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Abstract: The stability of compression members is typically assessed through buckling curves, 

which include the influence of initial geometric imperfections and residual stresses. 

Alternatively, the capacity may be obtained more directly by carrying out either an elastic or 

an inelastic second order analysis using equivalent bow imperfections that account for both 

geometric imperfections and residual stresses. For design by second order elastic analysis, 

following the recommendations of EN 1993-1-1, the magnitudes of the equivalent bow 

imperfections can either be back-calculated for a given member to provide the same result as 

would be obtained from the member buckling curves or can be taken more simply as a fixed 

proportion of the member length. In both cases, a subsequent M–N (bending + axial) cross-

section check is also required, which can be either linear elastic or linear plastic. For design 

by second order inelastic analysis, also referred to as design by geometrically and materially 

nonlinear analysis with imperfections (GMNIA) there are currently no suitable 

recommendations for the magnitudes of equivalent bow imperfections and, as demonstrated 

herein, it is not generally appropriate to use equivalent bow imperfections developed on the 

basis of elastic analysis. Equivalent bow imperfections suitable for use in design by second 

order inelastic analysis are therefore established in the present paper. The equivalent bow 

imperfections are calibrated against benchmark FE results, generated using geometrically and 

materially nonlinear analysis with geometric imperfections of L/1000 (L being the member 
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length) and residual stresses. Based on the results obtained, an equivalent bow imperfection 

amplitude e0 = aL/150 (a being the traditional imperfection factor set out in EC3), is proposed 

for both steel and stainless steel elements and shown to yield accurate results. The reliability 

of the proposed approach is assessed, using the first order reliability method set out in EN 

1990, against the benchmark FE ultimate loads, where it is shown that partial safety factors of 

1.0 for steel and 1.1 for stainless steel can be adopted. 

Keywords: Advanced analysis; Cold-formed steel; Equivalent imperfections; Flexural 

buckling; Global analysis; Inelastic analysis; Plastic design; Stainless steel; Steel 

 

1. INTRODUCTION 

Imperfections inevitably occur in practice in the manufacturing and fabrication of steel 

members and in the construction of structural systems. The load-carrying capacity of structural 

elements in compression is sensitive to imperfections; it is therefore essential that their 

deleterious influence be accounted for in design. Member imperfections include both initial 

geometric out-of-straightness and residual stresses. Depending on the adopted method of 

analysis and design, different magnitudes of initial imperfection are required in order to achieve 

a given load-carrying capacity. The appropriate choice of imperfection magnitude depends on: 

(i) the type of imperfection considered i.e. geometric imperfections only or equivalent 

imperfections accounting for both geometric out-of-straightness and residual stresses, (ii) the 

analysis type, (iii) the considered cross-section failure criterion and (iv) the benchmark 

resistance against which the choice of imperfection is assessed. EN 1090-2 [1] specifies 

manufacturing tolerances on member out-of-straightness and EN 1993-1-5 [2] recommends 

that 80% of the geometric manufacturing tolerance be applied as the geometric imperfection. 
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The stability of compression members is typically assessed through buckling curves, in which 

the effects of imperfections are incorporated. The European buckling curves [3], originally 

developed in [4–6], are based on the Perry–Robertson formulation and are underpinned by 

extensive test and numerical data; member resistances determined using the EN 1993-1-1 [3] 

buckling curves are therefore presupposed to be “correct” and have been taken as the target 

results in the development of imperfection rules for design by second order elastic analysis set 

out in EN 1993-1-1 and its upcoming revision prEN 1993-1-1 [7].  

The use of buckling curves and member buckling checks can be avoided if member buckling 

can be directly captured in the structural analysis. To achieve this, a second order – also referred 

to as a geometrically nonlinear or advanced – analysis with appropriate member imperfections, 

is required. Member imperfections can be accounted for either through modelling the imperfect 

geometry or by applying a set of equivalent horizontal forces. Direct modelling of residual 

stresses in an analysis can present challenges to the designer; EN 1993-1-1 [3] therefore 

provides ‘equivalent’ bow imperfections that implicitly account for the combined effects of 

geometric and material (i.e. residual stresses) imperfections. These equivalent bow 

imperfections are for use with second order elastic analysis i.e. geometrically nonlinear 

analysis with imperfections (GNIA). There are no equivalent provisions for use with second 

order inelastic, or geometrically and materially nonlinear, analysis; this limitation is addressed 

herein.  

Geometrically and materially nonlinear analysis with imperfections (GMNIA), incorporates 

material nonlinearity (plastic zone/fibre element model) as well as geometric nonlinearity in 

the analysis, and allows for accurate predictions of the full load–deformation response of a 

structure. Since the effects of loss of stiffness due to buckling and plasticity of the individual 

members within the structure are captured, a more accurate representation of the actual 

distribution of forces and moments, as compared to first order elastic analysis, is achieved. 
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Hence, both safer, more consistent and more efficient design can result from design by 

advanced inelastic analysis with imperfections or GMNIA. With improvements in 

computational power and software, design by GMNIA is becoming more widespread in 

practice and is receiving a growing level of attention in research [8–14]. Suitable equivalent 

bow imperfections for use in design by advanced inelastic analysis are therefore urgently 

needed. While significant capacity benefits are not expected from the use of second order 

inelastic analysis at the individual member level, the increased accuracy in capturing stiffness 

reductions and resulting deformations can lead to considerable benefits at the system level, 

both in terms of a more streamlined design process and structural safety and efficiency. 

Appropriate recommendations for both steel and stainless steel elements are made in the 

present paper. 

 

2. EUROCODE 3 PROVISIONS FOR DESIGN BY SECOND ORDER ELASTIC 

ANALYSIS 

In EN 1993-1-1 [3] and prEN 1993-1-1 [7], equivalent initial bow imperfection magnitudes e0 

for design by second order elastic analysis may be determined in two ways; (1) by back-

calculating the required imperfection from the buckling curves or (2) by the use of approximate 

tabulated values. The tabulated approach [15,16] generally yields upper bound values of 

equivalent bow imperfections relative to the back-calculated values, resulting in safe-sided 

predictions of buckling resistance. The two approaches are described in more detail in the 

following sections.  
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2.1. Back-calculated equivalent bow imperfections 

In EN 1993-1-1 and prEN 1993-1-1, Eq. (1) is provided for back-calculating equivalent bow 

imperfections e0, where a is the imperfection factor for the relevant buckling curve, 𝜆̅ is the 

member slenderness, MRk is the characteristic moment resistance of the critical cross-section 

and NRk is the characteristic axial resistance of the critical cross-section. This equation was 

derived on the basis of a linear moment–axial (M–N) cross-section failure criterion, under axial 

load N and second order moment M = Ne0(1/(1-N/Ncr)), as described by Lindner et al. [15]. The 

calculation of e0 depends on the column slenderness, which requires the determination of the 

effective buckling length of the member.  

𝑒! = 𝛼&𝜆̅ − 0.2+
𝑀"#

𝑁"#
					for					𝜆̅ > 0.2 (1) 

Column buckling resistances determined using GNIA with the imperfection amplitude given 

by Eq. (1) are the same as those obtained from the European buckling curves. This is illustrated 

in Figure 1, which shows second order elastic force–moment paths for the critical mid-height 

cross-section of a column subjected to axial compression. If a linear elastic cross-section check 

is utilised, as given by Eq. (2), then NRk = Npl, where Npl is the axial cross-section resistance 

Afy, with A being the cross-sectional area and fy the material yield stress, and MRk = Mel (i.e. the 

elastic moment capacity) and the back-calculated imperfection e0,el,b-c results in a force–

moment path that exactly intersects the linear elastic interaction surface at the buckling 

resistance of the column NEC3.  

