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ABSTRACT
It is no secret that statistical modelling often involves making simplifying assumptions when attempting to study complex sto-
chastic phenomena. Spatial modelling of extreme values is no exception, with one of the most common such assumptions being 
stationarity in the marginal and/or dependence features. If non-stationarity has been detected in the marginal distributions, it 
is tempting to try to model this while assuming stationarity in the dependence, without necessarily putting this latter assump-
tion through thorough testing. However, margins and dependence are often intricately connected and the detection of non-
stationarity in one feature might affect the detection of non-stationarity in the other. This work is an in-depth case study of this 
interrelationship, with a particular focus on a spatio-temporal environmental application exhibiting well-documented marginal 
non-stationarity. Specifically, we compare and contrast four different marginal detrending approaches in terms of our post-
detrending ability to detect temporal non-stationarity in the spatial extremal dependence structure of a sea surface temperature 
dataset from the Red Sea.

1   |   Introduction

In environmental applications, it is not uncommon to observe 
non-stationary behaviour in the extreme values of a random 
variable. However, extreme value modelling often relies on 
a simplifying assumption of stationarity. In practice, non-
stationarity may be present in different aspects of the data 
generating process; the more aspects it affects, the greater the 
degree of modelling complexity. Marginal non-stationarity re-
fers to the situation where realisations of a univariate random 
variable are non-identically distributed. In environmental data, 
this varying behaviour typically depends on time, although 
other covariates, that themselves evolve with time, are normally 
the drivers of change. Various methods for modelling marginal 
non-stationarity of extremes have been well explored in the lit-
erature. One of the main approaches is to incorporate covariates 
directly into the parameters of univariate models for extreme 
value analysis. Typically, this will be the generalised Pareto 
model for excesses of a high threshold: See, for example, Davison 

and Smith  (1990), Chavez-Demoulin and Davison  (2005) and 
Youngman (2019). Section 2.1 contains further details on these 
and other methods for modelling non-stationarity.

Non-stationarity may also be encountered in the extremal de-
pendence structure of a random vector. That is, the extremal 
dependence between two or more components of a random vec-
tor may change with covariates. In such instances, it is com-
mon in analyses of multivariate or spatial extremes to handle 
marginal and dependence modelling as a two-step procedure, 
implementing marginal detrending methods first and then ap-
plying non-stationary methods for dependence modelling to 
the marginally detrended data. Although alternative methods 
that model marginal and copula behaviour jointly in a single 
step exist, they are not as numerous, and their application in 
extreme value modelling is scarce in practice. One reason for 
this is that univariate extreme value distributions are suited to 
marginal upper tails, while multivariate extremal dependence 
models rely on potentially different upper tail definitions. A 
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mismatch between marginal and copula support impedes joint 
modelling considerations. When the multivariate definition of 
extremity follows as a direct generalisation of the univariate 
one, as in the case of modelling maxima, Padoan, Ribatet, and 
Sisson (2010) and Ribatet, Cooley, and Davison (2012) develop 
such joint modelling procedures for max-stable processes, in a 
frequentist and Bayesian realm respectively. In a similar man-
ner, multivariate generalised Pareto distributions (Rootzén 
and Tajvidi 2006; Rootzén et al. 2018) allow for joint marginal-
dependence modelling, which could be extended to cover non-
stationarity, while similar ideas could potentially be applied 
to spatial generalised Pareto processes (Buishand et al. 2008; 
Ferreira and de Haan  2014). However, both max-stable and 
generalised Pareto processes yield very restrictive dependence 
structures and are therefore unlikely to capture the complex 
dependence features often present in environmental applica-
tions (Huser and Wadsworth 2022). Even putting these issues 
aside, pursuing joint marginal-copula modelling brings about 
another important risk, even in the stationary case, that mis-
specification in one form — the margins or dependence — 
can affect the other. Such spillover is likely worsened when 
non-stationarity is present. In this paper, we adopt the more 
established two-stage approach, thus making the task of dis-
entangling the relationship between margins and dependence, 
which is the focus of this work, as clear and straightforward 
as possible.

Available methods for non-stationary dependence modelling 
include the following. In a bivariate setting, de Carvalho and 
Davison (2014) develop a semi-parametric model that incorpo-
rates covariates into the modelling of the so-called spectral den-
sity, thus capturing the effect of explanatory variables on joint 
extremes. In a multivariate setting, Castro-Camilo, de Carvalho, 
and Wadsworth (2018) and Mhalla, de Carvalho, and Chavez-
Demoulin  (2019) also focus on spectral density functions 
with the former developing non-parametric regression-based 
methods and the latter building a vector generalised additive 
model to capture covariate-varying extremal dependence. Lee 
et  al.  (2024) model covariate(time)-varying extremal depen-
dence in various summary statistics. Murphy-Barltrop and 
Wadsworth  (2024) model temporally varying extremal depen-
dence in a bivariate setting via non-stationary extensions of the 
so-called angular dependence function and return curves, while 
Mhalla, Opitz, and Chavez-Demoulin  (2019) also make use of 
non-stationary angular dependence functions to account for co-
variate influence.

