphy,
Tawn, and Varty (2024), thus allowing for a different marginal
threshold for each spatial location s;, i € {1, ... ,D}.

The Murphy, Tawn, and Varty (2024) method is aimed at ad-
dressing the bias-variance trade-off that is inherent to the
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problem of threshold choice for GPD model fitting; namely
that too low a threshold is likely to violate the assumptions
upon which asymptotic justification for the model is based—
thus introducing bias in the GPD model fit—while too high
a threshold can lead to fewer excesses being used to fit the
GPD model—hence contributing to higher parameter uncer-
tainty. The method focuses on selecting a constant threshold
for independent and identically distributed univariate time se-
ries. Threshold selection is performed based on an algorithm
that minimises the so-called expected quantile discrepancy
between the sample quantiles and the fitted GPD model quan-
tiles. For more details, we refer the interested reader to the
original paper.

We use code provided as supplementary material to the Murphy,
Tawn, and Varty (2024) paper to apply their method to the pre-
whitened and yearly adjusted series in (7) used in margins C. A
histogram of the resulting thresholds across all D locations is
given in Appendix B. These thresholds are subsequently used for
the implementation of the final GPD step, in accordance with all
the aforementioned marginal procedures. We note that neither
the independence nor the identical distribution assumptions of
the Murphy, Tawn, and Varty (2024) method are likely to hold in
our case. The former is violated by the presence of temporal de-
pendence mentioned in Section 1, while in the case of the latter,

we allow for its possible violation, should the likelihood ratio
test—performed as part of the GPD fitting step—deem a non-
stationary fit appropriate. However, given the dimensionality of
our data and the fact that few, if any, alternative automated ap-
proaches for appropriate threshold selection exist, we treat mar-
gins D and their subsequent analysis as a sensitivity experiment
of the effect threshold choice may have on marginal features.
Visualisation of the resulting time series in standard Laplace
margins (bottom right plot of Figure 2) suggests potentially little
effect of threshold sensitivity given the similarity of the series to
the respective one for margins C (bottom left plot of Figure 2).

4 | Spatial Analysis of the Gulf of Suez Dataset

The Red Sea temperature dataset introduced in Section 1 has
been analysed in numerous other studies including Huser and
Genton (2016), Simpson and Wadsworth (2021) and Simpson,
Opitz, and Wadsworth (2023). In agreement with those studies,
we found in exploratory analysis that the whole dataset showcases
non-trivial non-stationarity in its spatial extremal dependence
across space, with the Gulf of Suez having a slightly different be-
haviour to the north part of the Red Sea (latitude > 21.3°), which
in turn is significantly different to the south part of the Red Sea
(latitude < 21.3°). Hence, the decision to focus on the Gulf of Suez
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where the assumption of stationarity in spatial extremal depen-
dence over space seems reasonable. This smaller dataset now
comprises a total of D = 510 spatial locations, for which marginal
time series consisting of T = 2852 data points (92 per year) are
available.

Having obtained marginally detrended versions of the dataset,
as described in Sections 3.1-3.4, we perform exploratory in-
vestigations of the spatial extremal dependence structure. We
focus on two key measures to assess changing spatial extremal
dependence over time. The first measure examined is an av-
erage version of the y, and 5, measures defined in (3) and (5),
respectively. To be precise, we define %,(s;) = ﬁ iz Xuhi)

and 7,(s;) = ﬁzj 4cMu(hy). Note that s, is the condition-
ing site from the definition of y,(h;) in (3) and is therefore

included as an argument in the definition of %,(s,) and #,(s;)
to highlight that averaging is performed for each conditioning
location separately. These quantities allow us to assess aver-
age changes in the extremal dependence of the entire spatial
domain over time when computed over and contrasted against
different time periods. For example, Figure 3 shows differences
in ¥,(s;) between periods 1985-1989 and 2011-2015, that is,

Z1,1985-1989) (%) = X 2011-2015)(Sx) Where ¥, 4_p)(s;) represents
the measure %,(s;) calculated using data in the time period
A—B. The quantity ¥, 9ss-1989)(St) = Yu,011-2015)(8x) 18 cal-
culated empirically for all spatial locations s, k = {1, ... ,D},
using u = 0.95. A similar plot is obtained, respectively, for the
quantity 7, (19g5-1989)(Sk) = 7y, 2011-2015)(S¢) and is available in
Figure C2 of Appendix C. The second measure we look at is
pairwise y,(h;) estimates from (3). We compute those empiri-
cally for the same two periods and threshold level (u = 0.95) and
plot them against distance, thus assessing how the extremal de-
pendence of our dataset changes with respect to distance and
over time. These estimates are grouped in ten equidistant dis-
tance blocks and visualised via boxplots in Figure 4 for better
clarity of representation.

It is important to note the considerably different messages
Figures 3 and 4 convey concerning the change in dependence
over time: When ¥, 1og5_1980) — ¥u,2011-2015) 1S computed using
margins A (top left plot of Figure 3), a weakening in spatial
extremal dependence is suggested, with ¥,'s being smaller for
the later period, 2011-2015, compared to the earlier period,
1985-1989, across all available locations. The opposite how-
ever is suggested by the plot corresponding to margins B (top
right plot of Figure 3), with a sign reversal in }, suggesting
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TABLE1 | Table of CSE model coefficients.

