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Abstract 
Drawing on insights from computer graphics, this study 
introduces the Crack Boundary Point Rendering Network 
(CBPRN), an innovative high-resolution (HR) image 
segmentation framework designed to improve UAV-
based bridge crack inspections. We developed an edge-
guided branch and an uneven sampling strategy, 
enhancing detail preservation on crack boundary areas 
effectively. Through comprehensive ablation 
experiments, the efficacy of the CBPRN was validated, 
demonstrating its superior performance with remarkable 
outcomes: a processing speed of 13.45 FPS and mIoU, 
mBA, and Dice scores of 87.23%, 93.56%, and 89.59%, 
respectively, for images beyond 2K resolution. The 
CBPRN establishes a new standard in HR crack image 
segmentation. 
 

Introduction 
The emergence of surface cracks can effectively reflect 
the recent load-bearing status of bridges and provide a 
strong reference for traffic management departments to 
make reasonable maintenance decisions, thus preventing 
potential catastrophes (Manjunatha et al., 2023, Park et 
al., 2019). Therefore, accurate and efficient crack 
detection is crucial for ensuring the bridge’s safety during 
its service life. In recent years, advancements in crack 
detection technology, driven by digital image processing 
algorithms, have seen rapid progress. This development 
has markedly enhanced efficiency and reduced the high 
costs traditionally associated with manual inspection 
methods (Çelik and König, 2022). Presently, extensive 
research has been undertaken by researchers in the field 
of crack detection utilizing image processing methods 
(Munawar et al., 2021, Ren et al., 2020). Within this 
domain, deep learning (DL)-based crack segmentation 
algorithms have garnered significant interest over 
classification and object detection algorithms. This 
preference is due to the segmentation algorithms' superior 
ability to accurately delineate the contours and shape 
characteristics of cracks with pixel-level precision. 
A considerable amount of research based on DL for crack 
segmentation has been conducted, with some advanced 
algorithms reporting an impressive mIoU of over 93% on 
certain open-source crack datasets (Yang et al., 2023, Ali 

et al., 2021). However, it is noteworthy that these studies 
and their corresponding algorithmic improvements have 
primarily focused on identifying the main body of cracks 
while neglecting the recognition of fine-grained 
representations at crack boundaries. This oversight is 
significant because the quality of mask boundaries plays 
a crucial role in image segmentation; precise object 
segmentation directly benefits various downstream 
applications, such as damage quantification and 
assessment (Liu et al., 2023, Li et al., 2017). To 
comprehend the limitations in achieving fine-grained 
representations at crack boundaries, a critical analysis of 
the supervisory principles governing these segmentation 
algorithms is required, with a particular focus on the Mask 
Intersection-over-Union (Mask IoU) loss function (Cheng 
et al., 2021). This loss function, a benchmark in model 
training, guides models in predicting masks at pixel wise. 
Under the supervision of Mask IoU loss, models strive to 
maximize the overlap between the predicted mask and the 
actual mask. However, this loss evaluates all pixels 
equally, both internal and boundary pixels, making it less 
sensitive to the boundary quality of coarser cracks. As the 
crack size increases, the number of internal pixels grows 
quadratically and can far exceed the linearly increasing 
number of boundary pixels. This discrepancy leads to 
ambiguous segmentation effects in crack boundaries, 
especially at higher image resolutions where the 
difference between crack boundary and main body pixels 
is more pronounced. This trend is problematic for the 
industry's shift towards HR imaging for crack detection, 
as it can significantly affect segmentation results and 
impede accurate structural safety assessments. Therefore, 
a systematic study of the fine-grained recognition of crack 
edges is necessary to address this challenging issue. 
To this end, this study introduces the Crack Boundary 
Point Rendering Network (CBPRN), which enhances 
three key components of traditional point-based rendering 
architecture, enabling the rendering head to fully utilize 
its advantages in refined segmentation of cracks. The 
network architecture is illustrated in Figure 1. Initially, an 
edge-guided branch based on a super-resolution encoding 
architecture was designed, ensuring that details of crack 
boundaries and related tiny crack information are 
adequately preserved in the deep semantic feature maps 
used as a source for refined rendering. For the second 
improvement, an uneven sampling strategy focusing on 



boundary areas was developed for the rendering-based 
prediction head, allowing the network to concentrate 
computational power on challenging areas like crack 
boundaries. Overall, these two improvements fully 
leverage the advantages of graphic rendering methods in 
the fine-grained segmentation of crack images. The 
CBPRN achieves a good balance between computational 
resource consumption and practical deployability while 
providing crack image outputs with precise boundaries, 
which is significant for accurate structural safety 
assessments of bridges.  