𝑁
𝑁$%

+
𝑀
𝑀&%

= 1 (2) 

Similarly, if a linear plastic cross-section check is assumed, as given by Eq. (3), which is only 

permitted for Class 1 and 2 cross-sections, then NRk = Npl and MRk = Mpl (i.e. the plastic moment 

capacity) and the back-calculated imperfection e0,pl,b-c results in a force–moment path that 
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exactly intersects the linear plastic interaction surface at the buckling resistance of the column 

NEC3.  

𝑁
𝑁$%

+
𝑀
𝑀$%

= 1 (3) 

The imperfection calculated using the linear plastic interaction surface e0,pl,b-c is larger than that 

calculated using the linear elastic interaction surface e0,el,b-c to compensate for the loss in 

stiffness due to the material nonlinearity that would occur in practice beyond the point of first 

yield, but is not captured in an elastic analysis. Note that utilising a nonlinear plastic cross-

section check with Eq. (1) is not appropriate and will yield incorrect solutions due to the 

equation having been derived on the basis of a linear M–N interaction. For combined loading, 

the influence of the applied external moment should also be considered.  

EN 1993-1-3 [17] and EN 1993-1-4 [18] give supplementary rules for the design of cold-

formed steel and stainless steel structures, but currently provide no additional guidance for 

global analysis; consequently, the EN 1993-1-1 rules are assumed to apply. When an elastic 

second order analysis is used, the expressions for back-calculating equivalent bow 

imperfections are essentially equally applicable to both cold-formed steel and stainless steel 

design. However, the limiting slenderness 𝜆̅! in the stainless steel buckling curves is not a 

constant value (as is the case for hot-rolled and cold-formed steel), and hence a small 

modification is required – see Eq. (4). It is proposed that this modified equation be included in 

the upcoming revision to EN 1993-1-4. 

𝑒! = 𝛼&𝜆̅ − 𝜆̅!+
𝑀"#

𝑁"#
					for					𝜆̅ > 𝜆̅! (4) 
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2.2. Tabulated equivalent bow imperfections 

In addition to the method for back-calculating the required equivalent imperfection magnitude, 

prEN 1993-1-1 [7] provides tabulated values e0/L, which are dependent on the cross-section 

type, axis of buckling and cross-section M-N failure criterion (linear elastic (e0,el,tab) or linear 

plastic (e0,pl,tab)). As shown in Figure 2, these imperfections are intended to approximate the 

back-calculated imperfections while remaining safe-sided and reducing the complexity of the 

calculation by avoiding the dependency on slenderness and, therefore, effective buckling 

lengths, which can be difficult to determine in practice [19].  

The tabulated values e0/L are determined using Eq. (5), where L is the member length, a is the 

imperfection factor for the associated column buckling curve and allows for the influence of 

residual stresses, e accounts for the material strength and is defined by Eq. (6), where fy is the 

yield stress in N/mm2, and b is the reference relative bow imperfection that depends on the axis 

of buckling and the adopted cross-section failure criterion (linear elastic or linear plastic). 

These imperfections were developed by Lindner et al. [16], are included in prEN 1993-1-1 [7] 

and will replace those given in EN 1993-1-1. As for the back-calculated imperfections, it is not 

appropriate to utilise a nonlinear plastic cross-section check.  

𝑒!
𝐿 =

𝛼𝛽
𝜀  (5) 

𝜀 = 8
235
𝑓'

 (6) 

For design by second order elastic analysis, these tabulated equivalent imperfections apply 

equally to cold-formed steel and stainless steel members, provided the appropriate value of a 

is employed (i.e. referring to EN 1993-1-4 for stainless steel). Note that the definition of e given 

in EN 1993-1-4 [18] is due to be simplified to Eq. (6) in the upcoming version of the code.  
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3. DETERMINATION OF REQUIRED EQUIVALENT BOW IMPERFECTIONS FOR 

DESIGN BY SECOND ORDER INELASTIC ANALYSIS 

 

3.1. Introduction and illustration of shortcomings in current provisions 

The equivalent imperfections included in prEN 1993-1-1 [7] were derived on the basis of a 

second order elastic analysis and a linear M–N cross-section design check. Their use in design 

by second order elastic analysis gives the same result as the EN 1993-1-1 buckling curves if 

the back-calculated imperfection values are used, or a close, but safe-sided buckling resistance 

if the tabulated imperfection values are used. However, use of these imperfections, whether 

employing the back-calculated or tabulated values, in design by inelastic (plastic zone, 

distributed plasticity or fibre) analysis is not generally appropriate, and can give over-

predictions (i.e. unconservative results) or under-predictions (i.e. conservative results) of 

buckling resistance depending on the form of the adopted material stress-strain curve. This is 

illustrated in Figures 3 and 4, respectively.  

In Figure 3, the critical cross-section force–moment path obtained from a second order inelastic 

(plastic zone) analysis of a hot-rolled steel I-section column with an elastic, perfectly plastic 

material model (followed by strain hardening [20] though with no influence in this case) and a 

back-calculated imperfection magnitude using the linear elastic cross-section check is shown; 

major axis buckling is considered in Figure 3a and minor axis buckling is considered in Figure 

3b. It may be seen that the peak load determined from the analysis is higher than the buckling 

resistance determined according to the EN 1993-1-1 buckling curves, with the over-prediction 

being more severe for minor axis buckling than for major axis buckling. This is because the 
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spread of plasticity through the cross-section after first yield and prior to the attainment of the 

peak load is more extensive about the minor axis, i.e. there is greater post first-yield capacity.  

In Figure 4, the critical cross-section force–moment path obtained from a second order inelastic 

(plastic zone) analysis of a stainless steel I-section column with a nonlinear material stress–

strain curve (see Section 3.3.2 [21,22]), and a back-calculated imperfection magnitude 

determined using the linear elastic cross-section check (i.e. e0 = e0,el,b-c), is shown. The 

nonlinear material model results in early yielding and a highly conservative peak load 

prediction in comparison with the resistance obtained from the Eurocode buckling curves NEC3 

= cNpl. From the comparisons shown in Figures 3 and 4, it is clear that equivalent imperfections 

derived on the basis of second order elastic analysis are not suitable for use in design by second 

order inelastic analysis.  

Application of the existing Eurocode 3 equivalent imperfections in design by second order 

inelastic analysis has also been considered more widely across a range (see Section 3.3) of 

practical steel and stainless steel columns of different cross-section types (I-sections and square 

and rectangular hollow sections) and material grades (S235 to S690), with a focus around the 

critical member slenderness 𝜆̅ = 1. The following overall observations can be made: use of the 

tabulated equivalent imperfections e0,el,tab given in prEN 1993-1-1 [7,15] in design by second 

order inelastic analysis results in over-predictions of resistance of up to 4% compared with the 

benchmark FE results (described in Section 3.3) and up to 7% compared with the Eurocode 

predictions for minor axis buckling of steel columns. If the back-calculated imperfections e0,el,b-

c are utilised, then these errors increase to 8% on the unsafe side for both cases. On average, 

utilising e0,el,tab in design by GMNIA of steel columns buckling about the minor axis results in 

over-predictions of resistance of 2% compared with the benchmark FE results and 4% 

compared with the Eurocode buckling curves. In the case of stainless steel columns, owing to 
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the rounded stress–strain response, use of the back-calculated imperfections e0,el,b-c leads to 

under-predictions of major axis buckling resistance of up to 20% compared with the benchmark 

FE results. In all cases, utilising the prEN 1993-1-1 equivalent imperfections determined based 

on the plastic M–N interaction (i.e. e0,pl,tab or e0,pl,b-c) in second order inelastic analysis results 

in highly conservative resistance predictions due to the effect of material nonlinearity being 

accounted for twice; for minor axis buckling of steel columns, resistance predictions are 

conservative by over 20% on average when utilising e0,pl,tab and by about 5% on average when 

utilising e0,pl,b-c, compared with the benchmark FE predictions. 

