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Abstract 

Definitive treatment following decompensation of cirrhosis is limited to liver 

transplantation based on prognosis. Although useful, current prognostic models do not 

consider the interaction between organ systems and treat them as isolated units. 

Approaches to improve these models through the addition of more biomarkers still does 

not resolve the limitations of the simplistic approach. This work tests the hypothesis that 

organ systems' functional connectivity is reduced in cirrhosis and may hold independent 

prognostic values.  

Indeed, the prognostic values of physiologically integrative approaches such as heart rate 

variability  measures are well established. However, while integrative physiological indices 

such as HRV analysis have prognostic value in cirrhosis, they do not reveal details of 

organ systems network interactions potentially driving patient outcomes. To assess the 

functional connectivity of organs, I used a network physiology approach and developed 

a novel method for physiological network mapping at the individual patient’s level to 

assess the interaction between routine clinical/biochemical biomarkers. The method is 

known as Parenclitic network analysis and measures the deviation of a pair of patient 

variables from the expected relationship based on a model population (e.g., healthy, 

survivors, treatment responders, etc.). The results show that parenclitic network mapping 

can predict mortality independent of MELD (Model for End-stage Liver Disease) in two 

independent cohorts of patients with decompensated cirrhosis. Also, this novel method 

was found to predict response to targeted albumin therapy in a large, multicentre group 

of patients admitted to the hospital for decompensated cirrhosis. Finally, the Parenclitic 

network analysis predicted prognosis in paracetamol-induced acute liver failure patients 

independent of the sequential organ failure score (SOFA) as well as the King’s College 

Criteria (KCC). Importantly, the parenclitic network analysis is based on routine data and 

significantly improved the prognostic models currently used in cirrhosis and acute liver 

failure. 

In sum, this thesis shows that organ system decoupling is linked with survival and may 

predict response to therapy in patients with liver disease.
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Impact Statement 

Current prognostic models in cirrhosis does not sufficiently address the multi-organ 

involvement of decompensation and improvement is urgently needed to capture subsets 

of patients incorrectly prognosticated. In this thesis, I assessed the predictive value of 

network physiologic measures in patients with cirrhosis.  

My systematic review of Heart Rate Variability (HRV) in cirrhosis uncovered high 

interstudy variability which makes it hard to draw a generalizable conclusion from the 

myriads of studies published on the topic. Further, Heart Rate Turbulence indices, an 

index of autonomic nervous and baroreflex coupling with the cardiac cycle, were 

assessed for prognostic value, for the first time in patients with cirrhosis. Also, a novel 

method for physiological network mapping at individual patients’ level, the parenclitic 

network analysis was developed and applied for the prediction of survival in cirrhosis 

patients in a first-of-its-kind approach showing significant prognostic values as well as the 

ability to predict patients likely to respond to targeted albumin therapy. Specifically, 

decoupling along the white cell counts and C-reactive protein axis predicted 6-month 

survival in patients admitted for decompensated cirrhosis independent of MELD, the 

current prognostic model.  

Further, to assess whether network mapping can predict survival in patients with 

paracetamol-induced acute liver failure, I developed a code using structured query 

language (SQL) to extract clinical and laboratory data of this patient group from a large 

clinical database of intensive care unit (ICU) admissions (MIMIC-III). The parenclitic 

network analysis showed differences in network clusters between p-ALF patients who 

survived 28-day ICU stays compared with nonsurvivors linked with pH regulation. Also, 

the network indices predicted survival independent of the current prognostic models (i.e., 

SOFA and KCC scores).  

Finally, I mapped the physiological coupling of pairs of parallel physiological signals by 

computing the transfer entropies between the variables. Specifically, transfer entropies 

between heart rate, respiratory rate, and oxygen saturation were computed for ICU 

patients with cirrhosis and analysed for prognostic value. The result showed that transfer 

entropy, which measures causal links between time series was not linked with 28-day ICU 

survival in cirrhosis.  
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Overall, network mapping of organ systems coupling was found in this thesis to predict 

survival independent of current prognostic indices. This novel method also predicted 

patients with decompensated cirrhosis who did not benefit from targeted albumin infusion. 

Importantly, the addition of the network mapping of routine clinical and laboratory 

variables significantly improved the performance of current prognostic model while 

providing pathophysiological insights into the factors that potentially drives patients’ 

outcomes. Indeed, network analysis of patients’ routine data provides a fertile platform 

for big data analysis and results may offer clinical insights likely to drive targeted, 

personalised treatment for complex disease in future. Also, this technique can be 

incorporated into mobile application for bedside use with the potential to guide clinical 

decision-making.
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Introduction 

Physiological systems comprise multiple connected subsystems interacting to maintain 

homeostasis in an ever-changing environment. Thus, disruption in the complexity or 

connectivity changes the unique and collective inherent ability of the system to adapt due 

to the reduced complexity of various physiological variables [1]. This failure to adapt or 

respond appropriately can be transient and mild, or it can be devastating, for example 

with sepsis and multiple organ failure [2, 3]. Reduced complexity in physiological variables 

such as cardiac rhythm [4], blood oxygen saturation [5, 6], and skin or core body 

temperature [7, 8] are associated with increased mortality. Further, reduced functional 

connectivity between organ systems significantly and independently predicts survival in 

cirrhosis [9, 10] or sepsis [11, 12]. Understanding the interaction between these units 

(and/or subunits) may help us to understand the dynamics of complex diseases and direct 

early intervention to improve outcomes. 

Simple models that assess organ systems in isolation remain the typical methods to 

estimate prognosis in many complex diseases such as decompensated cirrhosis (e.g., 

MELD, model for end-stage liver disease), sepsis (e.g., SOFA, sequential organ failure 

assessment score), and others. These models do not consider the complex interaction 

between the individual units. Thus, many prognostic models fail to optimize their value.  

The network approach provides an alternative approach based on the complex 

interactions between individual organ systems within a physiological system. Network 

physiology identifies the dynamics of connections between individual organ systems and 

improves clinical evaluation and assessment of prognosis [13, 14]. Patients with 

decompensated cirrhosis or sepsis, are at high risk of developing multi-organ dysfunction, 

failure, and death.  Recent advances in network physiology have paved the way for the 

application of network mapping to physiological data with the hope of early intervention 

and improved outcomes [9-12, 15]. 

Decompensated cirrhosis is a late stage of liver cirrhosis characterized by multiple organ 

dysfunction with patients developing ascites, hepatic encephalopathy, portal 

hypertension, kidney failure, cardiomyopathy, abnormal pulmonary function, immune 

dysfunction, or impairment of circadian rhythms [16-20]. The development of hepatic 

decompensation marks a pivotal stage in the clinical evolution of cirrhosis and is 



30 
 

associated with poor prognosis.  The complex interaction between systems may generate 

unexpected outcomes with directed therapy [21-24]. For example, targeting nitric oxide 

to regulate the hyperdynamic circulation in patients with decompensated cirrhosis was 

expected to lead to clinical improvement, and yet was associated with mental status 

deterioration with restlessness, confusion, and disorientation [25, 26]. Likewise, the use 

of terlipressin, a synthetic vasopressin analogue, to improve kidney function in patients 

with the hepatorenal syndrome was unexpectedly observed to be associated with 

pulmonary oedema in some patients [27]. In a recent multinational study aimed at the 

targeted replacement of plasma albumin in patients hospitalized with decompensated 

cirrhosis and hypoalbuminemia, China et al found no significant benefit. However, a 

significant increase in pulmonary oedema was observed in the treatment arm [28]. This 

evidence, and others beyond the scope of this introduction, highlights the failure of 

isolated targeting of unique organ systems without much consideration for the system-

wide physiological context within which such organ system operates. 

In the clinical course of cirrhosis, the compensated stage may last many years as the 

gradual breakdown in the liver’s ability to perform its pivotal roles in maintaining 

homeostasis is balanced by other organ systems. Untreated cirrhosis may then result in 

total breakdown in liver function following liver injury due to sepsis or other insults and 

being complicated by other secondary events such as variceal bleeding, ascites, or 

hepatic encephalopathy. In some, there may be a sufficient recovery of liver function 

following cessation of alcohol consumption in the alcoholic, treatment of hepatitis C in the 

patient with chronic viral hepatitis, or treatment of autoimmune liver disease by 

immunosuppression. However, once a patient passes the point of decompensation, the 

prognosis is often poor, and the only definitive treatment option is limited to liver 

transplantation [29, 30].    

Regardless, it is important to have and develop accurate scoring systems that predict 

survival. This is for the prioritisation of liver donation and enhanced survival of the 

recipients.   Recently, the MELD 3.0 was introduced as a replacement for the MELD-

Sodium (MELD-Na) score which was the gold standard for short-term (90-day) prognosis 

in patients with decompensated cirrhosis. The MELD-Na score comprises a calculation 

based on serum sodium, bilirubin, and creatinine, together with the prothrombin time 
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(international normalized ratio, INR) [31]. While the MELD 3.0 adds serum albumin level 

as well as gender to the MELD-Na [32]. Advances in our understanding of 

decompensated liver disease implicate other factors such as age, cholesterol, hospital 

length of stay, white blood cell count, and albumin as determinants of patients’ outcomes 

[33]. As research continues to unravel the physiological depth of cirrhotic 

decompensation, it is becoming clearer that simply considering a few surrogate 

biomarkers, especially as isolated independent variables may not be sufficient for 

accurate prediction of clinical outcomes in complex diseases including cirrhosis. 

 

The liver is highly central in the physiological network. 

The liver has direct and indirect synthetic, metabolic, and immune functions. The 

synthetic function of the liver makes it an essential modulator of microcirculation (through 

the synthesis of albumin) and haemostasis (through the synthesis of coagulation factors). 

The liver plays a crucial role in glucose/energy metabolism and the hepatocytes’ 

oscillatory clock gene expression modulates central circadian rhythms and behaviours 

[34]. The liver is an important systemic barrier and clears a variety of different 

endogenous (e.g., hormones) and exogenous compounds (e.g., xenobiotics, gut-derived 

bacterial lipopolysaccharide endotoxins) with implications in the pathophysiology of 

diseases. Aside, various recent works have established links between the liver and other 

organ systems, especially the enteric and nervous systems (the gut-brain axis). Indeed, 

the translocation of pathogen-associated molecular patterns (e.g. gut bacterial 

lipopolysaccharides) into the systemic circulation (due to increased gut permeability or 

reduced hepatic clearance) remains one of the key drivers of decompensatory events 

(e.g. encephalopathy) and mortality in patients with liver failure [35-37] [38, 39]. The 

crosstalk between the liver and the nervous system has been shown to regulate the 

hepatic metabolism of lipids and glucose as well as glycogen storage [40-42]. 

Furthermore, the contribution of gut microbiome dysbiosis to the development, prognosis, 

and treatment of liver disease has received significant attention in recent years. Indeed, 

altered intestinal microbiomes have been linked with the development of various 

aetiologies of liver disease [43, 44]. For instance, the development of non-alcoholic fatty 
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liver disease (NAFLD) and non-alcoholic steatohepatitis was linked with dysregulation in 

the gut microbiota [45, 46] as well as other components of the gut-brain axis [47]. 

While the communication between the gut and the liver is driven by anatomical 

connections (e.g., directly via the portal vein and the enterohepatic circulation) [48, 49], 

there are various complex communication pathways between the liver and brain including 

the neural pathways, humoral signalling, circulating cytokine and monocyte-to-brain 

signalling [50, 51]. For instance, the vagal neural pathways, including the afferent and 

efferent vagal arms can respectively communicate and trigger pathophysiological 

changes in the visceral organs to maintain homeostasis [52-54] or influence brain-derived 

motivational states and sickness behaviours [55]. Indeed, impaired metabolism and 

clearance of ammonium ions via disruption to the urea cycle [56] and reduced enzymatic 

activities of the glutamine synthase [57] due to reduced liver function or circulatory 

bypass via portosystemic shunting are hallmarks of decompensated cirrhosis [58]. The 

resulting hyperammonaemia combined with systemic accumulation of the gut-derived 

false neurotransmitters (e.g., octopamine) [59] and endotoxins [60] plays a role in 

impaired neural function observed in patients with cirrhosis. 

 Further, reduced clearance of gut-derived bacterial lipopolysaccharides seen in liver 

failure leads to a systemic increase in circulating cytokines (IL-1β, IL-6, and TNFα) and 

may induce peripheral as well as cerebral endothelial cells to produce nitric oxide and 

prostaglandins. The production of these mediators is linked with the activation of sickness 

behaviours as well as cognitive and behavioural changes [61, 62]. Circulating cytokines 

may penetrate via the circumventricular organs of the brain thereby influencing nervous 

activities during systemic inflammation linked with liver disease [63, 64]. For instance, in 

a model of liver disease, circulating monocytes were observed to alter the excitability of 

neurons and initiate sickness behaviours [65]. Evidence also shows that dysregulation in 

the gut-brain axis is significantly linked with increased alcohol cravings and decreased 

social cognition [66] (Figure 1.1). 

This connected role of the liver makes is a good model for network physiology and 

continued research along this line is likely to open new frontiers of understanding 

regarding the critical communication axes or nodes that could be best pharmacologically 



33 
 

or non-pharmacologically (e.g., through nerve stimulation, fractal-like ventilation [67]) 

targeted to improve the prognosis of patients with decompensated cirrhosis. 

 

 

Figure 1.1. The gut-liver-brain axis is connected via diverse pathways and regulates the activities of each 

other. Image created using Biorender.
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Cirrhotic decompensation – a network problem. 

With approximately 2 million global annual deaths, liver disease remains one of the major 

diseases of high epidemiological significance [68]. This number highlights the complexity 

of decompensated cirrhosis and the implication of this on clinical management. Indeed, 

this complexity also makes decompensated cirrhosis a prime candidate for network 

analysis especially due to its extra-hepatic involvements.  

The trigger for decompensation of cirrhosis has been explained by various classical 

hypotheses including the “vascular underfilling” and “overflow” theories [69], the 

“peripheral arterial vasodilation” hypothesis (PAVH) [70], and the “systemic 

inflammation” hypothesis (SIH) [71]. Irrespective of this, the decompensation event 

remains a pivotal stage in the clinical history of cirrhosis and is associated with high 

mortality. While patients with compensated cirrhosis may survive for over 12 years, 

decompensation results in a significant reduction in survival time to approximately 2 years 

[21]. Indeed, the risk of mortality is significantly linked with the number of organ-systems 

involved in cirrhotic decompensation [72]. 

Accordingly, decompensation is driven by a clinically significant increase in portal 

pressure and a decline in liver function [21, 73]. This combined breakdown often results 

in jaundice, gastrointestinal bleeding, encephalopathy, and ascites, which are clinical 

hallmarks of the decompensatory phase of cirrhosis. These events may also herald other 

extrahepatic complications such as autonomic dysfunction, hepatorenal syndrome, 

hepato-pulmonary syndrome, cirrhotic cardiomyopathy, and rebleeding resulting finally in 

multiorgan failure [74-78]. Curiously, most of the extrahepatic complications of 

decompensated cirrhosis are not associated with significant structural damage to the 

involved organ and have been reported to be reversible by liver transplantation [79-82]. 

These findings further support the need to focus more on organ systems interaction rather 

than the individual units. 

Decompensation is a critical stage of cirrhosis characterized by a cascading breakdown 

of multiple extra-hepatic organ systems [83] (Figure 1.2). This often culminates in multiple 

organ failure and a significant increase in mortality risk [83-85]. Indeed, recent studies 

have shown that decompensated cirrhosis is associated with network disruption. 



35 
 

Specifically, loss of coordination between organ systems was found by Tan et al to predict 

the survival of patients with decompensated cirrhosis independent of MELD [10, 15]. The 

exact mechanism for physiological network disruption in decompensated cirrhosis is not 

well understood. However, evidence from experimental (in vitro, ex vivo, and in vivo) 

studies indicate impaired end-organ responsiveness to physiologic signals in animal 

models of decompensated cirrhosis [17, 86-88]. For example, cardiomyocytes, cardiac 

pacemaker cells, and vascular smooth muscle cells exhibit a blunted response to 

adrenergic and cholinergic stimuli in experimental decompensated cirrhosis [88-91]. 

Other reports support disruption of the physiological control in decompensated cirrhosis 

by demonstrating reduced controllability of the physiological sub-systems in 

decompensated cirrhosis using advanced statistical techniques used in analysis of 

complex systems [92, 93]. For example, Shirazi et al., used a computational approach 

and showed that cardiac rhythm in patients with decompensated cirrhosis keeps a 

significantly longer memory about its past decelerating events compared to those with 

compensated cirrhosis and healthy volunteers [92]. Intuitively, it is more difficult to control 

a system that holds a long memory of its past and thus increased memory can make the 

physiological network less adaptable to both environmental and intrinsic changes [94]. 

To confirm this finding, Satti et al., used an alternative method (the extended Poincare 

plot analysis of physiological signals) and showed a significantly longer auto-correlation 

and memory in patients with decompensated cirrhosis in comparison with compensated 

cirrhosis and healthy individuals [4]. These findings are in line with impaired physiological 

control and network disruption in decompensated cirrhosis. However further 

investigations are required to determine the mechanism behind the transition from 

compensated to decompensated cirrhosis in terms of organ systems disconnection. 
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Figure 1.2. The decompensation stage of cirrhosis is heralded by extrahepatic organ involvement affecting 

various organ systems including the circulatory system (cirrhotic cardiomyopathy) the nervous system 

(hepatic encephalopathy and dysregulated autonomic cardiac regulation), the kidney (hepatorenal 

syndrome), the respiratory system (hepatopulmonary syndrome), digestive system (intestinal injury, and 

increased permeability of the intestinal wall), blood coagulation and immune system. Also, fluid build-up in 

the peritoneal cavity (ascites) may result from increased portal tension. Image created using Biorender. 

 

Trends in prognostic model in cirrhosis 



37 
 

The trends in prognostic models for liver disease in the past decades provide a basis for 

a shift in paradigm towards network physiologic and holistic approaches. Once 

decompensation occurs, liver transplantation remains the definitive treatment option. 

However, due to scarcity, patients are prioritized based on the severity of liver disease 

and prediction of survival using prognostic models. The very first model used was the 

Child- Turcotte-Pugh (CTP) score, developed in 1964 primarily to predict survival in 

patients undergoing TIPS (Trans-jugular Intrahepatic Portosystemic Shunt) for variceal 

haemorrhage [95, 96]. Initially, CTP is based on five physiological variables i.e., ascites, 

hepatic encephalopathy, bilirubin, serum albumin, and nutritional status. A modified 

version was proposed in 1973 for risk stratification in patients undergoing surgical 

transection for variceal bleeding, whereby the included parameter “nutritional status” was 

replaced by “prothrombin time” or “international normalized ratio” [97]. Over the years 

and until recently, the CTP has been used for the prioritization of patients with 

decompensated cirrhosis for liver transplantation as well as for the prediction of surgery 

outcomes [98]. However, both the CTP and its modified form were never statistically 

validated clinically until its later replacement. 

The CTP score was dropped because of the subjectivity in the classification of some of 

the included markers such as ascites and hepatic encephalopathy as well as a limitation 

regarding the “ceiling effect” since patients could not be classed above Child C even if 

they have worse severity and prognosis [99]. Also, the CTP score does not include renal 

function, a crucial aspect of cirrhotic decompensation [100]. To overcome these 

limitations, the MELD (Model for End-stage Liver Disease) score was proposed as the 

reference tool for prognostication in patients with liver disease and includes patients’ INR 

(international normalized ratio), total bilirubin and serum creatinine levels [101]. The first 

version of the MELD was proposed in the year 2000 as a tool for predicting 3-month 

survival in 231 patients following TIPS placement [102]. Originally, this model included 

the serum level of bilirubin, creatinine, international normalised ratio (INR), and the 

etiology of cirrhosis (e.g., viral/others = 1; alcohol/cholestatic = 0) combined using a Cox 

proportional hazard regression analysis. The MELD was compared with the CTP and 

found to be superior in the classification of patients with cirrhosis as well as predicting 

survival in patients with renal dysfunction who had been classified as CTP class B [102, 

103]. 
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The MELD was later updated for use in the severity scoring of liver disease and to 

estimate the risk of mortality in patients on the liver transplantation waiting list [104]. 

Compared with the CTP score, the MELD was validated in various cirrhosis populations 

with different aetiology using the c-statistic, a statistical prognostic tool based on the area 

under the Receiver Operator Characteristic (ROC) curve and established to be superior 

to the CTP for organ allocation [105, 106]. The superiority of the MELD to the CTP was 

later confirmed by other authors and was described as a movement toward evidence-

based medicine from a highly subjective, sometimes exaggerated scoring system (i.e., 

the CTP) [107-111]. 

However, limitations regarding inter-laboratory variability in the measurement of 

creatinine level and INR as well as gender bias resulted in the proposal of modified MELD 

scores [112]. Also, the MELD score was later reported to be limited in predictive value, 

especially in patients with relatively low scores. For instance, compared with other 

decompensatory events such as hepatic encephalopathy, hyponatraemia (low serum 

sodium), glomerular filtration rate, as well as the CTP score, the MELD score was 

reported to perform statistically less in terms of predicting mortality in patients with end-

stage liver disease on the transplant waiting list [113], where hyponatraemia and 

presence of ascites [114-116] were reported to be more effective. Further, when 

compared with MELD alone, the addition of serum sodium level was associated with a 

7% [115] reduction in waiting list mortality in patients with end-stage liver disease. Thus, 

in 2006 Biggins et al proposed a replacement of the MELD with the MELD-Na score after 

reporting an improved prognostic accuracy in the latter [117]. Recently, Kim et al 

introduced the MELD 3.0 in 2021 as the gold standard for short term prognosis in 

decompensated cirrhosis. Specifically, the MELD 3.0 adds gender, serum albumin level 

to the MELD-Na as well as statistical interactions between albumin-creatinine and 

bilirubin-sodium with a reported increase (~9%) in net reclassification and better 

discrimination especially reducing the gender disparity associated with MELD-Na [32]. 

Importantly, modifications of the MELD score have been in the inclusion of more 

biomarkers shown to have independent prognostic values in the patient population and 

as shown in MELD 3.0, the realization that biomarkers do interact to drive disease 

outcomes. For instance, the United Kingdom Model for End-Stage Liver Disease (UKELD) 
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score incorporates serum sodium into the MELD score with improved predictive accuracy 

[118]. Further, Montagnese et al showed a significant improvement in the prognosis value 

of MELD following the addition of the mean dominant frequency of the patient’s 

electroencephalogram (EEG) and proposed the MELD-EEG model as a better alternative 

to MELD alone for predicting survival in patients with cirrhosis [119]. Recently, the MELD-

Plus score was proposed as a better prognostic model and adds albumin, sodium, white 

cell count (WCC), total cholesterol, age, and length of hospital stay to the traditional 

MELD variables [33]. However, even the MELD-plus does not incorporate all possible 

extra-hepatic decompensation events observed in critically ill patients with cirrhosis who 

develop acute-on-chronic liver failure (ACLF). ACLF is a syndrome associated with a 

significantly poor short-term prognosis and is clinically characterised by multiple extra-

hepatic organ failures in patients with acute decompensation of cirrhosis [38]. 

Consequently, the European Foundation for the study of chronic liver failure (CLIF) 

developed the CLIF organ failure (CLIF-OF) score [120], a derivative of the sequential 

organ failure assessment (SOFA) score [121] to capture the poorer prognosis due to the 

sequential breakdown in organ systems function characteristic of late stage 

decompensated cirrhosis [122]. Recently, the CLIF-C (Chronic Liver Failure Consortium) 

MET prognostic model was also developed and positively validated by the CLIF group 

incorporating biomarkers from metabolomics analysis associated with systemic 

inflammation, mitochondrial dysfunction, and sympathetic nervous activation [123]. 

The trends in prognostic models for patients with decompensated cirrhosis have followed 

the continued inclusion of more organ systems (through representative markers) and 

proportionately reflect the increasing acceptance of the multi-organ, extra-hepatic 

implications of decompensated cirrhosis. However, current prognostic scores/models still 

consider the organ systems as separate, independent units instead of coordinated 

functioning parts constantly communicating as a network to maintain homeostasis.  
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Omics, and system biology in liver cirrhosis 

As more research continues to clarify the complex pathophysiology of decompensated 

cirrhosis, attention is being gradually diverted toward a holistic view of prognosis.  In 

recent years, scientists have successfully employed machine learning and artificial 

intelligence approaches for prognosis in liver disease [124-127]. Various omics analyses 

have been performed in cirrhosis resulting in new insights into the pathophysiology of 

cirrhosis as well as biomarkers of significant prognostic values. For instance, blood 

metabolomics of patients with decompensated and compensated cirrhosis revealed that 

mitochondrial dysfunction via systemic inflammation may drive organ failure in chronic 

liver disease [128]. Also, Claria et al performed an untargeted lipidomic analysis of serum 

from patients with acute decompensation of cirrhosis with and without ACLF and reported 

novel lipid fingerprints associated with liver dysfunction and infection [129]. In a 

metabolomic analysis of urine and serum samples from 211 participants, Bajaj et al 

reported alteration in the bioenergetics, lipid, and protein metabolism in outpatients with 

cirrhosis [130]. The use of proteomics in alcohol-related liver disease and viral hepatitis 

has also shown promising pathogenetic insights as well as prognostic values in various 

other studies [131-133]. Put together, as the pathophysiology of decompensated 

cirrhosis unravels, the extra-hepatic involvement of the disease is beginning to become 

more appreciated. As this happens, researchers and clinicians need a broader more 

holistic outlook that could help make sense of the complex shift in physiological dynamics 

and coupling that drives prognosis and treatment response.
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Physiological signals variability in liver diseases 

Classical physiological interpretation relies on the Cannon principle that human 

physiology is maintained in a “fairly constant or steady state” [134]. This principle, 

however, has been debunked due to the continuing discovery that organ systems vary 

and interact in complex and nonlinear ways across time to achieve and maintain 

homeostasis in direct response to an ever-changing environment (stressors) or even in 

the absence of any environmental challenges for example during the wake-sleep cycle 

[1, 135]. Therefore, higher variability and complexity of the time series of physiological 

variables have been interpreted as an outcome of increased organ systems engagement 

(coupling) with the appearance of regularity linked with isolation of a system and reduction 

in adaptability and survival [136]. Thus, various measures including short and long-term 

indexes of heart rate variability (HRV), represent the complex interplay between various 

spatiotemporal signals from nervous, respiratory, and circulatory systems as well as the 

regulators of circadian oscillation of core body temperature, among others [137].  

HRV can be computed from an electrocardiogram and measures the variation in the time 

intervals between consecutive heartbeats (R-R interval duration, RRI) [138, 139]. Higher 

HRV is linked with health and is interpreted as a higher influence of various organ systems 

on the heart rhythm. For instance, the short-term term-variation of heart rate indexed by 

the high-frequency distribution of power in an ECG recording may be attributed to the 

coupling of respiration (vagally controlled respiratory sinus arrhythmia) via the autonomic 

nervous systems with the cardiac cycle [140, 141]. Further, the long-term (24-hour) 

influence on HRV is linked with the cardiac coupling with the baroreflex loop, renin-

angiotensin pathway, core body temperature, and circadian rhythms [137]. Indeed, 

recent works have shown a reduction in HRV indices in patients with cirrhosis which is 

significantly linked with survival [78, 142]. Interestingly, long-term nonlinear indices of 

HRV (i.e., standard deviation parallel to Poincare’s line of identity, SD2) which is strongly 

influenced by baroreflex loop and thermoregulation significantly predicted survival in a 

study by Bhogal et al  [143]. 

Mechanistically, the HRV reduction observed in cirrhosis has been linked with systemic 

inflammation [90]. Although decompensated cirrhosis is linked with cardiomyopathy, it is 

unclear whether this is associated with HRV change [144]. Alternatively, HRV reduction 
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in cirrhosis has been strongly linked with hepatic encephalopathy and was reported by 

Mani et al to correlate with systemic levels of inflammatory biomarkers such as 

interleukins 6 (IL-6). Thus, inflammation remains the main driver of HRV reduction in 

cirrhosis possibly because of the associated organ system network uncoupling (See [90, 

144, 145]; Figure 1.3).  

While HRV provides a simple, non-invasive measure of cardiac connectivity to other organ 

systems, it is limited by the availability of clean ECG data with a high signal-to-noise ratio. 

This may be impossible in cirrhosis patients with abnormal heart cycles (e.g. due to 

premature ventricular beats) or those that are active. In such patients, heart rate 

turbulence (HRT), which indexes the autonomic and baroreflex regulation of heart rhythm 

following a premature ventricular contraction [146, 147], is a viable alternative. Indeed, 

the prognostic value of heart rate turbulence was recently investigated. Specifically, the 

turbulence onset was found to predict 12-month survival in patients with cirrhosis 

independent of MELD and CTP scores [148].  

In addition, variation in the body (skin or core) temperature is a complex process 

regulated by the nervous system (the hypothalamic thermoregulatory centre based on 

stimuli from thermoreceptors) in response to the circadian rhythm and the environment. 

Body temperature variability is driven by the interplay between hormonal, autonomic, and 

metabolic systems as well as systemic inflammatory response [149, 150]. Thus, body 

temperature variability may reflect the influence of disease state on the connectivity of the 

various systems involved in the thermoregulatory pathway [151]. Indeed, body 

temperature analysis have been assessed in both patients with cirrhosis and animal 

models [4, 151, 152]. For instance, short-term variability but not the absolute values of 

skin temperature in patients admitted with cirrhosis predicted 12-month survival 

independent of MELD and CTP scores [7, 144].  

Put together, time series of physiological variables such as heart rate and skin 

temperature vary nonlinearly in response to various cues from various sources (via 

feedback loops) and remain reliable indices of the complex interplay between various 

organ systems coupling (or lack of). 
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Figure 1.3. Pathogenesis of reduced heart rate variability (HRV) in cirrhosis is linked with systemic 

inflammation resulting in disruption to the autonomic (vagal) nervous control of cardiac rhythm. Image 

created using Biorender. 
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Impaired physiological network in other systemic diseases 

The involvement of multiple organ systems in decompensated cirrhosis makes the 

disease a prime candidate for a network physiologic approach. However, this approach 

has been assessed in other disease types including sepsis. Sepsis is often an important 

cause of deterioration and mortality in patients with cirrhosis. Assessment of organ 

systems connectedness has been applied in patients with sepsis as well as critically ill 

patients admitted to the ICU. For instance, to validate a previous study that showed 

comparable results [153], Norris et al assessed HRV and cardiac isolation in over 2000 

patients admitted to the ICU and reported that reduced HRV and cardiac uncoupling is a 

strong predictor of all-cause mortality. Indeed, cardiac isolation was also reported to be 

linked with systemic inflammation and multiple organ failure in these patients [154]. 

Various HRV indices were used in patients admitted to the ICU specifically for sepsis and 

have been reported to predict septic shock [155-157] as well as mortality [158-160]. In 

a systematic review by de Castilho et al., HRV was reported to be reduced in sepsis and 

predictive of mortality [161].  

Further, variability (entropy) in oxygen saturation (SpO2) was recently assessed by 

Gheorghita et al in critically ill patients with sepsis showing that SpO2 entropy can predict 

mortality independent of Age, SOFA score, and mean SpO2 [5]. This work corroborated 

a previous work by Bhogal et al, which showed that variability in oxygen saturation carries 

information about organ systems uncoupling that drives aging [162]. Other authors have 

assessed variability in core body and skin surface temperature in patients with sepsis. 

Indeed, wavelets and multiscale entropy analysis of body surface temperature were 

reported to discriminate patients with systemic inflammatory response syndrome (SIRS), 

sepsis, and septic shock [163]. 

Asada et al also performed a correlation network analysis of clinical variables representing 

various organ systems to assess their connectivity and show that lack of correlation of 

the cardiovascular system with hepatic and coagulation systems is linked with 

significantly poorer survival in critically ill patients admitted to intensive care unit (ICU) 

[12]. In another study involving 570 ICU patients, the stability of organ systems network 

clusters was analysed based on principle component analysis and showed a high organ 
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system disconnection and systemic instability in critically ill patients that did not survive 

ICU stay [11].  

In general, assessment of organ system uncoupling via variability measures of 

physiological variables or network mapping provides valuable insights regarding the 

course of complex diseases with multiple organ involvement. Of note, these insights are 

usually not available using traditional statistical methods or machine learning and artificial 

intelligence. Importantly, Before the start of this research (2019), a preliminary database 

(Medline) search was performed to assess whether the overarching aim of this thesis 

(application of organ systems network connectivity for prognosis in cirrhosis) has been 

previously addressed. The resulting studies (specifically 16 studies) were not related to 

the aim of this study (see Appendix 1 for the search strategy used). 

 

Hypothesis 

In this thesis, I investigated the hypothesis that the disruption in the network connectivity 

of the organ system drives the clinical course and prognosis of cirrhosis. Thus, the 

application of network physiology analysis may improve the prognostic value of current 

severity scoring systems in decompensated cirrhosis.  

 

Aims of research 

1. To systematically appraise the literature on changes in heart rate variability (HRV) due 

to cirrhosis and whether HRV can predict survival in cirrhosis. 

2. To evaluate the prognostic value of heart rate turbulence in patients with cirrhosis.  

3. To develop a method for physiological network mapping in patients with cirrhosis 

based on routine clinical/biochemical biomarkers. 

4. To assess the prognostic value of physiological network mapping for the prediction of 

survival in cirrhosis.  

5. To assess the value of physiological network mapping in prediction of response to 

targeted albumin therapy in cirrhosis. 
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6. To assess that application of physiological network mapping in critically ill patients with 

paracetamol-induced acute liver failure. 

7. To assess if a dynamic causal network approach can improve current prognostic 

models in patients with cirrhosis admitted to the ICU. 

A Schematic outline of thesis chapters and research questions is presented in Figure 

1.4. 

 

 

Figure 1.4. Schematic outline of thesis chapters and research questions. ICU; Intensive Care Unit, MIMIC-

III; Medical Information Mart for Intensive Care 3.  
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Chapter 2 : Heart rate variability in patients with 

cirrhosis: a systematic review and meta-analysis
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Introduction  

Liver cirrhosis accounts for more than one million deaths annually worldwide, with 

numbers increasing year on year [164-166]. However, patients with cirrhosis have a 

range of conditions from early uncomplicated cirrhosis which is asymptomatic, to 

decompensated cirrhosis where organ systems start to fail and patients present with 

many complications such as ascites, hepatic encephalopathy, and variceal bleeding 

[167, 168]. Once a patient starts to develop complications, various scoring systems 

including MELD, MELD-Na, or UKELD are used to calculate the prognosis and the need 

for a liver transplant at the bedside or in the clinic. These scoring systems are widely 

available using Apps on smartphones or web-based calculators. However, the scoring 

systems do not consider the alteration in the autonomic nervous system (ANS) observed 

in cirrhosis [169].  

A simple and especially useful tool to assess the state of the ANS is heart rate variability 

(HRV). HRV is the variation over time of the intervals between consecutive normal 

heartbeats (NN). Physiologically, instantaneous heart rate variation represents the 

capacity to adapt the heart rate (HR) to different internal and environmental 

circumstances and is modulated by the ANS [170]. Tsuji et al. for the first time 

demonstrated the prognostic value of HRV analysis in the Framingham cohort study and 

reported that individuals with reduced HRV had increased risk for all-cause mortality 

[171]. HRV provides a non-invasive evaluation of autonomic regulation of the cardiac 

rhythm and indexes the interplay between the intrinsic cardiac rhythm and external 

regulatory controls [172]. Importantly, with medical advances, it is becoming increasingly 

recognized that the calculation of HRV from continuous ECG tracing provides additional 

and clinically useful information to clinicians on both the severity and prognosis of patients 

with cirrhosis [173]. 

Although autonomic dysfunction and cirrhotic cardiomyopathy are well-established 

complications of cirrhosis [174, 175], these are not assessed by MELD, UKELD, or Child-

Pugh. This is particularly important since recent reports suggest that HRV predicts 

survival in cirrhosis independently of MELD and Child-Pugh and therefore may provide 

additive information currently lacking in existing scoring systems [7, 90, 176]. However, 

for HRV to be of value in research and clinical practice, there needs to be standardization 
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of processes that enable simple and accurate assessment of HRV.  This includes 

standardization of the ECG recording techniques, duration of recording, methods, and 

clinical interpretation of HRV and the availability of these at the point of care via mobile or 

web-based apps. 

 

Aim of study 

to analyse the methods used to record and report HRV in the literature, assess HRV 

differences between patients with cirrhosis and controls, and finally propose the 

standardization of HRV measurement techniques to improve interpretation and clinical 

and research applicability. 

 

Hypothesis 

HRV indices are different in patients with cirrhosis compared with healthy controls and 

the reduction is linked with survival. 
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Methods 

This systematic review was performed following the guidelines of the Preferred Reporting 

in Systematic Reviews and Meta-Analysis (PRISMA) [177]. Embase, Medline, and 

PubMed databases were searched on the 8th of July 2020 using wide-ranging search 

strategies combining several Medical Subject Headings (MeSH) terms (Appendix 2). 

Studies recovered from the search were uploaded to Endnote and duplicate studies were 

identified and removed. Studies were then uploaded to Rayyan software for screening 

based on the studies' title/abstract. Furthermore, a mini systematic review was performed 

to assess the prognosis value of HRV indices in patients with cirrhosis. This was carried 

out by screening the included papers for the performance of survival analysis. 

Inclusion and exclusion criteria 

Only observational studies were included in the systematic review. Studies that assessed 

any of the HRV time, frequency, and non-linear indices in assessing autonomic cardiac 

control in cirrhosis were considered eligible. Studies that did not include a control group; 

studies involving non-cirrhotic liver disease; studies involving pharmacological or non-

pharmacological interventions known to affect HRV indices; and studies involving 

orthostatic tilting as the sole method of HRV assessment were all excluded from this 

review. Further, studies where HRV indices of surviving and non-surviving patients were 

statistically compared irrespective of whether risk analysis was performed were included 

in the mini-systematic review.  

Data collection 

Initially, titles and abstracts were thoroughly screened for potentially eligible studies. 

Articles found to be eligible were then evaluated to detect which studies meet the 

inclusion criteria for this review. Based on the criteria mentioned above, the following data 

were obtained: the name of the first author and year of publication, the aims of studies; 

the summaries of findings; sample and group sizes; study setting and country; aetiologies 

of Liver disease/cirrhosis; time length/duration of and the equipment used for recording; 

methods of HRV analysis such as whether data cleaning were performed, analysed time 

length (5, 10 minutes or hours), software used for HRV analysis and HRV indices 

assessed. The aetiology of cirrhosis including alcohol, fatty, primary biliary cholangitis, 

viral, and cryptogenic were also extracted (Table 2.1 and Table 2.2). For the mini-
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systematic review for prognosis, studies that used HRV indices for survival analysis in 

cirrhosis were included. Accordingly, sample size, follow-up time, mortality, HRV indices 

analysed, HRV indices that predict mortality independently of MELD and Child-Pugh 

scores, HRV indices of survivors and non-survivors, and hazard or odds ratios were 

extracted from eligible studies (Table 2.3). 

 

Quality assessment 

The quality of the methods used in the included studies was rigorously assessed using a 

modified version of the Newcastle Ottawa Scale (NOS) [178]. The modified NOS scale 

had 3 major domains that evaluated the quality of patients’ selection, comparability of 

patients’ groups, and methods used for evaluating the outcomes in the included studies. 

These 3 domains comprised 6 assessment questions each of which were scored with a 

star if satisfied. Studies with scores ≤ average of total (≤ 3 stars) were considered highly 

biased studies (Appendix 3). 

 

Data synthesis 

A meta-analysis of the extracted data was performed to evaluate the difference in indices 

of HRV between patients with cirrhosis and healthy controls. Forest plots of effect sizes 

of HRV indices between the groups were generated using the “metan” procedure in 

Stata/SE15. For studies where HRV indices were reported as median and interquartile 

ranges, mathematical transformation to mean and standard deviation was performed 

according to [179, 180]. Further, HRV indices presented as natural logarithms in studies 

were transformed accordingly by finding mathematical exponents (ex) of such. Finally, 

where day and night indices were reported in studies, the day’s data were computed as 

day recording is more amenable in research settings.  