 
Figure 1: Visualization of boundary region-guided sampling 
with different dilation coefficients during the training phase 

Methodology 
The CBPRN proposed in this study consists of three main 
components: a coarse crack segmentation feature 
extraction backbone, an edge-guided branch, and a point 
rendering-based fine-grained prediction head. The coarse 
crack segmentation feature extraction backbone is built on 
a ResNet50-based encoding architecture, designed to 
perform coarse-grained feature extraction from high-
resolution crack images. The edge-guided branch 
comprises a fixed-parameter edge detector and a super-
resolution image encoding architecture, which guide the 
edge details in high-dimensional implicit features for 
coarse-grained crack features. The fine-grained prediction 
head based on point rendering primarily aggregates the 
implicit crack features outputted from the first two 
components and restores the fine-grained edge details of 
the cracks through point-by-point refined rendering based 
on the shared-weight multi-layer perceptron (MLP). 
Figure 1 visually presents some algorithmic details and 
computational logic of the proposed CBPRN. The edge-
guided branch and the fine-grained prediction head 
constitute two innovative enhancements to the original 
PointRend architecture, respectively, and are detailed in 
the following subsections. 

Edge-guided Branch 
To ensure that the deep semantic feature maps of cracks 
sufficiently retain the details of crack boundaries and 
minute cracks for refined rendering, this study customizes 
an edge-guided branch in addition to the coarse crack 
segmentation feature extraction backbone. In fact, 
previous research has utilized guided image filtering (He 
et al., 2012) for boundary guidance in natural scene image 

segmentation, an effective edge-preserving smoothing 
operator based on guided images. However, edge 
recognition methods based solely on morphological 
operations are easily disturbed by environmental noise 
like cracks and struggle to accurately extract edges of 
small-sized cracks. To address this, the authors retain the 
fixed-parameter guided image filtering operator while 
introducing an encoder designed for super-resolution 
reconstruction tasks, aiming to eliminate noise 
interference in the boundary feature map while enhancing 
the representation of minute crack boundary features. This 
super-resolution encoding architecture, as shown in 
Figure 2, is primarily constructed using three residual 
modules. To improve the extraction performance of tiny 
crack details, the authors incorporate a transformer 
module in each residual module (b1, b2, b3), hoping to 
model long-distance dependencies for crack pixels 
scattered across the global view through the inherent self-
attention mechanism of the transformer. 

 
Figure 2: Details of the super-resolution reconstruction 
encoding architecture and some internal components in the 
edge-guided branch, (a) implementation details of the super-
resolution reconstruction encoding architecture, (b) 
implementation details of two consecutive Swin Transformer 
blocks 

Fine-Grained Prediction Head Based on Point 
Rendering 
Inspired by refined rendering methods in computer 
graphics, the authors propose a crack fine-grained feature 
prediction decoding architecture based on point 
rendering. It is important to note that the principle of 
boundary refinement rendering point sampling remains 
consistent with the original PointRend architecture 
(Kirillov et al., 2020), ensuring computational efficiency 
during the training phase while enabling the trained model 
to perform effective end-to-end inference. Therefore, two 
different point sampling methods are designed for model 
training and inference. 
For the training phase: due to the availability of precise 
pixel-level labels for effective supervision of prediction 
results, selecting boundary points for adequate sampling 
based on these refined pixel-level labels is a more accurate 
and computationally efficient method compared to the 
original approach in PointRend, which involved boundary 
prediction based on the most uncertain points. Therefore, 
during the training phase, boundary information is 
directly extracted from the refined pixel-level labels of 
crack images to guide the selection of sampling points. 
Specifically, an edge detection algorithm is used to extract 



the edge areas of the crack labels, and some of the 
sampling points, originally uniformly distributed across 
the background and the main body of the crack, are 
concentrated in these extracted edge areas. It is important 
to note that to prevent a decline in model performance due 
to an imbalance in the ratio of positive to negative samples 
during training, and to ensure efficient training, the total 
number of sampling points per image is set to 𝑁𝑁 = 𝐻𝐻×𝑊𝑊

20
. 

