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Abstract 

In structural frames, second order effects refer to the internal forces and moments that arise as a result of deformations 

under load (i.e. geometrical nonlinearity). EN 1993-1-1 states that global second order effects may be neglected if the 

critical load factor of the frame cr is greater than or equal to 10 for an elastic analysis, or greater than or equal to 15 when 

a plastic global analysis is used. No specific guidance is provided in EN 1993-1-4 for the design of stainless steel frames, 

for which the nonlinear stress-strain behaviour of the material will result in greater deformations as the material loses its 

stiffness. A study of the effects of material nonlinearity on the stability of stainless steel frames is presented herein. A series 

of different frame geometries and loading conditions are considered. Based on the findings, proposals for the treatment of 

the influence of material nonlinearity on the global analysis and design of stainless steel frames are presented.  
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1 Introduction 

Stainless steel is widely used across a range of industries with its key advantage over ordinary carbon steel being its 

corrosion resistance and durability. Although a number of design standards for stainless steel currently exist, their 

provisions have generally been based on a presumed equivalence with the carbon steel design rules. However, stainless 

steel and carbon steel have distinctly different material characteristics; while carbon steel is accurately characterised by a 

bilinear (elastic, perfectly plastic) stress-strain response, stainless steel exhibits nonlinear rounded stress-strain behaviour 

with no sharply defined yield point. It is important that the codes reflect these differences so as to ensure safe, efficient, 

and structurally sound design. The current European rules for global analysis and design are examined in this paper, 

assessing whether the methods provided are suitable for stainless steel. Particular attention is given to the extent to which 

the differences between the behaviour of stainless steel and carbon steel frames are adequately recognised.  

EN 1993-1-4 [1] gives supplementary guidance for the design of stainless steel structures that complement the design rules 

given for structural carbon steel in EN 1993-1-1 [2]. Section 5 of EN 1993-1-1 outlines the rules for structural analysis 

with detailed subsections on structural modelling, global analysis and imperfections, as well as methods of analysis 

considering material nonlinearities. The guidance on material nonlinearities largely relates to the occurrence of traditional 

idealised plastic hinges, as seen in carbon steel structures. However, such hinges do not form in stainless steel structures; 

instead zones of plasticity with gradually reducing stiffness, but with peak capacities well in excess of the traditional plastic 

moment are exhibited [3]. EN 1993-1-1 also states that “elastic global analysis may be used in all cases” and that “elastic 

global analysis should be based on the assumption that the stress-strain behaviour of the material is linear, whatever the 

stress level is”. The supplementary rules for stainless steel give no additional information for the global analysis of stainless 

steel structures, though an analytical expression for the description of the rounded stress-strain response of stainless steel 

based on the two stage Ramberg-Osgood model [4,5,6] is given in Annex C [1]. This paper assesses whether the assumption 

of an elastic global analysis is sufficient or whether, due to the significant nonlinearity of stainless steel, a plastic global 

analysis is necessary. EN 1993-1-4 does not provide global plastic design rules for indeterminate stainless steel structures 
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despite their high ductility, though the applicability of such a design approach to stainless steel frames has been assessed, 

with encouraging findings [3,7]. 

Fig. 1 shows typical load-displacement paths determined from different types of structural analyses, displaying the effects 

of material and geometric nonlinearities and their importance in the global analysis of structures. Geometrical nonlinearities 

may result either from global imperfections and deformations associated with frame instability, known as ‘𝑃 − ∆’ effects, 

or member imperfections and deformations associated with member instability, known as ‘𝑃 − 𝛿’ effects. Whether or not 

global second order effects can be ignored depends on the extent to which they modify the structural behaviour or increase 

the forces and moments in the members. In common with other structural steel design standards, this assessment is made 

in EN 1993-1-1 [2] on the basis of the value of the critical load factor 𝛼cr, which is the amount by which the design loading 

would have to be increased to cause elastic instability of the frame in a global sway mode. Second order effects are deemed 

to be sufficiently small to be ignored when 𝛼cr ≥ 10 for an elastic analysis and 𝛼cr ≥ 15 for a plastic analysis. These 

guidelines were developed on the basis of linear elastic or linear elastic, perfectly plastic material behaviour; their validity 

in the case of the nonlinear rounded material response of stainless steel is assessed in this paper.   

 

 Fig. 1  Methods of structural analysis (LA = Linear analysis; GNA = Geometrically nonlinear analysis; 

MNA = Materially nonlinear analysis; GMNIA = Geometrically and materially nonlinear analysis 

with imperfections). 

The assessment is carried out by first generating benchmark results for a series of frames using geometrically and materially 

nonlinear analyses with imperfections (GMNIA). The Continuous Strength Method (CSM) is used to mimic local buckling 

in the beam element models. The influence of material nonlinearity is observed and a proposal to account for the effect of 

plasticity on the generation of second order effects is made.  In Section 3 the current design rules for stainless steel are 

applied to the benchmark frames, considering different global analysis options as well as cross-section and member checks. 

Based on the results from the study, the consequences of material nonlinearity and stiffness degradation on the deterioration 

of frame stability are discussed in Section 4, concluding with design recommendations. 

2 Benchmark frame modelling 

2.1 Introduction 

Finite element (FE) models were developed using the general purpose FE software ABAQUS [8]. Portal frames constructed 

using welded I-sections were simulated with the geometry of the standard European HEB 340 cross-section. This is a Class 

1 cross-section in bending and is therefore deemed capable of reaching and maintaining its full plastic moment resistance, 
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according to the traditional definition. The 2-noded linear Timoshenko B31OS beam element, from the ABAQUS element 

library, was employed to create the models and was used in all numerical simulations. Fig. 2 shows the basic frame 

configuration modelled in this study. Fixed boundary conditions were considered at the column bases as well as a number 

of loading arrangements, as summarised in Table 1. The width 𝐿 of all frames was taken to be 10 m, with the frame heights 

ℎ varying between 5 m and 15 m for each case.  