 

3.2. Choice of benchmark ultimate loads 

To calculate the required equivalent imperfections for use in design by second order inelastic 

analysis, benchmark ultimate loads were sought. These were obtained from finite element 

models developed using beam elements with geometric imperfections in the form of a half-sine 

wave of amplitude L/1000 and residual stresses, as employed in the establishment of the EN 

1993-1-1 buckling curves [5,6]. The use of benchmark FE results for the determination of 

suitable equivalent geometric imperfection amplitudes was favoured over the use of the 

existing buckling curves to avoid the unnecessary introduction of errors caused by fitting to 

results whose accuracy is restricted by the algebraic form of the underlying resistance function. 

This point is illustrated in Figures 5 and 6 for hot-rolled steel and stainless steel columns, 

respectively. Figure 5 shows normalised benchmark ultimate loads for hot-rolled I-sections of 

four different steel grades (S235, S355, S420 and S690), with a cross-section height-to-breadth 

(h/b) ratio greater than 1.2 and buckling about the major axis, plotted against member 

slenderness. The associated buckling curves (buckling curve a with a = 0.21 for steel grades 

S235-S450 and buckling curve a0 with a = 0.13 for S460 steel and above) are also plotted in 
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the figure; it may be seen that buckling curve a becomes increasingly conservative with 

increasing steel grade relative to the benchmark FE results. 

A similar shortcoming is shown in Figure 6 for the stainless steel buckling curves given in EN 

1993-1-4, but this time in relation to changes in the strain hardening exponent n (see Section 

3.3.2). Although in practice there are different values of n for different grades of stainless steel 

[18,21], the buckling curves are independent of n and therefore give no change in resistance 

when this parameter is varied; this is of course at odds with the real observed behaviour, as 

highlighted in Figure 6. Propagation of these systematic mismatches between the buckling 

curve and the benchmark FE data can be avoided by taking the benchmark FE results as the 

reference for establishing the equivalent imperfection amplitudes, and this is the approach 

taken herein. 

 

3.3. Generation of benchmark data to underpin imperfection proposals for design by second 

order inelastic analysis 

The calculation of ultimate loads from geometrically and materially nonlinear analysis with 

geometric imperfections and residual stresses is described in this section. These loads are taken 

as the benchmark loads against which the required equivalent bow imperfections, to reflect the 

combined effect of geometric imperfections and residual stresses, for use in design by second 

order inelastic analysis, are determined. Equivalent bow imperfection amplitudes are therefore 

sought such that the peaks of the force–moment curves obtained using a second order inelastic 

analysis with these imperfections align with the benchmark ultimate loads – see Figure 7. 

 

3.3.1. Basic modelling assumptions 



12 

 

Finite element (FE) models were developed using the general purpose FE software ABAQUS 

[23]; the modelling approach has been extensively validated in previous studies [13,24–26]. 

Linear Timoshenko B31 beam elements, from the ABAQUS element library [23], were 

employed in all numerical simulations. Two cross-section shapes were considered – I-sections 

and square/rectangular hollow sections (SHS/RHS). Six I-section profiles (HEB 100, 200, 400, 

IPE 100, 140, HEM 200) and four hollow section profiles (RHS 200×100×10, 100×60×4, 

SHS 60×60×3, 60×60×2) were modelled, covering a range of cross-section height-to-breadth 

(h/b) ratios and cross-section slendernesses. The modelled members were pin ended, 

concentrically loaded and restrained against out-of-plane failure. A series of beam-columns 

was also considered in which the ratio of applied axial force to applied bending moment, as 

well as the shape of the bending moment diagram, were varied to investigate a range of 

scenarios. It was however the concentrically loaded members that showed the greatest 

sensitivity to imperfections and that controlled the determination of the required equivalent 

geometric imperfection amplitudes; comparisons between the proposals made herein and the 

benchmark beam-column FE results are nonetheless made in Section 4.1. A range of member 

lengths was modelled to give a range of slenderness values. For all FE models, a plastic zone 

analysis was carried out using the material parameters and stress–strain relationships described 

in Section 3.3.2, and the modified Riks method [23] was used to trace the full load–deformation 

response of the members. 

 

3.3.2. Material modelling 

Hot-rolled steel, cold-formed steel and stainless steel have distinctly different material  stress–

strain characteristics; hot-rolled steel is characterised by an elastic region with a clear yield 

point followed by a yield plateau and some strain hardening, whereas cold-formed steel and 
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stainless steel exhibit a more rounded stress–strain response with no clear yield point and 

continuous strain hardening. Appropriate descriptions of the stress–strain curves for all three 

materials are employed herein, as explained below and summarised in Table 1.  

For hot-rolled steel, the quad-linear material model, developed by Yun and Gardner [20] and 

included in prEN 1993-1-14 [27], was utilised. Four steel grades were considered, with the key 

material properties listed in Table 1. For cold-formed steel and stainless steel, the stress–strain 

behaviour was described by the two-stage Ramberg–Osgood formulation [21,22,28,29], as 

given by Eq. (7) and (8), where e and s  are the strain and stress respectively, fy is the yield 

(0.2% proof) stress, E is the Young’s modulus, fu is the ultimate stress, Ey is the tangent 

modulus at the yield (0.2% proof) stress, defined by Eq. (9), e0.2 is the total strain at the 0.2% 

proof stress, equal to 0.002 + fy/E, eu is the ultimate strain, and n and m are the strain hardening 

exponents. 

𝜀 =
𝜎
𝐸 + 0.002 ?

𝜎
𝑓'
@
(

						for					σ ≤ 𝑓' (7) 

𝜀 = 𝜀!.* +
𝜎 − 𝑓'
𝐸'

+ ?𝜀+ − 𝜀!.* −
𝑓+ − 𝑓'
𝐸'

@?
𝜎 − 𝑓'
𝑓+ − 𝑓'

@
,

						for					𝑓' < σ ≤ 𝑓+ (8) 

𝐸' =
𝐸

1 + 0.002𝑛 𝐸𝑓'

 (9) 

For cold-formed steel, grade S355 was considered and the values of the Ramberg–Osgood 

parameters were taken as those recommended by Gardner and Yun [22] and included in prEN 

1993-1-14 [27]. For stainless steel, austenitic, duplex and ferritic grades were all considered, 

and the standardised material properties for numerical parametric studies of hot-rolled or 

welded sections defined by Afshan et al. [30] were employed, as summarised in Table 1. A 
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range of strain hardening exponents were considered to assess the influence of the degree of 

material nonlinearity [21,27]. 