Margins K i B b, Hz 3 v, G,
A 2.00 1.02 0.68 76.1 —-8.51 1.03 1.34 5.21
B 0.901 3.23 1.000 85.2 -163 1.04 1.64 7.28
C 0.975 1.63 1.000 15.4 -7.81 0.829 1.64 1.84
D 0.968 2.26 1.000 15.9 -11.4 0.982 1.57 1.80

Note: Parameters « and 4 relate to the function a_ (- ), parameter f relates to the function bs_y (- ) and parameters ¢, u, 8, v, and o relate to the structure of the

process Z% see Appendix A as well as Wadsworth and Tawn (2022) for more details.
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FIGURES5 | [Left] Model y,(h) estimates for u = 0.95 plotted over distance. Lines correspond to mean y,(h) estimates. [Right] Boxplots of model
simulated conditional exceedances. All estimates are obtained based on 200 simulations of 10* random fields each.

a strengthening of spatial extremal dependence over time.
Finally, plots based on margins C and D (bottom left and
right plots of Figure 3, respectively) suggest little to no change
over time. The same conclusion holds when examining
Tl (1085-1989) — Tl (2011-2015) Values (see Figure C2) or plots of y,
over distance shown in Figure 4.

Given the non-negligible discrepancies between detrending
procedures, we aim to quantify what repercussions these might
have on a more practical level by fitting the same spatial model
to the four datasets presented in Section 3. In doing so, we are
not attempting to model potential non-stationarity in the spa-
tial dependence, but rather to highlight the different conclu-
sions obtained concerning spatial extremal dependence from
the different marginal models. In practice, this feature is not
usually considered in extremal analyses of spatial processes. We
fit the CSE model of Wadsworth and Tawn (2022), introduced
in Section 2.3 and detailed in Appendix A. Parameter estima-
tion is achieved via a composite maximum likelihood scheme—
information from all locations acting as the conditioning site
was allowed to contribute to the inference procedure—using
code provided as supplementary material from Wadsworth and
Tawn (2022). The resulting estimates are presented in Table 1.
A constant high threshold corresponding to the 95% quantile

of the standard Laplace distribution was used to obtain these
results.

Combined parameter estimates from the CSE model are not
immediately interpretable in terms of the strength of spatial de-
pendence. We therefore assess this by simulating from the fit-
ted models to obtain model-based estimates of y,(h), which we
compare graphically in the left plot of Figure 5. Additionally, the
right hand plot of Figure 5 provides percentages of conditional
threshold exceedances obtained from our model simulations.
That is, conditional on a single location s, (selected to lie approx-
imately in the centre of the spatial domain) being extreme, the
percentage of exceedances of the 95% quantile observed in the
remaining locations was calculated. Both plots once again suc-
ceed in conveying the disagreement between the same spatial
analysis of differently detrended datasets, with the weakest over-
all dependence for margins A and the strongest for margins B,
and highlight the important influence marginal considerations
can inflict on dependence features and vice versa. Note that
these summaries do not include the effects of parameter uncer-
tainty in the model fits, so may be interpreted with some cau-
tion. Uncertainty quantification could potentially be obtained by
block bootstrap but is both computationally intensive and diffi-
cult to do appropriately given the likely non-stationary nature
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of some of the margins. Therefore this is not performed for this
investigative analysis.

5 | Discussion

The focus of this paper has primarily been on unpicking the
margins-dependence interrelationship in the analysis of spa-
tial extremes. By examining four different marginal detrend-
ing techniques, each with different merits and drawbacks, and
comparing their effects on the dependence characteristics of the
correspondingly detrended datasets we have established two
key findings.

Our first message is that margins and dependence are intri-
cately connected. Their interaction affects both apparent non-
stationarity in spatial extremal dependence over time, as well
as spatial extremal dependence estimates in model fits assum-
ing temporal stationarity. This is highlighted both by visual ex-
ploratory tools such as the ones presented in Figures 3, C2 and
4 and model fits like the ones implemented in Section 4 and
summarised in Table 1 and Figure 5. The high sensitivity of
conclusions to the marginal model is something we should be
aware of when performing similar analyses.

Our second finding is that the task of marginal detrending it-
self can be a very difficult undertaking in practice. One reason
is that there is no single approach to marginal modelling. We
strive for the most stationary data possible, but it is difficult to
guarantee that this has been achieved to an acceptable level,
especially with a large number of sites (in this case, >500) to
consider. Another reason is that, when attempting to analyse a
dataset in practice, there is usually no way of knowing a pri-
ori the level of its underlying complexity and therefore making
an informed decision on the best detrending approach to adopt.
One has to rely on exploratory—principally graphical—tools
that might not straightforwardly reveal the existence and extent
of non-stationarity in the dataset and can be plagued by other
complicating factors unrelated to non-stationarity, such as tem-
poral dependence discussed in Section 1.
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