In a spatial setting, modelling changes in extremal depen-
dence using space-related covariates, which may be expected 
when the spatial domain is large or morphologically diverse, 
has received the most attention; see, for example, Huser and 
Genton (2016), Blanchet and Davison (2011) and Richards and 
Wadsworth  (2021). Much less attention has been dedicated, 
however, to time-related covariates, which, given the ongoing 
climate crisis, may have considerable effects on the spatial ex-
tremal dependence structure over time, especially in applications 
spanning a large temporal domain. A noteworthy exception of 
research in this direction is that of Healy et al. (2024) who model 
temporal non-stationarity in both marginal and dependence 
features. They combine information on Irish temperatures from 
both observational and climate-model sources and consider 

time-varying dependence via the framework of r-Pareto pro-
cesses (Dombry and Ribatet 2015).

Of the aforementioned examples, Healy et al. (2024) is the only 
one dealing with spatial aspects of time-varying extremal depen-
dence; the remaining do so in a multivariate setting. To the best 
of our knowledge, there is no other contribution where this prob-
lem is tackled in a fully spatial context available in the literature. 
What is more, Healy et al. (2024) focus on a class of models that 
can only accommodate a particular type of dependence, namely 
asymptotic dependence (see Section 2.2 for details), which, al-
though appropriate for their application, is often unrealistic for 
similar spatial environmental datasets.

It is this lack of available literature that provided the initial mo-
tivation for the present work. Our study is focused on a data-
set with well documented marginal non-stationarities (Huser 
and Genton  2016), which was also believed to showcase non-
stationary behaviour in its spatial extremal dependence struc-
ture. The data comprise daily sea surface temperature values 
from the Gulf of Suez spanning across 31 years (1985 to 2015 in-
clusive). As is common in analyses of extremes, we focused our 
attention on the summer data (July–August–September) from 
that period, to reduce the degree of seasonality to be modelled, 
while considering the period of highest temperatures. The orig-
inal data are available for the whole of the Red Sea, on a daily 
basis and a very fine resolution grid of 0.05 ◦ × 0.05 ◦ (Donlon 
et al. 2012). Initial analysis of spatial dependence changes over 
time for this dataset suggested the need for adapting spatial de-
pendence models to account for time-varying dependence (see 
top left plot of Figure 3).

However, following our initial exploratory analysis, we tested 
various approaches to modelling marginal non-stationarity, 
finding that subsequent results concerning changes in spatial 
extremal dependence were highly sensitive to the marginal 
model used. We thus came to the conclusion that the deciding 
factor behind whether or not temporal non-stationarity is de-
tectable in the spatial extremal dependence structure of the data 
critically relies on the marginal detrending approach pursued 
and that any resultant analysis is, in our case, extremely sensi-
tive to marginal modelling choices. As such, instead of focus-
ing on adapting existing models to accommodate changes in 
spatial dependence over time, the aim of this paper is to serve 
as a cautionary tale of the misleading effects the marginal and 
dependence structure interrelationship can have on analyses 
of extremes. Our main objective is to investigate the effects of 
four different marginal detrending approaches on spatial ex-
tremal dependence. In particular, we use graphical tools to as-
sess whether the apparent spatial extremal dependence changes 
over time under each marginal detrending procedure. We note 
here that the dataset in question displays strong autocorrelation; 
such a feature will remain after modelling trends in the data, 
but can affect visual assessment of stationarity. Graphical tools 
should therefore be interpreted with some degree of caution. We 
further assess the impact of each marginal model on the spa-
tial extremal dependence under a (potentially false) assumption 
of temporal stationarity by applying the conditional spatial ex-
tremes model (Wadsworth and Tawn 2022) to all four margin-
ally treated versions of the Gulf of Suez dataset and comparing 
model-based dependence features. This particular spatial model 
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was selected because of its computational and modelling flexi-
bility, which allow for increased scalability (in terms of the num-
ber of spatial locations that can be handled) compared to most 
alternative models available, as well as simpler characterisation/
modelling of different types of extremal dependence.

The remainder of the paper is outlined as follows. Section  2 
provides background information for our statistical approach. 
Section 3 describes the four marginal detrending methods em-
ployed. Section 4 is dedicated to the analysis of the Gulf of Suez 
data. Finally, we conclude in Section 5 with a short discussion.

2   |   Statistical Background

2.1   |   Marginal Modelling of Extremes

Marginal modelling in extremes concerns the study of univariate 
extreme values, which appear either in isolation, or as compo-
nents of a higher dimensional random vector. When studying a 
random variable X , asymptotic theory dictates that the distribu-
tion of threshold exceedances X − u|X > u of a sufficiently high 
threshold u can usually be approximated by the limiting form G 
in (1), known as the generalised Pareto distribution (GPD): 

for a+ =max(a, 0); we write X − u|X > u ∼ GPD(𝜎u, 𝜉). The 
GPD model is suitable for capturing the tail behaviour of sta-
tionary processes. When marginal non-stationarity is present, 
Davison and Smith  (1990) proposed incorporating covariates 
into the parameters of the GPD. That is, given a marginally 
non-stationary process {Xt} with associated covariates Zt, one 
can model 

(
Xt − u|Xt > u,Zt = zt

)
∼ GPD

(
𝜎u(zt), 𝜉(zt)

)
 for a 

high enough threshold u. Note that covariate modelling here 
is performed according to the principles of generalised linear 
models, where typically we set log�u(zt) = �T

�
zt , �(zt) = �T

�
zt. 