 

3.3.3. Geometric imperfections and residual stresses 

In the benchmark models, an initial bow imperfection was applied to the members in the form 

of a half-sine wave with a magnitude e0 of 1/1000 of the member length L. Residual stress 

distributions differ in steel and stainless steel members due to the differences in physical and 

thermal properties [31]. For the steel I-section models, the ECCS [32] residual stress 

distribution for hot-rolled I-sections was employed, while for the stainless steel I-section 

models, the residual stress distribution for welded I-sections developed by Yuan et al. [33] was 

utilised, noting that stainless steel I-sections are predominantly produced by welding. The 

flanges and web of the cross-sections were each assigned 33 and 41 section points across their 

width for the steel [25] and stainless steel [34] members, respectively, to ensure that the 

corresponding residual stress distribution could be accurately captured.  The residual stresses 

were introduced by defining the initial stress values at the section points through the SIGINI 

user subroutine [23]. Corresponding plastic strains were also assigned in the case of the 

stainless steel models [35]. Based on previous experimental and numerical findings [36–40], 

residual stresses were not included in the hollow section FE models – for hot-rolled hollow 

sections, their low magnitude results in minimal influence on buckling resistance, while for 

cold-formed hollow sections, the influence of the dominant through-thickness bending residual 

stresses is inherently captured in the nonlinear material stress–strain response [40].  
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3.4. Cross-section resistance 

The distribution of internal forces and moments within a structure is influenced by the 

stiffnesses of the component members and the erosion thereof due to buckling and plasticity 

[41]. Design by second order inelastic analysis enables these effects to be captured directly and 

renders subsequent member buckling checks unnecessary. However, without the use of 

computationally expensive shell elements, cross-section checks and the associated allowance 

for local buckling remain necessary to avoid unattainable levels of spread of plasticity and 

plastic redistribution leading to overpredictions of structural resistance. This is important for 

all materials considered herein, but is of particular concern for those that exhibit a high degree 

of strain hardening, such as stainless steel. While these issues can be crudely overcome through 

the use of step-wise cross-section resistance checks, a considerably more rational, efficient and 

elegant solution is to apply strain limits [13,42]. The limiting strains are determined as a 

function of cross-section slenderness from the continuous strength method (CSM) base curve, 

as given by Eqs. (10) and (11) for hot-rolled steel design and Eqs. (12) and (13) for cold-formed 

steel and stainless steel design. Note that the different CSM base curve equations for hot-rolled 

steel and cold-formed/stainless steel design reflect the differences in the material stress–strain 

behaviour, which should be appropriately modelled in the inelastic analysis i.e. sharply defined 

yielding for hot-rolled steel [20] and a rounded response for cold-formed steel [22] and 

stainless steel [21]. 

𝜀-./
𝜀'

=
0.25
𝜆̅$0.1

			but		 ≤ 𝛺		for			𝜆̅$ ≤ 0.68 (10) 

𝜀-./
𝜀'

= ?1 −
0.222
𝜆̅$2.!3

@	
1

𝜆̅$2.!3
				for			𝜆̅$ > 0.68 (11) 

𝜀-./
𝜀'

=
0.25
𝜆̅$0.1

+
0.002
𝜀'

			but		 ≤ 𝛺		for			𝜆̅$ ≤ 0.68 (12) 
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𝜀-./
𝜀'

= ?1 −
0.222
𝜆̅$2.!3

@	
1

𝜆̅$2.!3
+
0.002&𝜎45,/78 𝑓'⁄ +(

𝜀'
				for			𝜆̅$ > 0.68 (13) 

In these equations, εcsm is the maximum compressive strain that a cross-section can endure prior 

to failure, εy = fy/E (where E is the Young’s modulus) is the yield strain, 𝜆̅$ = L𝑓' 𝜎-9⁄  is the 

local cross-sectional slenderness, with scr being the elastic local buckling stress of the full 

cross-section [42,43], εu is the material ultimate tensile strain, sEd,max is the maximum stress 

level in the cross-section, n is the strain hardening exponent of the Ramberg–Osgood material 

model (see Section 3.3.2) and W is an upper bound multiple of the yield strain that can be 

applied on a project-by-project basis to reflect the level of plasticity that can be tolerated at the 

ultimate limit state, with a recommended value of 15.   

 

3.5. Required equivalent bow imperfections for design by second order inelastic analysis 

To calculate the required equivalent bow imperfections for use in design by second order 

inelastic analysis, FE models of the considered columns were run iteratively, varying the 

(equivalent) imperfection magnitude e0 until the peak load coincided with the benchmark 

ultimate loads, calculated as described in Section 3.3, to within 1%, as illustrated in Figure 7.  

Since the geometric imperfections alone have an amplitude of L/1000 in the benchmark FE 

models, the required values of the equivalent geometric imperfections e0,req will clearly be 

larger than this value to allow for influence of the residual stresses. Figure 8 shows the required 

L/e0,req values for an example austenitic stainless steel HEB 100 column with 𝜆̅ = 1 and various 

n values. Residual stress patterns that exert compressive stresses at the flange tips have a more 

detrimental effect on minor axis buckling resistance than major axis buckling resistance, and 

this is reflected in the lower assigned buckling curve, with a higher imperfection factor α. 
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Incorporating the imperfection factor a in to the definition of e0,req captures this varying 

influence of the residual stresses.  

The bow imperfections included in prEN 1993-1-1 [7] and given by Eq. (5) are a function of 

e, to allow for the influence of material yield strength on the required imperfection amplitude 

for use in design by second order elastic analysis. With the influence of material yielding 

directly captured in the analysis, the required imperfection for inelastic analysis is no longer a 

function of e. The varying influence of residual stresses for different cross-section types and 

axes of buckling can, as in Eq. (5), be captured through the imperfection factor a, as described 

above. Hence, introducing the reference relative bow imperfection b in a modified version of 

Eq. (5), the equivalent geometric imperfection for design by second order inelastic analysis is 

given by: 

𝑒!
𝐿 = 𝛼𝛽 (14) 

And the required values for the reference relative bow imperfection breq can be determined 

from the required values of the equivalent bow imperfection e0,req using: 

𝛽:;< =
𝑒!,9&=
𝛼𝐿  (15) 

In defining imperfections that are independent of the member slenderness 𝜆̅, to remove the 

complexity of calculating the effective length of a member or system, a level of conservatism 

must be accepted. This is highlighted in Figure 9 which shows required reference relative 

imperfection breq values for an example hot-rolled steel I-section with varying member 

slenderness. The required reference relative imperfection values were at their maximum when 

𝜆̅ = 3 for major axis buckling and 𝜆̅ = 0.5 for minor axis buckling. Only these critical 

slenderness values were therefore considered in the calculation of the required bow 

imperfections, resulting in conservative results for other values of slenderness. A similar 
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approach was adopted by Lindner et al. [15] in the derivation of equivalent geometric 

imperfections for design by second order elastic analysis. Note that cross-section checks were 

not critical in determining the buckling resistance of the considered columns by second order 

inelastic analysis, but do become critical in beam-columns, especially in the bending dominated 

scenarios. 

The calculated required reference relative bow imperfection breq values for 646 columns are 

plotted in Figure 10. Both major and minor axis buckling of the 6 I-section profiles described 

in Section 3.3.1 are considered, with the material stress–strain curves of hot-rolled steel and 

stainless steel given in Table 1. Hollow sections were not considered in the derivation of the 

required reference relative bow imperfection since the benchmark ultimate loads were 

determined with geometric imperfections only owing to the minimal influence of residual 

stresses, but are considered in Section 4.1 in the assessment of the resulting proposals. 