These sampling points are randomly distributed in the 
crack body, crack boundary, and background areas in a 
ratio of 0.3:0.4:0.3. Figure 3 visually demonstrates the 
sampling strategy for the rendering points used in training 
the model. Ultimately, all the sampling points identified 
on the labels are mapped onto the corresponding enhanced 
crack feature maps for model training. 

 
Figure 3: Visualization of the sampling points selection strategy 
in the training phase for the point rendering-based prediction 
head 

For the inference phase: Refined labels, which are the 
ultimate prediction results, are not available at the 
beginning of the inference phase, hence the sampling 
method used during the training phase cannot be applied. 
To effectively focus computational resources on 
accurately predicting minute cracks and crack boundaries, 
this study proposes a boundary-guided rendering point 
sampling strategy based on a probabilistic heatmap. 
Specifically, two convolutional modules are added to the 
enhanced crack feature map to generate a refined crack 
pixel probability heatmap. Rendering points are guided by 
identifying pixels with high uncertainty in predicted 
values on the probability heatmap. Based on the 
probability, pixels on the heatmap can be roughly divided 
into three areas: pixels with probabilities close to 0 and 1 
represent background and crack body, which are easily 
recognized by the network; pixels with probabilities 
around 0.5 represent areas of minute cracks or boundaries 
that are difficult for the model to determine with certainty. 
During the inference phase, for pixel areas on the 

probability heatmap with probabilities close to 0 and 1, 
the corresponding background and crack labels are 
directly used to represent the final prediction values, 
eliminating the need for further refined rendering. 
However, for pixel areas with probabilities around 0.5, 
refined rendering is required to further refine these 
ambiguous predictions. The refined rendering points are 
uniformly distributed in these hard-to-identify pixel areas. 
It is important to note that the probabilistic heatmap is 
used instead of the coarse segmentation results from the 
original PointRend architecture because the enhanced 
crack feature map used to obtain the heatmap is unified in 
size according to the second block of ResNet. It retains 
more details of minute cracks with only one 
downsampling compared to the original coarse 
segmentation and requires less computational resources 
than coarse segmentation. To visually represent the 
refined rendering point sampling method during the 
inference phase, Figure 4 displays a visualization of a 
randomly selected probabilistic heatmap example. On the 
heatmap, probabilities in the background and main body 
of the crack are concentrated near 0 and 1, respectively, 
while in the boundary area, due to issues like manual 
annotation errors and insignificant color differences, the 
probabilities of pixels fluctuate around 0.5. This study sets 
the probability range for these hard-to-identify pixels 
between 0.3 and 0.7, and in the subsequent refined 
rendering phase, only samples with probabilities between 
0.3 and 0.7 undergo refined inference. The parameter 
settings for sampling points during the training and 
inference phases will be detailed in subsection 3.3.2. 

 
Figure 4: Visualization of the sampling points that require 
refined rendering during the inference phase 

Experimental Setup and Results 
Dataset 
The CFD (Shi et al., 2016), Crack500 (Yang et al., 2019), 
and Deepcrack537 (Zhou et al., 2022) were chosen for 
model training. The crack images in these three datasets 
almost encompass most crack forms in engineering 
structures and include crack samples collected under 
different lighting conditions, which is beneficial for 
enhancing the model's robustness. Importantly, these 



three datasets all have finely annotated pixel-level labels, 
which are helpful for accurately evaluating the advantages 
of the algorithm proposed in this study in terms of 
boundary refinement segmentation. It is noteworthy that 
before training the model, images from the three datasets 
were uniformly resized to 256 × 256 pixels to facilitate 
uniform training input and save computational resources 
required for training. In total, 1200 resized crack images 
from the three open-source datasets were used, including 
900 training samples, 150 validation samples, and 150 test 
samples.  
Furthermore, a total of 60 crack images were collected in 
the urban area of Changsha, as shown in Figure 5, to test 
the segmentation performance of CBPRN on HR crack 
images. 