Subsequent work has considered more flexible covariate formu-
lations, such as those provided by generalised additive models 
(GAMs); see, for example, Chavez-Demoulin and Davison (2005) 
and Youngman (2019).

One problem with such techniques is that their definition of 
extremity often depends on a constant threshold, but under 
non-stationarity, the extremes are suitably defined through the 
corresponding covariate levels as well. To address this issue, 
Northrop and Jonathan  (2011) and Jonathan, Ewans, and 
Randell  (2013) define covariate-varying thresholds. Another 
concern is that these techniques focus on modelling non-
stationary behaviour only in the tail of a process. However, it is 
often of interest to model non-stationarity in the body of the data 
as well, since extremes across components of a random vector do 
not necessarily occur simultaneously. That is, we may observe 
extremity in one component but moderate levels of another. If 
marginal non-stationarity in the body of the distribution is ne-
glected, then we cannot model this dependence appropriately.

To overcome these issues, Eastoe and Tawn (2009) borrow tech-
niques from time-series modelling. They introduce a two-step 

procedure comprising a pre-processing step, aiming to remove 
most of the non-stationarity present in the body of the data, and 
a non-stationary GPD step, to remove any leftover trends in the 
tails. The pre-processing step consists of applying a Box-Cox 
location-scale transformation of the form 

to the marginally non-stationary process {Xt}, where {Rt} is ap-
proximately stationary and �, �, and log(�) are linear functions 
of covariates zt. The process {Rt} is assigned a Gaussian distribu-
tion, so that specification (2) has a likelihood that is maximised 
to provide parameter estimates. This is then followed by a non-
stationary GPD fit to the residual process {Rt}, using the meth-
odology of Davison and Smith (1990). If any trends are identified 
in the scale and shape parameters, �u(zt) and �(zt) respectively, 
they are removed via the probability integral transformation, 
using a semi-parametric approach to estimation of the distribu-
tion of Rt (Coles and Tawn 1991). This consists of a rank trans-
form for data below a high marginal threshold, u , which are 
now assumed stationary, and the GPD cumulative distribution 
function for values above u. To make things more explicit, let 
r1, … , rn be observations from the process {Rt} at times 1, … ,n , 
and define 

where �̂u(zt) and �̂(zt) are the maximum likelihood estimates 
of the scale and shape parameters respectively, which are es-
timated by the non-stationary GPD step. Applying F̂Rt to the 
marginal process {Rt} achieves standardisation to a standard 
uniform scale. Finally, we note that some more recent work 
replaces Eastoe and Tawn  (2009)'s pre-processing step with 
a more elaborate one which, instead of assuming linear para-
metric forms for the covariate functions, makes use of the GAM 
framework to allow parameters �(zt), �(zt) of (2) and �u, � of the 
non-stationary version of  (1) to vary smoothly with covariates 
(Murphy-Barltrop and Wadsworth 2024). This extra flexibility is 
desirable when the observed non-stationarities are too compli-
cated to be adequately captured by parametric forms.

2.2   |   Measures of Extremal Dependence

A key endeavour of many multivariate analyses is to character-
ise the extremal dependence between D ≥ 2 random variables. 
Apart from the obvious exploratory benefits of understanding 
the data better by uncovering its dependence structure before 
attempting any modelling, another reason why such a task is 
of importance is that many of the available models—and their 
underpinning assumptions—can only accommodate data that 
fall under a single category of dependence classes. Hence, D
-variate measures of extremal dependence are often examined 
for dependence-class assessment and categorisation in multi-
variate analyses. In the spatial case however, one can often as-
sume that bivariate distributions (D = 2) of the spatial process at 

(1)G(x)=

{
1−

(
1+𝜉x∕𝜎u

)−1∕𝜉
+

, for 𝜉≠0, 𝜎u>0, x>0,

1−exp
(
−x∕𝜎u

)
, for 𝜉→0, 𝜎u>0, x>0,

(2)
X

�(zt )
t − 1

�(zt)
= �(zt) + �(zt)Rt

�FRt (r�Zt = zt) =

⎧⎪⎨⎪⎩

Σnt=1�(rt ≤ r)∕(n+1), r≤u

1− (1−u)
�
1+�𝜉(zt)(r−u)∕�𝜎u(zt)

�−1∕�𝜉(zt )
+

, r>u,
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location pairs are very informative and, thus, looking at bivari-
ate versions of extremal dependence measures for different pairs 
is all one needs to characterise the extremal dependence of the 
process at given distances.