 

3.6. Design recommendations 

In this section, recommendations are made for equivalent bow imperfection magnitudes to be 

used in design by second order inelastic analysis of hot-rolled steel, cold-formed steel and 

stainless steel structural elements. The imperfection magnitudes may be applied either through 

direct modelling of the imperfection shape in the form of a half-sine wave along the member 

length or through the scaling of a suitable elastic critical buckling mode.  Based on the required 

imperfections determined in Section 3.5 and shown in Figure 10, it is proposed to adopt a 

reference relative bow imperfection of b = 1/150 for use in design by second order inelastic 

analysis of columns and beam-columns, failing by in-plane flexural buckling about either axis, 

for all the materials and cross-sections examined herein. A single value was sought to provide 

accurate results for all cases while satisfying the reliability requirements, as assessed in Section 
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4. It can be seen in Figure 10, that there is little variation between the required imperfections 

between the two axes of buckling because the influence of cross-section shape and the spread 

of plasticity is captured in the inelastic analysis and the influence of residual stresses is captured 

through a. A value of b = 1/150 provides a safe sided approximation to almost all of the 

required reference relative bow imperfection breq values; the suitability, application (through 

worked examples) and reliability of this proposal are demonstrated in the next section. Note 

that the magnitude of the equivalent bow imperfection e0 should not be smaller than the 

magnitude of the geometric imperfection alone i.e. L/1000 – see limit in Eq. (21). 

4. ASSESSMENT AND ILLUSTRATION OF DESIGN RECOMMENDATIONS 

The reliability of the developed design recommendations i.e. design by second order inelastic 

analysis with equivalent bow imperfections determined from Eq. (14) with b = 1/150 and cross-

section checks (both strength and strain based) as specified in Section 3.4, is assessed in this 

section with respect to the benchmark FE ultimate loads determined using GMNIA of columns 

and beam-columns with geometric imperfection amplitudes of L/1000 and residual stresses. 

Comparisons are also made against the results obtained using the conventional Eurocode 

design calculations. Application of the proposed design recommendations is demonstrated in 

Section 4.2 through a series of worked examples.  

 

4.1. Reliability analysis 

The reliability level and required partial safety factor gM1 for use with the proposed equivalent 

bow imperfections in design by second order inelastic analysis are assessed using the first order 

reliability method (FORM) set out in EN 1990 [44] and further explained by Afshan et al. [45]. 

In EN 1990, for buildings, the target reliability index β is 3.8, corresponding to an overall target 

failure probability of 10-6 per year over a 50 year design life, and is adopted as the basis for the 
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derivation of the partial safety factors. The recommended values for the partial safety factor 

gM1 are 1.0 for steel in EN 1993-1-1 and 1.1 for stainless steel in EN 1993-1-4. These are taken 

as the target values in the present study. 

The adopted values of the mean-to-nominal yield strength ratio fy,mean/fy,norm (i.e. the material 

over-strength) and the COV of the yield strength Vfy and geometric properties VA were specified 

in accordance with prEN 1993-1-1 [7] for steel and Afshan et al. [45] for stainless steel. The 

COV of the Young’s modulus VE was taken equal to 0.03 for both materials [7]. The 

dependency of the column buckling resistance on the basic variables – yield stress fy, cross-

sectional area A and Young’s modulus E changes with the member proportions and therefore 

between each numerical simulation. Hence, for each FE result, the dependency of the 

resistance, presented as the exponent (c, d and e) to which each basic variable should be raised, 

on fy, A and E was determined using Eqs. (16), (17) and (18), respectively, where N1.05fy is the 

buckling load calculated from a numerical analysis with the yield stress multiplied by 1.05, 

N1.05A is the buckling load calculated from a numerical analysis with the cross-sectional area 

multiplied by 1.05,  N1.05E is the buckling load calculated from a numerical analysis with the 

Young’s modulus multiplied by 1.05 and Nfy, NA and NE represent the original buckling load 

with no alterations to yield stress, area or Young’s modulus.  

𝑐 =
ln P𝑁2.!3>! 𝑁>!Q R

ln&1.05𝑓' 𝑓'⁄ +
 (16) 

𝑑 =
ln(𝑁2.!3? 𝑁?⁄ )
ln(1.05𝐴 𝐴⁄ )  (17) 

𝑒 =
ln(𝑁2.!3@ 𝑁@⁄ )
ln(1.05𝐸 𝐸⁄ )  (18) 

Figure 11 shows the determined values of the exponents c and d for all compression cases 

considered. As slenderness increases, the dependency on the yield stress fy, and hence the 
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exponent c, reduces while the dependency on the cross-sectional area A, and hence the 

exponent d, increases. This is because the buckling load approaches the elastic buckling load 

as slenderness increases, which is a function of section geometry but independent of the yield 

stress fy. The scatter in the results arises due to the differences in material characteristics and 

geometries across the range of results considered; for any individual case, the results follow a 

consistent path, as shown in Figure 12 for a hot-rolled S235 steel HEB 100 column buckling 

about the major axis. The varying influence of Young’s modulus on the buckling resistance 

[46] is considered through the exponent e, the determined values for which are shown in Figure 

13 for all compression cases considered. For low member slenderness, the member resistance 

is essentially the plastic squash load and the dependency on E, as captured through the value 

of the exponent e, approaches zero; in contrast, for high member slenderness, the buckling 

resistance tends towards the elastic buckling load and e tends towards unity. By calculating the 

exponent values for each numerical result, the varying degree of influence of the variables fy, 

A and E on the load carrying capacity was incorporated into a combined coefficient of variation 

Vrt, given by Eq. (19) [47]. 

𝑉9A = X&𝑐𝑉B'+
* + (𝑑𝑉C)* + (𝑒𝑉4)* (19) 

Note that although the use of the mean value of the Young’s modulus E = 210,000 N/mm2 is 

appropriate in the resistance functions set out in EN 1993-1-1 since the partial safety factors 

have been calibrated on the basis of this reference value, it is not, in the view of the authors, 

suitable for use in design by GMNIA (i.e. design by second order inelastic analysis). Consider, 

for example, a very slender column whose failure load will be close to the Euler load - using 

the mean value of E in a GMNIA, in conjunction with a partial safety factor of unity, results in 

the design value of the resistance being approximately equal to the mean value. Clearly, this 

does not satisfy the reliability requirements of EN 1990. To resolve this, it is proposed that the 
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characteristic value of E (i.e. the fifth percentile) is employed in design by GMNIA; this is 

somewhat equivalent to the use of the nominal value of fy (rather than the mean value). The 

characteristic value of E is given in Annex E of prEN 1993-1-1 [7] as 200,000 N/mm2, and this 

value has been used in the GMNIA design calculations performed in this paper. Likewise, a 

characteristic (fifth percentile) value of E for stainless steel has been calculated as 191,000 

N/mm2 and implemented in the GMNIA design calculations. 