The effect sizes were measured as standardized mean difference (SMD) of each of the 

reported indices using the Hedges’ criteria [181]. The random-effect or fixed-effect model 

was used according to the computed between-studies heterogeneities. Effect sizes were 

computed as SMD with 95% confidence intervals (CI) for all HRV indices between the 

groups (i.e., patients and healthy controls). Forest plots were generated for visualization 

of the effect sizes and included the weights and between-studies heterogeneity. The 
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heterogeneity was computed as I2 statistic and is interpreted as low, moderate, or high 

when values are ≤25%, 26% - 74%, or 75%, respectively [182]. The SMDs (Standardized 

Mean Differences) were translated according to the suggestions of Hopkins et al whereby 

values of 4.0 show extremely large effect sizes [183].  

For the survival analysis, a meta-analysis was not performed due to the low quantity of 

studies included. Also, some of the studies where survival analysis was reported came 

from the same groups with overlapping data. Further, HRV indices computed as well as 

patient follow-up times in most of these studies differ significantly, making mathematical 

pooling infeasible.
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Results 

 A total of 247 studies were generated from the search of databases including 67 

duplicate reports. The 180 studies remaining contained 30 studies that were regarded as 

hypothetically pertinent based on the inclusion criteria. Screening of the full texts resulted 

in the further exclusion of 16 papers to yield eligible 14 studies (Figure 2.1). For the mini 

systematic review, 7 studies performed survival analysis based on the HRV indices of 

patients with cirrhosis that survived and did not survive over a specific follow-up period.  
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Figure 2.1. Heart rate variability in patients with cirrhosis, systematic review according to the Preferred 

Reporting Items for Systematic Reviews and Meta-analyses diagram. 

 

Description of eligible studies 

The general characteristics of included studies and the techniques used for ECG 

recording and HRV analysis and significantly different indices are presented respectively 

in Table 2.1 and Table 2.2. The 14 eligible studies comprise a total of 583 cirrhosis 

patients and 349 healthy, matched controls. Overall, sample sizes ranged between 20 

and 180 patients with all studies designed as observational, prospective, and conducted 

across 10 different countries. The NOS scale for the risk of bias assessment showed that 

most studies have low risk, with none scoring ≤ 3 (Appendix 3). Overall, most studies 
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reported a reduction in HRV indices except LF–HF ratio (LF: HF) which was reported to 

be increased in two studies [168, 184] while one study [174] reported a decrease in 

cirrhosis compared with healthy controls. The definitions and units of the indices of HRV 

are presented in Appendix 4.  

Seven studies were included in the mini-systematic review involving 437 patients in total, 

of which, 104 (24%) did not survive at the end of the corresponding follow-up period (3–

24 months). All (7) studies included observed significant differences in HRV indices 

between the survivors and non-survivors which were predictive of survival (Table 2.3). 
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Table 2.1. General characteristics of included studies. 
Author Aim Conclusion Country Setting Liver 

Disease 

(Male) 

Control 

(male) 

Aetiology Child-Pugh 

/Histological 

Classification 

Ates F. et al. 2006 [185] To assess using HRV 

autonomic dysfunction and its 

correlation with severity and 2-

year survival in cirrhotic 

patients. 

(1) HRV time-domain indices were significantly 

reduced in cirrhotic patients compared to healthy 

subjects. (2) HRV indices were also significantly 

reduced in nonsurvivors vs survivors after 2 years 

of follow-up.  

Türkiye NS 30(19) 28(16) HBV = 22 

HCV = 8 

A = 5 

B = 11 

C = 14 

Baratta L. et al. 2010 [186] To assess the effect on liver 

transplantation (LT)) on 

autonomic control of cardiac 

function in cirrhotic patients 

using HRV. 

(1) HRV indices (SDNN and RMSSD) were 

reduced in cirrhotic patients compared with healthy 

subjects. (2) LT corrected the reduced SDNN, but 

RMSSD and LF/HF remained unchanged. 

Italy  outpatient 30(20) 27(14) HBV = 4 

HCV = 14 

Other 

(NASH, 

Ethanol, 

Mixed) = 12 

A = 5 

B = 18 

C = 7 

Coelho, L. et al. 2001 [187] To evaluate autonomic function 

in patients with liver cirrhosis 

using HRV and to evaluate the 

relationship with severity 

(1) HRV is significantly reduced in chronic liver 

disease. (2) Reduced HRV is correlated with the 

severity of liver disease. (3) Autonomic dysfunction 

is not related to the aetiology of liver disease. (4) 

Markers of hepatocellular dysfunction are more 

accurate predictors of autonomic dysfunction 

compared to markers of cholestasis where SDNN 

correlated significantly with prothrombin (r=0.64, 

p=0.001) and serum albumin (r=0.40, p=0.05) but 

not total bilirubin. 

Portugal NS 22 (11) 20 Alcohol = 12 

HBV + HCV 

= 6 

Autoimmune 

= 2 

Others = 2 

A = 6 

B = 9 

C = 7 

Frokjaer V. G. et al. 2006 [188] To determine if autonomic 

dysfunction is related to 

cerebral blood flow 

(1) Cerebral autoregulation of blood flow is 

impaired in severe cases of liver cirrhosis. (2) 

Impairment of cerebral autoregulation correlated 

with autonomic dysfunction (3) severity of cirrhosis 

Denmark outpatients 14 (9) 11 (5) Alcohol = 8 

PBC = 4 

Cryptogenic 

= 2 

A = 5 

B = 6 

C = 3 
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autoregulation in cirrhotic 

patients. 

correlated with degree of autonomic dysfunction 

(4) loss of sympathetic innervation of cerebral 

vessels linked with cerebral autoregulation 

dysfunction in cirrhotic patients.  

Iga A. et al. 2003 [189] To assess autonomic 

abnormalities in patients with 

Liver cirrhosis using 123I-

metaiodobenzylguanidine 

(MIBG) myocardial 

scintigraphy and HRV.  

Autonomic dysfunction is present in cirrhotic 

patients and can be assessed by MIBG myocardial 

scintigraphy and HRV. 

Japan NS 50 (27) 50 (33) HBV = 4 

HCV = 40 

HBV + HCV 

= 2 

PBC = 4 

A = 20 

B = 12 

C = 18 

Ko F.Y. et al. 2013 [190] To assess the relationship 

between psychological distress 

and clinical presentations of 

cirrhosis using biochemical and 

physiological (HRV) markers.  

(1) Psychological distress was correlated with 

increased serum aspartate aminotransferase 

(AST) and reduced autonomic control of the heart 

(HRV). (2) Inflammation may have a role to play in 

cirrhotic psychological distress.  

China outpatients 125(73) 55(29) Alcohol = 14 

HBV + HCV 

= 83 

Autoimmune 

= 5 

Parasites = 

5 

Others = 18 

A = 43 

B = 58 

C = 24 

Lazzeri C. et al. 1997 [191] To assess autonomic 

neuropathy in patients with 

non-alcoholic cirrhosis with 

ascites.  

Ascitic patients with non-alcoholic cirrhosis have 

autonomic neuropathy compared with healthy 

controls and this is associated with significant 

differences in HRV indices between the groups.  

Italy  outpatients 12 (7) 12 HBV = 2 

HCV = 8 

Cryptogenic 

= 2 

A = 0 

B = 5 

C = 7 

Mani A.R. et al. 2008 [90] To assess the relationship 

between indices of HRV, 

hepatic encephalopathy, and 

systemic inflammation in 

cirrhotic patients 

(1) Reduced long-term HRV in cirrhotic patients 

compared with healthy subjects. (2) HRV 

negatively correlated with the degree of 

neuropsychiatric impairment. (3) 8% increased 

relative risk of death for every 1ms drop in HRV 

index (4) Indices of HRV and neuropsychiatric 

performance significantly correlated with the level 

of plasma IL6.  

UK inpatients 

(14) 

outpatients 

(66) 

80(53) 11 (5) Alcohol = 65 

HBV + HCV 

= 7 

Mixed 

(Various) = 9 

A = 51 

B = 13 

C = 16 
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Milovanovic B. et al. 2009 [192] To analyse risk predictors of 

sudden cardiac death (SCD) 

related to autonomic 

dysfunction in alcohol-related 

cirrhotic patients. 

(1) Patients with ARLD are susceptible to 

autonomic dysfunction (56%). (2) ARLD patients 

also have lower HRV indices (SDNN, SDANN, 

TINN, LF, and HF), serious arrhythmia, prolonged 

QTc, and abnormal Poincare plot. (3) QTc 

inversely correlated with lnLF, lnHF (r= -0.53, r= -

0.47; p<0.05) while Lown class correlated with 

autonomic function (r= -0.64; p=0.05). 

Serbia inpatients 25 (20) 19 (15) Alcohol = 25 NS 

Miyajima H. et al. 2001 [193] To assess the effect of portal 

blood flow volume and 

autonomic nervous function on 

abnormal gastric motility in 

cirrhotic patients. 

(1) Autonomic dysfunction correlated with 

abnormal gastric motility in cirrhotic patients (2) 

Decreased gastric motility may result from 

abnormalities in autonomic function in cirrhotic 

patients 

Japan NS 27(19) 20(13) Alcohol = 1 

HBV = 5 

HCV = 21 

A = 7 

B + C = 20 

Moller S. et al. 2012 [194] To assess sympathetic control 

of cardiac function in cirrhosis 

using mIBG scintigraphy and 

relate this to cardiovascular 

functions 

(1) Cirrhotic patients have significantly reduced 

HRV and baroreflex activity. (2) Reduction in HRV 

and baroreflex correlated significantly with 

abnormal cardiac sympathetic nervous activity 

measured by catecholamine uptake by mIBG. 

Denmark outpatients 10 (5) 10 (5) Alcohol = 10 NS 

Nagasako C.K. et al. 2009 [195] To assess autonomic 

dysfunction in non-alcoholic 

cirrhosis and the relationship 

with disturbed intestinal transit 

time, as well as severity and 

prognosis using HRV. 

(1) HRV indices (HF, lnHF, LF, lnLF, pNN50) were 

lower in cirrhotic patients (Child B) patients 

compared with child A and control subjects. (2) 

HRV indices correlated significantly with the risk of 

hepatic encephalopathy in cirrhotic patients.  

Brazil NS 32(12) 21(12) HCB = 16 

PBC = 6 

Cryptogenic 

= 6 

Others = 4 

A = 13 

B = 19 

C = 0 

Negru R.D. et al. 2015 [178] To assess the use of HRV as a 

marker of autonomic 

dysfunction and severity in 

cirrhotic patients.  

(1) HRV detected autonomic dysfunction in 

cirrhotic patients. (2) Aetiology of liver cirrhosis is 

linked with distinct types of autonomic 

dysfunctions. (3) HRV parameters correlated 

significantly with the severity of liver cirrhosis as 

assessed by Child-Pugh scores.  

Romania inpatients 52 (27) 30 (15) Alcohol = 25 

HBV = 6 

HCV = 17 

Mixed = 4 

A = 30 

B = 8 

C = 14 



59 
 

Satti R. et al. 2019 [176] To extend the Poincare plot by 

introducing a sequential lag in 

the correlation computation 

and to evaluate the relationship 

with the severity and survival of 

cirrhotic patients.  

(1) Traditional SD1 and SD2 correlated strongly 

with severity of liver cirrhosis. (2) Lagged SD1 and 

SD2 correlated significantly with liver disease 

severity. However, extended SD1 did not predict 

mortality independently of MELD. (3) SD2 

predicted survival of cirrhotic patients independent 

of MELD.  

Italy  Outpatients 74 35 NS NS 

NS, Not Shown; vs, versus; HRV, Heart Rate Variability; ARLD, Alcohol-Related Liver Disease; NALD, Non-Alcoholic Liver Disease (including virus-linked liver 

diseases); PBC, Primary Biliary Cholangitis; IL6, Interleukin-6; LT, Liver Transplantation; ln, Natural Logarithm; QTc, Q-T complex describing time Interval between 

the start of Q-wave and T-wave of an ECG recording; HCV,  Hepatitis C Virus; MELD, Model for End-Stage Liver Disease; NN Interval, time lapse between consecutive 

QRS complexes of ECG recording; SDNN, Standard deviation of NN intervals; SDANN, Standard deviation of the average NN intervals for each 5-minute segments 

deduced from a 24-hour ECG recoding; pNN50, Percentage of successive RR intervals that vary by more than 50ms; RMSSD, Root mean square of differences in 

successive NN interval; TINN, Triangular Interpolation of the NN intervals’ histogram; LF, Low Frequency; HF, High Frequency; SD1, Poincare plot Standard Deviation 

perpendicular to the line of identity; SD2, Poincare plot Standard Deviation along the line of identity; ApEn, Approximate Entropy.  

 

Table 2.2. ECG recording and HRV analysis techniques of included studies. 

Author Sampling 

Time/length 

Analysis 

time/length 

Equipment 

(Manufacturer) 

Sampling 

Rate 

(Hz) 

Analysis Software Data processed 

(filtering/ 

correction/ 

Selection/manual 

editing etc.)  

HRV Indices 

Measures 

Significant HRV 

indices (p < 0.05) 

Ates F. et al. 2006 [185] 24 hours  24 hours HolterWin P-V 

Version 5.40 Plus; 

Diagnostic 

Monitoring, 

SantaAna, CA, USA. 

NS HolterWin P-V Version 5.40 

Plus; Diagnostic Monitoring, 

SantaAna, CA. 

(Commercial). 

Yes mean NN, SDNN, 

SDANN, RMSSD, 

pNN50 

mean NN, SDNN, 

SDANN, RMSSD, 

pNN50 

Baratta L. et al. 2010 [186] 24 hours NS Accuplus 363 (Del 

Mar Medical System, 

Irvine, CA, USA) 

NS NS Yes SDNN, RMMSD, HF, 

LF, LF/HF 

SDNN. RMSSD, 

HF (night) 

Coelho, L. et al. 2001 [187] 24 hours 24 hours NS NS NS No SDNN, pNN50, VLF, 

LF, HF, LF/HF 

Reduced SDNN, 

pNN50, VLF, LF, 

HF  
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Frokjaer V. G. et al. 2006 [188] 24 hours 24 hours Portable Cardio-

recorder (Spacelab 

90208, USA 

NS Spacelab Medical FT3000. 

(Commercial). 

Yes SDNN, RMSSD, VLF, 

LF, HF, TP. 

SDNN, VLF, LF, 

HF, TP 

Iga A. et al. 2003 [189] 24 hours 512 heartbeats SM-50 (Fukuda 

Denshi Corpo-ration, 

Tokyo, Japan) + 

DWM-9000H 

Workstation (Fukuda 

Denshi Corporation) 

NS MemCalc Ver2.5 (Suwa 

Trust, Tokyo, Japan). 

(Commercial). 

No LF, HF, LF/HF LF, HF, LF/HF 

Ko F.Y. et al. 2013 [190] 5 minutes 5 minutes Ad hoc/customized 256 Open-Source Software 

(Physionet). (Commercial). 

NS SDNN, RMMSD, 

LnHF, LnLF, lnVLF, 

LF/HF, DFA α1, DFA 

α2 

SDNN, RMSSD, 

lnHF, lnLF, DFA 

α1 

Lazzeri C. et al. 1997 [191] 24 hours 512 RRI 

(Frequency 

Domain), 24 

hours (Time 

Domain). 

ELATEC 3.0 (ELA 

Medical, Segrate. 

Italy)  

NS HRV module for ELATEC 

1.0. (ELA Medical, Segrate. 

Italy). (Commercial). 

Yes Mean RR, SDNN, 

SDANN, RMSSD, 

pNN50, TP, LF, HF, 

LF/HF. 

SDNN, SDANN, 

RMSSD, pNN50, 

LF, HF 

Mani A.R. et al. 2008 [90] 10 minutes 5 minutes NS 256 Lab-built (Ad hoc) Yes SDNN, LF, HF, LF/HF, 

SD1, SD2, SampEn 

SDNN, LF, HF, 

SD1, SD2, 

SampEn 

Milovanovic B. et al. 2009 [192] 24 hours 24 hours 3 Leads ECG 

equipment 

(Biosensor, USA) 

1000 Biosensor, USA. 

(Commercial). 

Yes Mean RR, SDNN, 

SDANN, RMSSD, TP, 

HF, LF, LF/HF, lnHF, 

lnLF, TINN 

SDNN, SDANN, 

TINN, lnHF, lnLF. 

Miyajima H. et al. 2001 [193] NS 512 heartbeats SM-50 (Fukuda 

Denshi Corporation, 

Tokyo, Japan) 

NS DWM-9000H (Fukuda 

Denshi Corporation, Tokyo, 

Japan). (Commercial). 

NS LF, HF, LF/HF HF, LF/HF 

Moller S. et al. 2012 [194] 50 minutes 50 minutes Task Force Monitor 

(TFM) (CNSystems, 

Graz, Austria) 

NS Task Force Monitor (TFM) 

(CNSystems, Graz, Austria) 

NS VLF, LF, HF, LF/HF LF, HF, LF/HF 

Nagasako C.K. et al. 2009 [195] 24 hours Frequency 

Domain = 5 

minutes (X72) 

Time Domain = 

24 hours 

Dynamics R300 

(Cardios 

Sistemas,Sa ̃o Paulo, 

Brazil) 

NS commercial software (DMI 

CardiosSistemas, Sa ̃o 

Paulo, Brazil). 

(Commercial). 

NS Mean NN, SDNN, 

RMSSD, pNN50, TP, 

LF, lnLF, HF, lnHF, 

LF/HF 

SDNN, pNN50, 

TP, HF, lnHF, LF, 

lnLF, LF/HF 

Negru R.D. et al. 2015 [178] 24 hours 24 hours 300-3A recorders 

(DMS - USA)  

128 CARDIOSCAN 12 software 

(DMS-USA). (Commercial). 

Yes SDNN, SDANN, 

SDNN index, RMSSD, 

pNN50, TP, LF, HF, 

VLF 

SDNN, SDNN 

index, SDANN, 

TP, VLF 

Satti R. et al. 2019 [176] 10 minutes 8 minutes Chart 5 (AD-

Instrument, Australia) 

256 Lab-built (Ad hoc) Yes Traditional SD1 and 

SD2 and r (Pearson 

Correlation); lagged 

SD1 and SD2 and r 

(Pearson Correlation) 

SD1, SD2, r 

(Pearson 

Correlation) 
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ECG, Electrocardiograph; RRI, RR interval describing the time lapse between consecutive R-waves of an ECG recording; NN Interval, the time lapse between 

consecutive QRS complexes of ECG recording; SDNN, Standard deviation of NN intervals; SDANN, Standard deviation of the average NN intervals for each 5-minute 

segments deduced from a 24-hour ECG recoding; pNN50, Percentage of successive RR intervals that vary by more than 50ms; RMSSD, Root mean square of 

differences in successive NN interval; TINN, Triangular Interpolation of the NN intervals’ histogram; TP, Total Power; VLF Very Low Frequency; LF, Low Frequency; 

HF, High Frequency; LF/HF, Ratio of LF to HF; SD1, Poincare plot Standard Deviation perpendicular to the line of identity; SD2, Poincare plot Standard Deviation 

along the line of identity; ApEn, Approximate Entropy; SampEn, Sample Entropy; DFA α1, Short-term fluctuation of Detrended Fluctuation Analysis; DFA α2, Long-

term fluctuation of Detrended Fluctuation Analysis. 

 

Table 2.3. Characteristics of studies that reported the HRV indices as predictors of survival in patients with cirrhosis. 
Author, 

Year 

Conclusion Sample 

Size 

Follow-

up 

(Months) 

Analysis 

time 

/length 

Non-

Survivor 

(%) 

HRV analysed HRV of Non-

survivors (Mean ± 

SD) 

HRV of Survivors 

(Mean ± SD) 

Hazard/Odds Ratio (95% CI) of 

the HRV index 

HRV indices that 

are predictors of 

survivors 

independently of 

MELD or Child-

Pugh scores 

Ates F. 

et al. 

2006 

[185] 

HRV indices were 

also significantly 

reduced in non-

survivors vs 

survivors after 2 

years of follow-up.  

30 24 24 

hours 

13 

(43%) 

mean NN, 

SDNN, 

SDANN, 

RMSSD, 

pNN50 

mean NN 

(542±127), SDNN 

(51±13), SDANN 

(44±7), RMSSD 

(10±9), pNN50 

(2.3±0.9) 

mean NN (796±143), 

SDNN (84±15), 

SDANN (62±13), 

RMSSD (17±11), 

pNN50 (5.3±1.2) 

NS NS 

Baratta 

L. et al. 

2010 

[186] 

HRV long-term 

fractal-like exponent 

() predicts mortality 

in cirrhotic patients 

independent of 

MELD and Child-

Pugh scores. 

38 12 24 

hours 

15 

(40%) 

SDNN, 

cSDNN, SD1, 

SD2, VLF, LF, 

HF, DFA α1, 

DFA α2 

SDNN 

(67.35±6.46), 

cSDNN (236±23.8), 

SD2(90.25±8.62), 

VLF (3315±591), 

DFA 

α2(0.989±0.032) 

SDNN (86.79±5.23), 

cSDNN 

(316.8±22.6), 

SD2(121.01±8.37), 

VLF (6,219±852), 

DFA 

α2(1.142±0.036) 

SDNN [Hazard Ratio (95% CI) 

=0.979 (0.969-0.989), cSDNN 

[Hazard Ratio (95% CI) =0.993 

(0.990-0.996), SD2 [Hazard 

Ratio (95% CI) =0.983 (0.976-

0.990), VLF [Hazard Ratio (95% 

CI) =0.999 (0.998-0.999), HF 

[Hazard Ratio (95% CI) =1.001 

(1.000=1.002), 

DFA α2 
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DFA- α2 [Hazard Ratio (95% CI) 

=0.011 (0.002-0.052)  

Bhogal 

A.S. et 

al. 

2019 

[184] 

HRV indices (SD2 

and cSDNN) 

predicted survival in 

cirrhotic patients 

independent of 

MELD and Child-

Pugh scores.  

74 18 8 min 24 

(32%) 

mean HR, 

SDNN, 

cSDNN, SD1, 

SD2, VLF, LF, 

HF, LF/HF, 

SampEn, DFA 

α1, DFA α2, 

Kurtosis, 

Skewness 

SDNN (18.9±2.0), 

cSDNN (68.1±5.4), 

SD1 (9.5±1.3), SD2 

(24.8±2.5), VLF 

(205±38), LF 

(89±33), HF 

(80±30) 

SDNN (29.1±2.1), 

cSDNN (81.9±5.0), 

SD1 (15.1±1.4), SD2 

(37.7±2.7), VLF 

(483±73), LF 

(212±44), HF 

(239±46) 

SDNN [Hazard Ratio (95% CI): 

0.935 (0.895-0.977), cSDNN 

[Hazard Ratio (95% CI): 0.975 

(0.959-0.991), SD1 [Hazard 

Ratio (95% CI): 0.919 (0.861-

0.980), SD2 [Hazard Ratio 

(95% CI): 0.950 (0.918-0.982), 

VLF [Hazard Ratio (95% CI): 

0.997 (0.995-0.999), HF 

[Hazard Ratio (95% CI): 0.995 

(0.991-0.999) 

cSDNN, SD2 

Chan 

K.C. et 

al. 

2016 

[196] 

Heart rate 

complexity and 

deceleration 

capacity increased 

the accuracy of 

MELD in predicting 

survival in patients 

with end-stage liver 

diseases 

30 12 30 min 5 (17%) SDNN, 

RMSSD, 

pNN50, 

pNN20, DC, 

AC, 

Complexity  

pNN50 

(0.006±0.003), 

pNN20 

(0.079±0.058), DC 

(3.60±0.71), AC 

(3.51±0.81), 

Complexity 

(22.08±4.64) 

pNN50 

(0.065±0.070), 

pNN20 

(0.269±0.180), DC 

(6.01±2.36), AC 

(6.06±2.77), 

Complexity 

(28.60±5.06) 

NS NS 

Jansen 

C. et 

al. 

2019 

[197] 

Baseline SDNN 

predicts 90-day 

survival in cirrhotic 

patients independent 

of actual indices of 

severity.  

111 3 5 min 12 

(11%) 

SDNN SDNN (11 (10‐12)) SDNN (26 (17‐38)) SDNN [Odds Ratio (95%) = 

0.79 (0.65 ‐ 0.97)] 

 

SDNN 

Mani 

A.R. et 

There is an 8% 

increase in the 

80 20.3 5 min 11 

(14%) 

SD1, SD2 NS NS SD2 [Hazard Ratio (95% CI) = 

0.923 (0.864-0.982)] 

NS 
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al. 

2009 

[90] 

relative risk of death 

for every 1ms drop 

in SD2 

Satti R. 

et al. 

2019 

[176] 

While SD1 and SD2 

significantly 

predicted survival, 

only SD2 predicted 

survival of cirrhotic 

patients 

independently of 

MELD 

74 18 8 min 24 

(32%) 

SD1 (lagged), 

SD2 (lagged), 

and Pearson's 

r 

NS NS SD2 [Hazard Ratio (95% CI) = 

0.950 (0.918–0.982)] 

SD2 

HRV, Heart rate Variability; NN Interval, time lapse between consecutive QRS complexes of ECG recording; SDNN, Standard deviation of NN intervals; cSDNN, 

corrected SDNN; ms, millisecond; SDANN, Standard deviation of the average NN intervals for each 5-minute segments deduced from a 24-hour ECG recoding; 

pNN50, Percentage of successive RR intervals that vary by more than 50ms; RMSSD, Root mean square of differences in successive NN interval; TINN, Triangular 

Interpolation of the NN intervals’ histogram; TP, Total Power; VLF Very Low Frequency; LF, Low Frequency; HF, High Frequency; LF/HF, Ratio of LF to HF; SD1, 

Poincare plot Standard Deviation perpendicular to the line of identity; SD2, Poincare plot Standard Deviation along the line of identity; ApEn, Approximate Entropy; 

SampEn, Sample Entropy; DFA α1, Short-term fluctuation of Detrended Fluctuation Analysis; DFA α2, Long-term fluctuation of Detrended Fluctuation Analysis; DC, 

Deceleration Capacity; MELD, Model for End-stage Liver Disease; CI, Confidence Interval; SD, Standard Deviation. 
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HRV time domains 

Thirteen studies reported significant differences in HRV time domains between patients with cirrhosis 

and healthy control groups. The standard deviation of NN intervals (SDNN), SDNN Index, standard 

deviation of the average NN intervals for each 5 min segment of a 24 h ECG recording (SDANN), root 

mean square of successive NN interval (RMSSD), and percentage of NN intervals that differ by 50% 

(pNN50) were all different between the groups. There were significantly higher time domain HRV indices 

(i.e., SDNN, SDANN, RMSSD, and pNN50%) in healthy controls compared with patients with cirrhosis. 

Further, the computed between-studies heterogeneities for all time domain indices were significantly 

high (Figure 2.2a-d). 

 

SDNN 

SDNN is defined as the standard deviation of normal/non-ectopic RR intervals (NN). It is translated as 

the measure of the global influence of the autonomic nervous system on the cardiac rhythm [198, 199]. 

Nine studies reported a significant reduction in SDNN attributed to cirrhosis [90, 178, 185, 187, 188, 

190-192, 195]. One of the 9 studies [195] presented the median SDNN with no interquartile range and 

was excluded from the effect size computation (Appendix 5). A “very large” effect size was seen 

whereby healthy controls have significantly higher SDNN compared with patients with cirrhosis [SMD 

(95%CI) = 3.41 (2.24, 4.58); Figure 2.2a]. This can be interpreted as a noticeable dysregulation of the 

autonomic control of the cardiac rhythm due to cirrhosis. 

 

SDNN Index 

SDNN Index is the average of all 5 minutes-SDNNs of a 24-hour ECG recording (i.e., 288). SDNN index 

has been physiologically associated with the overall autonomic control of heart rhythm [198, 199]. A 

significant difference in the SDNN index was reported in only one study whereby patients with cirrhosis 

had a lower index and dysregulated autonomic cardiac control compared with healthy controls (mean 

± SD of 43.83 ± 15.66 vs 56.50 ± 17.04; Appendix 6) [178]. 

 

SDANN 

SDANN is the standard deviation of all computed averages of 5-minute NN intervals of a 24-hour ECG 

recording (i.e., 288). SDANN is physiologically comparable to SDNN as it provides a measure of the 

overall autonomic influence on the heart rhythm [198, 199]. A total of 3 studies reported significant 

reduction in SDANN attributed to cirrhosis (Appendix 7) [178, 185, 191]. A significantly lower SDANN 
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was observed in patients with cirrhosis compared with healthy controls with a “very large” standardized 

mean difference [SMD (95%CI) = 2.54 (0.81, 4.27); Figure 2.2b]. 

 

RMSSD 

The root mean square of the NN intervals is defined as the square root of the average of the square of 

NN intervals and is often measured over 5 minutes. RMSSD is linked with vagal influence on the heart 

rhythm and indexes the respiratory sinus arrhythmia (RSA) [198, 199]. Three studies reported 

differences in RMSSD between patients with cirrhosis and healthy controls (Appendix 8) [185, 190, 191], 

with patients with cirrhosis showing significantly lower RMSSD compared with healthy controls. A “large” 

pooled standardized mean difference between the groups was also observed [SMD (95%CI) = 1.60 

(0.73, 2.47); Figure 2.2c] representing a marked reduction in vagal control of the heart rhythm due to 

cirrhosis. 

 

pNN50 

Percentage of the NN intervals that differ from each other by more than 50ms. The pNN50 indicates 

the parasympathetic influence on cardiac rhythm, providing a less accurate assessment of RSA when 

compared with RMSSD [198, 199].  A total of 4 eligible studies reported a significant reduction in pNN50 

in the cirrhosis group compared with healthy controls [185, 187, 191, 195]. However, one study 

reported median pNN50 without the interquartile range and was not included in the analysis (Appendix 

9) [195]. Further, lower RMSSD was reported in the cirrhosis patients compared with the control groups 

with a “very large” effect size observed between the group [SMD (95%CI) = 2.54 (1.21, 3.87); Figure 

2.2d]. 
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Figure 2.2(a, b, c & d). Forest plot for the standardized mean differences (SMD) in HRV time domain indices: SDNN (2a), 

SDANN (2b), RMSSD (2c), and pNN50 (2d) between patients with liver diseases and matched healthy controls. Hedges’ G 

effect size estimates were calculated with a 95% confidence interval and computed using a random effect model. Continuous 

horizontal lines and diamond width represent a 95% confidence interval, and the diamond center and vertical red dotted line 

indicate the pooled random effect sizes
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HRV Frequency Domain 

HRV Frequency domains define the signal and associated relative or absolute power 

distribution across various frequency bands of ECG recording. It involves complex 

analysis techniques such as autoregression (AR) or Fast Fourier Transformation (FFT) of 

NN variations. A total of 10 included studies reported significant differences in the various 

HRV frequency domain indices between healthy controls and patients with cirrhosis. Total 

Power (TP), High Frequency (HF), Low Frequency (LF), Very Low Frequency (VLF), and 

the ratio of HF to LF (HF: LF). A random effect model was used for pooling HF and LF due 

to significantly high between-studies heterogeneity as measured by I2 statistics (Figure 

2.3b and Figure 2.3c). Conversely, the between-studies heterogeneities for studies 

pooled for the SMD of TP and VLF were significantly low. Thus, a fixed effect model was 

used (Figure 2.3a and Figure 2.3d). 

 

Total Power (TP) 

power corresponds to the cumulative energy in all the frequency bands (ULF, VLF, LF, 

and HF) of an ECG recording [198, 199]. Two of the included studies reported 

significantly lower TP in patients with cirrhosis [178, 188]. TP was analysed from 24-hour 

ECG recordings in both studies and reported as a natural log in one study [188] 

(Appendix 10). Significantly higher TP was observed in controls compared with the patient 

with cirrhosis with a moderate standardized mean difference between the groups [SMD 

(95%CI) = 0.62 (0.23, 1.02); Figure 2.3a]. 

 

High Frequency (HF) 

High frequency describes the absolute power within the 0.15Hz – 0.4Hz frequency band 

of the N-N time series. The HF is driven by the overall parasympathetic autonomic 

influence on the heart rhythm and correlates with respiratory sinus arrhythmia (RSA) 

[198, 199].  Nine of the included studies reported significant differences in HRV high-

frequency power between the patients and controls [90, 186, 188-194]. Of which 8 

studies reported reduced HF in cirrhosis compared with healthy control [191] (Appendix 

11). The single study that reported higher HF in cirrhosis [191] was not included in the 

data analysis because the model used for pooling the data is not robust to differences in 

the direction of effect sizes [200]. An “extremely large” difference between the groups 
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was observed [SMD (95%CI) = 4.36 (1.94, 6.77); Figure 2.3b] showing and easily 

discernible dysregulation in vagal control of the heart rhythm linked with cirrhosis. 

 

Low Frequency (LF) 

The HRV low-frequency measure defines the absolute power within the 0.04–0.15 Hz 

frequency band of an ECG recording.  The LF relates significantly with baroreflex 

feedback and regulation of the heart rhythm. LF is correlated with both arms (sympathetic 

and parasympathetic) of the autonomic nervous controls [198, 199]. A total of 8 studies 

reported significant differences in LF between the cirrhosis and healthy control groups 

(Appendix 12) [90, 188-192, 194]. LF was observed to be significantly lower in cirrhosis 

compared with control with an extremely large effect size [SMD (95%CI) = 5.49 (2.32, 

8.67); Figure 2.3c], representing a significant decline in the response of the heart rhythm 

to the baroreflex loop in cirrhosis. 

 

Very Low frequency (VLF) 

HRV very low frequency represents absolute power distributed within the 0.0033–0.04 

Hz frequency band of an ECG recording. Albeit the physiological factors responsible for 

the VLF are ambiguous, it has been associated with the activities of the renin-angiotensin 

system, endothelial factors, and thermoregulation [198, 199]. A total of 2 studies reported 

significant differences in 24-hour VLF between the groups (Appendix 13) [178, 188], and 

patients with cirrhosis were observed to have significantly moderately lower VLF 

compared with healthy control group [SMD (95%CI) = 0.73 (0.32, 1.13); Figure 2.3d]. 

This shows that the heart rhythm of patients with cirrhosis is characterised by an 

attenuated response to renin-angiotensin, endothelial factors activities, and 

thermoregulation compared with healthy controls. 

 

Low Frequency – High-Frequency Ratio (LF: HF) 

The LF: HF is traditionally interpreted as the interplay and balance between the 

sympathetic and parasympathetic arm of the autonomic nervous system because LF is 

associated with sympathetic control while HF indexes parasympathetic cardiac controls  

[198, 199].  However, this concept was questioned based on the observation that both 

arms of the autonomic nervous system drive the HF power [201]. Three of the included 
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studies reported significant differences in LF: HF between the groups [189, 193, 194] of 

which, 2 studies reported a decrease in LF: HF in healthy controls [189, 193] (Appendix 

14). The difference in LF: HF between the groups was not significant, however. 

 

 

Figure 2.3(a, b, c, & d). Forest plot for the standardized mean differences (SMD) in HRV frequency domain 

indices: TP (a), HF (b), LF (c), and VLF (d) between patients with liver diseases and matched healthy 

controls. Hedges’ G effect size estimates were calculated with a 95% confidence interval and computed 

using a random effect model. The width of the solid black diamonds represents a 95% confidence interval 

of the effect sizes of each of the pooled studies and the blue diamond and vertical red dotted line indicate 

the pooled random or fixed effect sizes. 

 

HRV Non-linear Indices  

A statistically significant difference in HRV non-linear indices between the cirrhosis and 

healthy control groups was reported in two of the included studies [90, 190] and included 

sample entropy, SD2 (short-term variation) (SD1) and SD2 (long-term variation) of the 

Poincare’ plot, and scaling exponent (α) of the detrended fluctuation analysis (DFA). SD1, 

SD2, and Sample Entropy were all reported to be significantly reduced due to cirrhosis in 

one study [90] (Appendix 15) while DFA α1 (short-term scaling exponent), which 

corresponds to a fractal-like pattern of cardiac rhythm was also reported to be altered in 

cirrhosis compared with healthy controls in one study [6]. 
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HRV in Survival Analysis 

Seven studies evaluated the prognostic value of HRV in patients with cirrhosis with follow-

up periods ranging between 3 to 24 months [7, 90, 176, 184, 185, 196, 197]. All studies 

established significantly different HRV indices between survivors and non-survivors. 

Further, according to the reported hazard or odds ratios, differences in DFA α2, SD2, 

cSDNN, SDNN, and VLF correlated significantly positively with survival (Table 2.3). Four of 

the 7 studies analysed for survival reported that DFA α2, cSDNN (corrected SDNN), SD2, 

and SDNN have prognostic values in cirrhosis which is independent of MELD and/or 

Child-Pugh scores.
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Discussion 

This report shows the impact of cirrhosis on the autonomic nervous system’s regulation 

of the cardiac rhythm indexed by heart rate variability indices. A significant difference was 

observed in HRV of patients with cirrhosis compared with healthy controls. However, the 

heterogeneity of included studies was found to be significantly high. To control for the 

observed heterogeneity, the random-effect model was used while the effect size was 

computed as standardized mean difference (SMD). The HRV indices are usually utilized 

as indexes of dysfunction in the two arms of the autonomic nervous system [202]. Further, 

HRV indices such as SDNN, cSDNN, DFA α2, and SD2 correlated significantly with the 

severity of cirrhosis and the survival of patients. Specifically, HRV time and frequency 

domain indices including SDNN, SDNN index, SDANN, RMSSD, pNN50 as well as TP, 

HF, LF, and VLF were significantly reduced and showed negative correlation with the 

severity of cirrhosis. The relationship between LF: HF and cirrhosis, which had been 

interpreted as a measure of sympathovagal cardiac regulation remains unclear with one 

study reporting an increase [194] and two studies reporting a decrease [189, 193].  

Essentially, the systematic review for survival shows that HRV predicts survival in patients 

independently of the MELD score, a current measure of the severity of cirrhosis. This 

corroborates a recent observation in which SDNN was reported as an independent 

predictor of survival in patients with decompensated cirrhosis. Indeed, Jansen et al. also 

reported a significant reduction of SDNN which correlated negatively with systemic 

inflammatory response and the severity of cirrhosis [197]. Indeed, this correlated 

dysregulated systemic inflammatory response and cardiac autonomic dysfunction has 

been previously observed in cirrhosis [90] as well as in other diseases [203, 204]. Also, 

dysregulated inflammation has been linked with various other complications of 

decompensated cirrhosis including the development of acute on chronic liver failure 

(ACLF) [205-207]. Consequently, suggestions have been put forward that sudden 

reduction in HRV may allow for early detection of global systemic shifts that predispose 

acute decompensation in cirrhosis [197]. However, the mechanism of cardiac autonomic 

dysfunction due to systemic inflammation has only been reported in animal models of 

cirrhosis with no research in humans [86, 208-210]. Similarly, emerging data and reports 

continue to show that HRV changes correlates significantly with covert hepatic 



72 
 

encephalopathy [90], and may provide an indirect diagnostic tool to identify patients with 

sub-clinical hepatic encephalopathy without the need for an EEG and associated 

analytical limitations [211]. Conceivably, HRV may in future provide a comparatively 

easier and compact, yet effective assessment of covert encephalopathy.  

A decrease in HRV has also been reported in non-cirrhotic liver patients. For instance, a 

significant reduction in HRV time and frequency domains in patients with primary biliary 

cholangitis compared with age-matched healthy controls was reported by Keresztes et 

al. Further, autonomic dysfunction combined with cardiovascular reflex abnormality was 

reported in 58% of the PBC patients studied [212]. Autonomic function evaluated by time 

and frequency HRV indices was also reported in patients with hepatitis C infection to be 

impaired, with the impairment correlating significantly with serum alanine 

aminotransferase levels, a measure of liver injury [213].  