A widely used dependence measure in practice is the so-
called tail dependence coefficient, typically denoted by �. Let 
{Y (s): s ∈ S ⊂ ℝ

2} be a stationary and isotropic spatial random 
field and 

(
Y (s1), … ,Y (sD)

)
 the D-dimensional random vector 

comprised of the realisations of {Y (s)} at the observed spatial 
locations si, i = 1, … ,D. Letting Y (si) ∼ F denote the common 
marginal distribution, the coefficient of tail dependence �(hjk) is 
given by �(hjk) = limu→1�u(hjk), with 

where hjk = ‖sj − sk ‖ is the distance between sites j and 
k(j ≠ k, j, k ∈ {1, … ,D}); we will take this to be the Euclidean 
distance for the remainder of the paper. The quantity �(hjk) 
is the limiting probability of the process being extreme at lo-
cation sj given that it is also extreme at location sk and char-
acterises the extremal dependence between the pair (j, k) at 
distance hjk apart. A process is said to be asymptotically de-
pendent (AD) in the spatial domain S if 𝜒(hjk) > 0 for all 
hjk , j, k ∈ {1, … ,D}. In practical terms, asymptotic depen-
dence (AD) means that the variables, or realisations of the spa-
tial process at different locations, can take their most extreme 
values simultaneously. Conversely, the case where �(hjk) = 0 
for all hjk , j, k ∈ {1, … ,D}, defines an asymptotically indepen-
dent (AI) process in the spatial domain S, which means that 
the spatial extent of the extremes becomes more and more lo-
calised as the level of extremity increases. In such cases, the 
measure �(hjk) does not give us any additional information on 
the joint tail dependence. A complementary statistic to �(hjk) 
that is more informative under asymptotic independence (AI) 
is the residual tail dependence coefficient, �(hjk) ∈ (0,1], of 
Ledford and Tawn (1996), which may be defined through the 
relation 

where  is a slowly varying function such that (cr)∕(r)→ 1 as 
r → 0 for all positive constants c. Note that relation (4) implies 
�(hjk) = limu→1�u(hjk), with 

j ≠ k, j, k ∈ {1, … ,D}. The boundary case �(hjk) = 1 corre-
sponds to �(hjk) = limu→1(1 − u). Hence, when �(hjk) = 1 
for all hjk , j, k ∈ {1, … ,D}, and (1 − u)↛ 0 as u→ 1 we get 
𝜒(hjk) > 0 for all hjk , j, k ∈ {1, … ,D}; that is, the process is 
AD in the spatial domain S. The more interesting case where 
either 𝜂(hjk) < 1 for all hjk , j, k ∈ {1, … ,D}, or �(hjk) = 1 for 
all hjk , j, k ∈ {1, … ,D}, and (1 − u)→ 0 as u→ 1, leads to 
�(hjk) = 0 for all hjk , j, k ∈ {1, … ,D}, and signifies that the 
process is AI in S, which can be further categorised into neg-
ative extremal association when �(hjk) ∈ (0,1∕2), near indepen-
dence when �(hjk) = 1∕2 and positive extremal association when 

�(hjk) ∈ (1∕2,1]. The latter case is of particular interest to environ-
mental applications which usually exhibit positive dependence 
over space. Because we cannot typically estimate the limiting 
quantities (�(hjk), �(hjk)), the behaviour of (�u(hjk), �u(hjk)) as 
u→ 1 is used instead to help inform us about the extremal de-
pendence structure of the process.

As already mentioned, distinguishing between extremal depen-
dence classes is important for modelling. Doing so in practice, 
however, is a non-trivial task. With spatial data, for example, we 
might have 𝜒u(hjk) > 0 at all observable high quantiles, u, and 
pairs of sites, but �u ↘ 0 as u↗ 1. It is frequently encountered 
in practice that the dependence of environmental processes 
weakens as events become more extreme with the very severe 
extreme events becoming more spatially localised (Huser and 
Wadsworth 2022). One might also observe that the dependence 
class of the process is not the same for all distances, but changes 
from AD to AI after a distance Δ, or with respect to other co-
variates. This creates additional modelling difficulties and 
highlights the importance of thorough exploratory investigation 
of the dependence structure as a first step to overcoming said 
difficulties.

2.3   |   Conditional Spatial Extremes Model

So-called conditional extremes methods for extremal depen-
dence modelling were first developed in a multivariate set-
ting by Heffernan and Tawn  (2004) and further studied by 
Heffernan and Resnick  (2007). In contrast to previously ex-
isting methods that relied on the limiting behaviour of a D
-dimensional random vector when all of its components be-
come simultaneously extreme at the same rate, the authors 
developed novel methodology based on a limiting assumption 
on the joint tail of a vector given that one of its components is 
extreme. This alternate limiting assumption of the Heffernan 
and Tawn (2004) model is much less restrictive, allowing for 
increased flexibility both in dependence modelling and in fit-
ting scalability. With these benefits in mind, Wadsworth and 
Tawn (2022) extended the work of Heffernan and Tawn (2004) 
and Heffernan and Resnick (2007) to a spatial setting, termed 
the conditional spatial extremes (CSE) model.