A summary of the results from the statistical analysis are included in Tables 2 to 5. Tables 2 

and 3 present an assessment of the proposed approach against the benchmark results generated 

in Section 3.3 for I-section and hollow section columns, respectively. The assessment was 

carried out on 1464 columns (306 hot-rolled steel, 36 cold-formed steel and 1122 stainless 

steel), considering both major and minor axis buckling and six slenderness values (𝜆̅ = 0.5, 1.0, 

1.5, 2.0, 2.5, 3.0). A summary of the statistical analysis of the proposed approach applied to I-

section and hollow section members under combined compression and bending about both the 

major and minor axes is presented in Tables 4 and 5, respectively.  The assessment was carried 

out on 584 beam-columns (316 hot-rolled steel, 52 cold-formed steel and 216 stainless steel), 

considering both major and minor axis buckling, three slenderness values (𝜆̅ = 0.5, 1.0, 1.5), 

four ratios of applied compression to bending and three bending moment distributions along 

the member length (ψ = 1.0, 0, −0.5), achieved by changing the ratio of applied end moments 

ψ = M2/M1. The partial safety factor for each case, as well as the mean correction factor b, the 

coefficient of variation of the proposed results relative to the benchmark results Vd and the 

combined coefficient of variation incorporating the model and basic variable uncertainties Vr 

are presented in Tables 2 to 5. The mean correction factor b was calculated using a modified 

definition to that given in EN 1990 [44], based on the average ratio of benchmark resistance re 

to predicted resistance rt, as given by Eq. (20), to avoid the derived value of b being biased 

towards the data points with higher absolute resistance values [47,48]. 
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𝑏 =
1
𝑛Z

𝑟&,D
𝑟A,D

(

EF2

 (20) 

From Tables 2 to 5, it can be seen that the mean predictions are safe-sided (i.e. b > 1.0) and 

that the required partial factors gM1 for design by second order inelastic analysis using the 

proposed imperfections are generally less than or equal to the recommended values of 1.0 for 

steel [3] and 1.1 for stainless steel [18], demonstrating that the proposals can be safely adopted 

in conjunction with these partial factors. The required gM1 values for the steel members are 

slightly in excess of the target value of 1.0 but remain in line with the recommendations of the 

project SAFEBRICTILE [49,50], which also considers the influence of the coefficient of 

variation Vr, and deems a small exceedance of the target value to be acceptable. However, for 

the high strength steel hollow sections, the results indicate that a higher partial safety factor 

than that currently recommended is required; this arises due to the combination of a relatively 

low over-strength factor for high strength steel and the use of the highest buckling curve – 

buckling curve a0. It is recommended that the use of buckling curve a0 be reconsidered for high 

strength steel tubular sections; a similar recommendation was made by Wang and Gardner [51] 

upon assessment of the buckling curve against test and FE results on high strength steel hollow 

section columns. Using buckling curve a results in a safe-sided mean prediction, with b = 1.02. 

In the case of beam-columns, as bending increases the influence of geometric imperfections 

becomes increasingly insignificant and this is reflected in the b values being closer to unity in 

Tables 4 and 5 compared with Tables 2 and 3. The stainless steel buckling resistance 

predictions are generally more conservative than the steel results, particularly for the austenitic 

grades, and the required values of gM1 are all less than the target value of 1.1.  

The resistances obtained using the proposed approach Nprop are also compared with those 

determined using the conventional Eurocode member capacity checks NEC3. For steel columns, 
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mean NEC3/Nprop ratios close to unity are obtained (1.00 and 0.96 for S235 and S420 I -section 

columns, respectively, and 0.99 and 0.97 for S235 and S420 SHS and RHS columns, 

respectively). For stainless steel columns, the proposed approach generally yields conservative 

results relative to EN 1993-1-4, with the mean N EC3/Nprop ratios being 1.08, 0.99 and 1.01 for 

austenitic, duplex and ferritic stainless steel I-section columns, respectively, and 1.11, 1.04 and 

1.01 for austenitic, duplex and ferritic stainless steel SHS and RHS columns, respectively.  As 

discussed in Section 3.2, the individual Eurocode buckling curves do not account for variation 

in material stress–strain properties and become increasingly conservative with increasing 

material grade compared with the benchmark FE strength predictions determined using a 

geometric imperfection of L/1000 and residual stresses, which a designer could directly 

employ. The slightly low average NEC3/Nprop ratio of 0.96 for S420 I-sections is therefore 

deemed acceptable. This point is emphasised in Figures 14 a-c, which show normalised flexural 

buckling capacities against member slenderness. For each material grade, the buckling 

capacities using the proposed equivalent bow imperfections made herein Nprop are compared 

against both the benchmark ultimate loads NFE, calculated as described in Section 3.3, and the 

Eurocode predictions NEC3. The NFE/Nprop values are consistently above unity, confirming the 

safe-sided nature of the predictions. However, relative to the capacity predictions obtained 

using the EC3 buckling curves NEC3, the Nprop values become higher with increasing steel grade, 

reflecting not unconservative capacity predictions from the proposed method, but shortcomings 

in the EC3 buckling curves i.e. failure to predict higher normalised capacities with increasing 

steel grade for a given buckling curve.  

 

4.2. Worked examples 

Two worked examples are provided in this section to demonstrate the application of the 

proposed equivalent bow imperfections in design by second order inelastic analysis, as well as 
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the benefits compared with the current provisions. Figures 15 and 16 present worked examples 

for hot-rolled S235 steel and austenitic stainless steel (with fy = 280 N/mm2) members, 

respectively. Example 1 considers an HEB 100 column of member slenderness 𝜆̅ = 1.5 buckling 

about the major axis. The column has a local slenderness 𝜆̅$ = 0.27 and a CSM strain limit 

εcsm/εy = 15 (when Ω = 15); since the failure is stability governed, the peak load factor is reached 

prior to the CSM strain limit. Example 2 considers a SHS 100×100×4 beam-column of 

member slenderness 𝜆̅ = 0.5 with a bending moment distribution of ψ(=M1/M2) = 0 and an 

applied axial load and bending moment of 0.1Npl and 0.9Mpl, respectively. The beam-column 

has a local slenderness 𝜆̅$ = 0.42 and a CSM strain limit εcsm/εy = 7.21.  Load–displacement 

paths are plotted in Figures 15 and 16, as well as the resulting ultimate load predictions for 

each imperfection considered; a summary of the results for both examples is presented in Table 

6. Benchmark ultimate loads NFE are generated from geometrically and materially  nonlinear 

analysis with geometric imperfections of L/1000 and residual stresses and the CSM strain limit 

applied, as outlined in Section 3.4. 

Use of the proposed equivalent bow imperfections in design by second order inelastic analysis 

results in close but safe-sided capacity predictions compared with the benchmark FE results in 

both examples. Relative to design by second order elastic analysis using the prEN 1993-1-1 

tabulated equivalent imperfections e0,pl,tab corresponding to a plastic M-N cross-section check, 

capacity predictions determined using the proposed approach (second order plastic zone 

analysis with e0,prop and applying the CSM strain limit) are 13% and 19% higher for examples 

1 and 2, respectively. It can be seen in worked example 2 that limiting the cross-section 

resistance using the CSM strain limit results in significantly more accurate predictions than 

using the M-N cross-section check. Also, in this example, the imperfection magnitude has only 

a small effect on the member capacity since the member deformations are dominated by the 

applied bending – see the load–deformation paths in Figure 16. 



26 

 

 

4.3. Summary of recommendations 

For design by second order elastic analysis, the tabulated equivalent bow imperfections set out 

in prEN 1993-1-1 [7] for steel design are equally applicable to stainless steel and cold-formed 

steel design. The stainless steel design rules include buckling curves with a varying limiting 

slenderness 𝜆̅! and therefore it is proposed that the modified back-calculated imperfection 

equation, given by Eq. (4) is included in the upcoming revision to EN 1993-1-4. Use of these 

existing imperfections (those determined for a linear plastic cross-section check) in second 

order plastic hinge analysis is also considered to be acceptable. However, for design by second 

order inelastic (plastic zone, distributed plasticity or fibre) analysis, use of these existing 

imperfections is not generally appropriate, and new equivalent bow imperfections, to account 

for the combined effects of geometric imperfections and residual stresses, have been derived, 

as given by Eq. (21), where a is the imperfection factor for the relevant buckling curve, as 

prescribed in EN 1993-1-1 and EN 1993-1-4. These imperfection magnitudes may be applied 

either through direct modelling of the imperfection shape as a half-sine wave or through the 

scaling of a suitable elastic critical buckling mode. 