 
Figure 5: Details of establishing the high-resolution crack 
image dataset with pixel-level annotations 

Implementation Details and Metrics 
Training Hyperparameters: The experiments were 
conducted on a system equipped with an i9-9820X CPU 
and two NVIDIA RTX 3090 Ti GPUs, running Ubuntu 
20.04, and the network model was implemented within 
the PyTorch framework. The total number of iterations 
was set to 1000 epochs, with a batch size of 16. The initial 
learning rate was set at 0.01, using a warming-up strategy 
for the first 100 epochs followed by a poly learning rate 
decay strategy with a decay rate of 0.9. Additionally, to 
ensure the global optimum of the loss function can be 
obtained during training, Adam optimizer, which 
combines the advantages of momentum and RMSprop, 
was used with a momentum of 0.9 and a weight decay of 
1×10-4. With these parameters, the preliminary model 
trained on the low-resolution open-source crack dataset 
was further fine-tuned using field-collected crack images.  
Evaluation Metrics: Two common metrics were chosen 
for quantitative assessment of the experimental results: 
mean Intersection over Union (mIoU) and Dice Similarity 
Coefficient (Dice). Additionally, to highlight the 
performance of the proposed method in boundary areas, 
Mean Boundary Accuracy (mBA) was used as an 
additional evaluation metric. The core concept of mBA 
involves calculating the IoU between the Ground Truth 

(GT) and the predicted mask within the boundary area 
(Cheng et al., 2020). 

Ablation Study 
Ablation study for the point rendering-based 
prediction head: To fully illustrate the advantages of 
performing fine-grained crack mask using the point 
rendering method, a performance comparison was first 
made between the proposed decoding architecture and the 
traditional decoding architecture based on multiple 
convolutional layers and upsampling operations. The 
relevant experimental results are listed in Table 1. From 
the first two rows of Table 1, it can be seen that the point 
rendering-based decoding architecture has achieved 
improvements in mIoU, Dice, and mBA compared to the 
traditional decoding architecture, with the most 
significant improvement observed in mBA, reaching 
86.78%. This is because the MLP in the point rendering-
based decoding architecture is position-sensitive, 
calculating the prediction value for each pixel 
independently. Therefore, it can flexibly capture details 
and spatial relationships in crack images. In contrast, the 
traditional upsampling-based decoding architecture is 
limited by discrete feature sampling and struggles to 
capture local crack details. 
After demonstrating the superiority of the proposed 
decoding architecture, parameter performance 
experiments need to be conducted to obtain the optimal 
parameters matching the model architecture. Since the 
training and inference stages use distinct fine-grained 
rendering point sampling methods, as described in Section 
2.2, the following two sets of parameter performance 
experiments are conducted to obtain relatively optimal 
point sampling parameters for both the training and 
inference processes. 
Point sampling study in the training phase: It is 
necessary to emphasize again before conducting 
parameter experiments that the regions most likely to have 
erroneous predictions are mainly concentrated at the 
boundaries and their adjacent areas, because these regions 
often have colors and contrasts similar to those of nearby 
cracks in RGB images. However, if the training point 
sampling is carried out as shown in Figure 3, where only 
a one-pixel-wide edge area is used for boundary guidance, 
it may not be possible to avoid the biasing guidance 
caused by the subjective nature of human annotation, 
resulting in errors between the true boundary and the 
labeled boundary. To avoid the negative impact of 
erroneous guidance on the model during training, it is 
necessary to expand the guided boundaries. Specifically, 
in this study, simple morphological operations were used, 
with the outermost pixels of the crack label as the center 
of dilation, and dilation operations were performed with 
the same dilation factor towards the background area and 
inside the crack. Considering the image size and the 
average pixel width of cracks in the training dataset, four 
different edge dilation coefficients were used to expand 
the boundary region. As shown in Figure 6, the widths of 



the expanded boundary regions (yellow outlined areas) 
after dilation are 1, 3, 5, and 7, respectively. The total 
number of sampling points on each training image is 𝑁𝑁 =
𝐻𝐻×𝑊𝑊
20

, distributed randomly in the background, expanded 
crack edges, and inside the cracks at proportions of 30%, 
40%, and 30%, respectively. 