This systematic review also shows cirrhosis is associated with impaired non-linear HRV 

indices. For instance, sample entropy, SD1, and SD2 were higher in healthy controls 

compared with patients with cirrhosis. This finding validates the other studies in which 

SD2 as well as cSDNN were reported to predict mortality independent of MELD in patients 

with cirrhosis [184]. DFA α2, the long-term fractal-like scaling exponent, was also 

decreased in cirrhosis and shown as an independent predictor of mortality when 

compared with MELD [90]. Non-linear HRV non-linear indices measure the randomness 

of heart rhythm and index the complexity of consecutive N-N intervals. Decreased 

complexity may be inferred physiologically as decreased flexibility and reduced tendency 

of the cardiac rhythm to respond to sudden environmental shifts and autonomic nervous 

regulations. Indeed, increased memory length of cardiac rhythm, which translates to 

reduced functional malleability, has been reported in patients with cirrhosis compared to 

healthy controls [214]. Similarly, a recent study by our group showed that turbulence 

onset (TO) of heart rate turbulence (HRT) measure, a physiological activity regulated by 

the autonomic nervous system is significantly reduced and predicts survival in cirrhosis 

[215]. Put together,  albeit the mechanistic connection is still unclear, dysregulated 

autonomic control of the cardiac rhythm is a hallmark of cirrhosis measured with changes 

in HRV indices. Thus, HRV measures may be used in combination with the current scoring 

systems to improve the clinical diagnosis and prognosis of patients with cirrhosis. Lastly, 
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while lower Sample Entropy (i.e., HRV complexity) has been reported in cirrhosis, the 

value as a prognostic physical marker has not been reported and warrants further 

investigation. 

There are several limitations associated with this study. Firstly, the difference in the time 

of ECG recording in the studies is different and since HRV is influenced by circadian 

changes in physiological function [216], this is a source of weakness of this review. 

Secondly, non-linear indices of HRV were reported by only a few studies. Thus, data could 

not be pooled to assess the differences in these indices between the healthy control group 

and patients with cirrhosis. Finally, pooled survival analysis could not be computed 

because of the variability in the follow-up times of the studies included.  

In conclusion, HRV has the potential for application in medical and research settings to 

assess dysfunction of the autonomic nervous system associated with cirrhosis and may 

be valuable for early detection of early, subclinical decompensation as in covert hepatic 

encephalopathy. Further, as an independent predictor of the outcome of cirrhosis, HRV 

may also be combined with MELD and Child-Pugh in appreciation of the multi-organ 

involvement of cirrhosis and may improve the prognostic values of these scores. Lastly, 

despite these various potentials, the inconsistency that exists in the techniques used for 

HRV measurement remains a major impediment to practical interpretation and 

application. Indeed, to generate data that is robust, the standardisation of techniques 

including ECG recording and HRV measurement needs to be improved.  Hopefully, this 

review will provide a drive to standardize the HRV analysis methods to foster the 

development of this expanding field.
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Chapter 3 : Heart Rate Turbulence predicts survival 

independent of MELD in patients with cirrhosis
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Introduction 

Patients with cirrhosis exhibit systemic manifestations such as autonomic dysfunction 

which affects adaptation to physiologic and pathologic challenges. The mechanism of 

autonomic dysfunction in cirrhosis is unknown but several longitudinal studies have 

shown that autonomic dysfunction is linked with poor prognosis in this patient population 

[184, 196]. Autonomic dysfunction can be assessed non-invasively using a variety of 

methods based on computational analysis of heart rate fluctuations [184, 196, 217].  

Heart rate variability (HRV) reflects the dynamic modulation of heart rate by the autonomic 

nervous system. Reduced HRV is widely reported in cirrhotic patients [90, 184, 185, 197, 

218, 219], particularly, by Bhogal et al. who demonstrated that the HRV indices can 

predict mortality in cirrhotic patients, independent of their MELD (Model of End-Stage 

Liver Dysfunction) score - one of the most used grading systems used to predict short 

term mortality [184]. However, these indices were only linked to mortality in cirrhotic 

patients with normal sinus rhythm. In cirrhotic patients with abnormal sinus rhythm with 

recurrent premature ventricular complexes (PVCs) observed on a 24-Hour ECG 

recording, the predictive capacity of HRV indices may be challenging.  

Heart Rate Turbulence (HRT) is the variation in the length of the cardiac inter-beat 

intervals after PVCs. In normal conditions, HRT is characterized by a defined pattern: an 

initial acceleration followed by a deceleration of heart rate [220]. HRT was first described 

by Schmidt et al. in a study that linked the absence of this phenomenon with a higher risk 

of mortality in post-myocardial infarction patients, independently of other risk factors 

[221]. From a physiological point of view, vagus nerve activity plays a significant role in 

HRT. Blood pressure drop after the PVC leads to a vagal withdrawal and subsequent 

heart rate acceleration. In reverse, vagal recruitment seems to provoke the heart rate 

deceleration leading to the pre-PVC values [222]. Sympathetic excitation during the first 

phase of post PVC period and sympathetic inhibition during the late phase have also been 

observed [223]. This evidence supports the theory that the blood pressure drop after the 

PVC triggers the baroreflex, which leads both to the vagal modulation of the sinus cycle 

and to the increase of sympathetic activity in the peripheral tissues. For all these reasons, 

the physiological background of HRT looks to be strongly determined by autonomic 

system regulation. 
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We have recently investigated the prognostic value of physio-markers (e.g., conventional 

HRV indices and body temperature variability) in a cohort of patients with cirrhosis [7]. 

However, it rapidly became apparent to us that most patients exhibit PVCs in their 24-

hour ECG recording. In these patients, HRT could be considered for assessment of 

autonomic function. Jansen et al. demonstrated the relationship between two parameters 

of HRT (Turbulence Onset and Turbulence Slope) and cirrhosis. Whereby, the severity of 

cirrhosis correlated positively and negatively with TO and TS respectively [217]. 

Nevertheless, a correlation between HRT indices and mortality in cirrhotic patients was 

not investigated in that study or any other.  

The present study reports our investigations to define whether HRT parameters could 

predict mortality in cirrhotic patients. We also aimed to understand if HRT parameters 

correlate with mortality independent of Child-Pugh’s and MELD scores. 

 

Hypothesis 

Heart rate turbulence indices measure the autonomic control of heart rhythm following 

premature ventricular contraction and can predict survival in patients with cirrhosis 

independent of the severity of the disease as measured by MELD. 

 

Aims of study 

• To define whether HRT indices could predict mortality in cirrhotic patients.  

• To understand if HRT indices correlate with mortality independent of Child-Child-

Pugh’s and MELD scores.
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Materials and Methods 

Ethics 

Ethics approval for the main research [224] was obtained from the University of Padova 

Ethics Committee (4169/AO/17). Written informed consent was provided by all patients 

involved and data was collected and stored appropriately. Patients also gave their 

consent regarding the future use of the collected data. 

 

Study Population 

Sample size calculation 

The sample size was calculated to demonstrate an area under the curve of 75% in the 

ROC curve for predicting mortality using a physiological marker. With the assumption of 

45% mortality during 12 months of follow-up, 40 participants were required to reach a 

significance level of 0.05 with a power of 0.80. 

 

Participants 

Forty patients who had been diagnosed with liver cirrhosis were randomly approached, 

consented, and enrolled between the 6th of April 2017 and the 2nd of February 2019 at 

the Clinica Medica 5, Padova University Hospital. Recruited patients were classified by 

the aetiology of their liver diseases based on clinical, laboratory, radiological, and 

histological results. The severity of liver failure was staged using the Child-Pugh and the 

Model for End-Stage Liver Disease (MELD) score. Patients were excluded if they were 

under 16 years of age; had cirrhosis on a transplanted liver, had atrial fibrillation or 

implanted pacemaker, had severe co-morbidity with short prognosis such as sepsis, a 

history of neurological or psychiatric disease other than hepatic encephalopathy, active 

alcohol misuse, or were on psychoactive medication. The mean age of the eligible 

patients was 64.62 ± 10.4 years. 

 

Data Collection 

24-hour electrocardiograph (ECG) recordings suitable for HRT analysis were obtained for 

research purposes using a wireless Holter recorder (Actiwave Cardio, CamNtech, 

Cambridge, UK). Patients were then followed up for 12 months and information was 
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collected on the occurrence of death/liver transplantation. Patients who were 

transplanted due to liver failure were classed as non-survivors as they were in immediate 

need of a new liver and wouldn’t survive without transplantation [184]. Patients who could 

not be followed up for the 12 months were censored on the date contact was lost. Patients 

who underwent liver transplantation due to hepatocellular carcinoma were censored on 

the date of transplantation as the main reason for transplantation was treatment of 

malignancy and not complications of liver failure. 

 

Heart Rate Turbulence 

Patients having at least one PVC during the 24-hour ECG recording were eligible for HRT 

analysis [222]. Indices of HRT were calculated for each patient using the HRV analysis 

software (version 1.2, June 2019 release) [225]. PVCs were detected using an algorithm 

developed by Pichot et al. [225]. In brief, PVCs were detected by calculating the 

prematurity of each beat and its compensatory pause with the mean of the five previous 

beats as the reference. If the prematurity was > 20% and the compensatory pause > 

120%, then, the beat was considered as a PVC. The indices of HRT measured were 

Turbulence Onset (TO) and Turbulence Slope (TS). Standard HRT calculation involved 

the presence of PVCs usually advanced by early 2-3 reduced R-R intervals followed by 

10-20 increased R-R intervals [225]. TO is the difference between the mean of the two 

R-R intervals after a PVC and the two R-R interval preceding the PVC divided by the mean 

of the two RR intervals precceding the PVC [(R-R1 + R-R2) – (R-R-2 + R-R-1)] / (R-R-2 + R-

R-1) where R-R-2, R-R-1 are the two R-R intervals before/preceeding the PVCs and R-R2, 

R-R1 are the two R-R intervals immediately after/proceding the PVCs. Total TO is 

measured in percentage (%) and is calculated as the mean of the TOs of all the sampled 

PVCs within a 24-hour ECG recording. Physiologically, TO should be negative as RR-2 + 

RR-1 is expected to be higher than RR2 + RR1. 

TS is the maximum positive regression slope of any consecutive five points up to the 20th 

R-R intervals proceeding/following a PVC. The total TS is measured in ms/RR and is the 

overall average of all the TS computed over a 24-hour Holter ECG recording. By 

convention, physiologically normal TS should be positive with a higher TS associated with 

both significant early reduced and late increase in R-R interval after a PVC [220].  
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To investigate the correlation between HRT and HRV in this cohort of patients, HRV 

indices were measured by calculating SDNN (standard deviation of inter-beat intervals) 

in the PVC-free sections of the 24-hour ECG using a computational filter [225]. Since 

SDNN is heavily affected by basal heart rate, corrected SDNN (cSDNN) for basal heart 

rate was calculated using the following formula as descried by Monfredi et al. [226]: 

cSDNN =
SDNN

e−Heart rate

58.8

    

Other conventional measures of HRV including RMSSD (root mean square of the 

successive differences of R-R intervals), SDANN (standard deviation of the average R-R 

intervals calculated over  5 minutes), pNN50 (the proportion of pairs of successive R-R 

intervals that differ by more than 50 ms divided by total number of R-R intervals), Ultra-

Low Frequency (ULF), Very-Low Frequency (VLF), Low-Frequency (LF) and High-

Frequency (HF) powers were also calculated using HRV analysis software (version 1.2, 

June 2019 release) [225]. 

 

Statistical and Survival Analysis 

To assess the relationship between the indexes of HRT (i.e. TO and TS) and the survival 

outcome of patients, we performed an independent t-test for normally distributed data 

and the Man-Whitney U Test for data not normally distributed. A significant level was 

determined with a p-value less than 0.05. We performed Cox regression to analyse the 

effect of HRT parameters on patient survival. We calculated the Cox regression coefficient 

(β) and the Hazard Ratio (eβ). The null hypothesis (β=0, eβ=1) was tested against a p-

value of <0.05 calculated by the Wald test. The ROC curve was used to decide the best 

HRT indices cut-off points with combined optimum sensitivity and specificity for the 

prediction of survival. For survival analysis, we used the Kaplan-Meier graph, and log-

rank (Mantel-Cox) test to determine whether the cut-off generated can distinguish the 

two groups. To estimate the magnitude of differences in HRT indices between the two 

groups (survivors vs non-survivors) we used Hedges' g estimation of effect size to 

compare the TO and TS of the survivors and the non-survivors. SPSS Statistics 20 (IBM 

Corp, Armonk, New York) was used for statistical analysis.
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Results 

Study Populations  

The recruitment and followup of patients was initially for a different investigation to assess 

if temperature variability can predict survival in cirrhotic patients. Thus, this is a secondary 

analysis of the data which was collected previously by the authors specified in [227]. 

Overall 40 patients were followed up for up to 12 months post-recruitment. Of these, 30 

(75%) were males. As expected, the mean (±SD) of the MELD score between survivors 

(17.82±1.76) and non-survivors (23.76±1.98) was significantly different (p=0.031). The 

mean (±SD) Child-Pugh scores of the survivor (8.90±0.43) and the non-survivor 

(10.54±0.58) were also significantly different (p=0.022). The mean age of all patients was 

64 (range 45 to 84) years with no significant difference in the mean (±SD) age of the 

survivor (64.0±2.3) and non-survivor (65.0±2.5) groups (p=0.768). There was also no 

significant difference in gender proportions between the groups (P=0.637). The 

demographics and general clinical features of the study population are presented in Table 

3.1.
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Table 3.1. Demographic and clinical variables in the study population. The data are expressed as mean ± SD. MELD, Model for End-stage Liver Disease, INR, 

International Normalized Ratio. 

Age (years)  64.62 ± 10.4  

Gender (male/female) 30/10 

Etiology of cirrhosis (number patients) Alcoholic (17), Viral (10), Metabolic (5), Viral + Alcoholic (6), Viral + metabolic (1), Cryptogenic 

(1) 

Main reason for hospital admission (number of patients) Hepatic encephalopathy (15), Tense ascites (11), Hepatorenal syndrome (6), Bleeding 

esophageal varices (1), combination of reasons (7) 

MELD 20.4 ± 8.6 

Child-Pugh Score 9.6 ± 2.3 

Child class (number of patients) A (3), B (15), C (22) 

On admission sodium level (mEq/L) [normal range] 136 ± 6 [135-145] 

On admission creatinine level (µmol/L) [normal range] 133 ± 133 [female: 44-97, male: 53-106] 

On admission albumin level (g/L) [normal range] 29.0 ± 8.4 [35-55] 

On admission bilirubin level (µmol/L) [normal range] 105 ± 128 [5.1-17] 

On admission INR [normal range] 1.74 ± 0.65 [0.8-1.1] 

On admission erythrocyte sedimentation rate (mm/hr) [normal range]  34 ± 28 [Female: ≤ 20 mm/hr, Male: ≤15 mm/hr] 

On admission SpO2 (%) [normal range] 98 ± 2 [95-100] 

On admission body temperature (oC) 36.7 ± 0.8 

On admission hear rate (bpm)  75 ± 14 

On admission systolic arterial pressure (mmHg) 128 ± 21 

On admission diastolic arterial pressure (mmHg) 70 ± 11 

History of hypertension (+/-) 5/35 

History of diabetes (+/-) 6/34 

Beta-blocker (+/-) 15/25 
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During the follow-up period, 12 (30%) deaths were recorded and 21 (52.5%) survived. 

The causes of death were sepsis (n=4), hepatorenal syndrome (n=2), HCC (n=2), 

myocardial infarction (n=2), secondary bacterial peritonitis (n=1) and acute alcoholic 

hepatitis (n=1). Five (12.5%) of the patients had liver transplantation for liver failure while 

2 (5%) had liver transplantation due to hepatocellular carcinoma (HCC) (Figure 3.1). 

Patients who underwent transplantation for hepatocellular carcinoma were censored on 

the date of transplantation. Patients who were transplanted due to liver failure were 

classed as non-survivors as they were in immediate need of a new liver and wouldn’t 

survive without transplantation. Therefore, the hazard ratio was calculated based on 17 

mortality events. 

 

Figure 3.1. A flowchart of the study protocol. 40 patients with cirrhosis were followed up for one year. 

Patients who were transplanted due to liver failure were classed as non-survivors as they were in immediate 

need of a new liver and wouldn’t survive without transplantation. Patients who underwent liver 

transplantation due to hepatocellular carcinoma were censored on the date of transplantation as the main 

reason for transplantation was treatment of malignancy and not complications of liver failure. 

 

HRT Indices between Survivor and Non-survivor 

The mean (±SD) number of PVCs during 24-hour recording was 27.87±35.47 and 

31.88±40.76 in survivors and non-survivors respectively (p=0.7542). There was no 
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significant difference in the means of TS between the survivor and non-survivor. However, 

TO between the groups showed a significance difference (p=0.03, Table 3.2). The effect 

size between the two groups was observed to be small in TS (Hedges’ g = 0.2) while 

medium to large in TO (Hedges’ g = 0.7).
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Table 3.2. The mean Heart Rate Turbulence indices of the study population. 

 Survivors Non-Survivors p-value 

Study Size  23  17 - 

TO (%) -0.01±2.6  1.42±1.3 0.03 

TS (ms/R-R)  3.83±4.5  2.86±5.4 0.54 

No of PVCs in 24 hours: Median (range) 7 (1-110) 13 (1-155) 0.742 

TS and TO data are expressed as mean ± SD.  The level of significance is set at p<0.05. TO: Turbulence Onset, TS: Turbulence Slope, PVC: Premature Ventricular 

Contraction.
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HRT and Survival 

To determine the relationship between HRT and mortality, Cox regression analysis was 

performed. Of the three indices (TO and TS and PVC number) analysed, only TO was 

significantly linked with mortality (Hazard Ratio = 1.351, p<0.05, Table 3.3).  With a hazard 

ratio of 1.351, translating into a 35% increase in mortality for every unit increase in TO.
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Table 3.3. The predictive effect of age, hepatic dysfunction, and indices of Heart Rate Turbulence on 1-year mortality. Univariate Cox regression analysis is used for 

the calculation of the hazard ratio. 

 β SEM Hazard Ratio p-value 

Age  0.007 0.024 1.007 0.778 

MELD  0.069 0.027 1.072 0.009 

Child-Pugh  0.303 0.122 1.345 0.013 

TO  0.301 0.122 1.351 0.014 

TS -0.030 0.069 0.971 0.670 

No of PVCs in 24 hours  0.000 0.006 1.000 0.987 

β is the coefficient of Cox regression analysis. SEM is the standard error of the mean of β, Hazard ratio =𝐸𝑥𝑝 (β) = 𝑒β. TO: Turbulence Onset, TS: Turbulence Slope, 

PVC: Premature Ventricular Contraction.
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HRT is independent of indices of liver failure in predicting survival  

Moving forward, we tested whether the predictive power of TO was independent of MELD 

and Child-Pugh scores. Cox regression analysis showed that TO significantly predicted 

mortality independently of MELD and Child-Pugh score (Hazard Ratio TO adjusted for 

Child-Pugh Score = 1.342, p<0.05 and Hazard Ratio TO adjusted for MELD Score = 

1.290, p<0.05). As expected, MELD and Child-Pugh scores also showed a positive 

association with mortality, with higher scores correlating with poorer prognosis 

independently of the HRT score (Table 3.4 A and B).
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Table 3.4. The independence of Turbulence Onset from the MELD score (A) and Child-Pugh score (B) in predicting mortality in bivariate Cox regression analysis, 

TO: Turbulence Onset. 

(A) β SEM Hazard Ratio p-value 

TO 0.254 0.120 1.290 0.034 

MELD 0.067 0.029 1.069 0.020 

 

 

 

 

 

 

 

(B) β SEM Hazard Ratio p-value 

TO 0.295 0.138 1.342 0.033 

Child-Pugh 0.297 0.128 1.346 0.020 
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Effect of Beta-Blocker on HRT 

Fifteen patients had received a beta blocker for the management of portal hypertension. 

We wondered if taking beta-blockers would affect HRT indices or survival rates in patients 

with cirrhosis. Basal heart rate was lower in cirrhotic patients who had received a beta-

receptor blocking agent (81.8 ± 2.8 versus 64.4 ± 2.1 beats/min, p<0.000). TO was 

higher in patients with beta blocker medication (0.03 ± 0.41 versus 1.54 ± 0.57, 

p<0.036). However, there was no difference in TS between beta blocker-positive and 

beta blocker-negative groups (4.19 ± 1.15 versus 2.11 ± 0.64 ms/beat, p=0.194). 

Besides, receiving beta-blockers was not associated with an increase in mortality rate 

after 12 months of follow-up (p=0.426). Bivariate Cox regression analysis also showed 

that TO predicts mortality independently from beta-blocker treatment (Hazard ratio of TO 

adjusted for beta-blocker = 1.347, p=0.02). Bivariate Cox regression analysis also 

showed that taking beta-blocker is not a predictor of mortality in our cohort (p=0.942). 

 

Kaplan-Meier graph for Turbulence Onset  

Having shown that TO is significantly predictive of survival in cirrhotic patients 

independently of MELD, Child-Pugh, and beta-blocker treatment, Kaplan-Meier graphs 

were then obtained to further study this relationship. To determine the TO cut-off value 

which presents a balance between sensitivity and specificity in predicting survival, ROC 

curve analysis was performed. According to the ROC curve, the area under the curve for 

TO was 72.0 ± 8.1% (p=0.019) with a cut-off value of 0.721. This value distinguished 

cirrhotic patients with higher risk from patients with a lower risk of mortality with a 

sensitivity of 76.5% and a specificity of 65.2% (Appendix 15). This cut-off value 

significantly discriminated between patients with poor prognosis (TO>0.721%) and those 

with higher survival rate (TO≤0.721%) using a Kaplan-Meier survival analysis (Chi-
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squared=7.5, p=0.0062, Log-rank Mantel-Cox test; Figure 3.2). 

 

Figure 3.2. Kaplan-Meier graphs illustrate how Turbulence Onset (TO) can predict survival in patients with 

cirrhosis. The survival graph depicts the overall survival of cirrhotic patients above and below the cut-off 

value for Turbulence Onset of 0.721% [Log-rank (Mantel-Cox) test, Chi-square = 7.500, p<0.01]. 

 

Correlation between HRT and HRV indices 

As shown in Table 3.5, both TS and TO were markedly correlated with SDNN and cSDNN 

(measures of total HRV). TS was also correlated with measures of short-term HRV such 

as pNN50, RMSSD, and HF. In contrast, TO showed significant correlations with 

measures of long-term HRV including SDANN, ULF, and VLF. Among HRV parameters 

only SDNN, cSDNN, SDANN and ULF were predictors of mortality as assessed by 

univariate Cox regression analysis (Appendix 16). As shown in Appendix 16, none of the 

short-term HRV indices could significantly predict mortality. 
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Table 3.5. Correlation between heart rate turbulence indices and heart rate variability indices in the study 

population. 

Variables TO TS 

SDNN -0.382* 0.322* 

cSDNN -0.413* 0.410* 

RMSSD -0.085 0.522** 

SDANN -0.386* 0.197 

pNN50 -0.087  0.568** 

ULF -0.376* 0.110 

VLF -0.343* 0.180 

LF -0.156 0.255 

HF -0.076 0.462** 

TO: Turbulence Onset, TS: Turbulence slope, SDNN: Standard Deviation of inter-beat intervals, cSDNN: 

SDNN corrected for heart rate (cSDNN=SDNN/(e^-  (Heart rate)/(58.8))). RMSSD: Root mean square of 

the successive differences of R-R intervals (a measure of short-term HRV). SDANN: Standard deviation of 

the average R-R intervals calculated over 5 minutes (a measure of long-term HRV). pNN50: The proportion 

of the number of pairs of successive RR intervals that differ by more than 50 ms divided by the total number 

of RR intervals. Ultra-Low Frequency (ULF), Very-Low Frequency (VLF), Low-Frequency (LF), and High-

Frequency (HF) powers were calculated based on spectral analysis of HRV as described (14). Data are 

expressed as Pearson’s correlation coefficient. * P<0.05, ** P<0.0001 to test the null hypothesis that there 

is no correlation between the indices (r=0).
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Discussion  

In this study, we report that an index of heart rate turbulence is a strong predictor of 

survival in patients with liver cirrhosis. Turbulence onset (TO) was discovered among 

other indices to be significantly correlated with mortality over a 12-month follow-up period. 

This predictive power was independent of prognostic markers of liver disease severity 

such as MELD and Child-Pugh scores. Our analysis also showed that although TO was 

higher in patients who took beta blockers, the prognostic value of TO did not depend on 

beta-blocker treatment. 

The use of physiological biomarkers (physio-markers) for clinical assessment and 

prognosis in patients with chronic liver disease has been a topic of interest in recent years 

[90, 184, 185, 187, 196, 197, 217-219, 228, 229]. Much interest has been shown lately, 

especially in the use of indices of HRV as a prognostic tool in various diseases [230-235]. 

This is due to the ease of use and non-invasive nature of these methods. However, the 

presence of PVCs in ECG time-series compromises the viability of HRV indices as a 

physio-marker. HRT following PVCs is a common physiological feature characterized by 

proceeding increased and then reduced heart rates followed by a return to pre-ectopic 

rate (Figure 3.3) [218]. Previously, HRT has been proposed to be controlled by the 

coordination of both arms of the autonomic nervous system, thus, indices of HRT have 

been purported as a good marker to assess autonomic neuropathy in disease settings 

[217, 221]. This is interesting as some indices of HRV, such as the short-term and long-

term HRV have also been linked to the autonomic dysfunction in cirrhosis [90, 197, 236]. 

However, because of the dependence of conventional HRV methods on normal sinus 

rhythm, HRT turbulence can serve as a suitable alternative option especially since PVCs 

are expected in recorded time series [237]. Interestingly, we observed that TO was 

significantly correlated with the measures of long-term HRV while TS was associated with 

short-term HRV indices. Short-term HRV measures are mechanistically linked with the 

modulation of heart rate by the respiratory cycles; a physiological phenomenon mediated 

by the vagus nerve. Thus, it is not surprising to observe that short-term HRV indices are 

correlated with TS (a measure of vagus-mediated recovery of heart rate following a PVC). 

Only TO was an independent predictor of mortality in our cohort. This finding corroborates 
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with previous reports showing that only long-term measures of HRV are independent 

predictors of mortality in patients with cirrhosis [184, 219].  

 

 

Figure 3.3. Representative tachograms of heart rate turbulence (HRT) in two patients with cirrhosis. In 

patients (A) HRT is characterized by a post-PVC heart rate acceleration followed rapidly by a deceleration 

and then a return to the pre-PVC rate. A post-PVC heart rate fade-off in patient B is characteristic of 

autonomic dysfunction. 

 

Although the present study indicates that impaired HRT following PVCs is a predictor of 

mortality in patients with cirrhosis, the reason for this observation is not well understood. 

It can be speculated that impaired HRT or reduced HRV in cirrhosis may reflect the 

presence of cirrhotic cardiomyopathy. Indeed, cirrhotic patients often present with 

subclinical cardiomyopathy [238, 239]. However, there has been no report to show a 

significant correlation between indices of autonomic cardiac control (i.e., HRT, HRV) and 

clinical measures of cirrhotic cardiomyopathy in cirrhotic patients. Therefore, whether 

changes in HRT reported in cirrhosis reflect the presence of cirrhotic cardiomyopathy 

remains unclear and awaits further investigations. According to studies on animal models 

of cirrhosis, pharmacological interventions (e.g., nitric oxide synthase inhibitors and low 

molecular thiols) that improve cardiac function in cirrhotic rats do not improve cardiac 

autonomic dysfunction in these animal models [240]. This suggests that cirrhotic 
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cardiomyopathy and autonomic dysfunction in cirrhosis probably have different 

mechanisms and should not be considered as the same phenomenon.    

Cardiac autonomic dysfunction is a hallmark of cirrhosis [184, 196, 217] and might be 

helpful for patients’ prognostication for liver transplant allocation procedures. However, 

before suggesting the use of HRT as a prognostic factor for organ allocation, it is crucial 

to know whether autonomic dysfunction responds positively to liver transplant. It appears 

that autonomic dysfunction is improved only partially following transplantation in patients 

with cirrhosis [196, 241]. Thus, measures of autonomic dysfunction (e.g., impaired HRT) 

might be considered as a co-morbidity factor in the process of organ allocation [241]. In 

our study, among 17 non-survivors, 2 patients died of myocardial infarction which 

accounts for 11.7% of non-survivors. When we looked at their HRT indices, both patients 

had a TO higher than the cut-off value (0.734 and 1.016). This suggests that HRT may 

also identify subgroups of patients who suffer from co-morbidities (e.g., ischemic heart 

disease) not directly associated with liver failure. To test whether our results have been 

confounded by this co-morbidity, we retrospectively excluded those two cases who died 

of myocardial infarction and only included patients who died because of complications 

directly associated with cirrhosis (Appendix 18). The results showed that TO remains a 

significant predictor of survival independently of MELD and Child-Pugh’s scores even 

after excluding patients whose cause of death was myocardial infarction (Appendix 19 

and Appendix 20). Although this result shows that HRT predicts survival independently of 

liver dysfunction in cirrhosis, further studies are required to elucidate potential clinical 

applications of the link between impaired HRT and survival in cirrhosis.  

In the present study, we determined a cut-off value for TO for the prediction of mortality 

in cirrhosis and did not report our results based on previously reported cut-off values (e.g., 

0% for TO and 2.5 ms/R-R for TS) and categories of HRT (0-1-2) which were originally 

shown to be predictive for mortality in patients with acute myocardial infarction (MI) [220-

222]. Although both acute MI and cirrhosis exhibit autonomic dysfunction, distinctive 

components of autonomic function appear to be involved in these two illnesses [7, 242]. 

Following acute MI, both TO and TS can predict mortality [221, 222]. However, in patients 

with cirrhosis TS is not significantly different between survivors and non-survivors and 

only TO is a predictor of mortality. Such a difference between acute MI and cirrhosis has 
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also been shown in studies where non-linear measures of HRV were used for the 

determination of prognosis.  It appears that short-term fractal scaling (α1) of HRV is a 

powerful predictor of mortality among patients surviving an acute myocardial infarction 

while only long-term fractal scaling (α2) predicts mortality in patients with cirrhosis [7, 

242]. Based on these reports, it is not surprising to observe that prognostic models that 

have been developed for acute MI may not apply to cirrhosis. As shown in Appendix 21, 

we applied categories HRT (0-1-2) for patients with cirrhosis and observed that although 

there is a significant difference in mortality between HRT=0 and HRT 1 or 2, cirrhotic 

patients with HRT=1 exhibit a higher rate of mortality in comparison with HRT=2 in the 

first 6 months of their follow up (Appendix 21). TS is not a predictor or death in patients 

with cirrhosis and this may explain why HRT categories that are based on a combination 

of TO and TS are not suitable for survival analysis in cirrhosis. 

 

Limitations  

Because data were collected from patients admitted to the hospital for decompensated 

liver disease, the result cannot be extrapolated to outpatients with less severe 

(compensated) cases of cirrhosis. Also, the sample size, although sufficiently powerful, 

represents a single Centre, random sub-population and may not represent the full 

spectrum of patients with liver cirrhosis. For further validation of the use of HRT as a 

prognostic physio-marker, we recommend the use of a larger and more diverse patient 

population validated with a healthy control group probably involving multiple and varied 

clinical settings.  

The complexity of the clinical environment in hospitalized patients did not allow us to study 

circadian variations in HRT parameters in our study. It is well-established that cirrhosis is 

associated with circadian abnormalities (34, 35). Previous reports have also shown that 

there are circadian oscillations in HRT indices particularly in the TS (36). Future studies 

in controlled laboratory settings may indicate a difference in circadian variations of 

HRV/HRT indices in survivor and non-survivor groups.  

Although we initially aimed to assess cardiac autonomic function in the presence of 

cardiac arrhythmia in patients with cirrhosis, our results can only be applied when PVCs 

disrupt normal sinus rhythms. The main challenge for the assessment of autonomic 
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function from R-R intervals is the presence of atrial fibrillation. Atrial fibrillation limits the 

interpretability of both HRV and HRT methods and requires further attention in future 

investigations.  

 

Conclusion 

In conclusion, we report in this pilot study that TO, an index of heart rate turbulence, as 

a physio-marker may predict survival in cirrhotic patients. We also report a cut-off of TO 

that significantly distinguishes patients at higher risk of mortality within 12 months. 
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Chapter 4 : Parenclitic Networks analysis for 

prognosis and survival modelling in cirrhosis
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Introduction 

The liver is a physiological hub for multiple homeostatic, metabolic, synthetic, and immune 

functions. Thus, patients with liver failure exhibit various neural, renal, cardiovascular, 

endocrine, and metabolic manifestations. Cirrhosis (chronic fibrosis of the liver) is a 

complex disease of global significance [243] involving multiple organ systems and 

functions. Thus, the interpretation of organ dysfunction without consideration of the entire 

system has presented paradoxical and often insufficient insight into cirrhosis. This is most 

often evident in the relative difficulty in the management of complications of cirrhosis 

whereby targeting a single organ dysfunction may lead to the dysregulation of other tightly 

balanced pathways [244]. This predicts treatment response and prognosis especially 

challenging and further complicates the prioritization of liver transplantation [245, 246]. 

Indeed, the introduction of several prognostic scores and models such as Child-Pugh, 

MELD, and UKELD amongst others is in direct response to the complexity of 

decompensated cirrhosis and while these models have been useful, various limitations 

continue to surface [247].  

The future of disease diagnosis, management, and prognosis may benefit from a network 

physiology approach providing a holistic view of the changes in the physiological 

interactome leading to disrupted states. Network physiology focuses on complex 

interactions among diverse organ systems in health and disease  [14] and may provide a 

viable alternative to the conventional scoring methods and facilitate the evaluation of 

organ system interactions in complex disorders such as cirrhosis.  Early work by Asada 

et al., on critically ill patients in intensive care showed a disrupted network of organ 

systems interaction in non-survivors [11]. In a recent report, we showed that functional 

connectivity of organ systems is significantly disrupted in patients with cirrhosis who did 

not survive during 12-month follow-up [15]. However, the methodology of these studies 

is based on correlation analysis of a population of patients and cannot be used for 

mapping the network connectivity at the level of individual patients. Hence, these reports 

provide insight into the pathophysiology in general but don’t satisfy clinical application on 

individual subjects [11]. 

The parenclitic network analysis was proposed by Zanin et al., in 2014 to create a network 

from the perspective of an individual subject in a population [248]. Instead of looking at 
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the network of connections in a population, this approach provides a method for mapping 

a network for each subject, where nodes represent features and links are weighted 

according to the deviation between a subject’s features and their corresponding typical 

relationship within a studied population (“Parenclitic” mean “deviation” in Greek) [248, 

249]. In its simplest form, the model can be a simple linear regression between all possible 

pairs of features in the population, followed by the calculation of deviations between 

values of a particular subject and pre-constructed reference models (Figure 5.1). A network 

map is then constructed for individual subjects whereby each feature represents a node 

and deviation from the reference model is defined as edges between the nodes. The 

topological characteristics of the resulting network of individual subjects can be used to 

extract valuable information about the relationships of the system. Since its first 

description, parenclitic network analysis has been used in genetic mapping of cancer 

[250-252], Down syndrome [253], aging [254], and even criminology [255] and 

continues to open new insights into complex systems. 

 

Hypothesis 

Could network analysis then be performed on standard clinical/laboratory data of 

individual patients with cirrhosis and could this provide insight into the changes in 

“interactome” associated with adverse outcomes of cirrhosis? If yes, can this change in 

the network of organ systems connectivity predict survival independent of current 

measures of severity such as MELD? 
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Figure 4.1. A schematic representation of the network mapping method used in this study for the 

reference population (top panel) as well as individual patients (lower panel). 

Top panel: The correlation between a pair of biomarkers (e.g., A-B, A-C, or B-C) was used for network 

mapping of the reference population (i.e., survivors in the standard care group). The blue dots represent 

individual reference data, the black regression lines represent the expected relationship models (r1, r2, and 

r3 represent statistically significant correlation coefficients).  

Middle panel: To map the network of individual patients a parenclitic approach was used. Parenclitic 

analysis measures the deviations of an individual patient from the expected relationship between variables 

in the reference population. In other words, parenclitic deviation indicates how far an individual biomarker 

level is from the expected model. In this example, the patient represented in red is closer to the reference 

population than the patient represented in green, in terms of the correlation between the biomarkers. 

Hence, the green patient has a higher parenclitic deviation (δ) than the red patient.  

Lower panel: The resulting parenclitic network map of nodes A, B, and C is presented with edges weighted 

(in terms of thickness) according to the magnitude of deviations from the models for two individual patients 

(red and green). Higher thickness in edges in the green patient shows higher parenclitic deviation and thus, 

less functional connectivity between biomarkers. The red patient has less parenclitic deviation which means 

closer association with the reference model and higher functional connectivity between biomarkers. 
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Aims of study 

• To apply a parenclitic approach on standard clinical and laboratory variables for 

mapping and quantifying the physiological network of organ systems of individual 

patients with cirrhosis.  

• To assess whether parenclitic network analysis could predict survival independently 

of MELD and Child-Pugh scores.  
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Method 

Ethics 

Ethical approval for this work was ratified by the Padova Hospital Ethics Committee. 

Written informed consent was provided by all participants included. The protocol for this 

study aligns with Good Clinical Practice (European) guidelines and was conducted 

following the Declaration of Helsinki (Hong Kong Amendment). 

 

Patients Cohorts 

A total of 106 patients diagnosed with cirrhosis met the inclusion criteria for this study. 

Specifically, patients referred to the tertiary referral liver centre of the Clinica Medica V, 

University Hospital of Padova for formal hepatic encephalopathy assessment were 

recruited and enrolled between 2009 and 2018. This study involves a secondary analysis 

of the data collected by  Formentin et al to assess the prognostic value of 

neurophysiological and neuropsychological indices in patients with cirrhosis [256]. 

 

Inclusion criteria 

Only patients with a confirmed diagnosis of cirrhosis based on clinical manifestations 

and/or liver imaging were included. Patients below the age of 16 years or above 80 years; 

or diagnosed with hepatocellular carcinoma; any severe co-morbidity with short 

prognosis; who had previously transplanted liver; significant head injury, neurological or 

psychiatric disease not classified as hepatic encephalopathy; active misuse of alcohol or 

acute infection were excluded from this study. 

 

Follow up 

Patients with cirrhosis that meet the inclusion criteria were studied in retrospect and 

separated based on 12-month follow-up periods. Indeed, patients who underwent liver 

transplantation during follow-up were classified as non-survivors as their survival 

depended on the transplanted organ [215]. 
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Clinical laboratory Variables 

A total of 7 standard clinical variables representing various pathways, organ systems or 

clinical features were compiled (i.e., serum sodium, Na; hepatic encephalopathy, HE; 

total bilirubin, Bil; serum albumin, ALB; prothrombin time, PT; serum creatinine, Cr; 

ammonia, NH4) based on a previous report [15]. Hepatic encephalopathy was classified 

into 3 stages based on a previously described model by Montagnese et al [257, 258] i.e., 

unimpaired, minimal, or overt. 

 

Network generation in the population 

Recruited patients were grouped according to their 12-month survival status into two 

classes and a network map based on significant linear regression was computed for each 

one of the classes [15]. This was to allow for the visual inspection of the correlation 

network map of the classes whereby edges were drawn between clinical variables 

(nodes) if the correlation was significant. Thus, pair-matched Spearman’s correlation was 

computed to correct for missing data and significance was based on Bonferroni-

corrected p-value (i.e. p ≤ 0.0024) [259].  Pairs of biomarkers’ p-values above the 

threshold for significant correlation were excluded from the downstream analysis. The 

correlation network maps for groups (survivors and non-survivors after a 12-month follow-

up time) were then visually compared (Figure 4.2). 
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Figure 4.2. Correlation network map of survivors (a) and non-survivors (b) following a 12-month follow-up 

period.  The map is based on a pairwise Spearman’s correlation’s correlation based on a Bonferroni-

corrected significant level (p = 0.0024). serum albumin, Alb; total bilirubin, Bil; prothrombin time, PT; serum 

creatinine, Cr; ammonia, NH4; serum sodium, Na; and hepatic encephalopathy, HE. 