 

 Fig. 2  Details of portal frames modelled, where α is the load factor. 

Table 1 Frame cases considered. 

Frame case no.  Boundary conditions Horizontal loading 𝐻 Frame height h (m) 

1 

Fixed 

0.05𝑉 

5, 6, 7, 8, 9, 10, 15 2 0.2𝑉 

3 0.5𝑉 

The members were connected via fixed multi-point constraint ties at their ends providing full continuity. The frames were 

constrained out-of-plane such that only in-plane major axis buckling was considered. 100 elements were used to model 

each of the members, to accurately capture the spread of plasticity, and the modified Riks method [8] was used to trace the 

full load-deformation response of the frames. The displacements, load factors, section forces and section moments were 

extracted from all analyses.  

In the following subsections, the elastic buckling load factors 𝛼cr from a linear buckling analysis (LBA) and ultimate load 

factors 𝛼u from a geometrically and materially nonlinear analysis with imperfections (GMNIA) of the considered frames 

are determined. A comparison of the level of moment amplification in the frames in the case of elastic and plastic analysis 

is then carried out, and a proposal to account for the influence of plasticity on frame stability is made.  

2.2 Elastic buckling load factor 𝜶𝐜𝐫 

There are two common methods for determining the elastic critical load factor 𝛼cr of frames. The first method is the 

approximate method, originally proposed in [9], and given in Clause 5.2.1(4) of EN 1993-1-1; this approach can be used 

for “portal frames with shallow roof slopes and beam-and-column type plane frames when the axial compression in the 

beams is not significant”. The second method is to conduct a linear buckling analysis of the frame under the applied loading 

conditions and to take 𝛼cr as the eigenvalue corresponding to the lowest sway buckling mode. This represents the factor 

by which the applied loading would need to be increased to cause elastic instability of the frame in a global sway mode. 

Throughout this study, 𝛼cr has been determined using the more accurate eigenvalue approach, under the applied loading 

that causes collapse of the frame, as predicted by GMNIA (i.e. 𝛼cr is determined relative to the collapse load factor 𝛼u, 

which is defined in Section 2.3). 
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2.3 Ultimate load factor 𝜶𝐮 

The calculation of the ultimate load factors of the frames from geometrically and materially nonlinear analyses with 

imperfections (GMNIA) is described in this section. These are taken as the ‘true’ failure load factors of the frames and are 

used in this study as benchmark load factors, against which the various design approaches considered in Section 3 are 

assessed. 

2.3.1 Material modelling 

For the benchmark GMNIA models, the rounded nonlinear stress-strain response of stainless steel, defined on the basis of 

the two-stage Ramberg-Osgood formulation [4], given by Eqs. (1)-(2), where 𝜀 and 𝜎 are the strain and stress respectively, 

𝑓y is the yield (0.2% proof) stress, 𝐸 is the Young’s modulus, 𝑓u is the ultimate stress, 𝐸y is the tangent modulus at the yield 

(0.2% proof) stress, defined by Eq. (3), 𝜀u is the ultimate strain, and 𝑛 and 𝑚 are the strain hardening exponents, was 

employed.  

𝜀 =
𝜎

𝐸
+ 0.002 (

𝜎

𝑓y
)

𝑛

       for       𝜎 ≤ 𝑓y (1) 

𝜀 = 0.002 +
𝑓y

𝐸
+
𝜎 − 𝑓y

𝐸y
+ 𝜀u (

𝜎 − 𝑓y

𝑓u − 𝑓y
)

𝑚

       for       𝑓y < 𝜎 ≤ 𝑓u (2) 

𝐸y =
𝐸

1 + 0.002𝑛
𝐸
𝑓y

 
(3) 

For this study, a single stress-strain curve for a typical austenitic stainless steel has been considered, with                                  

𝐸 = 200000 N/mm2, 𝑓y = 310 N/mm2, 𝑓u = 670 N/mm2,  𝑛 = 6.3, and 𝜀u and 𝑚 defined by Eqs. (4) and (5), respectively 

[1]. This constitutive relationship is depicted, up to 5% strain, in Fig. 3. 

𝜀u = 1 −
𝑓y

𝑓u
 (4) 

𝑚 = 1 + 3.5
𝑓y

𝑓u
 (5) 

 

 Fig. 3  Stress-strain response for a typical austenitic stainless steel defined through the two-stage 

Ramberg-Osgood model, together with an elastic stress-strain response. 
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2.3.2 Imperfections and residual stresses 

Initial imperfections can have a significant effect on the development and spread of plasticity, and hence the stability of 

structural members and frames [10]. In this study, an initial member out-of-straightness in the form of a half-sine wave and 

with a magnitude of 1/1000 of the member length was assumed while, for the initial frame imperfection an out-of-

plumbness 1/200 of the frame height was assumed, as recommended in EN 1993-1-1 [2]. The geometric imperfections 

were incorporated into the models in the most unfavourable directions considering the applied loading and boundary 

conditions. The initial frame out-of-plumbness was applied as an equivalent horizontal force. 

Residual stresses can influence the performance of structural members by causing premature yielding and loss of stiffness, 

resulting in reduced ultimate load carrying capacity. Residual stress distributions in stainless steel sections differ from those 

in equivalent carbon steel sections due to differences in physical and thermal properties [11]. The modified ECCS residual 

stress model [12] developed for stainless steel welded I-sections by Yuan et al. [13] has been incorporated into the FE 

models.  Forty-one integration points were used within each flange and web of the sections to ensure that the residual stress 

distribution and subsequent spread of plasticity under the applied loading could be accurately captured. The residual 

stresses were introduced by defining the initial stress values at the 121 integration points across the open section, through 

the SIGINI user subroutine [8].   