 
Figure 6: Visualization of boundary region-guided sampling 
with different dilation coefficients during the training phase 

The set No.2 to set No.5 in Table 1 provide statistics on 
the performance of the model, which was trained in the 
training phase using four different widths of expanded 
boundaries for guiding sampling points. It can be 
observed that the model performs best when the dilation 
coefficient is 2 (corresponding to a boundary region width 
of 5), with mIoU, mBA, and Dice reaching 86.49%, 
90.52%, and 88.54%, respectively. This best performance 
occurs due to the fact that the manual labeling bias range 
in the crack training dataset used in this study falls within 
this interval. Combining the experimental results in Table 
2 with the visual effects of the probability heatmaps in 
Figure 4, the following conclusions can be drawn: dilation 
coefficients that are too low (0 or 1) or too high (3) result 
in improved performance compared to no dilation, but 
they respectively lead to insignificant improvements due 
to the inability to fully encompass error boundaries in the 
sampling region or the dispersion of computational 
resources beyond the error interval. Specifically, when the 
dilation coefficient is 0 or 1, the dilated boundary region 
is not sufficient to encompass the bias generated near the 
boundary during manual labeling. When the dilation 
coefficient is 3, the crack's main region and too many 
background regions without artificial labeling errors are 
included as ambiguous boundary regions requiring fine 
sampling. These unnecessary simple sample regions take 
away computational resources that should belong to the 
ambiguous boundary regions, thereby reducing the 
model's learning and representation capabilities for 
ambiguous boundary regions, resulting in a very limited 
improvement in recognition accuracy brought by 
boundary-guided sampling. 
Point sampling study in the inference stage: In order to 
effectively improve the model's fine-grained inference 
performance in the boundary regions while saving 
computational efficiency, it is necessary to determine 

reasonable probability intervals for areas with uncertain 
prediction results concentrated around 0.5 on the 
probability heatmaps. A larger probability interval 
implies the need to sample more probability points for 
fine-grained rendering, which increases precision but 
significantly increases computational redundancy in the 
inference process. Conversely, a too small probability 
interval, while speeding up inference, may lead to 
ineffective fine-grained rendering of many tiny cracks and 
boundary details, seriously affecting the final recognition 
accuracy. 
Specifically, two probability parameters need to be set: 
the critical probability value α between background pixels 
and boundary regions on the coarse prediction probability 
map, and the critical probability value β between 
boundary regions and crack pixels. For the critical 
probability value α between background and boundary 
regions, this study sets three different probability 
parameters: 0.2, 0.3, and 0.4. Similarly, for the critical 
probability value β between boundary regions and crack 
pixels, three different probability parameters are also set: 
0.6, 0.7, and 0.8. By defining these nine different 
probability interval ranges based on the two types of 
critical probability values, the boundary regions are 
categorized. Table 2 provides statistics on the inference 
results of the models that use these 9 different probability 
intervals for sampling on the test dataset. 
From Table 2, it can be seen that the models from Set No. 
4, 5, and 6 (i.e., background region probability range 
between 0 and 0.3) achieved relatively better accuracy 
than other models. This is because, compared to the 
sampling groups with the background region probability 
range set between 0 and 0.4, the sampling methods under 
these three parameter settings encompass a wider 
background sampling area, which is more helpful in 
repairing some tiny crack details that were not detected in 
the background. At the same time, the sampling groups 
with the background region probability range set between 
0.0 and 0.2 classified too many pixels originally 
belonging to the boundary region as background pixels, 
causing ambiguous boundary regions to be unable to 
achieve precise boundary detail repair due to insufficient 
sampling points, thus resulting in relatively lower mBA. 
In addition, by comparing the model performance from 
Set No. 4 to 6, it can be observed that when the critical 
probability of crack internal area is set to 0.7, the model's 
inference accuracy is the highest, with mIoU, Dice, and 
mBA reaching 87.23%, 93.56%, and 89.59%, 
respectively.  
Finally, the sampling parameter configuration set by Set 
No. 6 is adopted as the optimal inference stage sampling 
parameters to control the model's subsequent 
experiments.  