Let {Y (s): s ∈ S ⊂ ℝ
2} be a stationary and isotropic spa-

tial random field with exponential-tailed margins, that 
is,  Pr(Y (sj) > x) ∼ ce−x , c > 0, as x →∞; a typical marginal 
choice is standard Laplace, which we also adopt in our subse-
quent analyses. For a high marginal threshold t , Wadsworth and 
Tawn (2022) show that for many dependence structures, a rea-
sonable assumption is 

vwhich can be used to model the behaviour of the process 
{Y (s)} given an extreme value has occurred at some loca-
tion s0. Specifying functional forms for as−s0 and bs−s0, where 
as−s0 :ℝ→ ℝ, a0(y) = y, and bs−s0 :ℝ→ (0,∞), s ∈ S, and a dis-
tributional form for the so-called residual process {Z0} — sat-
isfying the condition Z0(s0) = 0 — completes the model. The 
dependence structure of the residual process {Z0} is assumed 

(3)𝜒u(hjk) = Pr
{
F(Y (sj)) > u|F(Y (sk)) > u

}
, u ∈ [0,1],

(4)
Pr
{
F(Y (sj)) > u,F(Y (sk)) > u

}
= (1 − u)(1−u)1∕𝜂(hjk ), u→ 1,

(5)𝜂u(hjk) =
log(1 − u)

log
(
Pr
{
F(Y (sj)) > u,F(Y (sk)) > u

}) , u ∈ [0,1],

(6)

{
Y (s)|Y (s0) > t: s ∈ S

} d
≈
{
as−s0

(
Y (s0)

)
+ bs−s0

(
Y (s0)

)
Z0(s): s ∈ S

}
,
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to be Gaussian in nature, while its margins are modelled via 
the so-called delta-Laplace distribution. Inference for the 
model in  (6) is performed based on a composite likelihood 
scheme, combining likelihood contributions stemming from 
different conditioning locations (all or a subset of available 
locations can be selected), thus overcoming the problem of 
choice of conditioning location which is often not obvious in 
applications. Additional details on the CSE model are given in 
Appendix A.

3   |   Marginal Detrending Methods

In Sections 3.1–3.4, we outline four approaches considered for 
capturing marginal non-stationarities in our dataset. In each 
case, our objective is to transform the data to follow a station-
ary standard Laplace distribution, that is, with distribution 
function 

enabling subsequent application of the CSE model. We do 
this in two steps. We first transform our data to the standard 
uniform scale by implementing each detrending procedure 
outlined below. Then, assuming all trends have been success-
fully removed and that, therefore, our data are now station-
ary, we apply F−1

L
, the Laplace inverse cumulative distribution 

function, to the uniform data to bring them to the required 
marginal scale. Figure 2 displays the data on Laplace margins 
following each of the four processing techniques. As noted in 
Section 1, strong temporal dependence between observations 
within a year can hinder visual assessment of stationarity 
from such plots. All marginal detrending procedures are im-
plemented site-wise.

3.1   |   Margins A

The first marginal detrending approach considered comes 
from the simple but crude assumption that data are station-
ary within a year—facilitated by considering data only from 
a single season—but that their distribution may change over 
the years. It consists of a simple rank transform applied in 
yearly blocks, whereby data corresponding to the same year 
are grouped, rank-transformed together and collated post-
transformation. Implementing this transformation separately 
for each year allows for long term and inter-annual trends—
which, according to Figure 1, both seem to be present for the 
Gulf of Suez dataset—without the need to explicitly specify 
the form of such trends.

The main merit of such an approach lies precisely in its simplic-
ity, which in turn leads to very fast and straightforward imple-
mentation. On the other hand, performing the rank operation 
yearly could lead to cruder empirical approximations of the un-
derlying marginal distributions—given only 92 data points per 
year are available in our case—and introduces the repeated val-
ues that can be seen in the top-left panel of Figure 2 across the 
full, transformed time series.

3.2   |   Margins B

The Eastoe and Tawn  (2009) approach has been widely used 
in applications to achieve data detrending at a marginal level 
(e.g.,  Winter, Tawn, and Brown  2016; Winter et  al. 2017). We 
employ this, in particular, its more flexible GAM extension, as 
our second detrending technique. As evidenced in Figure 1, the 
Gulf of Suez dataset is characterised by strong temporal trends 
of both cyclical (short-term) and linear (long-term) nature. We 
endeavour to remove such trends site-wise, via the GAM mod-
elling framework of Wood (2017), as implemented in Murphy-
Barltrop and Wadsworth (2024).