 

Parenclitic network 

Deviation values calculation (δ) 

Twelve-month survivors were used as the reference population to construct a regression 

model based on Bonferroni-corrected significantly correlated pairs of biomarkers listed 

above.  A significant correlation was found between 6 of the 21 computed pairs of 

correlations in the survivor group. There is only one significant correlation between 

biomarkers in the non-survivor group (Figure 4.2b). The deviations between the data of 

all individual patients (survived and non-survived) from the pre-constructed reference 

model were then calculated as orthogonal residuals of the regression lines of each pair of 

correlated variables (Figure 4.1a-d) 

 

Network topology analysis 

Network topology analysis describes the underlying dynamics of a connected system. 

The network topology analysis of physiological functions has been shown to provide 

information on the adaptability and dynamic flexibility of organ systems to changes in 
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environmental conditions [14]. Several network topology metrics weighed by parenclitic 

deviations were used to assess the changes in physiological connectedness in patients 

with cirrhosis. These include network in-degree centrality, shortest path length, global 

diameter, and efficiency. Appendix 22 presents the definitions and mathematical formulae 

of these indices. 

 

Software development 

The software for computing the parenclitic network outputs was written in-house using 

MATLAB build R2021a [260] according to the originally described technique [248]. In 

summary, the software extracts and uses the data of the survivors to compute a 

Bonferroni-corrected regression model for all pairs of physiological variables (e.g., Na-

Alb, Alb-Bil). The parameters (slope and intercepts) of significantly correlated pairs were 

used to compute the vertical and horizontal residuals (y and x respectively) which were 

then used to find the orthogonal residuals (delta, ∂) for all patients (survivors and non-

survivors) as follows: 

                                                                       𝜕 =
𝑥.𝑦

√𝑥2+𝑦2
 

The computed ∂’s were used as the weight of the connections between all correlated 

pairs of variables for all patients. Further, the individual ∂-weighted parenclitic network 

graphs are then used to perform the global network topology analyses. All computed 

results were combined into an output table which is labelled with the combined names of 

the variable pairs for the ∂’s and the computed network topology indices. The table is then 

written into a named, dated output saved in the workspace as a single excel file for further 

statistical analysis. The software is available in the GitHub repositor; 

https://github.com/topeoyelade. 

 

Statistical analysis 

Statistical analysis was performed using both MATLAB build R2021a [260] and SPSS 

Statistics 26 (IBM Corp., Armonk, New York) [261]. Initially, a Receiver Operating Curve 

(ROC) analysis was performed and the Area Under the Curve (AUC) was used to 

generate cut-off values that combine optimum sensitivity and selectivity in differentiation 

https://github.com/topeoyelade
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between the survivors and non-survivors for all computed output variables.  Mann-

Whitney U-test was used to compare the means of all output variables (∂’s and computed 

network topology indices) between the survivors and non-survivors. We performed 

Kaplan-Meier and log-rank (Mantel-Cox) tests to assess whether the cut-offs from the 

ROC analysis can distinguish the groups. Further, bivariate Cox regression was 

computed to assess whether the significantly different variables with survival prediction 

can predict mortality independent of MELD and Child-Pugh scores. The combined 

prognostic index (e.g., MELD-∂) was calculated using the regression coefficients 

according to the following equation: 𝑀𝐸𝐿𝐷 − ∂ index = 𝛽1 𝑀𝐸𝐿𝐷  + 𝛽2 ∂  where β1 and 

β2 are the regression coefficient of MELD and ∂ in bivariate Cox model respectively. Data 

are presented as median and interquartile range (IQR) and the significant level was 

defined as a two-tailed p-value < 0.05 in all analyses. 

 

Measurement of the performance of predictive models 

Assessment of improvement in prognostic value resulting from the addition of new 

variables to an existing one is computed using Brier scores, Integrated Discrimination 

Improvement (IDI), and Net Reclassification Indices (NRI). The brier score was first 

described in 1950 by Glenn W. Brier and measures the squared mean contrast between 

the reported risk of an event and the risk predicted by a probabilistic model [262]. 

Generally, models with higher predictive accuracies are associated with lower Brier 

scores compared with those with lower predictive accuracies. IDI and NRI are forms of 

risk reclassification methods aimed at showing the improvement in risk classification by a 

model following the addition of a new variable or marker [263]. The difference between 

NRI and IDI is mainly that NRI is based strictly on categorical risk stratification and is not 

robust to intermediate-risk groups. Thus, for the subpopulation with intermediate risk, the 

use of NRI may lead to an increase in the risk of type I error (false positive predictions) 

[264]. The IDI on the other hand is a category-free model performance calibrator and 

estimates the performance of a model across all risk levels [263].   Brier score, IDI, and 

NRI were computed for MELD and the composite variables including MELD and the 

parenclitic indices using standard statistical software Stata/MP version 17.0 (Stata Corp 

LP, College Station, Texas, USA)
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Results 

Study Population 

Overall, 106 patients diagnosed with cirrhosis were followed up for 12 months. During the 

follow-up periods, 17 deaths were recorded; 14 patients underwent transplantation due 

to liver failure or associated complications and were recorded as dead as they were 

considered to need a new liver to survive. The demography and clinical characteristics of 

the studied population are described in Table 4.1. Baseline biomarkers as well as MELD 

and Child-Pugh scores are presented in Appendix 23 which shows a significant difference 

in most baseline biomarkers, MELD, and Child-Pugh scores between survivors and non-

survivors. 

 

Table 4.1. Demographic and clinical variables in the study population. 

Min; minimum value, max; maximum value, MELD; Model for end-stage liver disease. 

 

Parenclitic deviation (∂’s) of survivors and non-survivors 

Parenclitic deviations were compared between survivors and non-survivors and the 

results are shown in Table 4.2. Based on the Mann-Whitney U-test, there were increased 

parenclitic deviations in Alb-Bil (p <0.001) and Alb-PT (p=0.004), and Alb-HE (p=0.034) 

axes compared with the non-survivors (Table 4.2). 

 

 

 

 

 

 

 
All patients (n=106) 

Age [Median (min-max)] (years) 58 (24-80) 

Gender (male/female) 82/24 

Aetiology of cirrhosis (alcohol/viral/others) (%) 42/34/24 

MELD score [Median (min-max)] 12 (6-38) 

Child-Pugh score [Median (min-max)] 8 (5-14) 

Child class A/B/C  21/55/30 
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Table 4.2: Comparison of parenclitic deviations of the studied population. 

∂ of variable pairs Survivors; median (IQR) Non-Survivors median (IQR) p-value  

Albumin-Bilirubin 2.08 (1.07 – 2.83) 5.09 (2.79 – 10.05) < 0.001 

Albumin-Prothrombin Time 2.48 (1.14 – 4.12) 4.83 (2.34 – 6.39) 0.004 

Albumin-Hepatic Encephalopathy 0.50 (0.28 – 0.76) 0.63 (0.38 – 0.98) 0.034 

Ammonia-Hepatic Encephalopathy 0.59 (0.25 – 0.80) 0.94 (0.30 – 1.28) 0.121 

Bilirubin-Prothrombin Time 5.73 (3.58 – 8.90) 5.60 (2.31 – 11.49) 0.481 

Hepatic Encephalopathy-

Prothrombin Time 

0.60 (0.16 – 0.88) 0.58 (0.10 – 0.98) 0.827 

∂, parenclitic deviation; IQR, interquartile range. 

 

Parenclitic deviations in predicting survival 

Univariate Cox regression showed a significant link between a higher risk of mortality and 

parenclitic deviations along the Alb-Bil, Bil-PT, and Ammonia-HE axes (Table 4.3). Higher 

deviation in the Alb-PT axis resulted in a 20% increased risk of 12-month mortality (95% 

CI, 6% - 35%, p < 0.001). Finally, deviation in the Alb-HE axis was linked with a 3-fold 

increased risk of mortality after a 12-month follow-up period (95% CI, 5% - 7-fold, p = 

0.004: Table 4.3).  
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Table 4.3. Univariate Cox regression analysis of the parenclitic deviations. 

∂ of variable pairs β SEM Hazard Ratio (95% CI) p-value 

Albumin-Bilirubin 0.128 0.024 1.137 (1.084 – 1.192) < 0.001 

Albumin-Prothrombin Time 0.179 0.062 1.195 (1.059 – 1.349) 0.004 

Albumin-Hepatic Encephalopathy 1.005 0.487 2.732 (1.052 – 7.099) 0.039 

Bilirubin- Prothrombin Time 0.030 0.006 1.030 (1.018 – 1.043) <0.001 

Hepatic Encephalopathy-Prothrombin 

Time 

0.324 0.467 1.383 (0.554 – 3.451) 0.487 

Ammonia-Hepatic Encephalopathy 1.369 0.606 3.933 (1.200 – 12.887) 0.024 

∂, parenclitic deviation; β, coefficient of Cox regression analysis; SEM, standard error of the mean of β, CI, 

confidence interval. 

 

Independence of parenclitic deviations in predicting survival. 

To assess whether the ability of the parenclitic deviations to significantly predict survival 

is independent of the index of liver disease severity (MELD), we performed bivariate Cox 

regressions for parenclitic deviations with MELD as a covariate. The parenclitic deviation 

along the Alb-Bil (Hazard Ratio, 95% CI = 1.063, 1.000 -1.129; p = 0.048) and Alb-PT 

(Hazard Ratio, 95% CI = 1.138, 1.012 – 1.280; p = 0.031) axes predicted 12-month 

survival independent of MELD (Table 4.4). To study this further, we looked at the 

independence of parenclitic deviations from the Child-Pugh score, a classic measure for 

the severity of hepatic dysfunction. Our results showed that parenclitic deviation of the 

Alb-Bil, Alb-PT, and Bil-PT predicted 12-month survival independent of Child-Pugh scores 

(Appendix 24). 
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Table 4.4. The prognosis effects of parenclitic deviations independent of MELD using bivariate Cox 

regression analysis. 

∂ with MELD β SEM Hazard Ratio (95.0% CI) p-value 

Albumin-Bilirubin 

MELD 

0.061 

0.119 

0.031 

0.038 

1.063 (1.000 – 1.129) 

1.126 (1.047 – 1.213) 

0.048 

0.002 

Albumin-Prothrombin Time 

MELD 

0.129 

0.435 

0.060 

0.092 

1.138 (1.012 – 1.280) 

1.166 (1.109 – 1.251) 

0.031 

<0.001 

Albumin-Hepatic Encephalopathy 

MELD 

0.702 

0.152 

0.501 

0.030 

2.017 (0.756 – 5.383) 

1.164 (1.099 – 1.229) 

0.161 

<0.001 

Bilirubin-Prothrombin Time 

MELD 

0.013 

0.143 

0.008 

0.033 

1.014 (0.997 – 1.030) 

1.153 (1.082 – 1.229) 

0.101 

<0.001 

Ammonia-Hepatic Encephalopathy 

MELD 

1.093 

0.138 

0.628 

0.032 

2.983 (0.870 – 10.219) 

1.148 (1.078 – 1.223) 

0.082 

<0.001 

∂, parenclitic deviation; β, coefficient of Cox regression analysis; SEM, standard error of the mean of β, Ci, 

confidence interval; MELD, Model for End-stage Liver Disease. 

 

Receiver Operating Characteristics (ROC) curves of parenclitic deviations. 

ROC curves were computed for the parenclitic deviations that predicted 12-month 

survival independent of MELD. The deviation along the Alb-Bil axis showed a similar AUC 

in comparison with MELD (0.762 versus 0.792). As shown in Figure 4.3 and Table 4.5, 

the addition of parenclitic deviation of Alb-Bil and Alb-PT axes increased the AUC for 

MELD from 0.792 to 0.835 and 0.824 respectively (p<0.001). Further, the Brier score 

shows that the addition of parenclitic deviation of Alb-Bil improves the predictive value of 

MELD Table 4.5. 

 

Table 4.5. The area under the ROC curves (AUC) of parenclitic deviations (∂), MELD, and combined 

MELD-∂ during 12-month follow-up periods. 

Prognostic index AUC (95% CI) p-value Brier Score 

Albumin-Bilirubin 0.762 (0.652 – 0.872) < 0.001 0.539 

Albumin-Prothrombin Time 0.696 (0.569 – 0.824) 0.004 0.335 

MELD 0.792 (0.696 – 0.888) < 0.001 0.107 

MELD-∂Albumin-Bilirubin 0.835 (0.747 – 0.924) < 0.001 0.106 

MELD-∂Albumin-Prothrombin Time 0.824 (0.730 – 0.918) < 0.001 0.195 

CI, confidence interval; AUC, area on the receiver operating curve.  
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Figure 4.3. The ROC curves comparing MELD alone with MELD-δAlb-Bil and MELD- δAlb-PT in classifying 

patients as survivors or non-survivors. Addition of parenclitic deviation of Alb-Bil and Alb-PT axes could 

increase the AUC for MELD from 0.792 (95% CI, 0.696 – 0.888) to 0.835 (0.747 – 0.924) and 0.824 (0.730 

– 0.918) respectively (p<0.001 for all curves). 

 

Kaplan-Meier graphs of parenclitic deviations. 

For the parenclitic deviations that were significantly predictive of survival independent of 

MELD, cut-offs with the optimum sensitivity and specificity were generated from their 

ROC curves (i.e., optimum sensitivity and specificity for prediction of survival). The 

deduced cut-offs were then used to group the patients into group “predicted non-

survivor” if the patients’ parenclitic deviations were higher than or equal to the 

corresponding cut-off values or “predicted survivor” if otherwise. The binary output was 

then used to generate Kaplan-Meier graphs to assess the prognostic value. Figure 4.4 

indicates that both Alb-Bil and Alb-PT deviations can predict 12-month survival with a 

statistically significant log-ranked test (Chi-square 19.03 and 7.81 respectively). 

Furthermore, the addition of Alb-Bil or Alb-PT deviations to MELD in a bivariate Cox 

regression model enhances the prognostic value of MELD alone (Figure 4.5). 
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Figure 4.4. Kaplan-Meier graphs showing 12-month survival predictions of parenclitic deviations along the 

(a) Albumin-Bilirubin (Alb_Bil) and (b) Albumin-Prothrombin Time (Alb_PT) axes based on the cut-off values 

of 3.63 and 3.57 respectively [Log-rank (Mantel-Cox) test, Chi-square = 19.034, p < 0.001 and 7.814, p = 

0.005 respectively]. 

 

 

Figure 4.5. Kaplan-Meier graphs showing 12-month survival predictions of MELD (a) and two combined 

indices: MELD-δAlbumin-Bilirubin (MELD-Alb_Bil) (b) and MELD--δAlbumin-PT (MELD-Alb_PT). 
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Network topology indices and prediction of survival in patients with cirrhosis. 

As shown in Appendix 25, there was a significant increase in the standard deviation of 

centrality between the survivors and non-survivor group (p = 0.038). Other topology 

indices did not exhibit statistically significant differences. Cox regression analysis was 

performed to determine the relationship between network topology indices and survival. 

Higher standard deviation of centrality increased the risk of mortality with a hazard ratio 

of 1.054 (95% CI, 1.026 – 1.083, p<0.001). Furthermore, the standard deviation of 

centrality was able to predict survival independent of the Child-Pugh score (Appendix 26). 
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Discussion 

In this study, a parenclitic approach was used to map the physiological network of patients 

with cirrhosis from routine clinical/laboratory data. By using the data of survivors to 

construct a reference model, deviations for each patient’s pairs of variables from the 

reference model were calculated and used for prognosis calculation. We found that 

increased parenclitic deviations and reduced connectedness in the ammonia-HE axis are 

associated with a ~4-fold increase in the risk of mortality. Reduced connectedness along 

the Alb-Bil, Alb-PT, and Bil-PT axes were also linked with increased risk of mortality 

independent of routine prognostic indices such as MELD and Child-Pugh. Higher 

parenclitic deviations shown by non-survivors suggest a digression from the expected 

connection along various physiological axes and can be interpreted as significant network 

disruption between organ systems (i.e., more parenclitic deviation = less organ systems 

connectivity). 

Furthermore, we analysed the network topology indices characterising the parenclitic 

networks defined by weighted deviations. This gives a quantitative measure of the 

network and evaluates the deviations and their collective relationships. From a set of 

topological indices, the standard deviation of centrality was significantly higher in the non-

survivors than in survivors and showed a significant association with 12-month survival. 

This global index was also observed to predict survival independent of Child-Pugh. Put 

together, these results show that parenclitic network analysis can detect certain 

functional dynamics not picked up by the current models used for prognostication in 

cirrhosis. These results highlight the significance of interrelationships between clinical 

variables such as Alb-Bil, Alb-PT, and Ammonia-HE in reflecting the pathological stage of 

cirrhosis and provide insight into complex interactions between extrahepatic 

complications manifested in multiple organ systems and how they may exacerbate the 

prognosis of patients with cirrhosis.  

A network approach to complex diseases such as liver failure has the potential to 

transform the landscape of assessing prognosis. The present study indicates that a 

parenclitic approach with routine laboratory tests (e.g., albumin, bilirubin, PT) may 

increase the accuracy of current prognostic factors and be used in conjunction with 

MELD to ultimately increase the number of lives saved. This is in line with previous 



115 
 

research revealing other physio-markers such as EEG or heart rate variability (HRV) in 

conjunction with MELD to increase the accuracy of prognostication [143, 265-267]. 

However, while analysis of EEG or HRV requires suitable recording equipment and 

analytical expertise, the parenclitic approach introduced in this study uses routine 

laboratory tests that are available in all clinical settings. This is an advantage of this 

approach and can be extended in future multi-centre prospective clinical investigations. 

Such a network approach also has the potential to be used in other complex illnesses 

such as sepsis and multiple organ failure for survival modelling as well as providing novel 

insight about the pathophysiology. If organ systems network disruption plays a significant 

role in critically ill patients [7], novel treatments may target enhanced levels of connectivity 

of organ systems rather than inducing functional systems isolation using pharmacological 

antagonists.  

The results of this thesis indicate that a parenclitic deviation from albumin-bilirubin, 

albumin-PT, and ammonia-HE axes provides useful information for prognostication. 

Hepatic encephalopathy is a spectrum of neurophysiological disturbances that occurs in 

the background of acute or chronic liver failure [268]. Although classically linked with 

hyperammonaemia, systemic inflammation is known to precipitate or cause exacerbation 

of HE [269, 270]. While the exact link between systemic inflammation, ammonia, and HE 

remains unclear, systemic inflammation (due to endotoxemia, or bacterial translocation) 

may increase the susceptibility of the brain to hyperammonaemia thereby derailing the 

correlation between increased serum ammonia and HE. While there was a positive 

correlation between ammonia and HE in survivors (r = 0.469, p = 0.002), the severity of 

HE was not significantly associated with ammonia in non-survivors (r = -0.027, p = 0.911). 

This shows that factor(s) other than ammonia may be contributing to HE in non-survivors. 

Indeed, numerous studies have linked systemic inflammation with increased severity and 

poorer prognosis of HE [271-275]. Thus, the increased parenclitic deviation along the 

Ammonia-HE axis may reflect the contribution of a secondary physiological factor that 

predisposes to increased mortality from cirrhosis. This can be easily analysed using a 

parenclitic approach as described here or more traditional statistical methods such as 

analysis of covariance. 
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The analysis showed that the correlation between albumin and bilirubin is lost in non-

survivors. There was a sharp reduction in serum albumin with increased bilirubin in 

survivors compared to non-survivors (Appendix 27). The reason for this disruption is not 

well clear. However, we hypothesis that; (i) The relatively high albumin observed even at 

significantly elevated bilirubin levels in non-survival may be due to clinical infusion which 

may not improve the effective systemic albumin or prognosis [276, 277] but may be 

associated with increased serious adverse events as was recently reported in the ATTIRE 

study [28]; (ii) The half-life of albumin is comparatively higher at about 3 weeks [278] 

compared to bilirubin which remains in circulation for about 6 minutes [279]. In addition, 

the half-life of albumin might be altered in critically ill patients due to impaired 

microcirculation compared with healthier patients [280] a factor that may contribute to 

differences in albumin-bilirubin correlation or survivors and non-survivors.  

Albumin-PT was another axis that differentiated survivors from non-survivors in our study. 

The liver produces most procoagulant and anticoagulant proteins, responsible for 

maintaining haemostasis. In cirrhotic patients, the production of clotting factors and their 

inhibitors decreases, resulting in either a ‘rebalanced’ haemostatic equilibrium or a 

prothrombotic state due to systemic inflammation [281]. Increased bleeding risk has 

traditionally been regarded as the most significant haemostatic complication in patients 

with liver dysfunction, especially in the context of an elevated international normalized 

ratio (INR) [282]. However, the predictive value of INR in indicating the risk of 

haemorrhagic events has been contradicted in literature and remains unclear [283, 284]. 

On the contrary, there is an increasing recognition of hypercoagulability in some patients 

with cirrhosis where the risk of thrombotic events (e.g., portal vein thrombosis) might be 

higher than haemorrhage [285-287]. Portal vein thromboses and clotting of 

extracorporeal circuits are common in cirrhosis despite elevated INR values, while 

elevated bleeding tendency has been suggested to be associated with sepsis, 

hepatorenal syndrome, hypotension, and endothelial dysfunction instead of isolated liver 

dysfunction [244]. Indeed, venous thromboembolism (VTE) is an underdiagnosed and 

serious medical condition that occurs at a relative risk of >2% in cirrhotic patients and is 

associated with greater mortality in higher Child-Pugh stages [288, 289]. Also, low serum 

albumin has been found to be strongly predictive of increased risk of VTE, independent 

of INR or platelet account [290]. It is hypothesized that lower serum albumin 
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concentration is a surrogate for decreased protein synthesis by the liver and therefore 

correlated with decreased production of endogenous anti-coagulant factors such as 

Protein C and S. The results of this study show similar findings (Appendix 28), that the 

albumin levels are generally lower in non-survivors and remain low despite increase in PT 

while in survivors, albumin levels present a positive linear increase with PT. In cirrhosis, 

coagulopathy involves a complicated network of haemostatic factors, with the risks of 

thrombotic and haemorrhagic events reported to be independent of current markers or 

scores [244]. Therefore, a parenclitic approach to relationship between albumin and PT 

might pave the way for assessment of this relationship in routine clinical practice. 

This study validates the feasibility of a parenclitic network-based approach for predicting 

the survival status of patients with liver cirrhosis, and its independence from Child-Pugh 

and MELD scores, indicating that including the correlation between biomarkers improves 

current prognostic indices and may help more accurate prognostication. This suggests 

that a parenclitic approach has the potential to complement current prognostic scoring 

systems for liver cirrhosis. However, there are some limitations. Firstly, the data of 

survivors used as a reference for measurement of deviations is limited in size and from a 

single referral medical centre. Future studies need to look at a more diverse multicentre 

cohort of patients with cirrhosis. Full applicability of the parenclitic method in survival 

modelling in cirrhosis requires further validation by applying the reference parameters 

developed in the current study to an external dataset of patients with cirrhosis. 

Alternatively, constructing parenclitic networks in a bootstrap replica of the data may 

provide further information on the reliability of this approach. Further studies can 

investigate the validation of such a network approach in a larger and more clinically 

diverse patient population. Another limitation of this study is that the relationship models 

of different clinical variables were based on linear regression, which assumes a correlative 

linear relationship between all pairs of variables. More sophisticated methods such as the 

2-dimensional kernel density estimation [251] could potentially serve as a better 

approach, as it provides compatibility of categorical and continuous data. Further, various 

markers such as inflammatory biomarkers (e.g. IL-6) and physiological markers e.g., 

heart rate variability, heart rate turbulence, and temperature variability indices, all indices 

of autonomic function that were shown to predict mortality in cirrhosis patients [7, 291] 

could be included in the analysis to widen the scope and improve the prognostic value of 
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the parenclitic method. In addition, the results of this study might not be extendable to all 

subgroups of patients with cirrhosis as data were selected from patients referred to a 

tertiary referral clinic for evaluation of HE. For example, the parenclitic network may 

exhibit a different pattern in patients with acute-on-chronic liver failure (ACLF) than other 

forms of decompensation. This may give insight into the mechanism of decompensation 

and organ failure in cirrhosis. Future studies can focus on more diverse, and clinically 

relevant subgroups of patients with cirrhosis to provide a more comprehensive picture of 

organ systems network disruption in individual patients with cirrhosis. The present study 

also lacks a time-dependent approach to predicting outcomes using the parenclitic 

networks. Assessment of network structure over time can provide useful information on 

the trajectory of alterations in physiological processes involved in decompensation and 

might be of significant value for prognosis evaluation. 

In conclusion, this study is the first to use the parenclitic network analysis of routine clinical 

data to assess organ system disruption and predict survival in individual patients with 

cirrhosis. Potential application of this method includes the prediction of treatment 

responses or patients likely to develop serious adverse events due to certain treatments. 

For example, patients with decompensated cirrhosis indicated for vasoconstrictors and/or 

albumin treatment who may not respond [292-294] or those likely to develop respiratory 

failure [295] or other side effects [296-299]. The integrated approach of the parenclitic 

network analysis may prove to be a better prognostic method and can provide novel 

pathophysiologic insight for understanding complex diseases such as chronic liver failure.



119 
 

 

 

 

 

 

 

 

 

 

Chapter 5 : Parenclitic network analysis identifies 

response to targeted albumin therapy in patients 

hospitalized with decompensated cirrhosis



120 
 

Introduction 

There has been an epidemic of liver disease during the past 50 years in the UK with a 

four-fold increase in liver-related deaths [300]. This is now the leading cause of death in 

people aged 35 to 49 years, and the second leading cause of ‘working years’ lost in 

Europe [301]. Many patients present late in the disease course with advanced cirrhosis 

which confers a grim mortality [302, 303]. At this stage, the only life-prolonging treatment 

is liver transplantation, which is a limited and costly intervention. Albumin infusions have 

long been used for the management of complications of cirrhosis to improve plasma 

oncotic pressure and alleviate ascites and peripheral oedema [304, 305]. Current 

international guidelines recommend use after large-volume paracentesis, in patients with 

spontaneous bacterial peritonitis and hepatorenal syndrome [306, 307] and several 

studies have demonstrated potential beneficial immune-mediated/ anti-inflammatory 

properties [308-311].  Further, Bajaj et al reported that low serum albumin level was 

significantly linked with an increased risk of death among hospitalized patients with 

cirrhosis and infection [312]. However, albumin use outside of recommended indications 

remains a contentious clinical concept  [313-318]. Indeed, the ATTIRE clinical trial of 

targeted albumin therapy did not show benefit over standard care, and patients in the 

albumin group, who received 10 times (median of 200g during hospitalization) as much 

albumin as those in standard-care (20g), had more severe or life-threatening serious 

adverse events, especially pulmonary oedema, or fluid overload [28, 319].  

Other clinical trials of albumin infusion have shown conflicting results. For instance, a 

meta-analysis of albumin uses in patients with spontaneous bacterial peritonitis reported 

significant benefit [320] that was not seen in patients with other infections [321] and this 

latter trial was terminated because of lethal pulmonary oedema associated with albumin 

[321]. Taken together these data suggest that certain subgroups of advanced cirrhosis 

patients may benefit from targeted albumin therapy, but in others, this may cause harm. 

Yet extensive conventional subgroup analyses of the ATTIRE dataset did not identify 

patients that benefited and there are no current biomarkers to guide albumin therapy. We 

therefore undertook an unsupervised analytic approach.  

Healthy individuals show a high degree of functional connectivity between physiological 

organ systems. Disruption of organ system coupling is a hallmark of complex diseases 
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and recent studies showed that reduced network connectivity was linked with poor 

survival in patients with sepsis [322] and poor survival regardless of the severity of liver 

disease in patients with cirrhosis [323].  This approach is novel as most prognostic 

indicators consider individual organ systems as separate units and do not reference their 

complex and non-linear interactions.  

Targeted albumin infusion has the potential to challenge the physiological network 

through alteration of oncotic pressure, plasma volume, glomerular filtration rate (GFR), 

and transportation of various physiological molecules. Therefore, the assessment of 

physiological interaction as a network may allow for a more precise prediction of patients’ 

responses or outcomes. The parenclitic network mapping allows network analysis of 

static, baseline clinical variables on the individual patient level [249]. Our group recently 

applied this method to a cohort of patients with cirrhosis using routine baseline clinical 

data and found that physiological network mapping can predict survival independent of 

the severity of liver disease as measured by the Model for End-stage Liver Disease 

(MELD) [324]. We hypothesised that parenclitic network analysis of routine clinical 

variables may provide valuable insight into the organ-system disconnections associated 

with albumin treatment response and mortality in patients hospitalised with 

decompensated cirrhosis. We therefore used network analysis to assess organ systems 

connectivity of individual patients based on their routinely available laboratory and clinical 

variables at trial entry, comparing treatment groups to identify baseline characteristics 

that precited a good or poor survival outcome to targeted albumin therapy.
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Method 

Study population 

This is a sub-study (and extension) of the ATTIRE trial, which was a randomized control 

trial of targeted albumin infusions versus standard care involving 777 hospitalized 

decompensated cirrhosis patients from 35 hospitals across England, Wales, and Scotland 

(2016-2019) [28]. Thus, this is a secondary analysis of the data initially collected for the 

aim stated above. There were no differences in baseline characteristics and outcomes 

between treatment groups. Parenclitic network analysis was performed using routine 

clinical variables of patients in the standard care group alone to exclude any influences 

of targeted albumin treatment. Clinical variables analyzed include serum albumin (Alb), 

total bilirubin (Bil), international normalized ratio (INR), serum creatinine (Cr), serum 

sodium (Na), white cell count (WCC), C-reactive protein (CRP), mean arterial pressure 

and heart rate (HR). These values were collected at trial entry which was on average day 

2 of hospitalization. Also, the variables were used for network analysis because they 

represent various physiological pathways directly and indirectly linked with liver function 

and are standard variables often measured in patients with liver cirrhosis. Further, a 

previous report using Random Forest machine learning algorithms indicated that the 

chosen variables can predict mortality [323]. Patients were grouped as survivors and 

non-survivors based on survival status after a 6-month follow-up period. The original trial 

(ATTIRE) was conducted following both the Declarations of Helsinki and was approved 

by the London-Brent Research Ethics Committee and the Medicines and Healthcare 

Products Regulatory Agency [28]. 

 

Parenclitic network analysis 

Parenclitic network analysis is a novel static network analytical method [248] that allows 

network mapping of individual datapoints from models built from a reference population 

with expected conditions (healthy, survivors, etc). The deviation of individuals’ 

characteristics from expectations is used to weigh the connection between variables for 

that individual (Figure 5.1). For a comprehensive description of the parenclitic network 

analysis in cirrhosis please see Zhang et al [324]. 
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The ATTIRE Survivors’ population at 6 months was used as the reference population for 

the development of the parenclitic model and deviations from this model for individual 

patients (survivors and non-survivors) were computed and used to weigh the correlation 

network map of clinical variables. Further, the parenclitic indices, including deviations 

along variable pairs as well as a global network topology of all patients (treatment and 

standard care) were computed using an in-house code in MATLAB (MathWorks, 

California, USA). For the measurement of global network topology, indices such as 

network diameter, mean centrality, and shortest path length were calculated. Please see 

Appendix 22 for definitions of network indices used in this study. In general, higher global 

parenclitic network topology indices such as diameter, mean centrality and shortest path 

length indicate lower connectivity among all components of the network (Figure 5.1). 

 

 

Figure 5.1. A schematic representation of orthogonal residuals (δ) calculation and translation into 

parenclitic network.  (a-d) First regression models are built for pairs of variables (A-B; B-C; A-C and A-D) 

from a reference population (e.g., survivors, treatment responders, etc.).  The blue dots represent individual 

reference data, the red regression lines represent the expected relationship models, and the red dots are 

individual data of patients being studied. The black lines represent the deviation values (δ). The resulting 

parenclitic network map of nodes A, B, C, and D is presented with edges weighted (in terms of thickness) 

according to the magnitude of deviations from the models 

 

To validate the prognostic value of the parenclitic indices, a split technique was used 

whereby ~50% of patients in the standard treatment arm were randomly selected (training 

sample, n=194) and the remainder were used as the validation sample (n=203). Survivors 
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in the training group were used as a model for the calculation of the coefficients that were 

used for the calculation of parenclitic deviations in the validation group. Statistical analysis 

was performed to test whether the prognostic values persisted following the random split 

in the validation sample. This is to confirm whether the result generated was independent 

of the population studied. 

 

Statistical analysis 

Statistical analysis was performed using Stata statistical software (Stata/MP, Version 

17.0) and SPSS Statistics 26 (IBM Corp., Armonk, New York) with data presented as 

median and interquartile range (IQR) or mean ± standard deviation. A two-tailed p-value 

of <0.05 was defined as statistical significance in all analysis. 

Initially, the Mann-Whitney U-test was performed to compare the median of computed 

parenclitic variables including the deviations along physiological axes (denoted as δ in 

this report) and global network topology indices, for the survivor and non-survivor group. 

Significantly different parenclitic variables were then tested for prognostic value by 

computing univariate and multivariate Cox regression controlling for MELD and age. 

Parenclitic variables with independent predictive values were combined with MELD to 

produce a combinatory prognostic index based on coefficients of bivariate Cox 

regressions as follows, Composite index= β1×MELD + β2×δ; where β1 and β2 are 

respectively the regression coefficient of MELD and parenclitic indices in bivariate Cox 

model.  

Receiver Operating Curve (ROC) analyses were performed and the Area Under the 

Curves (AUC) was computed for individual and combinatory indices to generate cut-offs. 

The specificity and sensitivity of resulting cut-offs were then used to generate the positive 

and negative predictive values based on Bayesian priors (% mortality) [325].  

To test whether parenclitic indices may differentiate between survivors and non-survivors 

at 6 months following targeted albumin treatment, we performed a multivariate Cox 

regression including patients’ treatment arm (albumin or standard care) and each of the 

parenclitic indices as interacting variables. The cut-off of parenclitic indices that showed 

significant interaction with treatment in predicting survival was then used to categorize 
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each patient into “1”, if ≥ cut-off and “0” if otherwise. The treatment arm of patients was 

then used to plot ROC curves to assess the 6-month survival grouped by the cut-offs of 

the significant parenclitic indices. 

To assess possible improvement in the prognostic performance of MELD due to the 

addition of parenclitic indices Brier scores, Integrated Discrimination Improvement (IDI), 

and Net Reclassification Indices (NRI) were computed using standard statistical software 

Stata version 17.0 (Stata Corp LP, College Station, Texas, USA). Brier score provides the 

mean of the squared distance between observed and predicted risks of an event 

(mortality) for individual patients. Generally, the lower the Brier score the better the 

predictive model[262]. IDI and NRI measure the improvement of a binary predictive model 

due to the addition of new variables[263] (more details in chapter 4). 
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Results 

Patient characteristics at ATTIRE trial entry 

A total of 397 out of 777 (51%) patients received standard care and were subjected to 

parenclitic analysis. During the 6-month follow-up period 119 (30%) of these patients 

died. Table 5.1 presents the demographics and clinical characteristics of the study 

population. 

 

Table 5.1. Demographic and baseline clinical variables in the study population. 

Characteristics Survivors (n=278) Non-survivors (n=119) p-value 

Mean age – years (SD) 52.3 (10.5) 57.1 (10.0) < 0.001 

Male sex – no. (%) 205 (74) 89 (75) 0.973 

    

Cause of cirrhosis – no. (%)    

Alcohol 247 (88.9) 104 (87.4)  

Hepatitis C 26 (9.4) 9 (7.6)  

Non-alcoholic fatty liver disease 19 (6.8) 10 (8.4)  

    

MELD score (median, IQR) 17.96 (14.6 – 22.4) 21.917(17.690-26.328) <0.001 

    

Physiological variables    

Creatinine level — μmol/L 67 (56 – 85) 81 (58 – 123.5) 0.001 

Bilirubin level — μmol/L 90 (40.5 – 144.5) 109.5 (59.5 – 222.5) 0.002 

Serum Albumin — g/L 24 (21 – 26) 24 (21 – 25.8) 0.768 

International normalized ratio 1.6 (1.4 – 1.9) 1.8 (1.5 – 2.1) <0.001 

White Cell Count – 109/L 6.8 (4.9 – 9.7) 8.8 (6.4 – 13.8) <0.001 

Serum Sodium – mmol/L 134 (130 – 137) 131 (127 – 135) <0.001 

C-Reactive Protein – mg/L 21 (10 – 42) 36.5 (16 – 66) <0.001 

Heart Rate – beats/minute 89 (79 – 100) 92 (81 – 105) 0.044 

Mean arterial pressure – mmHg 83.3 (75.5 – 91.5) 81.7 (74.3 – 90.4) 0.241 

NAFLD; Non-alcoholic fatty liver disease, HCV; Hepatitis C virus, MELD; Model for End-stage Liver Disease, 

SD; Standard Deviation, IQR; Interquartile Range. 

 

Parenclitic indices at baseline predict 6-month survival. 

The correlation network maps show that survivors had a significantly higher association 

between the baseline clinical variables compared with non-survivors (Figure 5.2). Overall, 

patients who survived for at least 6 months showed significantly lower parenclitic 

deviation between baseline clinical variables compared with non-survivors in all indices of 

network topology (centrality, shortest path length, efficiency, and diameter) Specifically, 

there was significantly lower parenclitic deviation along the WCC-CRP axis in survivors 

(Table 5.2). 



127 
 

 

 

Figure 5.2. Correlation network map of survivors (A) and non-survivors (B) after 6-month follow-up period 

of patients with decompensated cirrhosis under standard treatment. Each link shows a statistically 

significant correlation between two biomarkers after Bonferroni correction for multiple comparisons. 

 

Table 5.2. Differences in parenclitic indices between survivors and non-survivors that received standard 

care in the studied population. 

δ; Deviation along an axis, WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International 

Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, CRP; C-Reactive Protein, MELD; Model for End-

stage Liver Disease. 

 

Prognostic values of baseline parenclitic indices to predict 6-month outcome. 

According to our univariate Cox regression analysis, greater parenclitic deviations along 

WCC-Na, Bil-WCC, WCC-CRP, HR-Bil, and INR-Bil axes were all associated with an 

Variables Survivors Non-survivors p-value 

δ (WCC-Na)  1.492 (0.784-2.548) 0.254 (0.110-0.472) 0.063 

δ (Bil-Na) 3.381 (1.797-6.244) 1.968 (0.809-3.162) 0.604 

δ (INR-Alb) 0.276 (0.139-0.420) 3.563 (2.086-6.494) 0.981 

δ (HR-Na) 2.736 (1.157-4.832) 2.710 (1.594-5.236) 0.315 

δ (Bil-WCC) 2.500 (1.279-4.219) 3.155 (1.235-5.268) 0.089 

δ (WCC-CRP) 2.050 (0.980-3.810) 3.070 (1.330-5.320) 0.001 

δ (INR-WCC) 0.253 (0.120-0.430) 0.305 (0.144-0.506) 0.082 

δ (HR-Bil) 9.102 (4.887-15.052) 10.451 (4.847-17.969) 0.138 

δ (INR-Bil) 0.251 (0.125-0.433) 0.299 (0.129-0.498) 0.097 

Mean Centrality 6.440 (4.660-8.320) 7.670 (4.890-10.610) 0.001 

Mean Shortest path 3.450 (2.520-4.670) 4.160 (2.800-6.000) <0.001 

Diameter 12.320 (8.550-18.990) 15.280 (9.760-22.270) 0.005 

Age 51.858 (45.398-58.888) 56.320 (50.360-64.556) <0.001 

MELD 17.955 (14.467-22.385) 21.917 (17.690-26.328) <0.001 
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increased risk of 6-month mortality (Table 5.3). Likewise, higher measures of parenclitic 

network topology (i.e., mean centrality, mean shortest path length, and diameter) were 

associated with an increased risk of mortality up to 6 months (Table 5.3). Expectedly, a 

unit increase in MELD resulted in a 7.7% increase in the risk of 6-month mortality (hazard 

ratio: 1.077 (1.051-1.104), p<0.001). 