2.3.3 Simulation of local buckling 

Advanced structural analysis is commonly carried out using finite element models constructed with beam elements. Beam 

elements are incapable of capturing the effects of local buckling as they are nondeforming line elements. However, 

disregarding local buckling can lead to overestimations of system strengths leading to unsafe design. This is a concern for 

all materials but particularly for stainless steel due to the nonlinear stress-strain response and the pronounced development 

of strain hardening. Fig. 4 shows the results from an example simply-supported beam under 3-point bending. While the 

beam FE model never reaches a peak moment, an equivalent shell FE model (with local imperfections of amplitude 1/200 

of the plate width) which allows for local buckling, exhibits a peak moment of approximately 1.35 times the plastic moment 

capacity 𝑀pl, with 𝑀pl the capacity predicted for the modelled Class 1 HEB 340 cross-section according to EN 1993-1-4. 

 

Fig. 4            Response from an HEB 340 simply-supported beam under 3-point bending. 

To simulate local buckling in the beam element models, and also to allow for the beneficial influence of strain hardening, 

the strain limits defined by the Continuous Strength Method (CSM) are employed herein. The CSM is a deformation-based 

method that replaces the concept of cross-section classification with a nondimensional measure of the cross-section 
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deformation capacity, allowing for the incorporation of strain hardening [14]. The CSM has two key components (i) a 

continuous ‘base curve’ to determine the maximum strain that a cross-section can withstand under the applied loading, and 

(ii) an elastic, linear hardening material model allowing for strain hardening, to enable design stresses greater than the 0.2% 

proof stress to be achieved [15]. In this part of the study, only the CSM maximum strain 𝜀csm was employed, and the 

ultimate load factor of the frames 𝛼u was defined either at an instability induced natural peak in load-deformation response 

or at the point where the CSM strain limit is achieved at any cross-section. 

The CSM base curve is given by Eq. (6), where 𝜆̅p is the local cross-sectional slenderness, 𝜀y is the yield strain equal to 

𝑓y 𝐸⁄ , 𝜀u = 1 − 𝑓y 𝑓u⁄  and 𝐶1 = 0.10 for austenitic stainless steel.  

𝜀csm
𝜀y

=

{
 
 

 
 
0.25

𝜆̅p
3.6

≤ min(15,
𝐶1𝜀u
𝜀y

)         for        𝜆̅p ≤ 0.68

(1 −
0.222

𝜆̅p
1.05

)
1

𝜆̅p
1.05

              for        𝜆̅p > 0.68

 (6) 

The cross-sectional slenderness is calculated using Eq. (7), where 𝑓y is the yield stress and 𝜎cr is the elastic critical buckling 

stress of the cross-section. The software CUFSM [16] was used to calculate the elastic critical buckling stress of the cross-

section under various in-plane stress distributions ranging from pure compression to pure bending. The CSM strain limit, 

as with cross-section classification, can be based on the instantaneous stress distribution within the section under 

consideration, with pure compression (𝜓 = 𝜎2 𝜎1⁄ = 1) being the most severe and therefore leading to the lowest CSM 

strain limit; with increasing bending contributions, the stress distribution becomes more favourable (towards 𝜓 = −1 for 

pure bending) and hence the CSM strain limit increases. This is illustrated in Fig. 5 for an HEB 340 section with                   

𝑓y = 310 N/mm2 under compression and major axis bending. The instantaneous strain limit 𝜀csm, determined for the local 

slenderness 𝜆̅p corresponding to the elastic buckling stress of the cross-section from CUFSM at each increment of the 

global structural analysis, is used throughout this study.  

𝜆̅p = √
𝑓y

𝜎cr
 (7) 

 

 Fig. 5  Normalised CSM strain limit for an HEB 340 section under varying stress distributions. 

The CSM strain limit is applied to strains output from the structural analysis, but averaged over a finite length of member. 

Using average strains over a finite length of member is preferable to using peak strain to avoid excessive sensitivity to the 
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mesh size and the occurrence of spurious results, to reflect the fact that plastic hinges and local buckling require a finite 

length over which to develop, and to allow for local moment gradient effects. Based on ongoing work at Imperial College, 

it has been shown that the strains from the structural analysis should be averaged over a characteristic length, related to the 

local buckling half wavelength. Lay [17] proposed Eq. (8) for estimating the local buckling half wavelength 𝐿buckle of        

I-sections in the inelastic regime, where 𝑏 is the overall flange width, 𝑡f is the flange thickness, 𝑡w is the web thickness, 𝐴f 

is the flange area and 𝐴w is the web area. Strains are averaged over the length 𝐿buckle along the member in this study, and 

this length defines the maximum element size to be used in the FE models. Further work on refining this length over which 

the strains are averaged is underway.  

𝐿buckle = 1.42𝑏
𝑡f
𝑡w
(
𝐴w
𝐴f
)
0.25

 (8) 

For the HEB 340 cross-section considered in Fig. 4, the cross-section slenderness under bending 𝜆̅p is equal to 0.38, which 

corresponds to a normalised CSM strain limit 𝜀csm 𝜀y⁄ = 7.84. Applying this strain limit to the beam FE model – see        

Fig. 4 - results in a capacity prediction close to but on the safe side of the peak moment from the shell FE model, and 

considerably above the plastic moment capacity, which represents the EN 1993-1-4 cross-section resistance prediction for 

this Class 1 section.  

In all further analyses in this study, ultimate load factors as predicted by GMNIA with the CSM strain limit, 𝛼u, are taken 

to be the ‘true’ benchmark failure values of the considered frames. In cases where the peak load occurs before the CSM 

strain limit is reached, the peak load is simply taken as the ultimate load. This is illustrated in Fig. 6 for the frames 

considered in this study.  

 

Fig. 6 Comparison of the ultimate load factors 𝜶𝐮, considering the CSM strain limit to simulate local 

buckling, and the peak load factors 𝜶𝐩𝐞𝐚𝐤.  