Performance Comparison between CBPRN and the 
Traditional PointRend Model 
Considering that the CBPRN is built based on the original 
PointRend model and is specifically designed for crack 



segmentation, with the main improvement being the 
introduction of a fine-grained boundary point rendering 
sampling method based on the fine-grained probability 
heatmap in the inference phase. In order to further 
demonstrate the effectiveness of this approach, which 
involves fine-grained point sampling guidance based on 
the probability heatmap in the inference phase, in 
comparison to the traditional approach of fine-grained 
point sampling guidance based on coarse segmentation, 
this section compares the segmentation results of the 
original PointRend using different sources of coarse 
segmentation on high-resolution images collected in 
Section 3.1 with the corresponding results obtained by the 
method proposed in this study. 
Specifically, the authors selected five mainstream deep 
learning segmentation architectures with varying levels of 
segmentation accuracy, including FCN-18, UNet, 
DeepLabV3+, PSPNet, and RefineNet, as the generating 
networks for the coarse segmentation required when the 
original PointRend architecture performs predictions. In 
contrast, the method proposed in this study uses 
probability heatmaps proposed based on enhanced crack 
features extracted by the encoder and the boundary 
guidance branch to perform boundary point sampling 
guidance for the fine-grained prediction head based on 
point rendering. 
It is worth noting that all coarse segmentation 
architectures and fine-grained segmentation networks 
were trained with default optimal parameters in the same 
deep learning framework with the same configuration. 
Additionally, when using the trained coarse segmentation 
models for prediction, all high-resolution images were 
proportionally scaled down to have a long edge of 900 
pixels to avoid issues related to GPU memory overflow 
caused by excessively high original resolutions. 
The experimental results are shown in Table 3. From the 
table, it can be observed that there are significant 
differences in the prediction results generated by different 
coarse segmentation mask generation architectures, with 
differences in mIoU, mBA, and Dice ranging from 2.92%, 
3.06%, to 2.36%, from the lowest accuracy of FCN-18 to 
the highest accuracy of RefineNet. However, after 
applying the original PointRend model for the refinement 
process, the differences between the fine-grained 
prediction results become less pronounced, with mIoU, 
mBA, and Dice for all five experimental groups 
fluctuating within the intervals of 83.30±0.09%, 
87.14%±0.16%, and 85.27±0.06%, respectively. These 
results indicate that the PointRend refined segmentation 
method is indeed independent of specific coarse 
segmentation masks and exhibits good robustness to 
coarse-grained features from different coarse 
segmentation architectures. However, when comparing 
the final experimental results with the best-performing 
coarse segmentation results based on RefineNet within 
the PointRend group, it can be observed that the method 
guided by probability heatmaps further improves the 
segmentation accuracy. It can be noted that among the 

three improved metrics, mBA shows the most significant 
improvement, which is more than twice the improvement 
in mIoU and Dice, reaching 6.27%. This outstanding 
robust performance is largely attributed to the 
introduction of the edge-guided branch in the feature 
extraction stage of this study, which preserves sufficient 
information about small cracks and crack boundaries in 
the enhanced crack features used to generate probability 
heatmaps. This enables the pixels in these detail areas to 
be detected during inference and finely represented 
through point-wise dense rendering. Additionally, it 
should be noted that CBPRN, by avoiding the guidance of 
coarse segmentation from external sources and based on 
a customized non-uniform inference point sampling 
method, surpasses the original PointRend in inference 
speed by more than twice on average, achieving 13.45 
FPS. To further demonstrate the effectiveness of the 
above conclusions, Figure 7 provides visualizations of the 
test results for five randomly selected high-resolution 
crack images collected in the field. It is evident that the 
inference model guided by probability heatmaps proposed 
in this study outperforms any fine-grained rendering 
method guided by coarse segmentation masks in terms of 
crack edge recognition accuracy and sensitivity to tiny 
cracks. 