 

Table 5.3. Result of univariate COX regression analysis for parenclitic indices. 

Variables β SE p-value Hazard Ratio (95%CI) 

δ (INR-Alb) 0.376 0.235 0.11 1.456 (0.919-2.307) 

δ (WCC-Na) 0.128 0.046 0.005 1.137 (1.039-1.243) 

δ (Bil-Na) 0.022 0.023 0.351 1.022 (0.976-1.07) 

δ (HR-Na) 0.052 0.029 0.071 1.054 (0.995-1.115) 

δ (Bil-WCC) 0.075 0.021 <0.001 1.077 (1.033-1.124) 

δ (WCC-CRP) 0.12 0.026 <0.001 1.128 (1.072-1.186) 

δ (INR-WCC) 0.476 0.214 0.026 1.609 (1.058-2.448) 

δ (HR-Bil) 0.024 0.009 0.008 1.024 (1.006-1.043) 

δ (INR-Bil) 0.41 0.192 0.033 1.507 (1.034-2.197) 

Mean Centrality 0.137 0.029 <0.001 1.146 (1.083-1.214) 

Mean Shortest path 0.213 0.044 <0.001 1.237 (1.134-1.349) 

Diameter 0.032 0.008 <0.001 1.033 (1.016-1.05) 

MELD 0.074 0.013 <0.001 1.077 (1.051-1.104) 

δ; Deviation along an axis, WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International 

Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, CRP; C-Reactive Protein, MELD; Model for End-

stage Liver Disease.
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Independent prognostic values of baseline parenclitic indices to predict 6-month 

outcome. 

Multivariate Cox regression was performed to assess whether parenclitic indices that 

individually predicted 6-month mortality had prognostic value independent of age and 

MELD. Parenclitic deviations along the WCC-CRP axis (Hazard Ratio, 95% CI = 1.112, 

1.053-1.174) and Bil-WCC axis (Hazard Ratio, 95% CI = 1.062, 1.017-1.108) significantly 

predicted outcome independent of age and MELD of patients at trial entry. Mean 

centrality (Hazard Ratio, 95% CI = 1.094, 1.030-1.162), mean shortest path length 

(Hazard Ratio, 95% CI = 1.163, 1.059-1.276), and network diameter (Hazard Ratio, 95% 

CI = 1.025, 1.007-1.043) also predicted survival independent of age and MELD (Table 

5.4). 

 

Table 5.4. Prognostic values of parenclitic indices independent of age and MELD at admission. 

Variables β SE p-value HR (95%CI) 

δ (WCC-CRP) 0.106 0.028 <0.001 1.112 (1.053-1.174) 

MELD 0.091 0.014 <0.001 1.095 (1.066-1.125) 

Age 0.050 0.009 <0.001 1.051 (1.032-1.070)      

δ (WCC-Na) 0.067 0.047 0.151 1.07 (0.976-1.173) 

MELD 0.083 0.013 <0.001 1.086 (1.059-1.114) 

Age 0.046 0.009 <0.001 1.047 (1.029-1.066)      

δ (Bil-WCC) 0.06 0.022 0.006 1.062 (1.017-1.108) 

MELD 0.083 0.013 <0.001 1.087 (1.06-1.114) 

Age 0.047 0.009 <0.001 1.048 (1.03-1.066)      

δ (HR-Bil) 0.014 0.009 0.131 1.014 (0.996-1.033) 

MELD 0.084 0.013 <0.001 1.087 (1.061-1.115) 

Age 0.046 0.009 <0.001 1.047 (1.029-1.065)      

δ (INR-Bil) -0.327 0.219 0.135 0.721 (0.469-1.107) 

MELD 0.1 0.015 <0.001 1.106 (1.073-1.139) 

Age 0.05 0.009 <0.001 1.051 (1.033-1.069)      

Mean Centrality 0.090 0.031 0.004 1.094 (1.030-1.162) 

MELD 0.084 0.014 <0.001 1.088 (1.059-1.119) 

Age 0.046 0.009 <0.001 1.047 (1.028-1.066)      

Mean Shortest path 0.151 0.048 0.002 1.163 (1.059-1.276) 

MELD 0.085 0.014 <0.001 1.089 (1.059-1.119) 

Age 0.046 0.009 <0.001 1.047 (1.028-1.066)      

Diameter 0.024 0.009 0.006 1.025 (1.007-1.043) 

MELD 0.091 0.014 <0.001 1.096 (1.066-1.126) 

Age 0.047 0.009 <0.001 1.048 (1.029-1.068) 

δ; Deviation along an axis, WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International 

Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, CRP; C-Reactive Protein, MELD; Model for End-

stage Liver Disease.
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The results of a parenclitic network analysis of a split sample (randomly selected patients) 

extracted from the study population showed similar correlation network maps of 

biomarkers (Appendix 32 and Appendix 33) and parenclitic deviations of the validation 

sample (203 random patients) calculated from the training sample (194 random patients), 

demonstrated comparable results to the original findings using the overall sample 

(Appendix 30). Specifically, parenclitic deviation along the WCC-CRP axis as well as the 

mean shortest path length and diameter predicted 6-month survival independent of MELD 

and age of patients in this validation subset (Appendix 30). 

 

Receiver operating characteristic (ROC) curve values of baseline parenclitic indices. 

The area under the ROC curves (AUC), cut-offs, and the sensitivity, specificity, positive 

(PPV), negative (NPV) predictive values, and Brier scores of these cut-offs are presented 

in Table 5.5. Combining parenclitic indices with MELD (composite indices) consistently 

improved the AUC by up to 7% (0.709 vs 0.664) and approximately increased the positive 

predictive value of the optimum cut-off by 20% (40.59% vs 48.23%). Further, Brier scores 

show that adding indices of the parenclitic network improves the predictive performance 

of MELD (Table 5.5). Results from IDI and NRI analysis also show an increased prognostic 

value by adding parenclitic network indices to MELD (Table 5.6).
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Table 5.5. Area on the ROC curves of parenclitic indices in combination with MELD compares with MELD alone. 

Variables AUC p-value Cut-off Sensitivity Specificity % Increase in 

AUC vs MELD 

PPV NPV Brier Score 

MELD 0.664 <0.001 20.49 0.613 0.616 - 0.406 0.788 0.131 

Composite index: MELD-δ (WCC-CRP) 0.707 <0.001 1.89 0.639 0.649 6.48 0.438 0.808 0.124 

Composite index: MELD-δ (Bil-WCC) 0.686 <0.001 1.67 0.636 0.638 3.31 0.429 0.804 0.128 

Composite index: MELD-Centrality 0.701 <0.001 2.30 0.642 0.705 5.57 0.482 0.821 0.123 

Composite index: MELD-Shortest path 0.709 <0.001 2.23 0.642 0.684 6.78 0.465 0.817 0.122 

Composite index: MELD-Diameter 0.706 <0.001 2.07 0.632 0.662 6.33 0.445 0.809 0.125 

 δ; Deviation along an axis, WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, 

CRP; C-Reactive Protein, MELD; Model for End-stage Liver Disease. 

 

Table 5.6. Measure of prognostic improvement of MELD due to the addition of parenclitic indices. 

 IDI p-value NRI p-value 

MELD + WCC-CRP 0.0359 0.003 0.3384 0.004 

MELD + Bil-WCC 0.0157 0.040 0.2146 0.051 

MELD + Centrality 0.0396 0.002 0.2991 0.012 

MELD + Shortest Path 0.0419 0.001 0.3795 0.001 

MELD + Diameter 0.0284 0.007 0.3040 0.009 

δ; Deviation along an axis, WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, 

CRP; C-Reactive Protein, MELD; Model for End-stage Liver Disease.
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Assessment of the prognostic value of baseline parenclitic indices to differentiate 

between 6-month outcomes comparing standard care to targeted albumin therapy. 

The result of multivariate Cox regression for interaction of targeted albumin treatment with 

baseline parenclitic variables to predict 6-month survival showed that measures of global 

parenclitic network characteristics (i.e., diameter and mean shortest path length), WCC-

CRP parenclitic deviation, baseline serum albumin, and white cell count significantly 

interacted with targeted albumin treatment to predict survival (Appendix 31). Further, the 

Kaplan-Meier survival curves for patients grouped by the parenclitic indices demonstrated 

significant differences when targeted albumin and standard care groups were compared 

(Figure 5.3, Figure 5.4, and Figure 5.5). Specifically, patients with lower deviation along 

the WCC-CRP axis (<2.42) showed consistently lower survival (%) over the whole of the 

6-month follow-up period in the targeted albumin arm compared to standard care, not 

just for the trial treatment period (p=0.023, Figure 5.5a). The same pattern applied when 

we considered disruption/deviation in the global parenclitic network, with patients with 

lower network shortest path length and lower network diameter in standard care showing 

significantly higher survival rates compared with the targeted albumin group (p=0.013 

and 0.008 respectively, Figure 5.3a and Figure 5.4a). Again, the difference in survival 

persisted throughout the 6-month follow-up period. This difference in 6-month survival 

between treatment groups could not be detected when stratifying by the baseline MELD 

score and there was no difference between survival between treatment groups in the 

overall study population. In patients with higher deviation along the WCC-CRP axis 

(>2.42), network shortest path length (>3.86), and network diameter (>13.75) there were 

no differences in survival between treatment groups (Figure 5.3, Figure 5.4, and Figure 

5.5). 
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Figure 5.3. Kaplan Meier graph representing 6-month survival prediction of patients based on Network 

Shortest path length cut-off (A versus B) and treatment (standard care versus targeted albumin therapy) 

 

 

Figure 5.4. Kaplan Meier graph representing 6-month survival prediction of patients based on Network 

diameter cut-off (A versus B) and treatment (standard care versus targeted albumin therapy). 
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Figure 5.5. Kaplan Meier graph representing 6-month survival prediction of patients based on δ (WCC-

CRP) cut-off (A versus B) and treatment (standard care versus targeted albumin therapy). δ; Deviation 

along an axis. WCC; White Cell Count, CRP; C-Reactive Protein. 
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Discussion 

Our parenclitic network analyses using baseline clinical data accurately predict outcomes 

in patients with decompensated cirrhosis hospitalized for acute complications, based on 

disruption of organ systems coupling. These analyses also identified that patients with 

preserved organ system coupling had significantly poorer outcomes following increased 

albumin treatment. 

Reduced organ systems correlation was associated with poorer prognosis in hospitalised 

patients with cirrhosis independent of the severity of the disease and age. The 

dyscoordination in the crosstalk between the key markers of systemic inflammatory 

response, CRP and WCC, provides a novel pathophysiological insight into the 

dysregulated inflammatory response in decompensated cirrhosis not captured by the 

MELD severity scoring system. Specifically, we found that reduced coordination between 

CRP and WCC predicted poorer 6-month survival in patients receiving standard clinical 

treatment. This was in line with our previous validation study in decompensated cirrhosis 

[324].  Further, the parenclitic network approach used here is based on data that is 

routinely available anywhere in the world and cost-effective while also providing 

interpretable physiological insights compared with the machine learning or artificial 

intelligence approach which requires a larger sample size or involves an uninterpretable 

"Blackbox" [326]. Compared to Zhang et al [324], our study involves a larger group of 

patients hospitalized for cirrhotic decompensation who were prospectively recruited and 

followed up across various hospitals in the United Kingdom. Also, to assess the integrity 

of the method employed, we used a split validation method which confirmed that the result 

of the analyses was robust. 

Prognostic modelling in cirrhosis from Child-Turcotte-Pugh to MELD-plus and acute-on-

chronic liver failure continues to move towards greater recognition of the impact on 

survival of the extra-hepatic involvements of cirrhosis [33, 327, 328]. A major trigger for 

this organ system disconnection is inflammation, either pathogen- (PAMP) or damage-

associated molecular pattern (DAMP) [329, 330] with the presence of infection linked to 

a 4-fold increase in the risk of mortality [331, 332]. CRP is an acute-phase protein that 

increases in plasma following systemic inflammation and tissue or cell death [333-335]. 

CRP transcription and synthesis are primarily induced by IL-6 and result in the activation 
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of the classical complement pathways and the recruitment of phagocytic cells to the site 

of infection [336, 337]. Thus, under physiological conditions, the activities of WCC and 

CRP are closely coordinated toward achieving an effective response to infections. 

However, because CRP is produced by the hepatocytes in response to inflammation, the 

use of serum CRP level as a biomarker of inflammation or infection in cirrhosis has been 

contested [338-342].  

Leukopenia is associated with a significantly higher risk of decompensation and mortality 

in cirrhosis patients [342, 343]. However, there are no established standardized 

thresholds suitable to accurately distinguish survivors and non-survivors in cirrhosis 

[344]. Therefore, both CRP and WCC, although useful markers of infection and 

inflammation in cirrhosis, have weak prognostic values when considered individually. 

However, when we considered both biomarkers as a coordinated axis in a network, this 

significantly predicted survival independent of MELD. The combination of these 

biomarkers of inflammatory response into a single physiological axis appears to provide 

a more sophisticated picture of the pathophysiological disturbance in inflammasomes due 

to cirrhosis.  

Unexpectedly patients with lower parenclitic deviation and by extension higher organ 

systems connectivity showed significantly lower survival after targeted albumin therapy 

for a maximum of 2 weeks that persisted over the 6-month follow-up. We hypothesise that 

patients with preserved organ system connectivity may achieve this by the diversion of 

energies/resources needed for normal physiological functions toward maintaining an 

effective inflammatory response [345]. Targeted albumin therapy for a brief period may 

represent an adverse biological challenge to an already delicately balanced physiological 

state which may underlie their significantly poorer prognosis. Conversely, patients with 

significant disturbances in organ system connectivity appeared to respond slightly better 

to targeted albumin therapy over the 6-month follow-up period. and this raises the 

possibility that targeted albumin infusions in these patients improve homeostasis. Perhaps 

continuation of targeted albumin infusions beyond two weeks which had been shown to 

have beneficial effects in the ANSWER trial [346] could be further investigated in patients 

with decompensated cirrhosis especially those with higher organ system disconnection.  
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The main limitation of this study includes the inherent inability of the parenclitic network 

to capture the time course of organ systems connectivity due to the cross-sectional, static 

feature of the data analysed. For instance, our analysis is not robust to immediate and 

temporal changes to the network of organ systems that may follow albumin infusion or 

result from major clinical events that occur after the baseline data were gathered. Finally, 

although this study is multicentre in design, it applies to patients with decompensated 

cirrhosis admitted into hospitals in the United Kingdom where ‘standard care’ may differ 

in definition from other countries and regions of the world. Thus, the interpretation of our 

findings should be contextualized. However, the clinical management of patients is still 

strongly informed by baseline clinical variables and the ATTIRE study represents one of 

the largest clinical trials of hospitalized patients with cirrhosis, prospectively recruited and 

carefully followed up. Calculation of parenclitic deviation along the WCC-CRP axis is 

feasible at the bedside. However, further validation of the WCC-CRP axis is required in a 

larger, globally representative reference group to allow clinical incorporation as a bedside 

scoring system. 

In summary, network analysis using routine clinical data collected at baseline provides 

novel insights into the pathophysiology of cirrhosis independent of the MELD score and 

significantly improves MELD’s prognostic value. Further, we showed that unsupervised 

network analysis has potential value and may predict a poor response to targeted albumin 

therapy, which was not observed in conventional analyses. Future studies should further 

investigate the value of WCC-CRP and network mapping to predict outcomes in 

decompensated cirrhosis and improve the selection of patients for further trials of albumin 

or other immune/inflammation-modulating therapies.
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Chapter 6 : The application of physiological network 

mapping in the prediction of survival in critically ill 

patients with acute liver failure 
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Introduction 

The human body is a complex system composed of an intertwined network of 

physiological components that interact with each other to maintain homeostasis. The 

study of robustness in physiological complex networks is important, as it can help 

understand disease processes and the compensatory mechanisms that lead to survival 

after critical illnesses such as multiple-organ failure. Our knowledge about predictors of 

survival in critically ill patients is limited to clinical and epidemiological studies that have 

identified risk factors for mortality, such as a higher number of failing organs assessed by 

the SOFA score (Sequential Organ Failure Assessment) [347, 348]. Recent studies using 

various machine learning approaches have also indicated that the aggregation of 

previous disease history and acute physiology measures can predict in-hospital mortality 

in critically ill patients [349]. While all these studies are useful for prognostication in 

intensive care units, they rarely provide hypotheses that may lead to the development of 

interventions to alter the progression of the disease.  

Recently, the network of physiological organ interactions has been studied within the 

context of critical illness [11, 12, 350]. The emerging field of Network Physiology has 

established the groundwork for understanding and quantifying global physiological 

behaviours arising from networked interactions across systems in health and disease 

[351, 352]. At least in theory, mapping the physiological network during an acute 

pathological insult in survivors may reveal compensatory mechanisms deployed to regain 

homeostasis with the potential for the development of new therapies. Indeed, 

physiological network mapping can also improve our understanding of the 

pathophysiology of the disease. 

The liver plays a pivotal role in physiological processes within the body, positioning it as a 

central hub in the control of various physiological mechanisms. Clinicians readily 

acknowledge the functional connectivity of the liver with other organs, particularly evident 

in patients with liver failure who manifest involvement of multiple organs such as neural, 

cardiovascular, renal, and metabolic dysfunction, as well as acid/base and electrolyte 

imbalance [353]. In fact, it is well documented that chronic liver failure (cirrhosis) is 

associated with impaired cardiovascular control [90, 354, 355] and thermoregulatory 

dynamics [227, 356, 357]. The application of a network approach in patients with 



140 
 

cirrhosis has also revealed that organ system network disruption is associated with a poor 

prognosis in patients with chronic liver failure [323, 358]. Specifically, survivors of liver 

cirrhosis were found to exhibit a higher correlation between physiological biomarkers than 

non-survivors, indicating more connected organ systems in the survivors [323, 358]. 

Furthermore, physiological network connectivity indices could predict 6-month survival in 

patients with cirrhosis independent of age and the severity of liver disease [358, 359]. 

Such a network approach in liver cirrhosis is helpful, as it can provide prognostic 

information (e.g., for application in liver transplant allocation) as well as aid in predicting 

response to therapy (e.g., targeted albumin therapy) [359]. 

The process of cirrhosis is a slow process that takes more than a decade to affect the 

physiological networks significantly. On the other hand, Acute Liver Failure (ALF) is an 

acute process defined as the presence of severely worsening acute liver injury (<26 

weeks) in patients with no history of chronic liver disease [360]. ALF can be caused by 

acute exposure to high doses of hepatotoxins such as paracetamol. Paracetamol-

induced ALF is the most common cause of ALF in Western countries [361]. The rapid 

deterioration of liver function in ALF is strongly associated with a high risk of mortality, 

which may be prevented by timely liver transplantation. However, a subpopulation of ALF 

patients is known to recover fully without transplantation. Due to its accidental occurrence 

(e.g., drug overdose), paracetamol-induced ALF often occurs in otherwise healthy 

individuals. These patients need to rapidly adapt and employ suitable compensatory 

mechanisms to survive. While ALF is a multi-organ systemic disease and involves other 

organ systems (e.g., hepatic encephalopathy), a network approach has not yet been 

applied to understand the differences in organ-system interaction between survivors and 

non-survivors. In this chapter, a network mapping approach to investigate the interaction 

between multiple variables representing various organ systems in a cohort of critically ill 

patients with ALF was assessed. The prognostic value of the network mapping approach 

was also compared with the current clinical prognostic indicators used to assess critically 

ill patients with ALF (e.g., the King’s College Criteria score and SOFA). 
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Hypothesis  

Because of the multi-organ involvement of ALF, I hypothesize that understanding the 

complex interaction between multiple variables representing various organ systems may 

provide better insight as well as improve the prognostic value of the current prognostic 

models.  

 

Aim of study 

To assess the prognostic value of parenclitic network analysis in patients with p-ALF 

admitted to the ICU.
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Method 

Database Description and Extraction 

The data analysed in this study was sourced from the third version of the Medical 

Information Mart for Intensive Care (MIMIC-III) following training, application, and 

obtention of required permissions (Record ID: 48067739). The MIMIC-III dataset includes 

over 53,000 unique hospital admissions.  Initially, the complete MIMIC-III clinical dataset 

was downloaded to a secured cloud storage of the University College London (UCL) and 

structure query language (SQL) code was used to extract the required data based on the 

inclusion criteria.  

Thus, the inclusion criteria include being an adult (aged 18 years and above) and being 

diagnosed with ALF linked with paracetamol/acetaminophen overdose at the time of ICU 

admission. Patients with less than 50% of clinical data records or those with missing 

follow-up and hospital mortality records we excluded from this study. 

Specifically, the SQL code extracted data of patients aged 16 years and above of any 

gender who have been diagnosed (ICD_DIAGNOSIS) with acute liver failure based on 

the International Classification of Diseases 9th revision (ICD9) Code (570) [362] and who 

have a combination of the strings ‘acetaminophen’ or ‘paracetamol’ or other known 

commercial names of acetaminophen-containing combination drugs as well as the string 

‘overdose’ in their clinical notes (NOTEEVENTS). The combination of the clinical note 

details with the ICD9 code was performed to reduce the error inherently associated with 

the now obsolete ICD9 diagnostic code used in the MIMIC-III data, especially for 

acetaminophen/paracetamol-induced ALF [363]. The list of patients was then used to 

extract the laboratory variables (LABEVENTS), and vitals (CHARTEVENTS). Other clinical 

variables of identified patients including age, sex, ICU length of stay, and in-hospital 

mortality, were also extracted for analysis.  

Further, the minimum Glasgow Coma Score (GCS) and King’s College Criteria (KCC) 

which index patients’ level of consciousness [364] and severity of ALF [365] respectively 

were computed based on the available data recorded during the first day of ICU 

admission and included in the analysis. The GCS was calculated based on the patient’s 

verbal, and motor responses and eye-opening [366]. For KCC, patients were scored 
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based on the level of acidosis (arterial pH < 7.30), coagulopathy (International Normalized 

Ratio of > 6.5), kidney function (serum creatinine > 3.4 mg/dL, and presence of hepatic 

encephalopathy of grade 3 or 4 according to the West Haven grading system [365]. 

However, because the MIMIC-III dataset does not contain the West Haven grades (or any 

grading system) of hepatic encephalopathy, patients’ GCS score of ≤ 8 was classed as 

West Haven grade III or IV according to clinical guidelines see [367, 368], for more). 

The sequential organ failure assessment (SOFA) score, which is often used to assess the 

severity (morbidity) of critically ill patients was also calculated since the study population 

is primarily those admitted to the ICU [369]. Finally, mortality was defined as patients who 

died within 28 days of hospitalisation and those that underwent liver transplantation 

(within 28 days) because these patients probably would not have survived if they had not 

been transplanted. 

 

Parenclitic Network Analyses 

Once the extracted data were cleaned and sorted, parenclitic analysis was performed as 

previously described [358, 359]. The software to perform the parenclitic analysis was 

previously developed on MATLAB as described in Chapter 4. Briefly, parenclitic network 

analysis based on patients’ clinical or biochemical biomarkers was performed. Parenclitic 

network mapping is a novel approach for network analysis [248], facilitating the mapping 

of individual data points within models constructed from a reference population (i.e., 

patients who survive ALF). Initially, the correlation between clinical/biochemical 

biomarkers is assessed in the reference population to find out the expected relationship 

between the pair of biomarkers. To map the network of individual patients, a parenclitic 

approach was used. This analysis measures the deviations of an individual patient from 

the expected relationship between variables in the reference population. For a detailed 

exploration of parenclitic network analysis in the context of cirrhosis, refer to Chapter 5 

and Chapter 6. In this chapter, the variables of patients who survived p-ALF 28 days post-

ICU admission were used as the reference population.  Regression analysis was 

performed on pairs of clinical variables based on a p-value that is corrected for the 

number of comparisons (Bonferroni correction). A population network was then created 

based on statistically significant regressions. The parenclitic deviations from the 
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significantly correlated models along each axis (pairs of variables) were computed and 

used to weigh the network map of individual patients. The deviation along each axis is 

reported as δ-A/B (e.g., δ-chloride/bicarbonate), where A or B represents a biochemical 

variable (e.g., chloride and bicarbonate), and δ denotes deviation from the regression line 

between A and B in survivors with ALF (i.e., the reference population). Network mapping 

was carried out using an in-house code developed in MATLAB (MathWorks, CA, USA). 

 

Detection of local clusters within the network 

For a complex physiological network containing a high number of nodes, understanding 

the cliques/communities of variables could give insight into the behaviour of nodes inside 

the network. The k_clique percolation method is a community detection technique that is 

robust to the overlap of shared characteristics between communities in a network. The 

technique defines all the cliques (a subgraph of a network where all member nodes are 

adjacent to each other) within a network that shares k-1 (at least one) node [370]. Clique 

in this instance is defined as a complete sub-network within the overall correlation network 

comprised of physiological variables with a higher likelihood of being correlated compared 

with variables from other communities [371]. Thus, the physiological communities are 

defined as organ systems more closely aligned in functionality compared with other nodes 

within the overall network. In this study, the k-clique percolation method was employed 

using a MATLAB function originally written by Ahn-Dung Nguyen [372]. The nodes and 

edges of the detected community (cliques) are color-coded for clarity and show which 

variable belongs to the same clique. 

 

Principal Component Analyses 

Since parenclitic network mapping is based on the correlation between physiological 

variables in a reference population, it shares some statistical insight with the principal 

component analysis commonly used for dimension reduction. Thus, principal component 

analysis was also performed on the patients’ variables to assess which combination of 

variables (principal components, PC) can predict survival in patients with paracetamol-

induced ALF. This analytic method can identify clusters of variables that are highly 

correlated before dimension reduction. Therefore, it has been used for the identification 
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of clusters during network analysis within the context of critical care [12]. Briefly, the 

principal component analysis (PCA) reduces the dimension of a dataset by computing 

the best combination of variables (PC’s) that explains most of the variability in a dataset 

[373]. For PCA, Bartlett’s test of Sphericity (Chi-squared) and KMO-MSA (Kaiser, Meyer, 

Olkin’s Measure of Sampling Adequacy) was used to assess whether the dataset is 

suitable for the Factor Analysis (PCA) while Kaiser’s rule based on eigenvalues > 1.0 was 

used to determine relevant PC’s that explains a significant portion of the variability in the 

data. To extract variables that could be interpreted easily, the normalized varimax rotation 

method was used [374]. 

 

Statistical analysis 

The characteristics of patients who survived and those who did not survive were 

compared with continuous and categorical variables presented respectively as mean ± 

standard deviation (SD) and median and interquartile range (IDR). For comparison of 

continuous variables between the patients’ groups, independent samples t-test or Mann-

Whitney U tests were used depending on whether the data was normally distributed. Chi-

squared test was used for comparing categorical variables. Significantly different 

variables (parenclitic and principal components) were subjected to univariate and then 

multivariate COX regression analysis. To compare the hazard ratios of the network 

indices, the scales of parenclitic deviations were normalised before Cox regression 

analysis using Z transformation. Receiver operating curve (ROC) analyses were 

performed for variables that were independently predictive of 28-day ICU mortality and 

the area under the curve (AUC) computed. Positive and negative predictive values of the 

ROC cut-offs were computed using the sensitivities and 1-specificities. Most statistical 

analyses were performed on SPSS Statistics 26 (IBM Corp., Armonk, NY). For the 

assessment of prognostic improvement from the combination of parenclitic indices and 

principal components with SOFA, Brier score, integrated discrimination improvement 

(IDI), and the net reclassification indices (NRI) were computed on Stata statistical 

software (Stata/MP, Version 17.0). Lower Brier scores translate into a better predictive 

model while IDI and NRI give the percentage decrease in misclassification due to the 

addition of a new variable to a predictive model [262, 263]. For the interpretation of all 

statistical analysis results, a 2-tailed p-value less than 0.05 was used as the significant 
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cut-off. For the combination of SOFA with the independently predictive indices, composite 

scores were created using the formula β1 ×SOFA + β2 × δ or PC’s, where β is the 

multivariate Cox regression coefficients of the variables.
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Results 

Patients’ characteristics 

A total of 640 patients with ALF due to paracetamol overdose were included in this 

chapter of which 249 (38.9%) either did not survive ICU stay or underwent liver 

transplantation. Overall, there was no significant difference in age (years), ICU length of 

stay (LOS), serum bicarbonate, serum sodium (Na), International Normalized Ratio (INR), 

white blood cell count (WBC), heart rate (HR), respiratory rate (RespRate), and blood pH 

(pH). However, there was significantly higher ALT (alanine aminotransferase) and AST 

(aspartate transaminase), serum albumin, chloride, platelet count, body temperature, 

mean blood pressure, oxygen saturation, haemoglobin, and Glasgow Coma Score (GCS) 

in the survival compared with non-survivors (Table 6.1). 

 

Table 6.1. Significantly different clinical and laboratory variables between ICU survivors and non-survivors 

based on T-test or Mann-Whitney U Test. 

Variables 

Survivors (391) 

Mean ± SD/ Median (IQR) 

Non-survivors (249) 

Mean ± SD/ Median (IQR) p-value 

Age (years) 57 (43 – 69) 53 (43 – 68) 0.38 

Male Sex, n (%) 204 (52.17) 148 (59.44) 0.072 

ICU Length of stay (days) 12.19 ± 15.99 7.15 ± 6.30 <0.001 

SOFA 7.05 ± 3.75 8.70 ± 4.04 <0.001 

King’s College Criteria (KCC) 1.00 (0.00 – 1.00) 1.00 (0.00 – 1.50) <0.001 

Alanine Aminotransferase (U/L) 2082 ± 3187 1344 ± 2031 0.003 

Aspartate Transaminase (U/L) 2741 ± 4081 2293 ± 3237 0.180 

Alkaline Phosphatase (U/L) 104 (71 – 161) 124 (82 – 178) 0.007 

Bilirubin (mg/dL) 2.00 (0.90 – 5.45) 2.80 (1.00 – 8.90) 0.016 

Albumin (g/dL) 3.04 ± 0.65 2.80 ± 0.54 <0.001 

INR 2.66 ± 2.47 2.83 ± 2.47 0.411 

Urea (mg/dL) 37.80 ± 28.94 43.12 ± 27.76 0.022 

Creatinine (mg/dL) 2.21 ± 1.83 2.46 ± 1.91 0.093 

Sodium (mEq/L) 139.99 ± 5.43 140.10 ± 5.94 0.811 

Chloride (mEq/L) 107.28 ± 7.04 106.07 ± 7.29 0.038 

Phosphate (mg/dL) 4.37 ± 2.44 5.33 ± 2.24 <0.001 

Bicarbonate (mEq/L) 22.55 ± 4.70 22.36 ± 5.18 0.984 

Lactate (mmol/L) 3.10 (1.90 - 5.55) 5.05 (2.80 - 8.80) <0.001 

Arterial blood pH 7.42 ± 0.07 7.39 ± 0.11 0.004 

Glucose (mg/dL) 177.36 ± 80.81 202.65 ± 105.80 0.001 

Haemoglobin (mg/dL) 11.65 ± 2.15 11.32 ± 2.13 0.058 

Platelet count (x 1000/µl) 198 ± 118 180 ± 108 0.061 

White Blood Count (x 1000/µl) 14.31 ± 9.33 14.86 ± 8.10 0.453 

Temperature (oC) 36.88 ± 1.22 36.69 ± 1.63 0.089 

Heart Rate (beat/min) 94 ± 18 95 ± 18 0.522 

Mean Blood Pressure (mmHg) 81.07 ± 12.00 78.02 ± 11.95 0.002 

Respiratory Rate (breath/min) 20.55 ± 4.97 21.24 ± 4.92 0.084 

SpO2 (%) 96.74 ± 2.97 95.84 ± 4.71 0.003 

Glasgow Coma Score (GCS) 9.27 ± 5.11 7.62 ± 4.81 <0.001 
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Data is expressed as Mean ± Standard Deviation or Median (Interquartile Range) depending on the type of 

the variable. SOFA; Sequential Organ Failure Assessment score, INR; International Normalized Ratio, 

SpO2; Oxygen Saturation, KCC; King’s College Criteria. Either the t-test or the Mann-Whitney U Test was 

used for statistical analysis based on the normality of data distribution.  
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The difference in network indices between ICU survivors and non-survivors 

There was an overall more correlated variables showing higher organ systems 

connectivity in the survivors compared with the non-survivors. Detection of clusters within 

the networks using the k-clique percolation method showed observable differences in the 

pattern of network clusters between the groups with optimum k of 5. Specifically, a cluster 

of liver function-related biomarkers was only found in survivors. Also, the arterial blood 

pH shows a higher correlation with kidney function markers (serum creatinine) in survivors 

(Figure 6.1), while in the non-survivors, the pH forms a community with oxygen saturation 

and respiratory rate (Figure 6.2). Further to the correlation map, we mapped the 

parenclitic network of individual patients based on the deviation of pairs of physiological 

variables from the reference model. In general, the statistically different parenclitic 

deviations along all physiological axes were significantly higher in non-survivors 

compared with survivors except along the chloride-bicarbonate and creatinine-alkaline 

phosphatase axes (Table 6.2). 

 

 

Figure 6.1. Network map of clinical and laboratory variables showing correlation and K-Clique percolation 

communities of patients with acute liver failure that survived ICU stay (Optimized k-clique size = 3). Cl; 

chloride, AST; aspartate transaminase, ALT; alanine aminotransferase, GCS; Glasgow Coma Score, Bil; 

Total Bilirubin, ALP; Alkaline Phosphatase, Cr; Serum Creatinine, Na; Serum Sodium, Glu; Blood Glucose, 

HR; Heart Rate, Temp; Temperature. 
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Figure 6.2. Network map of clinical and laboratory variables showing correlation and K-Clique percolation 

communities of patients with acute liver failure that did not survive ICU stay (Optimized k-clique size = 3). 

Cl; chloride, AST; aspartate transaminase, ALT; alanine aminotransferase, GCS; Glasgow Coma Score, 

Bil; Total Bilirubin, ALP; Alkaline Phosphatase, Cr; Serum Creatinine, Na; Serum Sodium, Glu; Blood 

Glucose, HR; Heart Rate, Temp; Temperature. 

 

Table 6.2. Significantly different parenclitic deviations between ICU survivors and non-survivors based on 

the T-test or Mann-Whitney U Test according to the distribution of data (normality test). 

Variables Survivors Non-survivors p-value 

δ-Chloride/bicarbonate 0.83 (0.44 - 1.24) 0.72 (0.39 - 1.23) 0.021 

δ-pH/bicarbonate 0.04 (0.02 - 0.07) 0.05 (0.02 - 0.09) 0.001 

δ-GCS/ALT 5.34 (2.92 - 5.94) 5.65 (3.35 - 6.25) 0.013 

δ-Cr/ALP 1.20 (0.69 - 1.62) 0.93 (0.56 - 1.48) 0.043 

δ-pH/Cr 0.04 (0.02 - 0.07) 0.06 (0.03 - 0.09) <0.001 

δ-GCS/Na 2.18 (1.15 - 3.27) 2.42 (1.35 - 3.37) 0.043 

δ-Lactate/Glu 1.60 (0.79 - 2.46) 2.00 (1.00 - 4.08) 0.001 

δ-Urea/Bil 2.66 (1.55 - 4.69) 2.99 (1.69 - 6.09) 0.045 

δ-Lactate/HR 1.53 (0.84 - 2.57) 1.82 (0.95 - 3.46) 0.015 

δ-SpO2/RespR 0.97 (0.46 - 1.6) 1.03 (0.57 - 1.85) 0.043 

Cl; chloride, AST; aspartate transaminase, ALT; alanine aminotransferase, GCS; Glasgow Coma Score, 

Bil; Total Bilirubin, ALP; Alkaline Phosphatase, Cr; Serum Creatinine, Na; Serum Sodium, Glu; Blood 

Glucose, HR; Heart Rate, Temp; Temperature. 
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Parenclitic deviations (δ’s) predict survival 

Parenclitic deviations along pH-bicarbonate, pH-creatinine, lactate-glucose, lactate-heart 

rate, and SpO2-respiratory rate axes were significantly linked with increased risk of 28-

day ICU mortality according to univariate Cox regression analysis. Specifically, each unit 

respective deviations along the blood pH-bicarbonate and pH-creatinine axes were both 

associated with over 37% and 36% increase in the risk of ICU mortality. Also, unit 

deviations along the lactate-glucose, lactate-heart rate, and SpO2-respiratory rate axes 

were respectively linked with approximately 40%, 36%, and 21% increase in the risk of 

28-day mortality in the ICU (Table 6.3). 

 

Table 6.3. Univariate Cox regression analysis of parenclitic indices based on ICU survival and follow-up. 

Variables  β SEM Hazard Ratio (95% CI) p-value 

δ-Chloride/bicarbonate 0.079 0.094 1.08 (0.90 – 1.30) 0.402 

δ-pH/bicarbonate 0.317 0.082 1.37 (1.17 – 1.61) <0.001 

δ-GCS/ALT 0.078 0.127 1.08 (0.84 – 1.39) 0.539 

δ-Cr/ALP 0.119 0.085 1.13 (0.95 – 1.33) 0.162 

δ-pH/Cr 0.308 0.078 1.36 (1.17 – 1.59) <0.001 

δ-GCS/Na - 0.066 0.107 0.94 (0.76 – 1.15) 0.536 

δ-Lactate/Glu 0.334 0.076 1.40 (1.20 – 1.62) <0.001 

δ-Urea/Bil 0.088 0.073 1.09 (0.95 – 1.26) 0.228 

δ-Lactate/HR 0.307 0.077 1.36 (1.17 – 1.58) <0.001 

δ-SpO2/RespR 0.190 0.070 1.21 (1.05 – 1.39) 0.007 

Cl; chloride, AST; aspartate transaminase, ALT; alanine aminotransferase, GCS; Glasgow Coma Score, 

Bil; Total Bilirubin, ALP; Alkaline Phosphatase, Cr; Serum Creatinine, Na; Serum Sodium, Glu; Blood 

Glucose, HR; Heart Rate, Temp; Temperature, SEM; Standard Error of Mean, HR; Hazard Ratio, CI; 

Confidence Interval. 
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Parenclitic deviations predict survival independent of SOFA 

Multivariate Cox regression analyses were performed to assess whether the significantly 

predictive network indices are independent of the severity of ALF measured by SOFA and 

KCC. SOFA and KCC were initially assessed for their predictive values and were both 

found to be individual predictors of 28-day mortality in this study population (HR, 95% CI 

= 1.04, 1.01 – 1.08, p = 0.014 and 1.18, 1.02 – 1.34, p = 0.034 respectively). Accordingly, 

multivariate analysis showed that physiological deviations along blood pH-bicarbonate 

(hazard ratio, 95% CI = 1.32, 1.11 – 1.56), blood pH-serum creatinine (hazard ratio, 95% 

CI = 1.30, 1.11 – 1.52), lactate-glucose (hazard ratio, 95% CI = 1.34, 1.15 – 1.57), 

lactate-heart rate (hazard ratio, 95% CI = 1.32, 1.14 – 1.54) and SpO2-respiratory rate 

(hazard ratio, 95% CI = 1.19, 1.03 – 1.36) axes predicts 28-day mortality independent of 

SOFA score and King’s College Criteria (Table 6.4). 

 

Table 6.4. Multivariate Cox regression of parenclitic indices vs SOFA in predicting survival in ALF patients admitted to 

the ICU. 