To be precise, let us denote the temperature process by 
{Yt(s)}, t = 1, … ,T. We are interested in applying detrend-
ing methods to all marginal time series Yi,t = Yt(si), for all 
i ∈ {1, … ,D}. For every Yi,t, we allow the location, �i, and scale, �i, 
parameters of (2) to vary smoothly with covariates zt = {1, gmtt , dt}, 
where gmtt denotes global mean temperature anomalies1 at time t  
and dt = {1, … , 92} denotes the day index of the process at time t. 
The reason gmtt is chosen instead of t is that we found it explained 
more of the observed trends than simply t. Moreover, its use has 
been advocated by others (e.g., D'Arcy, Tawn, and Sifnioti 2022; 
Healy et al. 2024) for better capturing long-term trends in environ-
mental applications. Note that we do not include a Box-Cox param-
eter in this procedure for simplicity, as there is no obvious need for a 
changing shape parameter. Aiming to capture the long-term linear 
trend, a thin plate regression spline is fitted for the covariate gmtt, 
while a cubic regression spline of dimension 92—found to result 
in the most stationary-looking data amongst a number of different 
choices examined—is used to capture the seasonal trends through 
the covariate dt. The �i and �i parameters are estimated by means 
of the R package mgcv (Wood 2003; 2011) and subsequently re-
moved, resulting in residual time series Ri,t = (Yi,t − �i(zt))∕�i(zt) 
for all i. We then proceed by applying a non-stationary GPD to Ri,t 
using a constant 90% marginal threshold, thus aiming to remove 
any remaining trends in the tails. A likelihood ratio test is used to 
determine whether no, linear, seasonal or both trends should be 
added to the scale parameter of the GPD for each site si. The shape 
parameter in all margins is assumed to be invariant to temporal 

FL(x) =

{
0.5exp{x}, x≤0,

1−0.5exp{−x}, x>0,

FIGURE 1    |    Time series plot at location s35 on the original marginal 
scale.
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6 of 11 Stat, 2024

trends. The detrended data are visualised on the standard Laplace 
scale in the top right plot of Figure 2.

3.3   |   Margins C

The third marginal detrending method examined is motivated 
by the unsatisfactory degree of detrending achieved in margins 
B. In particular, there seems to be an inconsistency in the num-
ber of exceedances of a fixed high threshold observed per year, 
with some years experiencing multiple exceedances and some 
very few, if any. It appears therefore that the detrending method 
described in Section 3.2 fails to capture the full structural com-
plexity of the margins, resulting in leftover marginal ‘irreg-
ularities’ manifesting as inter-year variability. Eastoe  (2019) 
and Clarkson, Eastoe, and Leeson (2023) have reported similar 
findings in their analyses of a river flow and a US temperature 
dataset, respectively. To account for leftover inter-year variabil-
ity they develop a random-effects-based methodology. Inspired 
by their method, we introduce an additional intermediate step 
to the aforementioned margins B procedure, acting as a crude 
approximation of the Eastoe (2019) approach.

Let k denote the set of time points t  corresponding to year k, where 
k = {1, … , 31}. Since each year is comprised of 92 summer-month 

observations, 1 = {1, … , 92}, 2 = {93, … , 184}, and so 
forth. The residual process {Ri,t} is then adapted as follows: 

where mk is the yearly mean and sk is the yearly standard de-
viation. Both quantities are estimated over all locations 
i ∈ {1, … ,D} and using all data points corresponding to time 
t ∈ k. The transformation in (7) is applied to each i ∈ {1, … ,D} . 
This intermediate step is then followed by the final GPD step, for 
which we introduce a high but constant 90% marginal thresh-
old, similar to our approach for margins B.

3.4   |   Margins D

Our final detrending scheme builds upon the methodology for 
margins C, replacing the constant high marginal threshold fea-
ture with the automated threshold selection routine of Murphy, 
Tawn, and Varty (2024), thus allowing for a different marginal 
threshold for each spatial location si, i ∈ {1, … ,D}.

The Murphy, Tawn, and Varty (2024) method is aimed at ad-
dressing the bias-variance trade-off that is inherent to the 

(7)
{Ri,t}t∈k

−mk

sk
,

FIGURE 2    |    Time series for location s35 in standard Laplace margins. [Left to right and top to bottom] A–B–C–D margins. Detrending is performed 
based on a 90% constant marginal threshold for margins A–C, while for margins D, an 83% threshold was automatically selected for this location.
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7 of 11

problem of threshold choice for GPD model fitting; namely 
that too low a threshold is likely to violate the assumptions 
upon which asymptotic justification for the model is based—
thus introducing bias in the GPD model fit—while too high 
a threshold can lead to fewer excesses being used to fit the 
GPD model—hence contributing to higher parameter uncer-
tainty. The method focuses on selecting a constant threshold 
for independent and identically distributed univariate time se-
ries. Threshold selection is performed based on an algorithm 
that minimises the so-called expected quantile discrepancy 
between the sample quantiles and the fitted GPD model quan-
tiles. For more details, we refer the interested reader to the 
original paper.