2.4 Results 

The nonlinear stress-strain behaviour of stainless steel results in greater deformations as the material loses its stiffness. In 

the elastic regime, Merchant [18] proposed an amplification factor 𝑘amp, which is included in EN 1993-1-1 [2] and given 

by Eq. (9), to be used to estimate second order sway moments from a first order analysis. 
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𝑘amp =
1

1 −
1
𝛼cr

  
(9) 

where 𝛼cr is the factor by which the applied loading must be increased to cause elastic instability of the frame in a global 

sway mode. 

For an elastic analysis, the ratios of moments extracted from the FE frame models at 𝛼u using a second order elastic analysis 

𝑀GNA (GNA) and a first order elastic analysis 𝑀LA (LA) are plotted in Fig. 7. Eq. (9) is also plotted in the figure. The 

results from the frame analyses may be seen to follow the response predicted by the 𝑘amp expression accurately. For elastic 

analysis, 𝑘amp can be approximately determined as the ratio of second order to first order moments 𝑀GNA/𝑀LA. As 𝛼cr 

increases, the ratio of internal forces and moments from the second and first order analyses reduce, and 𝑘amp → 1. Frames 

with high values of 𝛼cr are not sensitive to second order sway effects. As 𝛼cr reduces, second order effects become 

increasingly significant, with 𝑘amp ≃ 1.1 at 𝛼cr = 10 and 𝑘amp → ∞ as 𝛼cr approaches unity. 

 

Fig. 7 Amplification from first to second order elastic analyses at 𝜶𝐮 versus 𝜶𝐜𝐫. 

For a plastic analysis, 𝑘amp cannot simply be taken as the ratio of moments from second and first order analyses, since this 

ratio varies around the frame due to moment redistribution. Hence, accounting for second order effects by the amplification 

of the internal forces and moments, rather than amplification of the applied horizontal actions, is not suitable. The value of 

𝑘amp for a frame in the plastic regime can instead be estimated by determining the magnitude of the amplification of the 

horizontal loading in a first order analysis required to align the sway deflections to those in a second order analysis at a 

certain applied load factor, as shown in Fig. 8. This consequently leads to the same internal forces and moments in the two 

analyses.  
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Fig. 8 Determination of 𝒌𝐚𝐦𝐩 from frame FE models.  

The magnitude of the amplification factor 𝑘amp that is required to be applied to a first order materially nonlinear analysis 

(i.e. MNA+𝑘amp) to mimic the second order effects captured in a GMNA has been calculated for each of the frames at 𝛼u, 

and along with Eq. (9), plotted against 𝛼cr in Fig. 9. Unlike in Fig. 7, the results no longer match well with Eq. (9), and a 

greater amplification factor is required to account for second order effects than is predicted by Eq. (9) due to the influence 

of the nonlinear material response. Hence, by ignoring material nonlinearity, the maximum second order forces and 

moments in the considered frames are underestimated.  

 

Fig. 9 Amplification from first to second order plastic analyses at 𝜶𝐮 versus 𝜶𝐜𝐫 

2.5 Proposal to account for the influence of plasticity on the development of second order effects 

The ‘average’ reduction in sway stiffness of a frame due to material nonlinearity at a specified load level can be estimated 

through the ratio 𝐾s 𝐾⁄  of the load-lateral deflection curve from a first order plastic analysis (MNA), where 𝐾 is the initial 

stiffness and 𝐾s is the secant stiffness, as shown in Fig. 10. The ratio 𝐾s 𝐾⁄  may be alternatively expressed as ∆el ∆pl⁄ , 

facilitating its calculation – see Fig. 10. 
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Fig. 10 Reduction to sway stiffness of frame due to material nonlinearity from first order analysis. 

The influence of material nonlinearity on the sway stiffness of frames may be considered by defining a modified elastic 

buckling load factor 𝛼cr,mod, as given by Eq. (10), where the 𝐾s 𝐾⁄  ratio allows for the stiffness reduction arising in a first 

order analysis due to the onset and spread of plasticity, while the 0.8 factor approximates the further loss of stiffness due 

to the additional plastification that occurs at the same load level when second order effects are considered. The use of 

stiffness reduction to account for the spread of plasticity is also used in the direct analysis method [19] of AISC 360 [20]. 

Clearly, the higher the load level, the greater the loss of stiffness due to material nonlinearity and the greater the reduction 

to the elastic buckling load factor of the frame, rendering it more susceptible to second order effects.  

𝛼cr,mod = 0.8
𝐾s
𝐾
𝛼cr (10) 

The amplification factors from MNA to GMNA were shown in Fig. 9 to lie on the unsafe side relative to the equation for 

the elastic amplifier 𝑘amp, adopted in EN 1993-1-1 [2], and given by Eq. (9). Based on the modified amplification factor 

𝑘amp,mod given by Eq. (11), which utilises the modified elastic buckling load factor that takes account of material 

nonlinearity through the secant stiffness, the frame results are replotted in Fig. 11. To highlight the need for the 0.8 factor 

in Eq. (10) to account for the magnification of stiffness degradation by second order effects, the results have been plotted 

with the proposed modified critical load factor (Eq. (10)), as well as a critical load factor based solely on the secant stiffness 

reduction. It can be seen that while the secant stiffness reduction factor 𝐾s 𝐾⁄  captures the majority of the influence of 

plastification, the 0.8 factor is required to take into account the further loss of material stiffness arising when second order 

effects are considered. Good agreement between the frame results and the proposed modified amplification factor 𝑘amp,mod 

may be observed, and while in Fig. 9 the results were, on average, 11% on the unsafe side, with the proposed 𝛼cr,mod in 

Fig. 11, the results are, on average, 0.3% on the safe side. Note that for very slender frames failing in the elastic range, then 

the first order secant stiffness reduction would be equal to 1 (𝐾s 𝐾⁄ = 1), but the 0.8 reduction factor would still apply. 