𝑒!
𝐿 = 𝛼𝛽 =

𝛼
150 							but					

𝑒!
𝐿 ≥

1
1000 (21) 

A reference relative bow imperfection b = 1/150 is proposed for all considered grades of steel 

and stainless steel and cross-section types, and has been shown to yield accurate and consistent 

results, though for high strength steel, it is recommended that the use of buckling curve a0 be 

reconsidered, due to the low material over-strength. It is also proposed that the characteristic 

(i.e. the fifth percentile) value of E (i.e. E = 200,000 N/mm2 for steel and E = 191,000 N/mm2 

for stainless steel) is employed in design by GMNIA to satisfy the reliability requirements of 

EN 1990.  
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It should also be verified that the cross-sectional resistance of the member, which relates to its 

local slenderness, is not exceeded either through the conduct of cross-section capacity checks 

or the application of strain limits, as described in Section 3.4 and illustrated in the examples 

set out in Section 4.2. 

 

5. CONCLUSIONS 

prEN 1993-1-1 provides equivalent bow imperfections that account for the combined effects 

of geometric imperfections and residual stresses for use in design by second order elastic 

analysis. If the back-calculated values are used, the resulting capacity is the same as that 

achieved using the buckling curves, while close, but safe-sided buckling resistances are 

obtained if the simplified tabulated values are used. While these imperfections are appropriate 

for use in design by second order elastic analysis, their use in design by second order inelastic 

analysis is not generally appropriate, and can lead to both unsafe and overly-conservative 

resistance predictions depending in particular on the shape and material properties of the 

examined cross-sections. Thus, new equivalent geometric imperfections suitable for use in 

design by second order inelastic (plastic zone, distributed plasticity and fibre) analysis were 

sought. Following calibration against benchmark FE ultimate loads generated using 

geometrically and materially nonlinear analysis with geometric imperfections of L/1000 and 

appropriate residual stresses, an equivalent bow imperfection amplitude e0 = abL was 

proposed. The varying influence of residual stresses for different cross-sections and axes of 

buckling is captured through the imperfection factor a, which is determined according to the 

buckling curves prescribed in EN 1993-1-1 and EN 1993-1-4 for steel and stainless steel, 

respectively. A value for the reference relative bow imperfection b = 1/150 was found to be 

suitable for all cases considered. 
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The reliability of the proposed approach was assessed against the benchmark FE ultimate loads, 

where it was shown that partial safety factors of 1.0 for steel and 1.1 for stainless steel could 

be adopted. The proposed equivalent bow imperfections for use in design by second order 

inelastic analysis consider the combined effects of geometrical imperfections and residual 

stresses and provide accurate resistance predictions while remaining simple and practical for 

application in structural design.  

 

ACKNOWLEDGEMENTS 

Funding for this investigation was received from the Imperial College PhD Scholarship 

scheme.  

 

REFERENCES 

[1] EN 1090-2. 2018. EN 1090-2 - Execution of steel structures and aluminium structures. 

Part 2: Technical requirements for steel structures. BSI; 2018. 

[2] EN 1993-1-5. 2009. Eurocode 3 - Design of steel structures - Part 1-5 : Plated structural 

elements. Brussels: CEN; 2009. 

[3] EN 1993-1-1. 2005. Eurocode 3: Design of steel structures - Part 1-1: General rules and 

rules for buildings. Brussels: CEN; 2005. 

[4] Rondal, J., & Maquoi, R. 1979. Single equation for SSRC column strength curves. 

Journal of the Structural Division (ASCE), 105: 247–50. 

[5] Maquoi, R., & Rondal, J. 1978. Mise En Equation Des Nouvelles Courbes Europeennes 

De Flambement. Construction Metallique, 1: 17–30. 



29 

 

[6] Beer, H., & Schulz, G. 1970. Bases theoriques des courbes europeennes de flambement. 

Construction Metallique, 3: 37–56. 

[7] prEN 1993-1-1. 2019. Eurocode 3 – Design of steel structures – Part 1-1: General rules 

and rules for buildings. 2019. 

[8] Ziemian, R.D. 1990. Advanced methods of inelastic anlaysis in the limit states design 

of steel structures. Cornell University, 1990. 

[9] Ziemian, R.D., McGuire, W., & Deierlein, G. 1992. Inelastic limit states design. Part 1: 

Planar frame studies. Journal of Structural Engineering ASCE, 118: 2532–49. 

[10] Chan, S.L., & Chen, W.F. 2005. Advanced analysis as a new dimension for structural 

steel design. Advanced Steel Construction, 1: 87–102. 

[11] Buonopane, S.G., & Schafer, B.W. 2006. Reliability of steel frames designed with 

advanced analysis. Journal of Structural Engineering, 132: 267–76. 

[12] Zhang, H., Shayan, S., Rasmussen, K.J.R., & Ellingwood, B.R. 2016. System-based 

design of planar steel frames, I: Reliability framework. Journal of Constructional Steel 

Research, 123: 135–43. 

[13] Fieber, A., Gardner, L., & Macorini, L. 2019. Design of structural steel members by 

advanced inelastic analysis with strain limits. Engineering Structures, 199: 109624. 

[14] Gardner, L., Yun, X., Fieber, A., & Macorini, L. 2019. Steel design by advanced 

analysis: material modeling and strain limits. Engineering, 5: 243–9. 

[15] Lindner, J., Kuhlmann, U., & Just, A. 2016. Verification of flexural buckling according 

to Eurocode 3 part 1-1 using bow imperfections. Steel Construction, 9: 349–62. 

[16] Lindner, J., Kuhlmann, U., & Jörg, F. 2018. Initial bow imperfections e0 for the 

verification of flexural buckling according to Eurocode 3 Part 1-1 – additional 



30 

 

considerations. Steel Construction, 11: 30–41. 

[17] EN 1993-1-3. 2006. Eurocode 3 – Design of steel structures – Part 1-3: General rules - 

Supplementary rules for cold-formed members and sheeting. 2006. 

[18] EN 1993-1-4:2006 + A1: 2015. Eurocode 3 - Design of steel structures - Part 1-4: 

General rules - Supplementary rules for stainless steels. Brussels: CEN; 2015. 

[19] Liew, R.J.Y., White, D.W., & Chen, W.F. 1991. Beam-column design in steel 

frameworks- insights on current methods and trends. Journal of Constructional Steel 

Research, 18: 269–308. 

[20] Yun, X., & Gardner, L. 2017. Stress-strain curves for hot-rolled steels. Journal of 

Constructional Steel Research, 133: 36–46. 

[21] Arrayago, I., Real, E., & Gardner, L. 2015. Description of stress-strain curves for 

stainless steel alloys. Materials and Design, 87: 540–52. 

[22] Gardner, L., & Yun, X. 2018. Description of stress-strain curves for cold-formed steels. 

Construction and Building Materials, 189: 527–38. 

[23] ABAQUS. 2014. Abaqus CAE User’s Manual, Version 6.14. Pawtucket, USA: Hibbitt, 

Karlsson & Sorensen, Inc.; 2014. 

[24] Sena Cardoso, F., & Rasmussen, K.J.R. 2016. Finite element (FE) modelling of storage 

rack frames. Journal of Constructional Steel Research, 126: 1–14. 