Variables  β SEM Hazard Ratio (95% CI) p-value 

δ-pH/bicarbonate 0.275 0.086 1.32(1.11 – 1.56) 0.001 

SOFA 0.053 0.022 1.06(1.01 – 1.10) 0.017 

KCC 0.092 0.107 1.10(0.89 – 1.35) 0.391 

     

δ-pH/Cr 0.259 0.080 1.30(1.11 – 1.52) 0.001 

SOFA 0.050 0.023 1.05(1.01 - 1.10) 0.027 

KCC 0.098 0.107 1.02(0.82 - 1.26) 0.362 

     

δ-Lactate/Glu 0.295 0.079 1.34(1.15 – 1.57) <0.001 

SOFA 0.032 0.023 1.03(0.99 - 1.08) 0.164 

KCC 0.113 0.107 1.10(0.89 – 1.36) 0.289 

     

δ-Lactate/HR 0.281 0.078 1.32(1.14 – 1.54) <0.001 

SOFA 0.033 0.023 1.03(0.99 – 1.08) 0.159 

KCC 0.133 0.106 1.14(0.93 – 1.41) 0.211 

     

δ-SpO2/RespR 0.171 0.071 1.19(1.03 – 1.36) 0.016 

SOFA 0.027 0.021 1.03(0.99 – 1.07) 0.188 

KCC 0.082 0.098 1.09(0.9 – 1.31) 0.402 

SOFA; Sequential Organ Failure Assessment score, Cr; Serum Creatinine, Glu; Blood Glucose, HR; Heart 

Rate, SEM; Standard Error of Mean, HR; Hazard Ratio, CI; Confidence Interval. 
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Principal component analysis 

A total of 9 principal components had eigenvalues >1 and were included in further 

analysis (Appendix 34). Of these, only principal components 1, 3, and 7 were significantly 

linked with mortality according to univariate Cox regression analysis (Appendix 35). Further, 

multivariate Cox regression analysis showed that each unit increase in Factors 1 and 6 

are respectively associated with a 27% and 24% increase in the risk of mortality (Table 

6.5). PC-1 identified ALT, AST, and INR while PC-2 identified albumin, mean blood 

pressure, and haemoglobin as clusters for dimension reduction as shown in Appendix 34. 

 

Table 6.5. Multivariate Cox regression of Principal Components vs SOFA in predicting survival in ALF 

patients admitted to the ICU. 

Variables  β SEM Hazard Ratio (95% CI) p-value 

PCA-1 0.248 0.091 1.28 (1.07 - 1.53) 0.006 

SOFA 0.059 0.033 1.06 (1.00 - 1.13) 0.068 

KCC 0.180 0.145 1.20 (0.90 - 1.59) 0.213 

PCA-3 -0.300 0.098 0.74 (0.61 - 0.90) 0.002 

SOFA 0.042 0.034 1.04 (0.98 - 1.11) 0.209 

KCC 0.297 0.149 1.35 (1.01 - 1.80) 0.047 

PCA-7 0.164 0.105 1.18 (0.96 - 1.45) 0.117 

SOFA 0.054 0.033 1.06 (0.99 - 1.13) 0.103 

KCC 0.171 0.152 1.19 (0.88 - 1.60) 0.261 

SEM; Standard Error of Mean, HR; Hazard Ratio, CI; Confidence Interval, SOFA; Sequential Organ Failure 

Assessment score.
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Parenclitic network indices improve the predictive value of SOFA 

Based on the area under the ROC curve, the addition of both parenclitic indices and 

principal components significantly improves its predictive value as shown by the lower 

Brier scores of some of the composite scores compared with that of SOFA alone (Table 

6.6). Results from IDI and NRI analysis show that the addition of the parenclitic indices 

and principal components significantly improves the prognostic performance of the SOFA 

score. With regards to the IDI and NRI, the addition of principal component 1 showed the 

highest reduction (IDI = 15.1% and NRI = 73.2%) in overall predictive error from using 

SOFA alone (Table 6.7). 

Also, the Kaplan-Meier survival curve (with the Chi-Square test) shows that compared 

with SOFA alone, the ROC cut-off of the composite scores significantly discriminates 

between ICU-admitted ALF patients who survived and those who did not. Specifically, 

cut-offs of composite scores including SOFA and principal components 1 (p = 0.005) and 

6 (p = 0.01) as well as the independently predictive parenclitic deviations (pH-

Bicarbonate, p < 0.001; pH-Creatinine, p = 0.002; Lactate-Glucose, p = 0.001; Lactate-

Heart Rate, p = 0.002) significantly classified survivors and non-survivors (Figure 6.3 & 

Figure 6.4).  

 

Table 6.6. Area on the ROC curves, sensitivity, specificity, PPV, NPV, and Brier score of parenclitic indices 

and principal components in combination with SOFA compared with SOFA alone. 

Variables AUC p-value Cut-Off 
Sensit

ivity 

Specif

icity 

% AUC 

increas

e 

PPV NPV 

Brier 

Score 

SOFA 0.617 <0.001 6.5 0.683 0.56 - 0.497 0.735 0.1294 

δ-pH/Carbonate + 

SOFA 

0.658 <0.001 0.725 0.606 0.614 6.65 0.5 0.71 0.1268 

δ-pH/Creatinine + 

SOFA 

0.633 <0.001 0.695 0.601 0.592 2.59 0.484 0.7 0.1276 

δ-Lactate/HR + SOFA 0.646 <0.001 0.4954 0.657 0.626 4.7 0.528 0.741 0.1231 

δ-Lactate/Glu + SOFA 0.652 <0.001 0.4902 0.684 0.641 5.67 0.548 0.761 0.1232 

δ-SpO2/RespR + SOFA 0.654 <0.001 0.6461 0.623 0.619 6 0.51 0.721 0.1226 

Principal component 1 + 

SOFA 

0.754 <0.001 0.6422 0.715 0.714 22.2 0.614 0.797 0.0519 

Principal component 3 + 

SOFA 

0.712 <0.001 0.5692 0.692 0.667 15.4 0.57 0.773 0.0509 

SOFA; Sequential Organ Failure Assessment score, Cr; Serum Creatinine, Glu; Blood Glucose, HR; Heart Rate, SEM; Standard 
Error of Mean, HR; Hazard Ratio, CI; Confidence Interval.   
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Table 6.7. Measures of prognostic improvement of SOFA due to the addition of parenclitic indices and 

principal components. 

Variables IDI p-value NRI p-value 

δ-pH/Bicarbonate + SOFA 0.0539 <0.001 0.3928 <0.001 

δ-pH/Creatinine + SOFA 0.0521 <0.001 0.3939 <0.001 

δ-Lactate/ Heart Rate + SOFA 0.0464 <0.001 0.3790 <0.001 

δ-Lactate/Glucose + SOFA 0.0401 <0.001 0.3641 <0.001 

δ-SpO2/Respiratory Rate + SOFA 0.0406 <0.001 0.3723 <0.001 

Principal component 1 + SOFA 0.0062 0.2063 0.1542 0.234 

SOFA; Sequential Organ Failure Assessment score, IDI; Integrated discrimination improvement, and NRI; 

Net reclassification indices (NRI).



156 
 

 

 

  

Figure 6.3. Kaplan Meier graphs of patients with acute liver failure admitted to the intensive care unit that 

survived and those that did not survive as classified by the cut-off of SOFA.  

 

 



157 
 



158 
 

  

Figure 6.4. Kaplan Meier graphs of patients with acute liver failure admitted to the intensive care unit that 

survived and those that did not survive after 28 days as classified by the cut-offs of the composite scores 

from the combination of SOFA with the parenclitic deviations along the pH-Bicarbonate (pH-CO3), pH-

Creatinine (pH-Cr), Lactate-Heart rate (Lactate-HR), Lactate-Glucose (Lactate-Glu), and Oxygen 

saturation-Respiratory rate axes. 
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Discussion 

The liver serves as a major hub in the physiological network, and acute dysfunction is 

associated with mortality in many patients. Those who survive acute liver failure (ALF) 

may have adapted compensatory mechanisms that enhance survival. However, 

identifying these mechanisms necessitates a holistic or network approach. In this study, 

we employed parenclitic network mapping to demonstrate the prognostic value of this 

network approach in predicting survival among ICU-admitted patients with paracetamol-

induced ALF (p-ALF). The results revealed that parenclitic deviations can predict survival 

in this patient population independently of the current clinical prognostic factors (SOFA 

and KCC). Also, the combination of the independent survival predictors with SOFA 

resulted in an over 30% reduction in the classification error compared to SOFA alone. 

This is the first study, to the best of our knowledge, to apply holistic network mapping in 

the prediction of transplant-free survival in ICU-admitted p-ALF patients. 

In terms of correlation network, those p-ALF patients who did not survive in the ICU for at 

least 28 days were found to have an overall lower organ system connectivity compared 

with survivors. Further, network community detection also showed a marked difference 

in network structure between the survivors and non-survivors characterised by a 

significant difference in organ systems clustering (community formation). Generally, a 

community in a network defines a sub-population of nodes (organ systems) that are more 

closely linked (clustered) than other nodes outside of the community [375-377]. 

Expectedly, the variables associated with liver function (e.g., ALT, AST, INR, Alb) were 

relatively more clustered in survivors compared with the non-survivors (green nodes in 

Figure 6.1 vs Figure 6.2). This finding is in line with the results of the principal component 

analysis as PC-1 in this analysis also found ALT, AST, and INR in the same cluster. 

According to survival analysis, this cluster (PC-1) along with its parenclitic deviations 

could predict mortality independently of SOFA and KCC.  

In addition to the liver function community in the correlation network, arterial pH was also 

found to cluster with serum creatinine and bicarbonate in survivors, compared with non-

survivors where it clustered with respiratory nodes (SpO2, Respiratory rate) and 

bicarbonate (purple nodes in Figure 6.1 and Figure 6.2). Thus, inferring a physiologically 

different compensatory mechanism for acid-base balance between the groups. 
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Essentially, it appears that the regulation of arterial pH was more closely linked with kidney 

function in survivors, while in non-survivors, this function was mainly controlled by 

respiratory compensation. The role of the liver in acid-base homeostasis via the regulation 

of systemic clearance of lactic acid and urea is generally dysregulated in liver disease 

[378]. This means that in liver disease, the role is generally shifted to the classical 

regulatory pathways involving the respiratory and renal systems. In the context of ALF, 

acid-base disequilibrium has been previously shown to be driven mainly by a systemic 

increase in lactic acid especially due to overproduction in the peripheral organs [379]. 

Generally, the kidney plays a protective role in lactic acidosis through a pH-dependent 

increase in the rate of clearance of systemic lactic acid [380, 381]. Indeed, lactic acidosis 

is significantly linked with poorer prognosis in ALF [382-387]. Interstitial, despite ALF 

patients typically exhibiting markedly increased lactate levels, frequently, there's no 

evident acid-base imbalance due to compensatory hypoalbuminaemic alkalosis [388]. In 

our study, arterial pH was only slightly reduced in non-survivors with ALF in comparison 

with the survivor group (Table 6.1). It appears that sufficient renal function may be 

associated with improved survival in ALF patients admitted to the ICU especially since 

non-survivors in this study showed significantly higher deviation in the pH-creatinine axis 

(δ-pH/Creatinine, Table 6.2  - Table 6.4). In line with this observation, δ-pH/Creatinine was 

an independent prognostic factor in predicting mortality, indicating the importance of this 

axis in the survival of critically ill patients with ALF. 

Aside from connectivity and organ systems community structure, overall parenclitic 

deviations of non-survivors were found to be significantly higher compared with survivors. 

For instance, non-survivors have higher deviation along the pH-bicarbonate, pH-

creatinine, lactate-glucose, lactate-heart rate, and SpO2-respiratory rate axes which are 

independently associated with survival. This translates to significantly reduced 

physiological coupling between these pairs of variables. Specifically, most of the 

physiological disconnections observed in non-survivors are associated with acid-base 

homeostasis (i.e., blood pH, serum bicarbonate level, and serum lactate). Thus, 

corroborating the significance of acid-base compensatory mechanisms in the prognosis 

of patients with ALF and critically ill patients [389]. Importantly, these network deviations 

predicted mortality even though there was only a slight difference in arterial pH between 

the patient groups. Thus, showing the importance of considering the physiological 
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network context rather than the individual isolated organ system in clinical management 

and prognosis. Also, deviation along the SpO2-respiratory rate axes predicted survival 

independent of SOFA and KCC. SpO2 estimates the percentage of oxyhaemoglobin 

relative to the total blood haemoglobin and reflects the cardiopulmonary efficiency in 

terms of systemic oxygen transportation. Although multiple cardiorespiratory factors 

contribute to oxygen saturation dynamics [352], SpO2 and respiratory rate have been 

shown to be physiologically inversely correlated [390]. Interestingly, there was a 

significantly higher mean baseline SpO2 and lower respiratory rate in p-ALF patients who 

survived compared with non-survivors (Table 6.1). Thus, loss of correlation and 

coordination between these two variables may be interpreted as patients’ loss of 

adaptability and reduced ability to maintain systemic oxygen levels. Indeed, a previous 

study by Mower et al showed a poor correlation between oxygen saturation and 

respiratory rate in around 15,000 patients admitted to the ICU for various reasons. 

However, the authors did not assess the relationship with patients’ survival [391].   

Indeed, the results of this study corroborate previous research in the field, where changes 

in organ system connectivity measures using network analysis and other methods were 

shown to improve traditional scoring systems in predicting patient outcomes in cirrhosis 

or even detecting subgroups of patients that may respond to therapy (e.g., targeted 

albumin therapy)[15, 77, 358, 359]. Specifically, a previous study using parenclitic 

network analysis showed a reduced organ system connectivity (based on population-level 

correlation network mapping) in patients with cirrhosis who did not survive compared with 

survivors [359]. This corroborated a previous study in patients with cirrhosis referred for 

formal clinical assessment of hepatic encephalopathy with similar findings where organ 

system connectivity was relatively lower in patients that did not survive after 12-month 

follow-up [358]. However, the reduction observed in the patients with decompensated 

cirrhosis was more in magnitude compared with ALF in the non-survivors. This may be 

due to the significantly different time course of development or clinical history of these 

diseases whereby cirrhosis often develops over decades while ALF progresses more 

rapidly over a few weeks or days in otherwise healthy individuals [21, 392]. Thus, while 

chronic cirrhosis probably affects the overall physiology of patients, culminating in a 

general loss of organ systems coupling, ALF is likely linked with a shift in compensatory 

mechanisms to counter the abrupt and rapidly deteriorating liver function. Regardless of 
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the time course of liver failure, a physiological network approach appears to provide 

information not currently offered by existing clinical criteria (e.g., SOFA). This could open 

new avenues for improved prognostication and the discovery of novel personalized 

therapies based on individual networks in future investigations. 

To further verify the results of the network analysis, especially the network community 

detections, we performed a principal component analysis to assess whether similar 

variables will be combined within each component and whether these components can 

also predict survival in p-ALF patients. While principal component analysis is useful for 

dimension reduction in multivariate datasets, it is limited in scope when compared with 

network mapping (correlation or parenclitic). Thus, while it could be used for validation, it 

does not suffice as a viable replacement for network analysis. This is due to several 

inherent limitations of principal component analysis. Firstly, principal component analysis 

is prone to loss of crucial information and oversimplicity resulting from the reduction of 

dimensions of the datasets [393]. Importantly, because principal component analysis is 

based on linear correlation between variables in the overall population, compared with 

parenclitic network analysis, it does not consider the possibility that correlation may be 

different between the subgroups (e.g., survivor and non-survivors, healthy and diseased, 

etc.) within the study population.  

Indeed, the principal components related to liver function (component 1; AST, ALT, and 

INR), haemodynamic function (component 4; Serum albumin, mean blood pressure, and 

haemoglobin) as well as metabolic function (component 7; lactate, glucose e.g., liver-

dependent Cori cycle for lactate-to-glucose recycling) were found to be significantly 

associated with patients’ survival. However, only components 1 (liver function) and 3 

(haemodynamic) were independent of SOFA score and the KCC (Table 6.5). Essentially, 

component 1 captures the ALF-related rapid deterioration of liver function due to 

paracetamol-induced, cytochrome P450-driven toxicity, as well as increased intra-

hepatic glutathione depletion, oxidative stress, mitochondrial dysfunction resulting in 

hepatocyte necrosis [394, 395]. This finding is in line with a recent study by Yang et al 

which found that the addition of INR (and alkaline phosphatase) could significantly 

improve Hy’s model for predicting patients with drug-induced liver injury (DILI) likely to 

develop ALF [396]. Hy’s model is a risk-scoring model developed in 1968 by Hyman 



163 
 

Zimmerman for the prediction of the progression to ALF in patients with DILI and 

incorporates the patient’s total bilirubin, AST, and ALT [397]. Indeed, due to the relatively 

lower specificity other variations to the original Hy’s law and other prognostic models have 

been proposed and validated including the “new Hy’s law” with higher specificity [398-

400]. Also, the ratio of AST to ALT remains one of the popular models in diagnosis and 

prognosis of various aetiologies of liver disease including those of primary biliary, 

alcoholic, or viral origin [401-403]. 

Further, results of the study show that haemodynamic dysregulation represented by 

component 3 (serum albumin, mean blood pressure, and haemoglobin) is also 

significantly linked to poorer prognosis in patients with p-ALF. This finding is in line with 

previous works in the field showing the implication of haemodynamic dysregulation and 

instability in the prognosis of acute liver failure [404]. ALF is clinically linked with 

dysfunction in multiple organ systems including hyperdynamic circulation characterised 

by hypotension (reduced mean arterial pressure), hyperdynamic circulation, and reduced 

vascular resistance [405]. Thus, a reduction in renal perfusion pressure resulting from 

the haemodynamic dysregulation remains the key driver of renal failure, a complication 

observed in up to 82% of patients with ALF and linked with a significantly poor prognosis  

[406-409]. Indeed, the haemodynamic changes in ALF have been shown to correlate 

with the severity of liver disease and are a strong determinant of liver transplantation 

outcomes [410]. 

Finally, principal component 7 comprising glucose and lactate levels also predicted 

mortality albeit not independently of patients’ severity score. The Cori cycle describes the 

conversion of the muscle-generated lactate, a by-product of anaerobic glycolysis to 

glucose in the liver. Physiologically, gluconeogenesis converts lactate to glucose in the 

liver usually in response to hypoglycaemia. Thus, it could be assumed that hypoglycaemia 

and hyperlactatemia should not coexist. However, in conditions such as paracetamol-

induced ALF, characterised by severe hepatocyte necrosis and loss of liver function, and 

dysfunction in the Cori cycle, these conditions may coexist [411, 412]. Indeed, 

hyperlactatemia and hypoglycaemia have been shown to be individually associated with 

poorer prognosis in p-ALF [383]. 

 



164 
 

Limitations 

One limitation of this study is the retrospective nature of this study which is inherently 

linked with selection bias and lack of some relevant variables (e.g., West Haven HE score) 

since the record was not specifically designed for the assessment of ALF [413]. Another 

limitation of this study is in the characteristics of the patient population as patients are 

from a single centre in the USA which caters to specific regions and demographics. Thus, 

the result herein should be interpreted with this in mind. Finally, the MIMIC-III dataset is 

recorded using the ICD9 code for diagnosis which has been shown to be less specific 

compared with the later update to the ICD (e.g., version 10) [363]. Indeed, to minimize 

error in the selection the ICD9 code was combined with the use of the words “overdose” 

and any commercial names of paracetamol in the clinical notes (NOTEEVENTS) of 

patients. However, this study is based on one of the largest populations of p-ALF patients 

subjected to a rigorous mathematical and statistical analysis. 

Conclusion  

Reduced organ system connectivity and a shift from renal to respiratory compensatory 

mechanisms are associated with poorer prognosis in patients with ALF. This is further 

supported by physiological network disconnections along pH-associated axes which 

predict mortality independent of SOFA and KCC. Indeed, the strength of network analysis 

is the ability to assess the interactions of multiple organ systems in critically ill patients 

where the risk of multiple organ failure is high, and similar findings continue to show 

significant promise [5, 414]. Future studies could benefit from using a multicentre, 

multinational cohort of ALF patients to validate the findings herein.
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Chapter 7 : Dynamic network analysis for prognosis 

in intensive care patients with decompensated 

cirrhosis
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Introduction 

Decompensated cirrhosis the end stage of cirrhosis characterized by multiple organ 

systems dysfunction and failure and is associated with significantly high short-term 

mortality [21, 415, 416]. Clinically, the definitive treatment for decompensated cirrhosis 

is liver transplantation which may increase survival by up to 8 years [417] and is offered 

according to the severity of decompensation and guided by prognostic models [415]. The 

MELD-Na is currently the gold standard for prognostication in patients with cirrhosis. 

However, it is associated with several weaknesses and is not especially accurate for the 

prediction of patients in ICU possibly with multiple organ systems failure (i.e., acute-on-

chronic liver failure, ACLF) [418]. Recently, the European Association for the Study of 

Liver Disease proposed the CLIF-C (Chronic Liver Failure Consortium) score, which 

improves on the SOFA score to index the degree of extra-hepatic organ failure [419]. 

Generally, various improvements to the MELD system have been the addition of further 

clinical variables to create composite scores such as MELD-Na and the MELD-Plus [420]. 

Albeit, these additions have improved the prognostic values of the models, subgroup of 

patients continue to fall through the “prognostic crack”. 

Further, the prognostic models currently in use depend on mathematical algorithms that 

consider organ systems as isolated, independent units with no consideration for the 

physiological context within which they exist. The human body is a complex system 

comprised of various units interacting across varied spatiotemporal dimensions to 

maintain physiological states (stable states), especially in response to and to counteract 

changes in the environment [13, 421]. Indeed, a unique feature of a complex system is 

that the activities of such systems could not be accurately characterised by simply 

summing up the activities of the individual components [422, 423]. Thus, simply adding 

up the benchmarks of dysfunctional organ systems in decompensated cirrhosis may not 

tell the whole physiological story especially since the activities of one organ system could 

well regulate that of another which could itself regulate or be regulated by others, et 

cetera.   

Recent research findings have shown the importance of context in the approach to 

medicine. For instance, the effect of the gut microbiome on the brain (termed gut-brain 

axis) has amounted to an in-depth understanding of previously unknown physiological 
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relationships and the implications in general well-being, disease onset, response to 

treatment, and even prognosis of various diseases (ref). Indeed, the new field of network 

physiology, which aims to define states of well-being based on the strength and dimension 

of organ systems connectivity is continuing to gain traction [424] and brave new insights 

are starting to come to the fore regarding not only the pathophysiology of diseases but 

their implication in terms of response to treatment as well as prognosis [425]. For 

instance, recent studies have shown that heart rate variability (HRV), a non-invasive index 

of various organ systems coupling with the heart rhythm, is generally reduced, and can 

predict survival in cirrhosis independent of MELD [4, 78, 143, 227, 426-428]. Also, heart 

rate turbulence following premature ventricular contractions was recently found to predict 

1-year survival independent of MELD and Child-Turcotte-Pugh scores [77].  

Regarding other methods for organ systems network mapping, Tan et al were the first to 

show that a reduction in organ system correlation network is significantly linked with 

poorer prognosis in patients with cirrhosis [15]. Recently, using parenclitic analysis, a 

static network algorithm that provides a cross-sectional physiological map at the 

individual patient’s level from routine baseline clinical data, was applied to a population of 

patients hospitalised with decompensated cirrhosis. The result showed that reduced 

organ system connectivity as well as breakdown in physiological correlation between 

immune mediators (white blood cells and C-reactive protein) can predict 6-month survival 

and response to increased albumin therapy [425].  

In previous chapters (2, 3), HRV and HRT are reported to be markedly reduced in cirrhosis 

and their long-term indices (DFA α2, SD2, TO) are significantly and independently linked 

with patients’ survival. The hypothesis that decoupling of the cardiac rhythm (driven by 

the electrical firing within the sinoatrial node) from extrinsic regulatory influence (including 

the autonomic nervous system, thermoregulation, hormonal balance, circadian rhythm, 

etc.) and associated reduction in HRV and HRT indices may be driven by inflammatory 

dysregulation in cirrhosis has been previously tested and reported [291, 429]. Thus, 

reduced HRV indexes and increased systems’ isolation probably drive prognosis in 

cirrhosis. This is in line with Pincus’ proposal that a healthy system is a system constantly 

communicating with its parts and regularity/predictability in serial physiological trends is 

a measure of isolation in a complex system [430]. Coincidentally, randomness is a 
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function of information content as proposed by Claude Shannon [431]. Thus, if the 

fundamental measurement of information strength is irregularity, then the classic idea that 

regularity in physiology is associated with a healthy state does not hold. Indeed, this is 

corroborated by various studies that have linked various disease states and increased risk 

of all-cause mortality with reduced variability in physiological variables such as heart rate 

and oxygen saturation [5, 162, 432, 433]. Put together, reduced HRV and HRT are a 

measure of organ systems decoupling and provide useful surrogates for inferring short- 

and long-term regulation of the cardiac rhythm. However, HRV and HRT do not establish 

causal links. Thus, a major question is whether there are available methods for 

establishing causal links between organ systems. Transfer entropy, based on the 

conditional probability of two systems is one such method that provides a causal inference 

between two parallel time series and has been used extensively in various physiological 

contexts [434]
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Hypothesis 

Dynamic network analysis based on transfer entropy measure of information flow 

between heart rate, respiratory rate, and SpO2 time series can predict survival in 

patients with cirrhosis, admitted to the ICU. 

 

Aim of study 

This project aims to assess whether using dynamic network analysis to analyse time 

series from various variables in patients with cirrhosis can provide prognostic value. This 

is a progression from the static, classic network analysis using the parenclitic network 

algorithm and involves the use of transfer entropy to establish a direct causal relationship 

between organ systems. The dynamic network analysis based on transfer entropy 

assesses the causality link between two interacting systems and provides a superior 

measure of the relationship compared to the current paradigm whereby the relationship 

is based on statistical correlation. However, even Karl Pearson knows that “correlation is 

not causation”.
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Materials and methods 

Data Source 

Data for this study was retrospectively collected from the MIMIC-III database containing 

comprehensively curated information of 46,520 ICU adult patients admitted between 

2001 and 2012 to the Beth Israel Deaconess Medical Centre, Harvard Medical School, 

Boston, Massachusetts, United States. The MIMIC-III data contains demographics, vitals 

measurements, laboratory test results, medications and procedures, and clinical notes as 

well as ICD-9 (International Classification of Diseases, Ninth Revision) codes for 

diagnosed diseases. The database also contains a matched dataset of 22,317 waveform 

records and 22,247 numeric records of 10,282 distinct ICU patients. The recorded 

signals include electrocardiograph (ECG), arterial blood pressure (ABP), 

photoplethysmograph (PPG), respiratory rate, heart rate, blood pressure (systolic, 

diastolic, and mean), and oxygen saturation (SpO2) simultaneously recorded by patients’ 

bedside monitors. The numeric data contains physiological recordings with a sampling 

rate of 1Hz. 

 

Cohort Selection. Data extraction and curation 

Data of ICU patients with a single admission for cirrhosis based on the ICD-9 code was 

extracted along with patients’ vitals, clinical records, and laboratory data. The ICD-9 

codes used are 5712, 5715, and 5716 for the diagnoses of alcoholic, non-alcoholic, and 

biliary cirrhosis respectively based on the MIMIC-III diagnosis dictionary 

(D_ICD_DIAGNOSES). The initial extraction was performed using a Structured Query 

Language (SQL) code designed in-house to query the MIMIC-III clinical database. 

Patients’ identity codes from SQL data were used to extract the numeric datasets on 

MATLAB using the WFDB toolbox (https://archive.physionet.org/physiotools/matlab/wfdb-app-

matlab/). Specifically, the earliest numeric time series within the first ICU admission for 

decompensated cirrhosis were downloaded for each patient using the “rdsamp” function. 

Where the first waveform recording could not be retrieved, an attempt was made to 

retrieve the second recording for the same ICU admission. The extracted data were then 

curated and aligned with header files containing the signal information, sampling 

frequency, and signal class (variable names) using the “wfdbdesc” function. Only patients 

https://archive.physionet.org/physiotools/matlab/wfdb-app-matlab/
https://archive.physionet.org/physiotools/matlab/wfdb-app-matlab/
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with a minimum of 20 minutes of continuous simultaneous waveform recording were 

included in the final analysis (Figure 7.1). 

 

 

Figure 7.1. Flow diagram of patients included. ICD-9; International Classification of Diseases, Ninth 

Revision, ICU; Intensive Care Unit. 

 

For comparison, waveform data of sepsis patients were used. Data from the sepsis cohort 

have previously been extracted following a similar procedure as those described here 

(details available elsewhere [5]). In summary, TE analysis (with Monte Carlo correction) 

was performed for 179 ICU patients diagnosed with sepsis and a final cohort involved in 

the comparison analysis included 164 ICU patients with 30-day mortality data. The 

comparison of the organ systems information flow of cirrhosis with sepsis patients is to 

test the hypothesis that there is a difference in physiological network disruption in chronic 

and acute disease types in terms of tolerance to clinical and pathological insults. This is 

in line with previous findings regarding increased physiological tolerance (chronotropic 

responsiveness to cholinergic stimulation) to inflammatory insult in rat models of cirrhosis 
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compared with non-cirrhotic rats [435]. The sepsis cohort thus, serves as a control group 

with relatively similar clinical settings (i.e., ICU admission). 

 

Network Analysis 

Dynamic network mapping was based on causality measure as deduced by the pairwise 

analysis of transfer entropies (TE’s) of individual patient’s physiological time series. 

Transfer entropy is based on conditional probabilities of interacting systems derived by 

Thomas Schreiber from the theory of causality pioneered by Wiener [436] and refined by 

Granger [437]. TE provides details of how one time series influences a simultaneously 

recorded one [434]. Generally, the TE from Y to X is defined as the reduction in 

uncertainty in predicting the future of X based on the presence or past of X giving the 

knowledge of the present or past of Y. If knowledge about the present or past of Y 

improves the probability of predicting the future of X based on the present or past of X 

alone, then mutual information (I) is present between the systems [434, 438] (Figure 7.2). 

 

 

Figure 7.2. Description of transfer entropy computation based on the reduction of H (entropy) of the target. 

The entropy of the target equates to the computational work needed to predict its trends. I, mutual 

information; X and Y are two systems being studied for a causal link. 
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Specifically, each patient’s map includes 3 nodes (for HR, RespR, and SpO2) and the 

edges between these nodes are weighted based on the computed TEs (Figure 7.5 A and 

B) [352]. The directional information transfer between the variables as well as the global 

characteristics of the network was analysed for each patient using weighted network 

topology indices (centrality and shortest path length). The prognostic values of these 

indices were statistically tested. 

 

Computation of Transfer Entropy 

For the transfer entropy measure, a minimum of 20 minutes of simultaneous recordings 

of physiological variables were analysed. Transfer entropy was calculated in MATLAB 

using the “transferEntropyPartition.m” function developed by Lee et al [439] and available 

on Physionet ([440], https://www.physionet.org/content/tewp/1.0.0/). The function 

requires 4 inputs including two simultaneously recorded time series X and Y (e.g., HR, 

RR, or SpO2); and time lag for information transfer between the source and target time 

series (t and w). For this analysis, a time lag of 10 seconds was used based on preliminary 

analysis to detect the optimum transfer entropy between all the time series of the cirrhosis 

ICU patients. Specifically, lag time was varied between 1 and 20, and the mean TE’s 

between HR, RR, and SpO2 were computed. A graph was drawn to visualize the changes 

in the mean TE’s as the lag times vary to detect the lag time with the highest mean TE’s 

(Figure 7.3). Based on the result of the optimization analysis, a lag of 10 seconds was 

used as it captures the optimum information flow in the patient's group.  

https://www.physionet.org/content/tewp/1.0.0/
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Figure 7.3. Changes in mean transfer entropy across varied lag times of 1-20 seconds. The legend presents 

the individual Transfer entropies along all directional axes between heart rate, respiratory rate, and oxygen 

saturation (SpO2). 

 

The time lag translates to the highest time window from which the probability density is 

computed and assumes that information transfer to an organ system may occur with up 

to 10 seconds delay. The freedom to choose 10 seconds was adequate for 20-minute-

long data points (1200 seconds) as shorter recordings would leave less degree of 

freedom. Accordingly, the probability density estimation follows the Darbellay-Vajda 

partitioning algorithm [439] and estimates the increase in the probability of predicting 

future iteration of a target time series or variable (e.g., respiratory rate), based on its past 

and present iteration conditioned on the past and present of a source time series (e.g., 

heart rate; Figure 7.4) 

To verify whether the computed transfer entropy is significant, Monte Carlo analysis was 

performed as originally described by Lee et al [439]. In summary, the target variable was 

randomised 200 times with the transfer entropy from the source time series estimated 

each time. The 200 iterations of the randomised TE’s were pooled into a probability 

distribution with confidence intervals. The 95% confidence intervals of the probability 

distribution were then computed for each TE. Finally, the unrandomized, initial TE is 

deemed significant if it is outside the 95% confidence interval of the randomised TE’s. The 
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assumption here is if the TE’s, computed from timeline events are not based on mere 

chance, then TE’s computed from 200 iterations of randomisation of target variables and 

the unrandomized TE should be statistically different with a 95% confidence interval (p = 

0.05). Thus, if the computed TE is within the 95% probability distribution of the 

randomised TE, then it is merely based on chance and is zero. 

 

 

Figure 7.4. The estimation of transfer entropy from heart rate (HR) to respiratory rate (RR) with source and 

target history/lag length of k = 5. In this instance, the transfer entropy describes the increase in certainty in 

predicting the future iteration of RR based on the 5 events prior, conditioned on the 5-prior iteration of HR. 

This lag time can be expanded depending on data record length and reported delay in information flow 

between organ systems (see [439] for more details). 

 

MELD-Na and SOFA Calculations 

The first-day MELD-Na of patients was calculated using the formula: MELD-Na=MELD + 

1.32 x (137 - Na) - [0.033 x MELD*(137 - Na)] with MELD calculated as MELD=10* 

((0.957* ln [Creatinine]) + (0.378* ln [Bilirubin]) + (1.12* ln [INR])) + 6.43) as described 

[441, 442]. For the calculation of MELD-Na, serum creatinine level was capped at 4.0 

mg/dL to avoid bias in the model against patients with sarcopenia or malnutrition [443]. 

First-day SOFA was also calculated for patients based on patients' urine output; 

administration of norepinephrine, epinephrine, or dobutamine; Glasgow Coma Score 

(GCS), mean arterial pressure (MAP), the fraction of inspired oxygen (FiO2), arterial 

oxygen pressure (PaO2), and ventilation status; as well as the patient’s serum creatinine, 

total bilirubin, and platelet count as described by Vincent et al [444]. 
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Dynamic Network Mapping 

The dynamic network was mapped for individual patients based on the computed transfer 

entropy (in bytes) between the organ systems. Specifically, each patient’s map includes 

3 nodes (for HR, RespR, and SpO2) and the edges between these nodes are weighted 

based on the computed TEs (Figure 7.5 A and B) [352]. The directional information transfer 

between the variables as well as the global characteristics of the network was analysed 

for each patient using weighted network topology indices (the maximum indegree 

centrality and shortest path length). The prognostic values of these indices were 

statistically tested. 

 

Statistical analysis 

All statistical analyses were performed using SPSS Statistics 26 (IBM Corp., Armonk, NY). 

Mann Whitney U test was used to compare the directional information transfer (transfer 

entropy) and network topology indices between survivors and non-survivors. To assess 

which variables are linked with survival, a univariate Cox regression analysis was used. 

Categorical data are presented as counts and percentages while continuous data are 

presented as median and interquartile range (IQR) or mean ± SD based on normality 

distribution. For this study, patients who received liver transplantation were recorded as 

non-survivors as they would not have survived without transplantation [78, 445]. For 

survival analysis, follow-up was censored at 28 days after ICU admission. 

Also, to assess differences in information transfer linked with mortality and disease 

pathophysiology, further analysis was performed. For a measure of interaction between 

mortality and disease group on the information flown between physiological variables, a 

generalized linear model was performed following a factorial design of the Likelihood Ratio 

Chi-Squared test for the TE’s between heart rate, respiratory rate, and SpO2. This 

analysis assesses whether mortality and disease type have a combined effect on the 

transfer entropies between the physiological variables and is an alternative to the two-

way Analysis of Variance (ANOVA) that is more robust to non-normal data where the 

assumption of equal variances is not satisfied. For all statistical analyses, a two-tailed p-

value of < 0.05 was considered statistically significant.
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Results 

A total of 169 patients with 20 minutes or more simultaneous recordings of physiological 

variables (heart rate, respiratory rate, and blood oxygen saturation, SpO2) as well as 

corresponding demographic, laboratory, and clinical records were included in this study. 

The baseline clinical characteristics as well as the demography of the study population 

are presented in Table 7.1. 

 

Table 7.1. Demography and baseline clinical variables of patients. 

Characteristic Survivors (90) Non-survivors (79) p-value 

Age (years) 57.5 ± 13.7 58.1 ± 11.6 0.77 

Male Sex - Count (%) 58 (64) 47 (59.5) 0.529 

    
Aetiology of liver cirrhosis - Count (%)  
Alcoholic 47 (52.2) 36 (45.6)  
Non-Alcoholic 41 (45.6) 40 (50.6)  
Biliary 2 (2.2) 3 (3.8)  

    
MELD-Na score 18.38 ± 11.57 25.72 ± 12.1 0.001 

SOFA score 5 (3 - 8) 9 (6 - 12) <0.001 

    
Physiological variables  
Serum Creatinine  1 (0.7 - 1.96) 1.35 (0.86 - 3.08) 0.009 

Serum Albumin 2.934 ± 0.54 2.89 ± 0.66 0.725 

Total Bilirubin 1.83 (1.1 - 7.15) 7.21 (2.88 - 22.58) <0.001 

INR 1.6 (1.3 - 1.86) 1.79 (1.4 - 2.68) 0.002 

WCC (109/L) 8.11 (5.63 - 12.26) 9.43 (5.4 - 13.7) 0.277 

Serum Sodium 136.49 ± 12.71 136.53 ± 5.69 0.963 

MAP 81.25 (70.15 - 88.71) 72.36 (67.84 - 81.67) 0.003 

Heart Rate 83.98 ± 14.41 87.57 ± 18.07 0.152 

SpO2 97.24 (95.76 - 98.47) 97.33 (95 - 98.5) 0.58 

Respiratory Rate 17.97 ± 3.61 18.65 ± 3.72 0.231 

 

Dynamic network analysis 

Dynamic network mapping based on the directional transfer of information (in bytes) 

between organ systems in survivors versus non-survivors is represented in Figure 7.5A 

and Figure 7.5B. Further, Table 7.2, shows the result of Mann Whitney U test to assess 

whether any statistical differences exist in median information transfer amongst organ 

systems between survivors and non-survivors. Accordingly, while median information 

transfers were higher in patients who survived 28 days of ICU stay, this difference was not 

significant.  
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Figure 7.5. Directional transfer of information in bytes between the 3 physiological parameters assessed 

(heart rate; HR, Respiratory rate; RespRate, and SpO2; Oxygen saturation) in cirrhosis patients that 

survived((A) and those that did not survive (B) intensive care unit (ICU) stay after 28 days. The information 

transfer was estimated based on a mean transfer entropy calculation of 20 minutes of simultaneous 

recordings of the included clinical variables (time series) and a 10-second lag time. 

 

Table 7.2. Differences in directional information transfer between physiological variables of survivors and 

non-survivors based on Mann Whitney U test. 

Transfer Entropy (bytes)  Survivors, median (IQR) Non-survivors, median (IQR) p-value 

Heart Rate → Respiratory Rate 0.6(0.4 - 0.69) 0.58(0.33 - 0.71) 0.857 

Heart Rate → SpO2 0.42(0.23 - 0.53) 0.39(0.27 - 0.47) 0.500 

Respiratory Rate → Heart Rate 0.56(0.42 - 0.66) 0.51(0.29 - 0.65) 0.218 

Respiratory Rate → SpO2 0.43(0.18 - 0.57) 0.4(0.18 - 0.51) 0.354 

SpO2 → Heart Rate 0.59(0.32 - 0.74) 0.52(0.24 - 0.67) 0.203 

SpO2 → Respiratory Rate 0.68(0.2 - 0.79) 0.63(0.19 - 0.76) 0.467 

Centrality 1.13(0.8 - 1.25) 0.99(0.59 - 1.24) 0.216 

Diameter 0.74(0.34 - 0.81) 0.67(0.36 - 0.79) 0.398 

Results are presented as median and interquartile range (IQR). SpO2, Oxygen Saturation; IQR, Interquartile 

range. 