This would lead to second order effects being over-estimated through the application of 𝑘amp,mod, but such slender frames 

are likely to have 𝛼cr,mod values less than 3, in which case a full second order analysis should be carried out [2]. Hence, 

𝑘amp,mod is only proposed for use when 𝛼cr,mod ≥ 3.  

𝑘amp,mod =
1

1 −
1

𝛼cr,mod

  
(11) 
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Note that the validity of Eq. (11) for plastic global analysis is only assessed herein against regular single storey frames; its 

application to irregular frames has not been considered and is therefore not recommended at this stage. Furthermore, second 

order analysis is generally recommended for more complex, irregular structures. 

 

Fig. 11 Amplification factors derived from frame FE models predicted from Eq. (11). 

It has been shown in this section that material nonlinearity results in degradation of stiffness and hence enhanced second 

order effects. A method to account for the increased susceptibility to second order effects, whereby the elastic buckling 

load factor of the frame is reduced on the basis of the secant stiffness from a first order plastic analysis has been proposed 

and shown to yield accurate results. Furthermore, as an alternative to conducting a second order plastic analysis when sway 

effects become significant, it is suggested that a first order analysis with sway effects amplified by 𝑘amp,mod (Eq. (11)) 

could be carried out. 

3 Assessment of design approaches 

3.1 Introduction 

In this section, the benchmark GMNIA results generated in Section 2 are used to assess the suitability and accuracy of a 

range of different design approaches, as listed in Table 2. Design approaches 1-5 employ the EN 1993-1-4 cross-section 

and member checks while approaches 6-10 utilise the Continuous Strength Method. The EN 1993-1-4 and CSM cross-

section checks and member checks are described in Sections 3.2 and 3.3, respectively.  

Following the recommendations of EN 1993-1-1, second order effects may be neglected when 𝛼cr ≥ 10 for elastic analysis 

and 𝛼cr ≥ 15 for plastic analysis, and a first order analysis can be used. For 𝛼cr < 10 (or 15), account should be taken of 

second order effects. The limit of 15 for plastic analysis is recognising the fact that frames have reduced stiffness following 

plasticity so second order effects will be greater. A more consistent approach (rather than one adjusted limit of 15 for all 

frames) is to determine the increased degree of flexibility on a frame by frame basis, as with the proposed 𝛼cr,mod approach, 

and retain the limit of 10 for all frames and all analysis types. This will be explored further in future work, but for the 

comparisons presented herein, the existing limits on 𝛼cr will be employed. As an alternative to design approaches 2, 4, 7 

and 9, when 𝛼cr < 10 (or 15), first order analyses may be carried out with amplification to account for second order effects 

using Eq. (9).  
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Table 2 Summary of different design approaches considered and results obtained in comparison to 

benchmark GMNIA results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
ec

o
m

m
en

d
at

io
n

 

m
ad

e 
h

er
ei

n
 o

n
 

u
se

 

N
o

 

N
o

 

Y
es

 

Y
es

 

Y
es

 

N
o

 

N
o

 

Y
es

 

Y
es

 

Y
es

 

*
R

.S
. 

=
 r

es
id

u
al

 s
tr

es
se

s 

G
M

N
IA

/D
es

ig
n

 r
es

is
ta

n
ce

 (
𝛼
u
/𝛼

d
) C

O
V

 

0
.0

6
 

0
.0

8
 

0
.0

5
 

0
.1

0
 

0
.0

7
 

0
.0

3
 

0
.0

3
 

0
.0

2
 

0
.0

2
 

0
.0

3
 

M
ax

. 

1
.7

1
 

1
.4

9
 

1
.6

8
 

1
.6

0
 

1
.2

6
 

1
.1

6
 

1
.1

1
 

1
.0

6
 

1
.1

0
 

1
.1

0
 

M
in

. 

1
.3

8
 

1
.1

0
 

1
.4

5
 

1
.1

1
 

1
.0

0
 

1
.0

2
 

1
.0

0
 

1
.0

0
 

1
.0

3
 

1
.0

0
 

M
ea

n
 

1
.5

5
 

1
.3

1
 

1
.5

5
 

1
.3

6
 

1
.1

1
 

1
.0

9
 

1
.0

5
 

1
.0

2
 

1
.0

7
 

1
.0

2
 

N
o

. 
o

f 

fr
am

e

s 1
0
 

1
1
 

6
 

1
5
 

2
1
 

1
0
 

1
1
 

6
 

1
5
 

2
1
 

M
em

b
er

 c
h

ec
k

 

E
N

 1
9

9
3

-1
-4

 

E
N

 1
9

9
3

-1
-4

 

E
N

 1
9

9
3

-1
-4

 

E
N

 1
9

9
3

-1
-4

 

- E
N

 1
9

9
3

-1
-4

 w
it

h
 

𝑘
c
sm

 a
n

d
 𝑀

c
sm

 

E
N

 1
9

9
3

-1
-4

 w
it

h
 

𝑘
c
sm

 a
n

d
 𝑀

c
sm

 

E
N

 1
9

9
3

-1
-4

 w
it

h
 

𝑘
c
sm

 a
n

d
 𝑀

c
sm

 

E
N

 1
9

9
3

-1
-4

 w
it

h
 

𝑘
c
sm

 a
n

d
 𝑀

c
sm

 

- 

C
ro

ss
-

se
ct

io
n

 c
h

ec
k
 

E
N

 1
9

9
3
-1

-4
 

E
N

 1
9

9
3
-1

-4
 

E
N

 1
9

9
3
-1

-4
 

E
N

 1
9

9
3
-1

-4
 

E
N

 1
9

9
3
-1

-4
 

C
S

M
 

C
S

M
 

C
S

M
 

C
S

M
 

C
S

M
 

Im
p

er
fe

ct
io

n
s 

S
w

ay
 

S
w

ay
 

S
w

ay
 

S
w

ay
 

S
w

ay
 +

 b
o

w
 +

 

R
.S

. 