We use code provided as supplementary material to the Murphy, 
Tawn, and Varty (2024) paper to apply their method to the pre-
whitened and yearly adjusted series in (7) used in margins C. A 
histogram of the resulting thresholds across all D locations is 
given in Appendix B. These thresholds are subsequently used for 
the implementation of the final GPD step, in accordance with all 
the aforementioned marginal procedures. We note that neither 
the independence nor the identical distribution assumptions of 
the Murphy, Tawn, and Varty (2024) method are likely to hold in 
our case. The former is violated by the presence of temporal de-
pendence mentioned in Section 1, while in the case of the latter, 

we allow for its possible violation, should the likelihood ratio 
test—performed as part of the GPD fitting step—deem a non-
stationary fit appropriate. However, given the dimensionality of 
our data and the fact that few, if any, alternative automated ap-
proaches for appropriate threshold selection exist, we treat mar-
gins D and their subsequent analysis as a sensitivity experiment 
of the effect threshold choice may have on marginal features. 
Visualisation of the resulting time series in standard Laplace 
margins (bottom right plot of Figure 2) suggests potentially little 
effect of threshold sensitivity given the similarity of the series to 
the respective one for margins C (bottom left plot of Figure 2).

4   |   Spatial Analysis of the Gulf of Suez Dataset

The Red Sea temperature dataset introduced in Section  1 has 
been analysed in numerous other studies including Huser and 
Genton  (2016), Simpson and Wadsworth  (2021) and Simpson, 
Opitz, and Wadsworth (2023). In agreement with those studies, 
we found in exploratory analysis that the whole dataset showcases 
non-trivial non-stationarity in its spatial extremal dependence 
across space, with the Gulf of Suez having a slightly different be-
haviour to the north part of the Red Sea (latitude > 21.3 ◦), which 
in turn is significantly different to the south part of the Red Sea 
(latitude < 21.3 ◦). Hence, the decision to focus on the Gulf of Suez 

FIGURE 3    |    Differences in �̃0.95(sk) between periods (1985–1989) and (2011–2015) for all spatial locations sk , k ∈ {1, … ,D}. [Left to right and top 
to bottom] A–B–C–D margins.
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8 of 11 Stat, 2024

where the assumption of stationarity in spatial extremal depen-
dence over space seems reasonable. This smaller dataset now 
comprises a total of D = 510 spatial locations, for which marginal 
time series consisting of T = 2852 data points (92 per year) are 
available.

Having obtained marginally detrended versions of the dataset, 
as described in Sections  3.1–3.4, we perform exploratory in-
vestigations of the spatial extremal dependence structure. We 
focus on two key measures to assess changing spatial extremal 
dependence over time. The first measure examined is an av-
erage version of the �u and �u measures defined in (3) and (5), 
respectively. To be precise, we define �̃u(sk) =

1

D− 1

∑
j≠k�u(hjk) 

and �̃u(sk) =
1

D− 1

∑
j≠k�u(hjk). Note that sk is the condition-

ing site from the definition of �u(hjk) in  (3) and is therefore 

included as an argument in the definition of �̃u(sk) and �̃u(sk) 
to highlight that averaging is performed for each conditioning 
location separately. These quantities allow us to assess aver-
age changes in the extremal dependence of the entire spatial 
domain over time when computed over and contrasted against 
different time periods. For example, Figure 3 shows differences 
in �̃u(sk) between periods 1985–1989 and 2011–2015, that is, 

�̃u,(1985−1989)(sk) − �̃u,(2011−2015)(sk) where �̃u,(A−B)(sk) represents 
the measure �̃u(sk) calculated using data in the time period 
A − B. The quantity �̃u,(1985−1989)(sk) − �̃u,(2011−2015)(sk) is cal-
culated empirically for all spatial locations sk , k = {1, … ,D}, 
using u = 0.95. A similar plot is obtained, respectively, for the 
quantity �̃u,(1985−1989)(sk) − �̃u,(2011−2015)(sk) and is available in 
Figure  C2 of Appendix C. The second measure we look at is 
pairwise �u(hjk) estimates from (3). We compute those empiri-
cally for the same two periods and threshold level (u = 0.95) and 
plot them against distance, thus assessing how the extremal de-
pendence of our dataset changes with respect to distance and 
over time. These estimates are grouped in ten equidistant dis-
tance blocks and visualised via boxplots in Figure 4 for better 
clarity of representation.

It is important to note the considerably different messages 
Figures 3 and 4 convey concerning the change in dependence 
over time: When �̃u,(1985−1989) − �̃u,(2011−2015) is computed using 
margins A (top left plot of Figure  3), a weakening in spatial 
extremal dependence is suggested, with �̃u's being smaller for 
the later period, 2011–2015, compared to the earlier period, 
1985–1989, across all available locations. The opposite how-
ever is suggested by the plot corresponding to margins B (top 
right plot of Figure  3), with a sign reversal in �̃u suggesting 

FIGURE 4    |    Boxplots of �u(hjk) estimates grouped in 10 equidistant distance blocks. Boxplots in red are based on �u(hjk) values for the period 
1985–1989, while boxplots in blue are based on �u(hjk) values for years 2011–2015. All estimates are calculated using u = 0.95. [Left to right and top 
to bottom] A–B–C–D margins.
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9 of 11

a strengthening of spatial extremal dependence over time. 
Finally, plots based on margins C and D (bottom left and 
right plots of Figure 3, respectively) suggest little to no change 
over time. The same conclusion holds when examining 
�̃u,(1985−1989) − �̃u,(2011−2015) values (see Figure C2) or plots of �u 
over distance shown in Figure 4.