 

➢ Prognostic values of dynamic network 

Indeed, no significant difference was observed between the transfer entropies of survivors 

and non-survivors, and this was supported by univariate Cox regression analysis of all 

TE’s which showed no prognostic value. Further, no significant prognostic values were 

detected for the mean centrality and diameter of patients’ dynamic network. Also, while 
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measures of disease severity assessed by MELD-sodium predicted survival, SOFA scores 

were not associated with patients' 28-day survival. (Table 7.3). 

 

Table 7.3. Univariate Cox regression analysis of transfer entropy between physiological variables to 

assess and predict 28-day survival in cirrhosis patients. 

Variables Beta SEM p-value Hazard ratio 

Heart Rate → Respiratory Rate 0.116 0.514 0.821 1.12(0.41 - 3.07) 

Heart Rate → SpO2 0.509 0.538 0.344 1.66(0.58 - 4.78) 

Respiratory Rate → Heart Rate -0.673 0.502 0.18 0.51(0.19 - 1.36) 

Respiratory Rate → SpO2 0.314 0.473 0.507 1.37(0.54 - 3.46) 

SpO2 → Heart Rate -0.344 0.398 0.387 0.71(0.33 - 1.55) 

SpO2 → Respiratory Rate 0.19 0.357 0.595 1.21(0.6 - 2.43) 

Centrality -0.122 0.323 0.705 0.89(0.47 - 1.67) 

Diameter 0.032 0.37 0.932 1.03(0.5 - 2.13) 

MELD Sodium 0.02 0.01 0.039 1.02(1 - 1.04) 

SOFA 0.028 0.029 0.329 1.03(0.97 - 1.09) 

SpO2; Oxygen saturation, 95% CI; 95% Confidence Interval, SEM; Standard Error of Mean, MELD; 

Model for End-stage Liver Disease, SOFA; Sequential Organ Failure Assessment.
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Comparison of organ systems information flow between patients with cirrhosis and 

sepsis admitted to the ICU 

While both are characterised by multiple organ involvement, cirrhosis is a chronic disease 

with a clinical course that may last over a decade while sepsis is associated with acute 

deterioration following inflammation [21, 24, 446, 447]. The difference in organ systems 

information transfer between these two patient groups as well as the influence of the 

mortality was assessed. The result of the Mann-Whitney U test used to assess the 

difference in TE’s between survivors and non-survivors in the sepsis group is presented 

in Table 7.4. Also, Figure 7.6A and Figure 7.6B represent the dynamic network map of the 

survivors and non-survivors of sepsis. Generally, median information transfer was 

reduced in the sepsis group compared with the cirrhosis group. According to the 

generalized linear model,  disease type and survival significantly interact to alter the 

information transfer from heart rate to respiratory rate (p = 0.001), respiratory rate to heart 

rate (I2 = 4.49; p = 0.034), respiratory rate to SpO2 (I2 = 4.03; p = 0.045), SpO2 to heart 

rate (I2 = 5.18; p = 0.023) and SpO2 to respiratory rate (I2 = 8.40; p = 0.004).  This shows 

that reduction in physiological information transfer across these variables is influenced by 

both disease type and survival status whereby patients diagnosed with sepsis who did not 

survive approximately 4-week ICU stay have significantly reduced TE’s along these axes 

compared with patients with cirrhosis. There was no interaction between mortality and 

disease group on the transfer entropy from heart rate to SpO2 (I2 = 3.76; p = 0.052), with 

TE difference across both grouping variables (Figure 7.7). Further, univariate Cox 

regression analysis showed that TE’s across all axes of the variables as well as the global 

network information flow (centrality and diameter) are associated with survival in the 

sepsis group (Table 7.5). 
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Figure 7.6. Directional transfer of information in bytes between the 3 physiological parameters assessed 

(heart rate; HR, Respiratory rate; RespRate, and SpO2; Oxygen saturation) in sepsis patients that survived 

(A) and those that did not survive (B) intensive care unit (ICU) stay after 30 days. The information transfer 

was estimated based on the mean transfer entropy calculation of 20-minute simultaneous recordings of the 

included clinical variables (time series) and 5-second lag time. 

 

Table 7.4. Differences in directional information transfer between physiological variables of survivors and 

non-survivors based on Mann Whitney U test of the sepsis patients’ data. 

Transfer Entropy (bytes)  Survivors, median (IQR) Non-survivors, median (IQR) p-value 

Heart Rate → Respiratory Rate 0.58(0.48 - 0.66) 0.34(0.22 - 0.57) < 0.001 

Heart Rate → SpO2 0.37(0.17 - 0.48) 0.23(0.03 - 0.37) 0.007 

Respiratory Rate → Heart Rate 0.56(0.46 - 0.65) 0.44(0.1 - 0.58) 0.001 

Respiratory Rate → SpO2 0.41(0.2 - 0.51) 0.16(0 - 0.41) 0.002 

SpO2 → Heart Rate 0.58(0.32 - 0.69) 0.07(0 - 0.62) 0.001 

SpO2 → Respiratory Rate 0.67(0.47 - 0.76) 0(0 - 0.63) < 0.001 

Centrality 1.33(1.22 - 1.45) 0.98(0.67 - 1.31) < 0.001 

Diameter 0.7(0.51 - 0.77) 0.34(0.03 - 0.64) < 0.001 

IQR; Interquartile range, SpO2; Oxygen saturation. 

 

Table 7.5. Univariate Cox regression analysis of transfer entropy between physiological variables to assess 

and predict 28-day survival in cirrhosis patients. 

Transfer Entropy (bytes)  Beta SEM p-value Hazard ratio (95% CI) 

Heart Rate → Respiratory Rate -3.742 0.725 < 0.001 0.02(0.01 - 0.1) 

Heart Rate → SpO2 -2.129 0.867 0.014 0.12(0.02 - 0.65) 

Respiratory Rate → Heart Rate -2.822 0.702 < 0.001 0.06(0.02 - 0.24) 

Respiratory Rate → SpO2 -2.516 0.822 0.002 0.08(0.02 - 0.41) 

SpO2 → Heart Rate -1.958 0.587 0.001 0.14(0.05 - 0.45) 

SpO2 → Respiratory Rate -1.96 0.521 < 0.001 0.14(0.05 - 0.39) 

Centrality -2.595 0.521 < 0.001 0.08(0.03 - 0.21) 

Diameter -1.665 0.508 0.001 0.19(0.07 - 0.51) 

SpO2; Oxygen saturation, 95% CI; 95% Confidence Interval, SEM; Standard Error of Mean.
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Figure 7.7. Bar graph showing interactions between mortality and disease type on TE's between heart rate, 

respiratory rate, and SpO2 of patients admitted to the intensive care unit. Comparison is based on a 

measure of interaction according to generalised linear model analysis with factorial design. Mann Whitney 

U test was then used to assess differences in the TE’s within the disease. ns; Not significant based on 

Bonferroni-corrected p value, SpO2; Blood oxygen level/saturation.
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Discussion 

To the best of our knowledge, this is the first study where the transfer entropy measure, 

an information algorithm used to assess causal links between time series, is assessed for 

prognostic value in cirrhosis. While various previous studies investigating organ systems 

connectivity in cirrhosis have shown valuable results regarding the prognosis and 

treatment response, the methods used to establish links were based on statistical 

correlations. However, while correlation may infer association, it is not a measure of 

causality [448]. Results of this study show that while there is a general reduction in organ 

systems information transfer in cirrhosis patients who did not survive up to 28 days of ICU 

stays compared with survivors, these differences were neither statistically significant nor 

linked with mortality. However, patients’ MELD-Na, the standard prognostic and severity 

measure in cirrhosis was linked with 28-day mortality. 

Several reasons may explain the lack of association between reduced physiological 

information transfer and survival in the study population. Firstly, some patients are critically 

ill with clinical complications that warrant ICU admission. Thus, these patients may 

possess various comorbidities or may be undergoing procedures and treatments that 

could influence organ systems coupling. Indeed, the influence of procedures like different 

ventilatory methods may interfere with normal organ system connectivity. For instance, 

Nataj et al. showed previously that the conventional mode of mechanical ventilation 

results in reduced heart rate variability compared with fractal-like ventilation in an 

experimental model of critically ill cirrhosis (i.e., bile duct ligated rats challenged with 

endotoxin) [67]. The severity and stage of cirrhosis is a major influencing factor in the 

clinical course of patients. For instance, Sundaram et al showed that for patients with 

acute-on-chronic liver failure, conventional severity scoring systems (e.g., MELD) do not 

capture the pathophysiology and clinical course (prognosis) of patients [449].  

Another influencing factor may be how and when clinical data and time series were 

recorded for each patient. Because the MIMIC-III project was designed to observe the 

clinical course of critically ill patients with all possible underlying diseases there is 

heterogeneity in the patients’ groups [450]. Thus, influences of factors like the circadian 

rhythm on organ systems connectivity could not be accounted for. Indeed, previous 

studies have shown that the sleep-wake cycle may influence organ systems connectivity 
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measured by the ratio of low-frequency to high-frequency power of HRV, an index of 

sympathovagal regulation of the heart rhythm [451, 452]. Importantly, information on 

possible influencing factors was not considered based on the retrospective design of this 

study and the general nature of the data source. Indeed, the heterogeneity of the studied 

population means patients' disease course is not uniform, and grouping them analytically 

may present reduced coherence due to inherent heteroscedasticity [453]. However, 

computation of transfer entropy requires specialised dataset; specifically, parallel 

recordings of physiological variables to assess temporal information transfer and the 

MIMIC-III dataset presents a unique opportunity to show the feasibility of causality 

measures calculation in patients with cirrhosis.  

Also, a temporal information transfer delay of 10 seconds was used based on the 

optimisation step to assess the changes in the mean TE’s across a lag time varied 

between 1 and 20 seconds. Indeed, the delayed information relay detected in the 

optimisation test result aligns with previous studies which showed that physiological 

memory length within the cardio-respiratory system is between 5 to 10 seconds in healthy 

adults and delayed in cirrhosis patients  [92], as well as in patients with congestive heart 

failure [94].  The delayed information flow and longer memory length are hypothesised to 

be associated with organ systems disconnection whereby physiological perturbations are 

sustained longer in disease states compared with healthy controls. Similarly, results from 

Chapter 3 showed abnormal heart rate turbulence and associated reduction in baroreflex 

sensitivity. Specifically, indices of heart rate turbulence (i.e., TO and TS), computed 

between 1 to 15 heartbeat intervals following a premature ventricular contraction were 

shown to be altered in cirrhosis [215]. Indeed, diminished baroreflex sensitivity is a well-

documented effect of cirrhosis [454-456] and may indicate a decoupling of the 

baroreceptor from the cardiac rhythm.   Thus the 10-second delay resulting from the 

optimisation step agrees with previous results in this thesis. In line with this, other studies 

have also shown uncoupling of the autonomic modulation of cardiac rhythm based on 

heart rate variability measures [78, 144, 457]. Further, the dampening of the sympathetic 

tone of the splanchnic and peripheral vasculature resulting from hyperdynamic circulation 

due to liver failure and portal hypertension has been well documented [458, 459] and 

may explain the delay in physiological information transfer. Other factors such as 

inflammatory dysregulation (e.g., increased circulation of pro-inflammatory biomarkers 
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[90]), and the activation of the renin-angiotensin-aldosterone pathways [460, 461] 

associated with decompensated cirrhosis may alter information flow in unique ways which 

may further elongate the time required for efficient organ system information transfer 

(thus, decoupling).  Indeed, the optimization steps described in the method of this chapter 

show a continuous increase in TE towards 20 seconds. A potential focus of further 

research in this field would be to extend the lag time to assess whether the severity of 

cirrhosis and survival is linked with even higher lag time and the part played by certain 

disease dynamics including treatment and inflammatory dysregulation.  

Another limiting factor is the low sample size analysed which may explain the lack of 

statistical significance observed between survivors and non-survivors in terms of transfer 

entropies in cirrhosis patients in the ICU. Perhaps a higher sample size would have 

provided a better representation of the population. Also, a multicentred, prospectively 

designed study targeted mainly at cirrhosis patients possibly in the general ward who are 

followed up for longer periods would have provided more power, and more details about 

patients’ characteristics with the opportunity to control for various confounding factors. It 

would be interesting to see if studies of such in the future could extract possible values of 

dynamic network analysis in cirrhosis or other chronic diseases. 

Further, this study assessed the information flow between heart rate, respiratory rate, and 

SpO2 which represents the cardiopulmonary pathways. The lack of prognostic 

significance of the transfer entropies between these variables may be linked with 

inherently short information relays between them. For instance, previous findings from the 

investigation for HRV and HRT in cirrhosis (Chapter 2 and Chapter 3) have shown that 

indices of long-term effects (SD2, DFA-α, SDNN, and TO) mostly driven by physiological 

regulators that work over extended periods (such as metabolism, baroreflex, 

thermoregulation, endocrine systems, circadian rhythm) may offer better prognostic 

values compared with those that span shorter time. However, the source of the data used 

in this study (MIMIC-III database) is limited in terms of clean available data. Specifically, 

data on heart rate, respiratory rate, and SpO2 were the only available variables analysable 

and importantly provided a chance to assess the feasibility of transfer entropy-based 

dynamic network analysis of physiological time series in cirrhosis. 
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Finally, physiological information transfer between patients with cirrhosis and those 

diagnosed with sepsis was compared to understand how disease pathophysiology may 

affect organ systems connectivity. The result of the analysis shows that while there is no 

significant difference between the TE’s of survivors and non-survivors in the cirrhosis 

group, the information flow to and from all variables was significantly different based on 

survival in the sepsis group. However, a generalised linear model with a factorial design 

showed that the disease group interacts with survivors to drive the changes in information 

transfer between the physiological variables except along the heart rate -> SpO2 axis 

(Figure 7.7). These interactions further support the observed difference between the 

groups whereby patients with sepsis show marked differences in cardiorespiratory TE’s 

compared with cirrhosis patients. Put together, overall cardiorespiratory information flow 

was significantly more altered in sepsis patients who did not survive compared with those 

who survived even though this difference was not observed in cirrhosis patients 

irrespective of survival status. This finding corroborates a previous study where organ 

systems connectivity based on HRV measures was assessed in animal models of cirrhosis 

versus control. Specifically, Haddadian et al investigated the effect of endotoxin injection 

(to model systemic inflammatory response syndrome) on cardiac-autonomic nervous 

system connectivity and chronotropic responsiveness of their isolated atria to cholinergic 

stimulation [435]. Cirrhotic rats were found to exhibit significant but diminished sensitivity 

to endotoxin injection in terms of HRV changes and there were no significant changes in 

chronotropic responsiveness to cholinergic stimulation in cirrhosis compared to controls 

[435]. Thus, cirrhotic rats showed reduced coupling of the cardiac rhythm with autonomic 

regulation which may be linked with inflammation [291]. Indeed, the reduced disruption 

to the connectivity of the cardiorespiratory system in cirrhosis compared with sepsis 

patients in the ICU may be driven by a similar mechanism due to the relatively chronic 

clinical history and the development of cardiorespiratory tolerance to inflammatory 

dysregulation previously reported in a rat model of cirrhosis [462]. 

In conclusion, dynamic network analysis based on the transfer entropy of physiological 

variables can be assessed in cirrhosis and is not significantly linked with survival. Also, 

while sepsis patients who did not survive ICU stay showed significantly reduced 

cardiorespiratory information transfer, there was no significant difference in cirrhosis 

patients who survived and those who did not survive ICU stay. Future studies should 
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investigate changes in organ system coupling based on transfer entropy measures 

between physiological time series in a more representative cirrhosis population in a 

multicentred group possibly outside of the ICU. 



188 
 

 

 

 

 

 

 

 

 

 

 

Chapter 8 : Discussion
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General Discussion 

The ability to self-organize in response to stimuli is a universal characteristic of complex 

systems such as social networks, internet networks, networks of millions of ants that form 

ant colonies, networks of cells that form a functional tissue, networks of tissue that make 

up an organ and network within an organ system. Indeed, the human body represents 

such complex systems propped up through intricate communes of various functioning 

units evolving together in response to information received from the environment. Such 

informational stimuli could be physical in the form of touch, light, sound, or temperature; 

chemical in the form of food, or water; and of course, social in the feeling and response 

to various cues. Over the past decades, the implications of some of these stimuli have 

been shown to have initially subtle, but increasingly significant effects on various aspects 

of human functioning [463, 464]. Increasingly, a holistic, multisystemic approach is 

becoming evident as a better alternative to the current reductionistic methods in the 

management of various diseases [465-467]. 

The human body is a combination of diverse yet convergent organ systems that 

continuously communicate across varied time and space to regulate and optimize survival 

[13]. In this thesis, I have used various measures of organ system coordination and 

communications to assess the prognosis and response to treatment in liver diseases 

including cirrhosis and acute liver failure. The findings are as follows. 

1. Following a systematic review of literature, heart rate variability (HRV) which 

measures the influence of various organ systems on heart rhythm is significantly 

reduced in cirrhosis and may predict survival independent of MELD. Specifically, 

long-term indices of HRV were significantly linked with survival in cirrhosis 

(Chapter 2). 

2. Where HRV could not be accurately assessed due to artifacts in ECG 

measurement such as premature ventricular contractions (PVC’s), heart rate 

turbulence (HRT), a measure of the physiological coordination aimed at 

normalizing the heart rhythm following PVC’s is a viable alternative able to predict 

survival in cirrhosis independent of severity models (Child-Turcotte-Pugh and 

MELD scores) (Chapter 3).  
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3. Correlation network analysis in two independent cohorts of patients with cirrhosis 

(one from UK and other from Italy) indicated that cirrhotic patients with poor 

prognosis have less significant correlation between clinical/biochemical 

biomarkers. 

4. Parenclitic network analysis which measures the physiological deviation of 

individual patients from expectation can predict survival in cirrhosis independent 

of MELD. The deviation was found to be linked with disruption in coordination or 

coupling along the albumin-bilirubin and albumin-prothrombin time axes (Chapter 

4). 

5. Parenclitic network analysis in a larger group of decompensated cirrhosis patients 

admitted to clinics (in England, Scotland, and Wales) for decompensation events 

also predicted survival independent of MELD with deviation specifically linked with 

inflammatory dysregulation along the WCC-CRP physiological axis. The parenclitic 

network analysis also identifies patients likely to not respond to short-term (two 

weeks) increased albumin treatments (Chapter 5). 

6. Analysis of physiological variables using parenclitic network methods predict 

survival in ICU patients with paracetamol-induced acute live failure. In this 

retrospective analysis of clinical and laboratory data (from the MIMIC-III Database), 

regulation of pH was different between survivors and non-survivors although no 

significant difference was found between the mean pH of the groups. Also, 

variables linked with haemodynamic, and liver function were linked with survival 

following a principal component analysis (Chapter 6). 

7. Finally, dynamic network analysis based on information transfer between the 

physiological waveform of heart rate, respiratory rate, and SpO2, recorded in 

parallel did not predict survival in critically ill patients with cirrhosis admitted to the 

ICU. Comparison with patients admitted for sepsis shows that sepsis is 

accompanied by a significant reduction in cardiopulmonary information flow which 

is significantly associated with mortality (Chapter 7). 

Overall, this thesis falls within various themes of prognosis research covered within the 

recently developed PROGRESS framework, aimed at streamlining prognostic studies for 

easier synthesis and clinical translation [468]. Specifically, the assessment of prognostic 

values of parenclitic network analysis in patients with cirrhosis admitted for 
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decompensated cirrhosis in different health settings (Italy in Chapter 4 and the UK in 

Chapter 5) who are subjected to standard of care, falls within theme 1 of the PROGRESS 

framework (i.e., overall prognosis research). The second theme of the framework 

identifies prognostic factors research which covers various studies directed toward the 

identification of factors that drive the risks of specific clinical outcomes. Chapter 3 to 

Chapter 6 of this thesis identify various factors (HRT and parenclitic network indices) 

independently linked with mortality in cirrhosis [469]. Network physiologic analysis 

intrinsically involves the modelling of organ system coupling as a measure of a 

physiological stable state. In this thesis organ systems network models (based on HRT 

and parenclitic network analysis) have shown organ system decoupling as a 

predisposition to poor prognosis in cirrhosis. Thereby fulfilling the requirements of the third 

theme of the PROGRESS framework [470]. The last theme of the PROGRESS framework 

covers research aimed at investigating factors associated with treatment effects. 

Specifically, this theme describes studies aimed at factors that could define how individual 

patients respond to a particular treatment [471]. These types of predictive studies are the 

bedrock of targeted and precision medicine which has been repeatedly earmarked as the 

next big step in critical care as well as the management of complex diseases [472]. This 

is because they signal a move away from the classic “syndrome” and monochromatic 

approach to critical and complex illnesses, paving the way for a context-based method 

for interpretation, management, and treatment that appreciates the implication of varied 

contributory factors to the clinical dynamics of seemingly similar clinical conditions (please 

see for [473] more). In Chapter 5, parenclitic network indices were used to identify 

patients admitted to the clinic for decompensated cirrhosis who did not benefit from two 

weeks of increased and targeted albumin infusion. Thus, this study falls within the 

requirements of the fourth theme of the PROGRESS framework. 

Cirrhosis is a multisystemic disease with effects on various extra-hepatic organs leading 

to dysfunctions and failures. Thus, decompensation is characterised by the dysregulation 

of various organ systems directly and indirectly related to the regulation of heart rhythm. 

Indeed, HRV in cirrhosis has been extensively studied and reported widely to be especially 

trended towards a significant reduction both in short-term and long-term indices [90, 178, 

185, 191, 202]. These indices represent various functional associations between heart 

rhythm and extra-cardiac regulations. For instance, while indices such as HF (high-
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frequency power) represent respiratory sinus arrhythmia, others such as the ratio of low 

to high-frequency power (LF: HF) and ultra-low frequency power (ULF) may respectively 

represent sympathovagal regulation as well as the influence of core-body temperature, 

metabolism, and hormones on the heart rhythm [199]. Conversely, HRV measures the 

interactions of various organ systems with the sinoatrial node, the main source of cardiac 

electric firing. Thus, HRV is a reliable surrogate measure of network interactions between 

various organ systems communicating together to regulate cardiac output. While HRV is 

generally reduced in cirrhosis, some indices have also been shown to independently 

predict the survival of patients regardless of disease severity. For instance, Bhogal et al 

showed that SD2 of the Poincare plot and corrected SDNN predicted 18-month survival 

in patients with cirrhosis independent of MELD [184]. Further, reduction in SDNN and 

detrended fluctuation analysis alpha 2 (DFA α2) were also reported to be linked with 

poorer prognosis in cirrhosis [7, 197]. These indices are mainly physiologically linked with 

influences from organ systems that exert their regulation over a lengthy period (≥ 2 

minutes). For instance, the SD2 has been associated with the low-frequency power of 

HRV and may reflect baroreflex activity as well as both arms of the autonomic nervous 

system’s influence on the heart rhythm [199]. 

Accordingly, this work found that while HRV has been intensely researched in cirrhosis, 

translation to the clinic is limited mainly by the lack of consistency in ECG sampling 

techniques (recording time, length, and sample frequency), and HRV computation (e.g., 

standardized length of recordings for calculation of indices) resulting in significant 

variability has shown by Chi-squared measure of between-studies heterogeneity when 

the studies were pooled in a meta-analysis (see Chapter 2). Aside from the variability in 

reporting, another significant limitation of HRV is that it depends on clean ECG recordings. 

While this may be possible in some, patients with cirrhosis have been reported to show 

abnormal sinus rhythm with artifacts that may result in exaggerated calculated variability 

in heart rhythm (e.g., LF: HF), and this may result in misinterpretation of research findings 

[474, 475]. Where ECG is constantly interspersed with artifacts such as PVC’s, heart rate 

turbulence (HRT) indices provide a viable alternative to assess the state of autonomic 

nervous control of the sinus rhythm in cirrhosis. Heart rate turbulence indexes the 

interplay between various organ systems including both sympathetic and 

parasympathetic arms of the autonomic nervous system as well as baroreceptors 
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(baroreflex) activity, to return the heart rhythm to pre-PVC level. Mechanistically, transient 

blood pressure drop following a PVC is detected by baroreceptors resulting in vagal nerve 

inhibition and sympathetic nervous activation. This results in a sharp blood increase which 

is followed by a blood pressure fall up to approximately the pre-PVC level. Thus, HRT is 

mainly driven by baroreflex and sympathetic nervous control and can provide information 

about the state of these organ systems [220]. TO measures the average difference 

between the R-R intervals from before and after PVCs and is generally lower in healthy 

subjects while TS is the steepest regression line fitted over 5 consecutive post-PVC sinus 

rhythms and measures deceleration of the sinus rhythms following the post-PVC 

tachycardia [221]. 

Indeed, previous studies have shown the independent prognostic values both of 

turbulence onset (TO) and turbulence slope (TS) in patients who survived myocardial 

infarction [476]. In line with these previous studies, this thesis shows that TO is associated 

with mortality and predicted survival independent of the severity of cirrhosis measured by 

MELD and Child-Turcotte-Pugh scores (Chapter 3). Indeed, analysis in this study shows 

a relatively lower TO in survivors compared with non-survivors (Table 3.2). This 

corroborates the study by Ksela et al which reported significantly lower TO in heart failure 

patients with preserved ejection fraction that did not survive following 1 year follow-up 

period [477]. While the mechanistic link is not well defined, findings from this work and 

others further support dysregulation in baroreflex and autonomic nervous system in 

cirrhosis which pathologically increases the risk of mortality. Generally, the association 

between HRV and physiological network indexes autonomic cardio-respiratory coupling 

and may not directly reflect the influence of all other interacting components within the 

physiological network hub (e.g., coagulation, biliary excretion among others). A novel 

method was thus developed to visualize and map organ systems networks based on 

routine clinical data. 

Coordination between organ systems is the basis for stability against external or internal 

perturbations and loss of correlation has been previously linked with poorer prognosis in 

patients with sepsis. Specifically, Asada et al reported that a population-based correlation 

network between organ systems can help assess systemic instability and is associated 

with a higher risk of mortality in critically ill patients admitted to the intensive care unit [11, 



194 
 

478]. However, the network analysis performed by Asada et al is population-based and 

does not cater to individual patients’ variability limiting its potential use for personalised 

diagnosis, prognosis, and treatment. In this work, a novel network analysis method was 

used to resolve this limitation. Using parenclitic network analysis, which assesses the 

deviation of a single patient pair of variables from a modelled expectation, on cirrhosis 

patients, this research found lower correlation network connectivity in non-survivors 

compared with survivors (Table 4.2a vs Table 4.2b), supporting works by Asada et al [11, 

478]. For visualization and context, directed acyclic graphs (DAGs), was used to infer 

causal links between the variables used in the construction of parenclitic models in this 

thesis. DAG is a useful tool that uses unidirectional arow arrows to indicate causal link 

between two variables such that the lack of direct causation is implied by the absence of 

an arrow [479, 480].  DAGs were constructed for the variables included in the parenclitic 

models used in Chapter 4, and Chapter 5 (i.e., Figure 8.1 and Figure 8.2 respectively). This 

is to provide biological context for the expected links between physiological variables 

included in the models used to predict survival in patients with decompensated cirrhosis. 

 

Figure 8.1. Directed Acyclic Graph (DAG) showing the inferred causal relationship between serum albumin, 

ammonia, total bilirubin, serum creatinine, hepatic encephalopathy, prothrombin time and serum sodium. 
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Figure 8.2. Directed Acyclic Graph (DAG) showing the inferred causal relationship between serum albumin, 

ammonia, total bilirubin, C-reactive protein, serum creatinine, heart rate, international normalized ratio, 

mean arterial (blood) pressure, serum sodium, and white cell count. 

 

Further, parenclitic deviations along the albumin-bilirubin and albumin-prothrombin time 

pathways were found to predict 12-month survival independent of MELD (Table 4.4). The 

combination of these parenclitic variables with MELD created a composite score which 

significantly improved the predictive value of MELD (Figure 4.3). The prognostic importance 

of albumin and bilirubin in combination shown in this work is also supported by results by 

Wang et al. Although combined as isolated variables, the ALBI (albumin-bilirubin) score 

was found to predict the prognosis and severity of hepatitis B-related cirrhosis [481]. Also, 

prothrombin time measures coagulopathy which is well well-established prognostic 

variable in cirrhosis [482]. However, how it links with albumin to drive prognosis remains 

to be investigated and clarified in future research.  

In a further validation study using parenclitic network analysis on 777 patients admitted 

into hospitals for decompensated cirrhosis, this study shows that deviations along the 

CRP-WCC and Bil-WCC pathways, as well as global network measures such as mean 
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centrality, shortest path length, and network diameter, significantly predict survival 

independent of MELD and patients’ age (Table 5.4). Also, deviations along CRP-WCC, 

mean centrality, shortest path length, and network diameter significantly improved the 

predictive values of MELD (Table 5.6) and most importantly predicted patients likely to 

benefit from albumin infusion (Figure 5.3 – Figure 5.5). Importantly, the predictive value of 

the CRP-WCC was found to be independent of the individual components of the axis (i.e., 

CRP and WCC; Error! Reference source not found.), showing that the association b

etween these variables provides physiological information not offered by the variables 

individually. Specifically, this work shows for the first time that patients with relatively better 

organ system connectivity do not benefit from short-term (14 days) increased albumin 

infusion compared with patients with poorer connectivity for which no significant 

difference was found in terms of survival (Figure 8.3). Indeed, previous studies have 

reported relatively higher adverse events such as pulmonary oedema and fluid overload 

in patients infused with albumin [28, 295, 483]. 
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Figure 8.3. According to the analysis of organ system connectivity using a parenclitic network, patients with 

lower network disconnection in the inflammatory pathways are more likely to be armed by increased 

albumin infusion compared with patients with higher inflammatory system isolation for which infused 

albumin did not result in a significant difference in mortality (see [9] for more). Image created using 

Biorender. 

 

 

The process of cirrhosis is a slow process that takes more than a decade to affect the 

physiological networks significantly. On the other hand, Acute Liver Failure is an acute 

process defined as the presence of severely worsening acute liver injury (<26 weeks) in 

patients with no history of chronic liver disease. I wondered if parenclitic deviation can be 

applied to acute conditions where liver function has deteriorated rapidly without any 

previous underlying chronic predisposition or insults. Thus, the prognostic value of 

parenclitic network analysis was further investigated in a group of ICU patients diagnosed 

with paracetamol-induced acute liver failure (p-ALF). The p-ALF population was extracted 

from the Medical Information Mart for Intensive Care (MIMIC) III database [484] and 

involved 640 patients. The result of k-clique percolation shows different physiological 

communities for survival compared with non-survivors related to pH regulation which is 

strongly linked with kidney function (Cr) in survivors and linked with respiratory function in 

non-survivors (Figure 6.1 and Figure 6.2). Further, parenclitic deviation along pH-

bicarbonate, pH-creatinine, lactate-glucose, lactate-heart rate, and SpO2-respiratory 

rate pathways predicted mortality independent of the patients’ SOFA (sequential organ 

failure assessment) score and the Kings College Criteria (KCC) (table 6.4). Indeed, 

composite scores combining the parenclitic deviations with SOFA scores of p-ALF 

patients showed an increased prognostic value. The SOFA score is a prognostic model 

used for predicting mortality in patients admitted to the ICU and models severity based 

on the combination of the patient’s platelet count, Glasgow Coma Scale, total bilirubin, 

creatinine/urine output, arterial partial pressure of oxygen (PaO2) and the fraction of 

inspired oxygen (FiO2) as independent units irrespective of the aetiology of critical illness 

[485]. This work shows that composite scores created from the combination of parenclitic 

network indices, especially those related to pH balance and lactate with SOFA resulted in 

increased prognostic performance (Table 6.6 and Table 6.7). Lactic acidosis is a main effect 
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of paracetamol overdose which may predispose or occur in patients already showing 

signs of hepatoxicity [486, 487].  Irrespective of the temporal difference in the onset of 

arterial lactic acidosis, its diagnosis has been significantly linked with an increased risk of 

mortality in patients with p-ALF [488, 489]. Indeed, blood lactate level and arterial pH are 

included in the King’s College Criteria [490] which was found to be significantly linked with 

mortality in this thesis. However, the parenclitic deviations were found to predict the 4-

week survival of p-ALF patients independent of KCC and SOFA scores (table 6.4), 

showing that it can detect certain dimensions of the pathophysiology of the disease not 

captured by these models. Specifically, the cluster analysis identifies differences in the 

physiological communities (i.e., organ systems clustering) between survival and non-

survival specifically linked with pH regulation. Specifically, survivors’ pH clusters with 

kidney function which may imply better renal compensatory mechanisms to regulate 

acidosis in the group. Indeed, the kidney is a major player in the systemic regulation of pH 

[491] and this connection was not found in the non-survivors. Also, the parenclitic indices 

were combined only with SOFA because it is the most likely scoring model used for 

prognosis in the ICU, and KCC is most likely not used [492].  

Overall, parenclitic network analysis, measuring the strength of the relationship between 

physiological variables provides a cross-section of organ system connectivity in patients 

and improves on the current prognostic paradigm of considering biomarkers and organ 

systems as isolated, independent units. To further assess the robustness of the parenclitic 

network analysis algorithm, the bidirectionality of the parenclitic deviations was tested. 

Specifically, the aim was to verify that the parenclitic deviation along the axis of variable X 

to Y is the same as the deviation along the axis of variable Y to X by flipping the variables 

around and computing the parenclitic deviation along both axes. Results confirmed that 

irrespective of the direction of correlation (either X-Y or Y-X) parenclitic deviations remain 

the same. Thus, the computation of parenclitic deviation is not affected by the 

arrangement of variables in the data analysed. 

Despite the various strengths of the parenclitic network method, its dependency on 

correlation as the basis for establishing association remains a major limitation. Thus, a 

network method that could establish causal links as a basis for physiological coupling may 

provide a better measure of the health state of patients. In line with this hypothesis, 
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dynamic network analysis was performed on ICU patients diagnosed with cirrhosis based 

on causality measures between time series of physiological variables. Specifically, 

information flow between organ systems was computed based on transfer entropy 

between heart rate, respiratory rate, and oxygen saturation (SpO2) and used to construct 

a physiological network map for individual patients. The resulting TE’s as well as the global 

network map topology were planned to be assessed for prognostic value against the 

current models used both for cirrhosis and generally in ICU patients (MELD-Na and SOFA 

respectively). The TE’s of patients diagnosed with sepsis were also computed to assess 

whether there are fundamental differences in information flow between patients with the 

chronic complex disease (decompensated cirrhosis) and acute deterioration (sepsis). 

Results show that information flow between the variables (mainly representing organ 

systems associated with cardiorespiratory functions) was not associated with mortality in 

cirrhosis patients. A possible reason for this may be due to the limited physiological scope 

covered by the analysed variables. Specifically, these variables are closely linked with the 

respiratory sinus arrhythmia related to the short-term indices of the HRV measures which 

although reduced in cirrhosis were not linked with survival. Indeed, as shown in Chapter 

2 and Chapter 3, long-term indices of HRV and HRT offer better prognostic value 

compared with short-term indices. Thus, the inclusion of other physiological variables in 

the dynamic network especially those with long-term variation may provide prognostic 

insights into cirrhosis. Also, in terms of the comparison of severity level, the cirrhosis 

patients included in the dynamic network analysis of TE’s are critically ill and need ICU 

admission. This means that the study population is physiologically more like the non-

survivors in the ATTIRE cohort of patients admitted to the general Wald in Chapter 5. 

Specifically, the calculated median MELD score for the overall MIMIC-III cirrhosis 

population included in the dynamic network analysis was found to be close to that of the 

non-survivors in the ATTIRE study population [i.e., median (IQR): 21.92(12.36 – 31.17) 

vs 21.92(17.69 – 26.33)] (see Table 5.1). Providing a further potential reason for the lack 

of association between the TE’s and patients' ICU survival. Despite the several limitations 

mostly related to the data source (MIMIC-III), this thesis shows that computation of TE’s 

for causal linkage between physiological variables is feasible and lays the foundation for 

future prospective studies on the subject. 
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Limitations 

Despite its usefulness, some universal limitations of the network approach to physiology 

have been highlighted. Firstly, quantification of the dimension and dynamics of network 

physiology relies heavily on the availability and quality of relevant data [493, 494]. 

Although some more data could be generated using the omics approach or specialized 

equipment, this will be relatively too expensive and may not be feasible in many clinical 

settings around the world. Thus, the current approach of using routine clinical data for 

parenclitic network analysis is a relatively simple, useful, less expensive, and highly 

accessible method. For the assessment of organ systems connectivity using HRV, 

entropy, and other measures of variability of physiological variables, the main limitation 

remains the heterogeneity of the methods used which limits meaningful interpretation, 

generalization, and clinical applicability [78]. 

Also, while static network approaches (e.g., correlation and parenclitic), which assess 

organ systems coupling based on correlation are feasible with routine data, the dynamic 

network approach, which provides the network map based on causal links between 

physiological time series requires relatively more sophisticated datasets not currently 

standard in most clinical settings. The assessment of dynamic networks is especially 

important and should be developed and tested further since interacting organ systems 

generate information at varying time scales (from milliseconds to hours) with associated 

differences in dynamic outputs (random, stochastic, oscillatory, etc.) sometimes with 

transient information sharing corresponding to internal and external challenges to the 

overall system [3, 495]. This ‘fleeting’, multiscale coupling may elucidate a crucial juncture 

in the dynamic network of the system which is important for in-depth understanding of the 

current physiological state as well as predicting future clinical events [3]. Indeed, the use 

of causal indices based on mathematically more sophisticated methods may provide 

further insights and should be the focus of future research in the field. However, for the 

computation of causal (dynamic) networks, the reliance on specialised, ICU-based 

equipment is a major hindrance that may be overcome by larger, carefully designed 

prospective, multicentre, case-control studies targeting the specific population of interest 

equipped with relevant tools for simultaneous physiological data gathering. Indeed, some 

of the required data may be partly generated using wearable technologies which are 

becoming more useful in clinical research [496, 497]. Further, the findings in this thesis 
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need external validation with a larger, multicentre, and possibly multinational patient 

population representing a diverse standard of care. Also, the parenclitic deviation is 

computed based on linear regression which can be improved in the future using non-

parametric alternatives as well as orthogonal regression analysis for the computation of 

the deviation. For clinical translation, the parenclitic network mapping requires a standard 

reference population which needs to be investigated and validated.
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Conclusion and prospect 

Despite current limitations associated with data availability and techniques, the clinical 

usefulness of network physiology in chronic diseases such as decompensated cirrhosis, 

sepsis, and critical illness is self-evident and provides new valuable insights to 

researchers. In fact, because of its ability to detect and quantify physiological connections 

(or lack of), network physiology provides quantitative evidence to support previously 

clinically reported but unexplained pathophysiological observations as shown recently for 

CRP and WCC in Chapter 5 [9]. This thesis provides a springboard for future research 

aimed at investigating the value of a integrative network approach in not just prognosis 

but also personalized medicine through network-based prediction of patients’ 

subpopulations likely to respond to treatment.  

Potentially, network mapping algorithms such as the parenclitic analysis which has shown 

prognostic and predictive values in this thesis can be incorporated into clinical use as 

bedside mobile apps with the ability to assist clinicians in combination with other variables 

to stratify patients for targeted therapy as well more accurately prognosticate. The 

dependence of this approach on routine data enhances the applicability combined with 

the ability to identify specific pathophysiological pathways for targeted treatment. This 

ability to identify pathophysiological pathways for potential targeted treatment is a strong 

merit of the network approach which makes it superior to the current artificial intelligence 

approaches such as the neural network approach which requires larger sample sizes and 

is based on a “black box”/closed algorithms. Perhaps, the “holy grail” will be a future 

combination of network physiology with the artificial intelligence approach for a synergistic 

output with superior prognostic and predictive values. 