S
w

ay
 

S
w

ay
 

S
w

ay
 

S
w

ay
 

S
w

ay
 +

 b
o

w
 +

 

R
.S

. 

M
at

er
ia

l 

m
o

d
el

 

E
la

st
ic

 

E
la

st
ic

 

P
la

st
ic

 

P
la

st
ic

 

P
la

st
ic

 

E
la

st
ic

 

E
la

st
ic

 

P
la

st
ic

 

P
la

st
ic

 

P
la

st
ic

 

L
im

it
 

𝛼
cr
≥
1
0

 

𝛼
cr
<
1
0

 

𝛼
cr
≥
1
5

 

𝛼
cr
<
1
5

 

- 𝛼
cr
≥
1
0

 

𝛼
cr
<
1
0

 

𝛼
cr
≥
1
5

 

𝛼
cr
<
1
5

 

- 

A
n

al
y

si
s 

ty
p

e 

F
ir

st
 

o
rd

er
 

S
ec

o
n

d
 

o
rd

er
 

F
ir

st
 

o
rd

er
 

S
ec

o
n

d
 

o
rd

er
 

S
ec

o
n

d
 

o
rd

er
 

F
ir

st
 

o
rd

er
 

S
ec

o
n

d
 

o
rd

er
 

F
ir

st
 

o
rd

er
 

S
ec

o
n

d
 

o
rd

er
 

S
ec

o
n

d
 

o
rd

er
 

N
am

e 

L
A

 

G
N

A
 

M
N

A
 

G
M

N
A

 

G
M

N
IA

 

L
A

 

G
N

A
 

M
N

A
 

G
M

N
A

 

G
M

N
IA

 

N
o

. 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0
 



 

13 

 

3.2 Cross-section checks 

The cross-section employed for the studied frames (HEB 340) is Class 1 under all considered loading conditions. The EN 

1993-1-4 cross-section resistance is therefore given by 𝑁c,Rd = 𝐴𝑓y 𝛾M0⁄  in compression, where 𝐴 is the cross-sectional 

area and 𝛾M0 is the partial safety factor for cross-section resistance, and 𝑀c,y,Rd = 𝑊pl,y 𝑓y 𝛾M0⁄  in bending, where 𝑊pl,y is 

the major axis plastic section modulus. Under combined loading, the interaction formula given in Clause 6.2.9.1 of EN 

1993-1-1 is employed. The CSM cross-section compression resistance 𝑁csm,Rd for 𝜆̅p ≤ 0.68 (as is the case for HEB 340) 

is given by Eq. (12), where 𝑓csm is the limiting stress determined from the strain hardening material model, defined by Eq. 

(13). 

𝑁csm,Rd =
𝐴𝑓csm
𝛾M0

          for          𝜆̅p ≤ 0.68 (12) 

𝑓csm = 𝑓y + 𝐸sh𝜀y (
𝜀csm
𝜀y

− 1) 
(13) 

The CSM cross-section bending resistance for an I-section with 𝜆̅p ≤ 0.68, bending about the major axis 𝑀csm,y,Rd is given 

by Eq. (14). 

𝑀csm,y,Rd =
𝑊pl,y𝑓y

𝛾M0
[1 +

𝐸sh
𝐸

𝑊el,y

𝑊pl,y

(
𝜀csm
𝜀y

− 1) − (1 −
𝑊el,y

𝑊pl,y

) (
𝜀csm
𝜀y
)

2

⁄ ]     for      𝜆̅p ≤ 0.68 
(14) 

where 𝑊el,y is the major axis elastic section modulus and 𝐸sh = (𝑓u − 𝑓y)/(𝐶2𝜀u − 𝜀y) is the material strain hardening 

modulus, where 𝐶2 = 0.16 for austenitic steel, and 𝜀csm/𝜀y is the strain ratio determined from Eq. (6). 

For cross-sections with 𝜆̅p ≤ 0.60 under combined loading, the CSM utilises the EN 1993-1-1 interaction formula, but 

with CSM end points, as given by Eq. (15). 

𝑀R,csm,y,Rd = 𝑀csm,y,Rd

(1 −
𝑁Ed

𝑁csm,Rd
)

(1 − 0.5𝑎)
    but    𝑀R,csm,y,Rd ≤ 𝑀csm,y,Rd    for      𝜆̅p ≤ 0.60 

(15) 

where 𝑎 = (𝐴 − 2𝑏𝑡f) 𝐴⁄ ≤ 0.5. 

3.3 Member checks 

Member checks are performed to verify the global stability of the members in the frame, which, in the present study, were 

predominantly under both axial load and bending (i.e. beam-columns). These checks require the calculation of member 

slenderness, which in turn requires the determination of the buckling length of the members. This buckling length can 

conservatively be taken as the system length (provided any sway effects (for cases where 𝛼cr < 10 for elastic analysis or 

15 for plastic analysis) are appropriately dealt with through a second order analysis or an amplified first order analysis), 

and more accurately taken as the calculated effective length. Effective lengths take into consideration the rotational restraint 

provided by the end support conditions and are equal to the distance between the inflection points of the buckled shape. 

The effective lengths have been back calculated herein from the critical load factor using Eq. (16), where 𝐼 is the second 

moment of area, and 𝑁Ed is the applied axial load on the column under consideration at collapse. Non-sway effective 

lengths have been determined in all cases, since the effects of sway are taken into account through the consideration of a 

second order, or amplified first order, analysis. The calculation has been performed by carrying out a linear buckling 

analysis under vertical loads only and with a horizontal prop at the top right of the frame to restrain lateral movement.  