Given the non-negligible discrepancies between detrending 
procedures, we aim to quantify what repercussions these might 
have on a more practical level by fitting the same spatial model 
to the four datasets presented in Section 3. In doing so, we are 
not attempting to model potential non-stationarity in the spa-
tial dependence, but rather to highlight the different conclu-
sions obtained concerning spatial extremal dependence from 
the different marginal models. In practice, this feature is not 
usually considered in extremal analyses of spatial processes. We 
fit the CSE model of Wadsworth and Tawn (2022), introduced 
in Section 2.3 and detailed in Appendix A. Parameter estima-
tion is achieved via a composite maximum likelihood scheme—
information from all locations acting as the conditioning site 
was allowed to contribute to the inference procedure—using 
code provided as supplementary material from Wadsworth and 
Tawn (2022). The resulting estimates are presented in Table 1. 
A constant high threshold corresponding to the 95% quantile 

of the standard Laplace distribution was used to obtain these 
results.

Combined parameter estimates from the CSE model are not 
immediately interpretable in terms of the strength of spatial de-
pendence. We therefore assess this by simulating from the fit-
ted models to obtain model-based estimates of �u(h), which we 
compare graphically in the left plot of Figure 5. Additionally, the 
right hand plot of Figure 5 provides percentages of conditional 
threshold exceedances obtained from our model simulations. 
That is, conditional on a single location s0 (selected to lie approx-
imately in the centre of the spatial domain) being extreme, the 
percentage of exceedances of the 95% quantile observed in the 
remaining locations was calculated. Both plots once again suc-
ceed in conveying the disagreement between the same spatial 
analysis of differently detrended datasets, with the weakest over-
all dependence for margins A and the strongest for margins B, 
and highlight the important influence marginal considerations 
can inflict on dependence features and vice versa. Note that 
these summaries do not include the effects of parameter uncer-
tainty in the model fits, so may be interpreted with some cau-
tion. Uncertainty quantification could potentially be obtained by 
block bootstrap but is both computationally intensive and diffi-
cult to do appropriately given the likely non-stationary nature 

TABLE 1    |    Table of CSE model coefficients.

Margins �̂ �̂ �̂ �̂Z �̂Z �̂ �̂Z �̂Z

A 2.00 1.02 0.68 76.1 −8.51 1.03 1.34 5.21

B 0.901 3.23 1.000 85.2 −163 1.04 1.64 7.28

C 0.975 1.63 1.000 15.4 −7.81 0.829 1.64 1.84

D 0.968 2.26 1.000 15.9 −11.4 0.982 1.57 1.80

Note: Parameters � and � relate to the function as−s0 ( ⋅ ), parameter � relates to the function bs−s0 ( ⋅ ) and parameters �Z , �Z , �, �Z and �Z relate to the structure of the 
process Z0; see Appendix A as well as Wadsworth and Tawn (2022) for more details.

FIGURE 5    |    [Left] Model �u(h) estimates for u = 0.95 plotted over distance. Lines correspond to mean �u(h) estimates. [Right] Boxplots of model 
simulated conditional exceedances. All estimates are obtained based on 200 simulations of 104 random fields each.
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10 of 11 Stat, 2024

of some of the margins. Therefore this is not performed for this 
investigative analysis.

5   |   Discussion

The focus of this paper has primarily been on unpicking the 
margins-dependence interrelationship in the analysis of spa-
tial extremes. By examining four different marginal detrend-
ing techniques, each with different merits and drawbacks, and 
comparing their effects on the dependence characteristics of the 
correspondingly detrended datasets we have established two 
key findings.

Our first message is that margins and dependence are intri-
cately connected. Their interaction affects both apparent non-
stationarity in spatial extremal dependence over time, as well 
as spatial extremal dependence estimates in model fits assum-
ing temporal stationarity. This is highlighted both by visual ex-
ploratory tools such as the ones presented in Figures 3, C2 and 
4 and model fits like the ones implemented in Section  4 and 
summarised in Table  1 and Figure  5. The high sensitivity of 
conclusions to the marginal model is something we should be 
aware of when performing similar analyses.

Our second finding is that the task of marginal detrending it-
self can be a very difficult undertaking in practice. One reason 
is that there is no single approach to marginal modelling. We 
strive for the most stationary data possible, but it is difficult to 
guarantee that this has been achieved to an acceptable level, 
especially with a large number of sites (in this case, > 500) to 
consider. Another reason is that, when attempting to analyse a 
dataset in practice, there is usually no way of knowing a pri-
ori the level of its underlying complexity and therefore making 
an informed decision on the best detrending approach to adopt. 
One has to rely on exploratory—principally graphical—tools 
that might not straightforwardly reveal the existence and extent 
of non-stationarity in the dataset and can be plagued by other 
complicating factors unrelated to non-stationarity, such as tem-
poral dependence discussed in Section 1.
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