 Another potential application of the network approach especially in cirrhosis is for remote 

monitoring. Indeed, recent work has shown the clinical applicability of remote monitoring 

in cirrhosis especially in regions with poor transport connection. For instance, CirrhoCare, 

a remote monitoring, bidirectional system (and mobile application) is currently being 

trialled for monitoring and treatment of decompensated cirrhosis in non-clinical settings 

with the potential to bring care to patients while cutting healthcare costs. Indeed, initial 

evaluation has shown that this approach achieved good patient engagement while helping 

clinicians (hepatologists) detect early signs of new decompensation events [498]. Indeed, 
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network physiology may be incorporated into this and similar systems to improve remote 

detection of pathological shifts in organ system connectivity with prognostic and 

treatment implications in cirrhosis and other diseases.  

Thus, as we march into the brave new world of big data, artificial intelligence, and 

personalised medicine, finding the pathophysiological needle in the complex haystack of 

dynamically interacting organ systems in decompensated cirrhosis and other complex 

diseases might be driven by a deep understanding of the network characteristics of the 

individual patients based on data from “all organs at all times”. Irrespective of the current 

limitations, the future of diagnosis and prognosis in cirrhosis may be ‘network physiologic’ 

in nature.
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Chapter 10 Appendixes 

 

Appendix 1. Search strategy for application of network physiologic approach in cirrhosis. 

Database: Ovid MEDLINE(R) ALL <1946 to March 25, 2024>  

Search Strategy:  

1  network physiology.mp. (117)  

2  Physiological network.mp. (106)  

3  organ system* network*.mp. [mp=title, book title, abstract, original title, name of substance word, 

subject heading word, floating sub-heading word, keyword heading word, organism supplementary 

concept word, protocol supplementary concept word, rare disease supplementary concept word, 

unique identifier, synonyms, population supplementary concept word, anatomy supplementary 

concept word] (5) 

4  network connect*.mp. [mp=title, book title, abstract, original title, name of substance word, subject 

heading word, floating sub-heading word, keyword heading word, organism supplementary concept 

word, protocol supplementary concept word, rare disease supplementary concept word, unique 

identifier, synonyms, population supplementary concept word, anatomy supplementary concept 

word] (6464)  

5  1 or 2 or 3 or 4 (6668)  

6  cirrhosis.mp. (154599)  

7  liver cirrhosis.mp. or exp Liver Cirrhosis/ (119374)  

8  liver disease.mp. or exp Liver Diseases/ (675993)  

9  6 or 7 or 8 (694251)  

10  5 and 9 (32)  

11  limit 10 to yr="1860 - 2019" (16)  
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Appendix 2. Databases search strategies 

 

Appendix 3. Risk of bias assessment of included studies using modified Newcastle-Ottawa scale. 

Studies  Selection Comparability Outcome Total  

 

 

 

Database: Embase Classic+Embase <1947 to 2020 February 19>  

Search Strategy:  

-------------------------------------------------------------------------------- 

1     heart rate variability/ or autonomic nervous system/ (95567) 

2     Heart Rate Varia*.mp. [mp=title, abstract, heading word, drug trade name, orig inal title, device manufacturer, drug manufacturer, device trade 

name, keyword, floating subheading word, candidate term word] (34850) 

3     liver disease/ or liver cirrhosis/ or chronic liver disease/ (254250) 

4     1 or 2 (101756) 

5     3 and 4 (250) 

6     limit 5 to conference abstract status (58) 

7     5 not 6 (192) 

8     limit 7 to english language (154) 

9     limit 8 to editorial (8) 

10     8 not 9 (146) 

11     limit 10 to "reviews (best balance of sensitivity and specificity)" (24) 

12     10 not 11 (122) 

Figure S1 (a). Search strategy for Embase.  

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to February 20, 2020>  

Search Strategy:  

-------------------------------------------------------------------------------- 

1     Autonomic Nervous System/ (26244) 

2     Heart Rate Varia*.mp. [mp=title, abstract, orig inal title, name of substance word, subject heading word, floating sub-heading word, keyword 

heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept wo rd, unique 

identifier, synonyms] (18846) 

3     Liver Diseases/ or Liver Cirrhosis/ (133838) 

4     1 or 2 (40775) 

5     3 and 4 (78) 

6     limit 5 to (abstracts and "reviews (best balance of sensitivity and specificity)") (5) 

7     5 not 6 (73) 

8     limit 7 to english language (57) 

9     limit 8 to editorial (0) 

10     8 not 9 (57) 

Figure S1 (b). Search strategy for Medline.  

Recent queries in pubmed 
  

Search Query Items 
found 

Time 

#6 Search (((((((Liver Disease*) OR Chronic Liver Disease*) OR Liver 
Cirrhosis) OR Cirrhotic*)) AND ((heart rate variability) OR HRV))) 
NOT (((((((Liver Disease*) OR Chronic Liver Disease*) OR Liver 
Cirrhosis) OR Cirrhotic*)) AND ((heart rate variability) OR HRV)) AND 
Review[ptyp]) Filters: Humans Sort by: Author 

66 09:27:41 

#5 Search (((((((Liver Disease*) OR Chronic Liver Disease*) OR Liver 
Cirrhosis) OR Cirrhotic*)) AND ((heart rate variability) OR HRV))) 
NOT (((((((Liver Disease*) OR Chronic Liver Disease*) OR Liver 
Cirrhosis) OR Cirrhotic*)) AND ((heart rate variability) OR HRV)) AND 
Review[ptyp]) 

79 09:22:50 

#4 Search (((((Liver Disease*) OR Chronic Liver Disease*) OR Liver 
Cirrhosis) OR Cirrhotic*)) AND ((heart rate variability) OR HRV) 
Filters: Review Sort by: Author 

6 09:21:20 

#3 Search (((((Liver Disease*) OR Chronic Liver Disease*) OR Liver 
Cirrhosis) OR Cirrhotic*)) AND ((heart rate variability) OR HRV) 

85 09:21:15 

#2 Search (((Liver Disease*) OR Chronic Liver Disease*) OR Liver 
Cirrhosis) OR Cirrhotic* 

249446 09:19:20 

#1 Search (heart rate variability) OR HRV 27650 09:17:44 

Figure S1 (c). Search strategy for PubMed.  
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Random 

recruitment 

of patients 

and health 

control 

Diagnosis 

of CLD 

Age-

matched  

Sex-

matched  

Patients with 

diseases, 

treatments, or 

lifestyles that 

influence HRV 

excluded 

MELD or 

Child-

Pugh 

reported 

(≤3 

Stars 

= 

High 

Risk 

of 

Bias) 

Ates F. et al. 

2006 [185] 

 *  * * * * ***** 

Baratta L. et 

al. 2010 

[186] 

 *   * * * * ***** 

Coelho, L. et 

al. 2001 

[187]  

 *   * *  * **** 

Frokjaer V. 

G. et al. 

2006 [188] 

 * * *  * * ***** 

Iga A. et al. 

2003 [189] 

 * * * * * * ****** 

Ko F.Y. et al. 

2013 [190] 

 * * *   * * ***** 

Lazzeri C. et 

al. 1997 

[191] 

 * * * * * * ****** 

Mani A.R. et 

al. 2008 [90] 

 * * *   * * ***** 

Milovanovic 

B. et al. 2009 

[192] 

 * * * * *   ***** 

Miyajima H. 

et al. 2001 

[193] 

 * * * *   * ***** 

Moller S. et 

al. 2012 

[194]  

 * * * * * * ****** 

Nagasako 

C.K. et al. 

2009 [195] 

 * * *   * * ***** 

Negru R.D. 

et al. 2015 

[178] 

 * * *  *  * * ****** 

Satti R. et al. 

2019 [176] 

 * * *     * **** 

CLD, Chronic Liver Disease; HRV, Heart Rate Variability; MELD, Model for End-stage Liver Disease 
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Appendix 4. Definitions and units of included HRV indices. 

HRV Indices Units Descriptions 

NN intervals. ms Time difference between consecutive normal QRS complexes of an 

ECG recording. 

SDNN  ms The standard deviation of NN intervals. 

cSDNN ms Corrected SDNN is the standard deviation of the NN interval that has 

been corrected for heart rate. It is calculated as SDNN/e–(HR/58.8)
 [see 

(15)]. 

SDANN ms The standard deviation of the average NN intervals for each 5-minute 

segment was deduced from a 24-hour ECG recording. 

SDNN Index ms The mean of standard deviations of all NN intervals for each 5-minute 

segment was deduced from a 24-hour ECG recording. 

pNN50 % Percentage of successive NN intervals that vary by more than 50ms. 

RMSSD ms Root mean square of differences in successive NN interval. 

TINN ms Width of the base of a computed RR interval histogram. 

TP  Variance of entire NN interval of either 5 minutes (short) or 24-hour 

(long) ECG recording. 

VLF ms2 Power of the frequency band between 0.0033-0.04 Hz. 

LF ms2 Power of the frequency band between 0.04-0.15 Hz. 

HF ms2 Power of the frequency band between 0.15-0.4 Hz. 

LF/HF  The ratio of LF power to HF power. 

SD1 ms The length of the line or standard deviation  perpendicular to the line of 

identity of a Poincare plot 

SD2 ms The length of the line or standard deviation parallel to the line of the 

identity of a Poincare plot 

ApEn (Approximate 

Entropy) 

 Measure of irregularity and complexity of a series of NN intervals. 

SampEn (Sample 

Entropy) 

 Measure of irregularity and complexity of a series of NN intervals. 

DFA α1 (Short-term 

scaling exponent) 

 Measure of short-term fractal-like fluctuations of inter-beat intervals. 

DFA α2 (Long-term 

scaling exponent) 

 Measure of long-term fractal-like fluctuations of inter-beat intervals. 

ECG, Electrocardiograph; NN Interval, the time lapse between consecutive QRS complexes of ECG 

recording; SDNN, Standard deviation of NN intervals; ms, millisecond; SDANN, Standard deviation of the 

average NN intervals for each 5-minute segment deduced from a 24-hour ECG recoding; pNN50, 

Percentage of successive RR intervals that vary by more than 50ms; RMSSD, Root mean square of 

differences in successive NN interval; TINN, Triangular Interpolation of the NN intervals’ histogram; TP, 

Total Power; VLF Very Low Frequency; LF, Low Frequency; HF, High Frequency; LF/HF, Ratio of LF to HF; 

SD1, Poincare plot Standard Deviation perpendicular to the line of identity; SD2, Poincare plot Standard 

Deviation along the line of identity; ApEn, Approximate Entropy; SampEn, Sample Entropy; DFA α1, Short-

term fluctuation of Detrended Fluctuation Analysis; DFA α2, Long-term fluctuation of Detrended Fluctuation 

Analysis; ms, millisecond. 
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Appendix 5. Reported SDNN of included studies. 

Author Normal SDNN (Mean±SD) (ms) Abnormal SDNN (Mean±SD) 

(ms) 

Ates F. et al. 2006 [185] 134 ± 52 70 ± 28  

Coelho, L. et al. 2001 [187] 148.9 ± 33.97 84.14 ± 35.78 

Frokjaer V. G. et al. 2006 [188] 139 ± 13 72 ± 10 

Ko F.Y. et al. 2013 [190] 42.9 ± 15.1    22.8 ± 13.8 

Lazzeri C. et al. 1997 [191] 57.99 ± 7 36.55 ± 4 

Mani A.R. et al. 2008 [90] 36.9 ± 14.2 14.4 ± 7.7 

Milovanovic B. et al. 2009** [192] 463.15 ± 111.83 93.42 ± 42.69 

Nagasako C.K. et al. 2009*** 

[195] 

79 56 

Negru R.D. et al. 2015 [178] 129.60 ± 45.70 101.88 ± 31.79 

**=Reported as natural log; ***=Reported as median, no interquartile range. All other indices are reported 

as mean ± standard deviation. SDNN; Standard deviation of NN intervals; SD, Standard Deviation; ms, 

Millisecond. 

 

Appendix 6. Reported SDNN Index of included studies. 

Author Normal SDNN index (Mean±SD) 

(ms) 

Abnormal SDNN index (Mean±SD) 

(ms) 

Negru R.D. et al. 2015 

[178] 

56.50 ± 17.04 43.83 ± 15.66 

SDNN; Standard deviation of NN intervals; SD, Standard Deviation; ms, Millisecond. 

 

Appendix 7. Reported SDANN of included studies. 

Author Normal SDANN  (Mean±SD) 

(ms) 

Abnormal SDANN  (Mean±SD) (ms) 

Ates F. et al. 2006 [185] 118 ± 49 55 ± 30   

Lazzeri C. et al. 1997 [191] 125.57 ± 8 68.14 + 7 

Negru R.D. et al. 2015 [178] 114.80 ± 43.48 88.21 ± 31.48 

All indices are reported as mean ± standard deviation. SDNN; SDANN, Standard deviation of the average 

NN intervals for each 5-minute segment deduced from a 24-hour ECG recoding; SD, Standard Deviation; 

ms, Millisecond. 

 

Appendix 8. Reported RMSSD of included studies. 

Author Normal RMSSD (Mean±SD) 

(ms) 

Abnormal RMSSD (Mean±SD) (ms) 

Ates F. et al. 2006 [185] 39±22 14±10 

Ko F.Y. et al. 2013** 

[190] 

28.2 ± 10.1   18.3 ± 11.7 

Lazzeri C. et al. 1997 

[191] 

41 ± l 27 ± 5 

**= Reported as a natural log. All other indices are reported as mean ± standard deviation. RMSSD, Root 

mean square of differences in successive NN interval; SD, Standard Deviation; ms, Millisecond. 
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Appendix 9. Reported pNN50 of included studies. 

Author Normal pNN50 (Mean±SD) (%) Abnormal pNN50 (Mean±SD) 

(%) 

Ates F. et al. 2006 [185]  8.2 ± 0.6 4.0 ± 0.6 

Coelho, L. et al. 2001 [187] 11.17 ± 9.88 3.54 ± 4.61 

Lazzeri C. et al. 1997 [191] 13 ± 2 3 ± 4 

Nagasako C.K. et al. 2009*** [195] 15.5  3.3 

***= Reported as median, no interquartile range. All other indices are reported as mean ± standard 

deviation. pNN50, Percentage of successive RR intervals that vary by more than 50 ms; SD, Standard 

Deviation; ms, Millisecond. 

Appendix 10. Reported Total Power (TP) of included studies. 

Author Normal TP (Mean±SD) (ms2) Abnormal TP(Mean±SD) (ms2) 

Frokjaer V. G. et al 2006** [188] 2307 ± 3258.1 204 ± 144.2 

Negru R.D. et al. 2015 [178] 2724.74 ± 1530.04 2007.70 ± 1247.49 

**= Reported as a natural log. All other indices are reported as mean ± standard deviation. TP, Total Power; 

SD, Standard Deviation; ms, Millisecond. 

 

Appendix 11. Reported High Frequency (HF) of included studies. 

Author Normal HF (Mean±SD) (ms2) Abnormal HF (Mean±SD) (ms2) 

Baratta L. et al. 2010 [186] 51.8 ± 11 40.6 ± 18.5 

Frokjaer V. G. et al. 2006* [188] 514.7 ± 961.9 25.5 ± 21.4 

Iga A. et al. 2003ˠ [189] 141 ± 58 28 ± 36 

Ko F.Y. et al. 2013** [190] 706.3 ± 2.4 135.6 ± 5 

Lazzeri C. et al. 1997 ˠ [191] 15 ± 1 20 ± 1 

Mani A.R. et al. 2008 [90] 188 ± 253 26 ± 34 

Milovanovic B. et al. 2009** [192] 1096.6 ± 2.7 333.6±3.2 

Miyajima H. et al. 2001 [193] 177.5 ± 94.0 77.2 ± 57.3 

Moller S. et al. 2012* [194] 473.8 ± 514.3 151.3 ± 252.8 

*= Reported as mean and interquartile range; **= Reported as natural log; ˠ= Reported as day and night 

[day recorded]. All other indices are reported as mean ± standard deviation. HF, High Frequency; SD, 

Standard Deviation; ms, Millisecond. 

 

Appendix 12. Reported Low Frequency (LF) of included studies. 

Author Normal LF (Mean±SD) (ms2) Abnormal LF (Mean±SD) (ms2) 

Frokjaer V. G. et al. 2006* [188] 1171.1 ± 1726.2 74.5 ± 51.9 

Iga A. et al. 2003ˠ [189] 213 ± 51 33 ± 23 

Ko F.Y. et al. 2013** [190] 1085.7 ± 2.3 183.1 ± 4.4 

Lazzeri C. et al. 1997 ˠ [191] 82 ± 2 79 ± 1 

Mani A.R. et al. 2008 [90] 191 ± 145 29 ± 51 

Milovanovic B. et al. 2009** [192] 3604.7 ± 2.7 943.9 ± 2.6 

Moller S. et al. 2012* [194] 647.5 ± 865.2 150.3 ± 174.6 
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*= Reported as mean and interquartile range; **= Reported as natural log; ˠ= Reported as day and night 

[day recorded]. LF, Low Frequency; SD, Standard Deviation; ms, Millisecond. 

 

Appendix 13. Reported Very Low Frequency (VLF) of included studies. 

Author Normal VLF (Mean±SD) 

(ms2) 

Abnormal VLF (Mean±SD) (ms2) 

Frokjaer V. G. et al. 2006* 

[188] 

734.6 ± 932.2* 103.9 ± 71.7* 

Negru R.D. et al. 2015 [178] 2045.96 ± 1311.92 1385.86 ± 840.08 

*= Reported as mean and interquartile range. VLF, Very Low Frequency; SD, Standard Deviation; ms, 

Millisecond. 

 

Appendix 14. Reported Low Frequency/High-Frequency Ration (LF: HF) of included studies. 

Author Normal LF:HF (Mean±SD) (ms2) Abnormal LF:HF (Mean±SD) (ms2) 

Iga A. et al. 2003ˠ [189] 1.14 ± 0.85 1.27 ± 0.22 

Miyajima H. et al. 2001 

[193] 

1.20 ± 1.01 3.56 ± 2.31 

Moller S. et al. 2012* [194] 1.27 ± 0.32 0.62 ± 0.15 

*=Reported as mean and interquartile range; ˠ=Reported as day and night (day recorded). LF:HF, Ratio of 

Low Frequency/High Frequency; SD, Standard Deviation; ms, Millisecond. 

 

Appendix 15. Reported HRV non-linear indices; SD1, SD2, Sample Entropy (SampEn), and Detrended 

Fluctuation Analysis- (DFA α1) of included studies. 

Author Normal 

SD1 

(Mean±

SD) 

Abnorm

al SD1 

(Mean±

SD) 

Normal 

SD2 

(Mean±

SD) 

Abnorm

al SD2 

(Mean±

SD) 

Normal 

SampE

n 

(Mean±

SD) 

Abnorm

al 

SampE

n 

(Mean±

SD) 

Normal 

DFA α1 

(Mean±

SD) 

Abnorm

al DFA 

α1 

(Mean±

SD) 

Ko F.Y. et al. 2013 

[190] 

NS NS NS NS NS NS 1.14 ± 

0.15 

0.89 ± 

0.25 

Mani A.R. et al. 

2008 [90] 

23.2 ± 

14.0 

8.8 ± 

5.9 

57.8 ± 

18.4  

23.3 ± 

12.6 

2.89 ± 

0.52 

2.05 ± 

0.60 

NS NS 

SD1, Poincare plot Standard Deviation perpendicular to the line of identity; SD2, Poincare plot Standard 

Deviation along the line of identity; SampEn, Sample Entropy; DFA α1, Short-term fluctuation of Detrended 

Fluctuation Analysis; NS, Not Shown. 
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Appendix 16. The predictive effect of HRV indices calculated from 24-h ECG on 1-year mortality in 

hospitalised patients with cirrhosis. Univariate Cox regression analysis was used for the calculation of the 

hazard ratio. 

 β SEM Hazard Ratio p-value 

SDNN -0.026 0.010 0.975 0.010 

cSDNN -0.007 0.003 0.993 0.015 

RMSSD  0.015 0.011 1.016 0.151 

SDANN -0.037 0.012 0.964 0.003 

pNN50  0.024 0.016 1.024 0.129 

ULF -0.000 0.000 1.000 0.044 

VLF  0.000 0.000 1.000 0.241 

LF  0.000 0.000 1.000 0.587 

HF  0.001 0.001 1.001 0.134 

β is the coefficient of Cox regression analysis. SEM is the standard error of the mean of β, Hazard ratio 

=𝐸𝑥𝑝 (β) = 𝑒β. SDNN: Standard Deviation of inter-beat intervals, cSDNN: SDNN corrected for heart rate 

(𝒄𝑺𝑫𝑵𝑵 =
𝑺𝑫𝑵𝑵

𝒆−𝑯𝒆𝒂𝒓𝒕 𝒓𝒂𝒕𝒆

𝟓𝟖.𝟖

). RMSSD: Root mean square of the successive differences of RR intervals (a measure 

of short-term HRV). SDANN: Standard deviation of the average NN intervals calculated over short periods, 

usually 5 minutes (a measure of long-term HRV). pNN50: The proportion of the number of pairs of 

successive RR intervals that differ by more than 50 ms divided by the total number of RR intervals. Ultra-

low frequency (ULF), Very-Low Frequency (VLF), Low-Frequency (LF), and High-Frequency (HF) bands 

were calculated based on spectral analysis of HRV. 

 

Appendix 17. ROC curve for prediction of mortality using Turbulence Onset (TO). Area under the curve for 

TO = 0.720 (p=0.019). 
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Appendix 18. The mean Heart Rate Turbulence indices of the study population after excluding two patients 

who died due to myocardial infarction. The data are expressed as mean ± SD. TO: Turbulence Onset, TS: 

Turbulence Slope. PVC: Premature Ventricular Complex. 

 Survivors Non-Survivors p-value 

Study Size  23  15 - 

TO -0.01±2.6  1.49±1.3 0.025 

TS  3.83±4.5  3.15±5.6 0.685 

No of PVCs in 24 hours 27.87±35.47 25.20±27.04 0.806 

 

 

Appendix 19. The independence of Turbulence Onset from the MELD score in predicting mortality 

excluding two patients who died due to myocardial infarction. Bivariate Cox regression analysis was used 

for the calculation of the hazard ratio. TO: Turbulence Onset. β is the coefficient of Cox regression analysis. 

SEM is the standard error of the mean of β, Hazard ratio =𝐸𝑥𝑝 (β) = 𝑒β. TO: Turbulence Onset. 

 β SEM Hazard Ratio p-value 

TO 0.267 0.127 1.306 0.036 

MELD 0.063 0.031 1.065 0.042 

 

 

 

Appendix 20. The independence of Turbulence Onset from the Child-Pugh score in predicting mortality 

excludes two patients who died due to myocardial infarction. Bivariate Cox regression analysis was used 

for the calculation of the hazard ratio. TO: Turbulence Onset. β is the coefficient of Cox regression analysis. 

SEM is the standard error of the mean of β, Hazard ratio =𝐸𝑥𝑝 (β) = 𝑒β. TO: Turbulence Onset. 

 β SEM Hazard Ratio p-value 

TO 0.301 0.142 1.351 0.034 

Child-Pugh 0.260 0.132 1.296 0.048 
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Appendix 21. Kaplan-Meier graphs illustrate three categories of heart rate turbulence (HRT) based on 

criteria established for prediction of mortality in patients with acute myocardial infarction by Barthel et al. 

(Circulation 2003; 108:1221-1226). Within the context of acute myocardial infarction, the cut-off value for 

Turbulence Onset (TO) and Turbulence Slope (TS) is 0% and 2.5 ms/RR respectively. Patients were 

classified into the following HRT categories: category 0 if both TO and TS were normal (TO<0% and TS 

>2.5 ms/RR), category 1 if either TO or TS was abnormal, or category 2 if both TO and TS were abnormal 

(Chi-square = 6.26, p=0.044). 
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Appendix 22. Description and definitions of network topology measures. 

Network 

Topology 

Measures 

Definition Mathematical Formula 

Degree 

Centrality 

The sum of incidental edges to the node. In 

a directed network, it is represented as the 

sum of weighted incoming or outcoming 

edges of each node.  

𝐷(𝑖) = ∑ 𝐴𝑖𝑗

𝑛

𝑗=1
 

-𝐴𝑖𝑗 is the ij-th element of the adjacency matrix 

A of the graph  

-n is the number of nodes in the graph [499]. 

Shortest Path 

Length (SPL) 

A path with the minimum number of edges 

between two nodes.  In a directed and 

weighted network, it is a path with the 

minimum sum of edge weights starting at 

source node s and ending at target node t. 

𝑑(𝑖, 𝑗) 

-distance d(i,j) denotes the length of the 

shortest path between node i and node j 

Efficiency The efficiency between two nodes is 

defined as the reciprocal of their shortest 

path length. The global efficiency of a 

graph is the average efficiency over all 

pairs of nodes.  

𝐸(𝐺) =
1

𝑛(𝑛 − 1)
∑

1

𝑑(𝑖, 𝑗)
𝑖¹𝑗

 

[500] 

Diameter The shortest path length between the most 

distant nodes.  
𝑑(𝐺) =

𝑚𝑎𝑥
𝑖𝑗 {𝑑(𝑖, 𝑗)} 

 

Appendix 23. Comparison of circulating biomarkers, MELD, and Child-Pugh scores in survival and non-

survival patients with cirrhosis after one year follow up. 

Variable Survivors  Non-Survivors p-value  

Albumin (g/L) 34.9 (30.8 – 38.1) 30.0 (27.1 – 36.1) 0.005 

Bilirubin (µmol/L) 23.1 (15.4 – 38.2) 73.9 (31.1 – 141.8) <0.001 

Prothrombin time (% activity) 54 (48 - 67) 46 (32 – 55) <0.001 

Ammonia (µmol/L) 59.5 (35.7 – 115.0) 60 (29.0 – 85.3) 0.266 

Creatinine (µmol/L) 74 (65 - 93) 89 (70 – 115) 0.039 

Sodium (mmol/L) 138 (136 – 140) 136 (134 – 138) 0.008 

MELD score  11 (9 – 14) 19 (12 – 23) <0.001 

Child-Pugh score  7 (6 – 9) 10 (8 – 11) <0.001 

Data are shown as Median (interquartile range). P-values are calculated using the Mann-Whitney U test. 

 

Appendix 24. The prognosis effects of parenclitic deviations independent of Child-Pugh score. 

∂ of variable pairs β SEM Hazard Ratio (95.0% 

CI) 

p-value 

Albumin-Bilirubin 

Child-Pugh 

0.095 

0.430 

0.025 

0.098 

1.100 (1.048 – 1.154) 

1.537 (1.269 – 1.861) 

<0.001 

<0.001 

Albumin-Prothrombin Time 

Child-Pugh 

0.106 

0.153 

0.063 

0.032 

1.162 (1.016 – 1.327) 

1.545 (1.291 – 1.849) 

0.028 

<0.001 

Albumin-Hepatic Encephalopathy 

Child-Pugh 

0.569 

0.431 

0.515 

0.090 

1.766 (0.644 – 4.844) 

1.539 (1.289 – 1.837) 

0.269 

<0.001 

Bilirubin-Prothrombin Time 

Child-Pugh 

0.024 

0.466 

0.007 

0.095 

1.024 (1.010 – 1.038) 

1.594 (1.324 – 1.091) 

0.001 

<0.001 

Ammonia-Hepatic Encephalopathy 

Child-Pugh 

0.651 

0.456 

0.673 

0.112 

1.918 (0.513 – 7.171) 

1.578 (1.268 – 1.963) 

0.333 

<0.001 

∂, parenclitic deviation; β, coefficient of Cox regression analysis; SEM, standard error of the mean of β, CI, 

confidence interval. 
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Appendix 25. Parenclitic network topology of the studied population. 

Network topology Survivors; median (IQR) Non-Survivors; median (IQR) p-value  

Centrality Sum 25.61 (15.98 – 31.58) 32.20 (21.82 – 51.05) 0.070 

Centrality Mean 3.66 (2.28 – 4.51) 4.60 (3.12 – 7.29) 0.070 

Centrality Standard 

Deviation 

5.88 (3.64 – 8.61) 8.71 (4.57 – 13.88) 0.038 

Shortest Path Length Sum 17.88 (12.28 – 24.45) 21.86 (15.70 – 34.11) 0.202 

Shortest Path Length Mean 2.55 (1.75 – 3.49) 3.12 (2.24 – 4.87) 0.202 

Shortest Path Length 

Standard Deviation 

2.40 (1.61 – 3.91) 2.99 (1.91 – 4.40) 0.446 

Efficiency 0.03 (0.02 – 0.05) 0.03 (0.02 – 0.04) 0.303 

Diameter 6.11 (4.23 – 9.79) 6.77 (5.05 – 11.35) 0.303 

IQR, Interquartile range. 

 

Appendix 26. The prognosis effects of parenclitic network indices independent of MELD and Child-Pugh 

score. 

Network topology β SEM Hazard Ratio (95.0% CI) p-value 

Standard Deviation of Centrality 

MELD 

0.021 

0.112  

0.018 

0.043 

1.022 (0 .986 – 1.058) 

1.119 (1.029 – 1.216) 

0.231 

0.009 

Standard Deviation of Centrality 

Child-Pugh 

0.037 

0.539 

0.014 

0.122 

1.037 (1.010 – 1.066) 

1.714 (1.350 – 2.176) 

0.008 

<0.001 

β, coefficient of Cox regression analysis; SEM, standard error of the mean of β, CI, confidence interval.  

 

Appendix 27. Graph showing the relationship between albumin and bilirubin in patients that were followed 

up for 12 months. The red and green dots represent the data of the non-survivors and survivors respectively 

with the corresponding lines depicting the direction of correlation. Analysis of covariance (ANCOA) was 

applied to assess the effect of the group (survivors versus non-survivors) in the relationship between 

albumin and bilirubin. ANCOVA showed F(group)= 4.215, P<0.05. This provides statistical evidence that 
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there are statistically significant differences in albumin levels between the groups (i.e., survivors and non-

survivors) when adjusted for patients’ bilirubin levels. 

 

 

Appendix 28. Graph showing the relationship between albumin and prothrombin time in patients that were 

followed up for 12 months. The red and green dots represent the data of the non-survivors and survivors 

respectively with the corresponding lines depicting the direction of correlation. 
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Appendix 29. Differences in parenclitic indices between survivors and non-survivors in the validation group. 

Survivors in the training group (n=194) were used as a model for the calculation of the coefficients that 

were used for the calculation of parenclitic deviations and network indices in the validation group (n=203). 

δ; Deviation along an axis, WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin. 

  

Variables Survivor Non-survivors p-value 

δ (WCC-CRP) 3.74 (1.17-5.78) 2.23 (1.17-3.79) 0.061 

δ (Bil-WCC) 4.11 (1.33-7.84) 2.66 (1.16-4.28) 0.040 

Mean Centrality 6.37 (4.09-9.15) 5.12 (3.23-7.21) 0.013 

Mean Shortest path length 6.4 (4.39-10.03) 5.18 (3.58-7.53) 0.011 

Diameter 17.9 (11.52-27.54) 13.51 (8.49-20.29) 0.017 
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Appendix 30. Prognostic values of parenclitic indices independent of age and MELD in the randomly split 

(~50%) standard treatment group. During validation, the correlation coefficients were recalculated in a 

training sample of 194 of randomly selected patients. The individual parenclitic deviations were calculated 

using these coefficients for the validation sample comprising the remainder of 203 patients. Cox regression 

was used to estimate hazard ratios based on 6-month follow-up survival data. 

Variables β SEM p-value Hazard Ratio (95%CI) 

δ (WCC-CRP) 0.098 0.049 0.048 1.102 (1.001-1.214) 

Age 0.047 0.014 0.001 1.048 (1.02-1.077) 

MELD 0.088 0.019 <0.001 1.092 (1.052-1.133) 

     
δ (Bil-WCC) 0.074 0.029 0.011 1.077 (1.017-1.14) 

Age 0.043 0.013 0.001 1.044 (1.017-1.071) 

MELD 0.078 0.018 <0.001 1.081 (1.044-1.119) 

     
Mean Centrality 0.09 0.049 0.066 1.094 (0.994-1.205) 

Age 0.047 0.014 <0.001 1.049 (1.021-1.077) 

MELD 0.082 0.02 <0.001 1.085 (1.043-1.129) 

     
Mean Shortest path length 0.086 0.042 0.042 1.09 (1.003-1.184) 

Age 0.047 0.014 0.001 1.048 (1.021-1.077) 

MELD 0.083 0.02 <0.001 1.086 (1.045-1.129) 

     
Diameter 0.03 0.014 0.034 1.03 (1.002-1.059) 

Age 0.047 0.013 <0.001 1.049 (1.021-1.077) 

MELD 0.084 0.019 <0.001 1.088 (1.048-1.13) 

δ; Deviation along an axis, WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International 

Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, CRP; C-Reactive Protein, Cent; Centrality, SPL; 

Shortest Path Length, MELD; Model for End-stage Liver Disease.
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Appendix 31. Interaction between parenclitic indices and albumin administration in predicting 6-month 

survival. 

Variables β SEM Hazard Ratio (95%CI) p-value 

Age 0.06 0.013 1.062 (1.037-1.089) <0.001 

TX -0.451 0.408 0.637 (0.286-1.418) 0.269 

Age*TX 0.015 0.018 1.015 (0.98-1.051) 0.402 
     
MELD 0.026 0.008 1.026 (1.01-1.043) 0.002 

TX -0.738 0.68 0.478 (0.126-1.812) 0.278 

MELD*TX 0.011 0.012 1.011 (0.988-1.035) 0.357 
     
Gender -0.203 0.194 0.816 (0.558-1.194) 0.296 

TX -0.38 0.383 0.684 (0.323-1.449) 0.321 

Gender*TX 0.187 0.285 1.205 (0.69-2.106) 0.512 
     
Diameter 0.005 0.01 1.005 (0.985-1.025) 0.64 

TX -0.573 0.246 0.564 (0.348-0.913) 0.02 

Diameter*TX 0.026 0.013 1.026 (1.00-1.052) 0.049 
     
Mean Shortest path 0.058 0.042 1.06 (0.976-1.151) 0.167 

TX -0.657 0.273 0.518 (0.303-0.886) 0.016 

Mean Shortest path *TX 0.118 0.057 1.125 (1.005-1.259) 0.040 
     
Mean Centrality 0.057 0.026 1.059 (1.007-1.114) 0.027 

TX -0.552 0.288 0.576 (0.327-1.013) 0.055 

Mean Centrality *TX 0.053 0.036 1.054 (0.983-1.131) 0.14 
     
δ (Bil-WCC) 0.017 0.022 1.017 (0.973-1.063) 0.459 

TX -0.369 0.175 0.691 (0.49-0.975) 0.035 

δ (Bil-WCC)*TX 0.06 0.031 1.062 (0.999-1.128) 0.053 
     
δ (WCC-CRP) -0.001 0.021 0.999 (0.958-1.042) 0.973 

TX -0.572 0.181 0.565 (0.396-0.804) 0.002 

δ (WCC-CRP)*TX 0.122 0.033 1.13 (1.058-1.206) <0.001 
     
Alb -0.078 0.023 0.925 (0.884-0.967) 0.001 

TX -1.909 0.776 0.148 (0.032-0.678) 0.014 

Alb*TX 0.078 0.034 1.081 (1.012-1.154) 0.021 
     
WCC 0.026 0.015 1.027 (0.997-1.057) 0.081 

TX -0.671 0.247 0.511 (0.315-0.829) 0.006 

TX*WCC 0.056 0.021 1.058 (1.015-1.103) 0.007 
     
CRP 0.002 0.001 1.002 (1-1.004) 0.069 

TX -0.37 0.161 0.691 (0.504-0.948) 0.022 

CRP*TX 0.006 0.002 1.006 (1.002-1.01) 0.003 
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δ; Deviation along an axis, WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International 

Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, CRP; C-Reactive Protein, Cent; Centrality, SPL; 

Shortest Path Length, MELD; Model for End-stage Liver Disease, TX; Treatment. 

 

Appendix 32. Network map of the 6-month survivors in the randomly split standard treatment group 

(training sample). WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International 

Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, CRP; C-Reactive Protein 
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Appendix 33. Network map of the 6-month non-survivors in the randomly split standard treatment group 

(training sample). WCC; White Cell Count, Na; Serum Sodium, Bil; Total Bilirubin, INR; International 

Normalized Ratio, Alb; Serum Albumin, HR; Heart Rate, CRP; C-Reactive Protein 
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Appendix 34. Principal components after Varimax and rotation and Kaiser Normalization. The KMO (Kaiser-

Meyer-Olkin) test that the sample is adequate for PCA showed p-values < 0.001 (Chi-Square = 1844.299, 

p-value = <0.001). 

 Principal Components 

Variables 1 2 3 4 5 6 7 8 9 

Alanine Aminotransferase  

0.82

8         

Aspartate Transaminase 

0.81

7         
International Normalized 

Ratio 

0.76

4         
Oxygen Saturation          

Serum Creatinine  

0.84

5        

Urea  

0.80

7        
Phosphate  0.69        

Serum Albumin   

0.69

2       

Mean Blood Pressure   

0.64

9       

Haemoglobin   

0.60

7       
Alkaline Phosphatase          

Serum Sodium    

0.92

4      

Chloride    

0.83

1      

Bicarbonate     

0.80

1     

Blood pH     

0.76

5     

Heart Rate      

0.81

5    

Respiratory Rate      

0.70

7    

Blood Glucose       

0.80

9   

Lactate       

0.57

1   
Glasgow Coma Score          

Platelet Count        

0.83

6  

White Blood Count        

0.75

7  
Total Bilirubin         0.744 

Body Temperature         

-

0.728 

Na; Serum Sodium, Cl;  chloride, AST; aspartate transaminase, ALT; alanine aminotransferase, GCS; 

Glasgow Coma Score, Bil; Total Bilirubin, ALP; Alkaline Phosphatase, Cr; Serum Creatinine, Na; Serum 

Sodium, Glu; Blood Glucose, HR; Heart Rate, Temp; Temperature, SEM; Standard Error of Mean, HR; 

Hazard Ratio, CI; Confidence Interval. 
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Appendix 35. Univariate Cox regression analysis of the Principal Components based on ICU survival of 

patients. 

Variables  β SEM HR (95% CI) p-value 

1 0.255 0.092 1.08(1.29 - 1.55) 0.005 

2 0.168 0.097 0.98(1.18 - 1.43) 0.082 

3 -0.258 0.093 0.64(0.77 - 0.93) 0.005 

4 0.13 0.106 0.93(1.14 - 1.4) 0.222 

5 -0.084 0.102 0.75(0.92 - 1.12) 0.414 

6 0.111 0.107 0.91(1.12 - 1.38) 0.299 

7 0.226 0.103 1.03(1.25 - 1.53) 0.027 

8 -0.07 0.099 0.77(0.93 - 1.13) 0.478 

9 -0.07 0.099 0.77(0.93 - 1.13) 0.478 

SEM; Standard Error of Mean, HR; Hazard Ratio, CI; Confidence Interval. 

 

Appendix 36. Multivariate Cox regression analysis of parenclitic deviation along the WCC-CRP axis 

independent of WCC and CRP 

Covariate B SEM Hazard ratio (95% CI) p value 

WCC_CRP 0.025 0.037 1.025 (0.953 - 1.103) 0.503 

WCC 0.046 0.023 1.048 (1.002 - 1.095) 0.040 

     

WCC_CRP 0.070 0.027 1.073 (1.018 - 1.131) 0.008 

CRP 0.006 0.002 1.006 (1.002 - 1.010) 0.005 

WCC; White Cell Count, CRP; C-Reactive Protein, SEM; Standard Error of Mean, HR; Hazard Ratio, CI; 

confidence Interval. 

 