 
Figure 7: Visualization of fine-grained segmentation results of 
the PointRend architecture guided by different coarse 
segmentation masks and CBPRN guided by probability 
heatmaps 

Conclusions and Future Work 
In this study, a HR crack image fine-grained segmentation 
architecture named CBPRN is proposed. For the first 
time, rendering techniques from computer graphics are 
introduced into HR crack image segmentation tasks. 
Through three customized improvements, the originally 
designed point rendering technique for natural scene 
objects is adapted to effectively perform crack 
segmentation with fine-grained boundaries. The 
proficiently trained CBPRN attains a remarkable 
inference speed of 13.45 FPS, yielding mIoU and mBA 
scores of 87.23% and 93.56%, respectively, along with a 
Dice score of 89.59%. This performance was 
demonstrated on crack images exceeding 2K resolution, 



thereby establishing CBPRN as the current state-of-the-
art benchmark in this domain. 
In future, the implementation of model pruning and 
quantization techniques will be advanced to facilitate the 
lightweight deployment of CBPRN on the UAV, aiming 

to provide bridge maintenance departments with a more 
reliable and secure method for conducting bridge crack 
detection in practical engineering scenarios. Additionally, 
this method can be adopted to the hydropower projects, 
similarly to detect the defects of dam structures. 

Table 1: Performance comparison of traditional decoding architecture and the proposed point-rendering-based fine-grained 
prediction head in models trained with different parameterized feature point sampling strategies 

Set No. Decoding architecture 

Sampling point 
extraction method 

for the training 
phase 

Dilating 
coefficient 

Width of the 
boundary area after 

dilating 
IoU(%) mBA(%) Dice(%) 

1 Traditional convolution and 
upsampling operations Uniform sampling / / 85.54 88.67 87.31 

2 

Fine-grained prediction head 
based on point rendering 

Boundary guided 
sampling 

0 1 85.98 89.60 87.76 
3 1 3 86.12 89.94 88.03 
4 2 5 86.49 90.52 88.54 
5 3 7 85.76 89.09 87.50 

Table 2: Comparison of inference performance obtained by different boundary probability ranges 

Set No. 

Probability 
range for 

background 
area  

Probability 
range for 

boundary area 

Probability 
range for 

crack internal 
area 

IoU(%) Dice(%) mBA(%) 

1 （0.0,0.2） （0.2,0.6） （0.6,1.0） 86.53 90.69 88.58 

2 （0.0,0.2） （0.2,0.7） （0.7,1.0） 86.98 92.47 89.12 

3 （0.0,0.2） （0.2,0.8） （0.8,1.0） 86.49 90.52 88.54 

4 （0.0,0.3） （0.3,0.6） （0.6,1.0） 86.78 91.12 88.80 

5 （0.0,0.3） （0.3,0.7） （0.7,1.0） 87.23 93.56 89.59 

6 （0.0,0.3） （0.3,0.8） （0.8,1.0） 86.61 90.98 88.91 

7 （0.0,0.4） （0.4,0.6） （0.6,1.0） 86.51 90.58 88.49 

8 （0.0,0.4） （0.4,0.7） （0.7,1.0） 86.89 92.12 88.99 

9 （0.0,0.4） （0.4,0.8） （0.8,1.0） 85.89 89.76 87.87 

Table 3: Comparison of the refined segmentation results on HR images collected onsite between the proposed probability heatmap-
guided method and the original pointrend architecture guided by different coarse segmentation masks 

Meticulous 
segmentation 
architecture 

Source of the boundary sampling guidance 
Coarse segmentation 

accuracy (%) 
Refined segmentation 

accuracy (%) 

Total 
inference 

speed  

mIoU mBA Dice mIoU mBA Dice FPS 

PointRend 
Coarse 

segmentation 
guidance 

FCN-18 78.36 79.25 81.37 83.21 86.98 85.21 7.83 
UNet 79.47 80.09 82.46 83.30 87.11 85.24 5.77 

DeepLabV3+ 80.36 80.34 82.60 83.33 87.14 85.28 3.65 
PSPNet 80.65 81.79 82.88 83.37 87.26 85.31 4.21 

RefineNet 81.28 82.31 83.73 83.38 87.29 85.33 3.49 

CBPRN Probability heat 
map guidance 

Probability interval ∈
[0.3,0.7] / 87.23 93.56 89.59 13.45 
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