𝐿e = √
𝜋2𝐸𝐼

𝑁cr
= √

𝜋2𝐸𝐼

𝛼cr𝑁Ed
 (16) 
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3.3.1 EN 1993-1-4 [1] member checks 

The EN 1993-1-4 beam-column design equations mirror those given for carbon steel in EN 1993-1-1, but with 

modifications to the interaction buckling factors to take into account the nonlinear material response and gradual yielding 

of stainless steel [21]. For members under combined compression plus major axis bending, but restrained against lateral 

torsional buckling, the EN 1993-1-4 beam-column member check is given by Eq. (17), where 𝑁Ed is the design axial load, 

𝑀y,Ed is the maximum applied first order bending moment about the major axis, 𝑁b,y,Rd is the major axis column buckling 

resistance,  𝛾M1 is the partial safety factor for member buckling resistance and 𝑘y is the interaction factor, given by Eq. 

(18). The interaction factor has a minimum value of 1.2, so as to prevent overpredictions of beam-column strengths for 

Class 1 and 2 cross-sections [21]. 

𝑁Ed
𝑁b,y,Rd

+ 𝑘y
𝑀y,Ed

𝑊pl,y𝑓y/𝛾M1
≤ 1 (17) 

𝑘y = 1.0 + 2(𝜆̅y − 0.5)
𝑁Ed
𝑁b,y,Rd

       but      1.2 ≤ 𝑘y ≤ 1.2 + 2
𝑁Ed
𝑁b,y,Rd

 (18) 

3.3.2 Zhao et. al [21] member checks 

Zhao et al. [21] proposed revised design equations based on a comprehensive study of the codified design methods for 

stainless steel square hollow section (SHS) and rectangular hollow section (RHS) beam-columns. The revised beam-

column equation is given by Eq. (19), where 𝑀c,csm,y,Rk is the characteristic CSM design bending resistance, 𝑘csm,y is the 

updated interaction factor, given by Eq. (20) and 𝐷1, 𝐷2 and 𝐷3 are coefficients defining the bilinear relationship between 

𝑘csm,y and �̅�. The coefficients used in this study are 𝐷1 = 2.5, 𝐷2 = 0.35 and 𝐷3 = 1.1 [22].  

𝑁Ed
𝑁b,y,Rd

+ 𝑘csm,y
𝑀y,Ed

𝑀c,csm,y,Rk/𝛾M1
≤ 1 

(19) 

𝑘csm,y = 1 + 𝐷1(𝜆̅ − 𝐷2)
𝑁Ed
𝑁b,y,Rd

       but      𝑘csm,y ≤ 1 + 𝐷1(𝐷3 − 𝐷2)
𝑁Ed
𝑁b,y,Rd

 
(20) 

3.4 Results 

The mean, minimum and maximum ratio of GMNIA to design resistances (𝛼u 𝛼d⁄ ) for the 10 considered design approaches 

(5 Eurocode and 5 CSM based) are shown in Table 2, along with the corresponding coefficients of variation (COV) of the 

ratios for the 21 studied frames. Results below unity indicate design predictions on the unsafe side. 

The mean benchmark to predicted failure load ratios 𝛼u 𝛼d⁄  for design approaches 1-5 (Eurocode based) are 1.55, 1.31, 

1.55, 1.36 and 1.11, respectively, and the corresponding COVs are 0.06, 0.08, 0.05, 0.10 and 0.07. The mean benchmark 

to predicted failure load ratios 𝛼u 𝛼d⁄  for design approaches 6-10 (CSM based) are 1.09, 1.05, 1.02, 1.07 and 1.02, 

respectively, and the corresponding COVs are 0.03, 0.03, 0.02, 0.02 and 0.03. The CSM mean values are closer to unity 

than those resulting from the European code and thus indicate improved accuracy, as also illustrated in Fig. 12. The COVs 

show that the CSM based design approaches result in scatter less than half that of the EN 1993-1-4 design approaches. 

Note that the numerical evaluations of elastic and plastic design approaches in Table 2 are not directly comparable since, 

due to their different ranges of applicability, they do not consider the same number of frames in each case (i.e. design 

approach 1 (LA) applies to 10 frames, while design approach 3 (MNA) applies to 6 frames). Considering the Eurocode 

design approaches, the results for elastic analysis have a combined average of 1.42 while those for the plastic analysis have 

a combined average of 1.41. Considering the CSM design approaches, the results for elastic analysis have a combined 

average of 1.07 while those for plastic analysis have a combined average of 1.05. In both cases, considering plasticity 

results in increased accuracy.   
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It was shown in Section 2.4 and emphasised above that neglecting material nonlinearity results in underpredicted average 

sway moments i.e. 𝑘amp (by up to 25% for the frames considered herein), and it is therefore recommended that a plastic 

global analysis should always be considered for stainless steel frames. The CSM design approach considers the beneficial 

effects of strain hardening and this is reflected in the significantly more accurate results of the CSM design approaches (6-

10) compared with the EN 1993-1-4 design approaches (1-5) in Table 2. The Eurocodes currently state that it is sufficient 

to assume an elastic global analysis, corresponding to design approaches 1 and 2. These give 𝛼u 𝛼d⁄  ratios ranging between 

of 1.38 and 1.71 and 1.10 and 1.49, respectively i.e. the design predictions are highly scattered and excessively conservative 

in some cases. Considering design approaches 8 and 9, the design predictions are vastly improved with 𝛼u 𝛼d⁄  ratios 

ranging between 1.00 and 1.06 and 1.03 and 1.10, respectively. Therefore, the most accurate and consistent design 

predictions are achieved by employing a plastic global analysis with CSM beam-column member checks. 

The EN 1993-1-4 design approaches 3 (for 𝛼cr ≥ 15) and 4 (for 𝛼cr < 15) and the CSM design approaches 8 (for            

𝛼cr ≥ 15) and 9 (for 𝛼cr < 15) are compared against the benchmark GMNIA results in Fig. 12, where the accuracy of the 

design predictions are presented as a function of 𝛼cr. For high 𝛼cr values, design approach 3 (EN 1993-1-4 based) results 

in overconservative strength predictions, with a mean value of 1.55, while design approach 8 (CSM based) results in much 

more accurate strength predictions, with a mean value of 1.02.  

Finally, comparing design approaches 5 and 10, it can be observed that both lead to accurate results, with mean 𝛼u 𝛼d⁄  

ratios of 1.11 and 1.02, respectively, though the Eurocode cross-section results in rather conservative design prediction in 

some cases, with the maximum 𝛼u 𝛼d⁄  ratio being 1.26. This is reduced to a maximum value of 1.10 when the CSM cross-

section checks are employed.  

Based on the results discussed, recommendations on use are outlined in Table 2. Within the constraints of traditional design 

methods (i.e. Nos 1-5), those including material nonlinearity (i.e. Nos 3-5) are recommended to improve the accuracy of 

the prediction of the forces and moments in the structure. However, in order to achieve efficient structural design, both 

plastic analysis and CSM design checks are recommended (i.e. Nos 8-10). 

 

Fig. 12 Comparison of the EN 1993-1-4 and CSM design approaches for plastic analyses. 

4 Discussion and design recommendations 

In this section, the key results from the study are discussed and suitable design recommendations for the global analysis 

and design of stainless steel frames are made. In Section 2, it was shown that neglecting material nonlinearity resulted in 
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underpredicted average sway moments i.e. 𝑘amp (by up to 25%) for the 21 frames considered. A modified critical buckling 

load factor was therefore proposed on the basis of the secant stiffness from a first order plastic analysis, and shown to 

provide an accurate measure of the susceptibility of the frame to second order effects. The benchmark GMNIA results 

generated in Section 2 were used to assess the current design approaches in Section 3, with the Continuous Strength Method 

design provisions resulting in improved accuracy and reduced scatter over the EN 1993-1-4 design provisions.  

Based on the results, summarised in Table 2, the following observations and recommendations are made: 

• A plastic global analysis should always be employed to prevent the underprediction of second order moments in 

stainless steel frames 

• The Continuous Strength Method (CSM) design provisions result in significantly more accurate strength 

predictions compared with EN 1993-1-4 due to the consideration of strain hardening  

• For the plastic global analysis of stainless steel frames either (i) a first order analysis should be carried out when          

𝛼cr ≥ 15 and a second order analysis performed when 𝛼cr < 15 or, (ii) a first order analysis carried out when 

𝛼cr,mod ≥ 10 and a second order analysis performed when 𝛼cr,mod < 10. As an alternative to a second order 

plastic analysis, a first order analysis with amplification 𝑘amp,mod (yielding similar results to second order 

analysis) may be performed when 𝛼cr,mod ≥ 3 for regular frames. 

• Advanced analysis (GMNIA) with cross-section checks (i.e. design approaches 5 and 10) yields very accurate 

results, particularly when the CSM cross-section checks are employed. 

5 Conclusions 

The importance of making adequate allowances for the influence of second order effects when conducting global analysis 

and design of frames employing stainless steel members has been examined by comparing the findings from a series of 

numerical analyses that employ different combinations of analysis method and cross-section/member design checks. The 

benchmark against which all design approaches have been assessed is GMNIA, with the Continuous Strength Method 

(CSM) employed to simulate local buckling. Current stainless steel design methods are based on the behaviour of frames 

made from carbon steel, for which the early material softening is absent, meaning that second order effects for stainless 

steel are likely to be more significant and limits of application for existing/approximate methods questionable. 

The degradation of stiffness significantly affects the characteristics of the structural system and subsequent distribution of 

internal forces and moments. If material nonlinearity is considered in the global analysis of a frame, greater deflections 

ensue due to the loss of material stiffness. Therefore, without the consideration of plasticity, moments are underpredicted, 

as shown in Section 2.4. It is recommended that material nonlinearity should always be considered in the global analysis 

of stainless steel frames to account for the increased susceptibility to second order effects. For all frames, when 𝛼cr ≥ 15, 

second order effects may be neglected and a first order plastic analysis (MNA) carried out. For 𝛼cr < 15 a second order 

plastic analysis (GMNA) should be carried out. A new design procedure based on the calculation of a modified critical 

buckling load with reduced stiffness, representing the behaviour of the frame after a certain degree of plastification, has 

been outlined. For all frames, when 𝛼cr,mod ≥ 10, second order effects may be neglected and a first order plastic analysis 

(MNA) carried out. For 𝛼cr,mod < 10 a second order plastic analysis (GMNA) should be carried out or, alternatively, a 

first order plastic analysis with amplification 𝑘amp,mod (yielding similar results to a second order plastic analysis) may be 

performed when 𝛼cr,mod ≥ 3. Note that the validity of using the amplification approach with 𝑘amp,mod has not yet been 

assessed for irregular structures in the plastic regime, and its application beyond the scope assessed herein is therefore not 

recommended at this stage. Furthermore, for more complex structures, a second order analysis is generally recommended.  
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Current design provisions have been assessed against the benchmark GMNIA results. It was found that EN 1993-1-4 

generally provides conservative results due to the neglect of strain hardening in the cross-section and beam-column member 

checks. The CSM design provisions were also assessed and shown to give significantly more accurate predictions, with 

reduced scatter, due to account being made for strain hardening. Overall, the most accurate and consistent predictions were 

achieved by employing a plastic global analysis with CSM cross-section and beam-column member checks. In this case, 

mean benchmark to predicted failure load ratios 𝛼u 𝛼d⁄  of 1.02 and 1.07 for first order (MNA) and second order (GMNA) 

analyses (i.e. design approaches 8 and 9), respectively. This is a significant improvement over the current approach (i.e. 

design approaches 1 and 2) which results in mean ratios of 1.55 and 1.36 for first order (LA) and second order (GNA) 

analyses, respectively.  
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