[25] Kucukler, M., Gardner, L., & Macorini, L. 2016. Development and assessment of a 

practical stiffness reduction method for the in-plane design of steel frames. Journal of 

Constructional Steel Research, 126: 187–200. 

[26] Fieber, A., Gardner, L., & Macorini, L. 2020. Structural steel design using second-order 

inelastic analysis with strain limits. Journal of Constructional Steel Research, 168: 



31 

 

105980. 

[27] prEN 1993-1-14. 2019. Eurocode 3 – Design of steel structures – Part 1-14: Design by 

FE analysis. 2019. 

[28] Mirambell, E., & Real, E. 2000. On the calculation of deflections in structural stainless 

steel beams: an experimental and numerical investigation. Journal of Constructional 

Steel Research, 54: 109–33. 

[29] Rasmussen, K.J.R. 2003. Full-range stress–strain curves for stainless steel alloys. 

Journal of Constructional Steel Research, 59: 47–61. 

[30] Afshan, S., Zhao, O., & Gardner, L. 2019. Standardised material properties for 

numerical parametric studies of stainless steel structures and buckling curves for tubular 

columns. Journal of Constructional Steel Research, 152: 2–11. 

[31] Gardner, L., & Ng, K.T. 2006. Temperature development in structural stainless steel 

sections exposed to fire. Fire Safety Journal, 41: 185–203. 

[32] ECCS. 1984. Ultimate limit state calculations of sway frames with rigid joints. No 33, 

Technical Committee 8 of the European Convention for Constructional Steelwork 

(ECCS), 1984. 

[33] Yuan, H.X., Wang, Y.Q., Shi, Y.J., & Gardner, L. 2014. Residual stress distributions in 

welded stainless steel sections. Thin-Walled Structures, 79: 38–51. 

[34] Walport, F., Gardner, L., Real, E., Arrayago, I., & Nethercot, D.A. 2019. Effects of 

material nonlinearity on the global analysis and stability of stainless steel frames. 

Journal of Constructional Steel Research, 152: 173–82. 

[35] Kucukler, M., Xing, Z., & Gardner, L. 2020. Behaviour and design of stainless steel I-

section columns in fire. Journal of Constructional Steel Research, 164: 105890. 



32 

 

[36] Gardner, L., & Nethercot, D.A. 2004. Numerical modeling of stainless steel structural 

components — A consistent approach. Journal of Structural Engineering, ASCE, 130: 

1586–601. 

[37] Ellobody, E., & Young, B. 2005. Structural performance of cold-formed high strength 

stainless steel columns. Journal of Constructional Steel Research, 61: 1631–49. 

[38] Wang, J., Afshan, S., Gkantou, M., Theofanous, M., Baniotopoulos, C., & Gardner, L. 

2016. Flexural behaviour of hot-finished high strength steel square and rectangular 

hollow sections. Journal of Constructional Steel Research, 121: 97–109. 

[39] Gardner, L., Saari, N., & Wang, F. 2010. Comparative experimental study of hot-rolled 

and cold-formed rectangular hollow sections. Thin-Walled Structures, 48: 495–507. 

[40] Jandera, M., Gardner, L., & Machacek, J. 2008. Residual stresses in cold-rolled stainless 

steel hollow sections. Journal of Constructional Steel Research, 64: 1255–63. 

[41] Walport, F., Gardner, L., & Nethercot, D.A. 2019. A method for the treatment of second 

order effects in plastically-designed steel frames. Engineering Structures, 200: 109516. 

[42] Gardner, L., Fieber, A., & Macorini, L. 2019. Formulae for calculating elastic local 

buckling stresses of full structural cross-sections. Structures, 17: 2–20. 

[43] Fieber, A., Gardner, L., & Macorini, L. 2019. Formulae for determining elastic local 

buckling half-wavelengths of structural steel cross-sections. Journal of Constructional 

Steel Research, 159: 493–506. 

[44] EN 1990. 2002. Eurocode - Basis of structural design. Brussels: CEN; 2002. 

[45] Afshan, S., Francis, P., Baddoo, N.R., & Gardner, L. 2015. Reliability analysis of 

structural stainless steel design provisions. Journal of Constructional Steel Research, 

114: 293–304. 



33 

 

[46] Tankova, T., Simões Da Silva, L., Marques, L., Rebelo, C., & Taras, A. 2014. Towards 

a standardized procedure for the safety assessment of stability design rules. Journal of 

Constructional Steel Research, 103: 290–302. 

[47] Meng, X., Gardner, L., Sadowski, A.J., & Rotter, J.M. 2020. Elasto-plastic behaviour 

and design of semi-compact circular hollow sections. Thin-Walled Structures, 148: 

106486. 

[48] Yun, X., Gardner, L., & Boissonnade, N. 2018. The continuous strength method for the 

design of hot-rolled steel cross-sections. Engineering Structures, 157: 179–91. 

[49] SAFEBRICTILE. 2016. Standardization of safety assessment procedures across brittle 

to ductile failure modes. Grant Agreement Number: RFSR-CT-2013-00023, Deliverable 

D11 - Guideline for the Safety Assessment of Design Rules for Steel Structures in Line 

with EN 1990,. 

[50] HOLLOSSTAB. 2019. Overall-slenderness based direct design for strength and stability 

of innovative hollow sections. Grant Agreement Number: RFCS-2015-709892 

Deliverable D72 - Reliability Analysis of the Design Proposals and Determination of 

Partial Factors,. 

[51] Wang, J., & Gardner, L. 2017. Flexural buckling of hot-finished high-strength steel SHS 

and RHS columns. Journal of Structural Engineering, ASCE, 143: 1–12. 

 



34 
 

 
Figure 1: Cross-section interaction diagram illustrating the back-calculated equivalent imperfections 

included in EN 1993-1-1 and prEN 1993-1-1; use of these imperfections in a second order elastic 

analysis (GNIA) in conjunction with a linear M–N cross-section check results in a buckling resistance 

equal to that given by the Eurocode buckling curves. 
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Figure 2: Cross-section interaction diagram illustrating the tabulated equivalent imperfections included 

in EN 1993-1-1 and prEN 1993-1-1; use of these imperfections in a second order elastic analysis 

(GNIA) in conjunction with a linear M–N cross-section check results in a buckling resistance (defined 

as the point at which the GNIA curve meets the M–N interaction line) that is close to, but on the safe-

side of that given by the Eurocode buckling curves. 
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a. Major axis buckling b. Minor axis buckling 

Figure 3: Over-prediction of buckling resistance when prEN 1993-1-1 equivalent back-calculated 

elastic imperfections are used in a second order inelastic (plastic zone) analysis (GMNIA) with a 

bilinear (elastic, perfectly plastic) s–e  curve due to the post first-yielding capacity. 

 
Figure 4: Under-prediction of buckling resistance when prEN 1993-1-1 equivalent back-calculated 

elastic imperfections are used with in a second order inelastic (plastic zone) analysis with a Ramberg–

Osgood s–e  curve due to the early material yielding. 
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Figure 5: Variation of buckling capacity with steel grade; individual buckling curves become 

increasingly conservative with increasing yield stress. 

 
Figure 6: Variation of buckling capacity with varying Ramberg–Osgood exponent n; increasing n 

values result in lower buckling capacity, though this effect is not captured by individual buckling 

curves. 
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a. n = 7 b. n = 15 

Figure 7: Required equivalent imperfections calculated to within 1% of the benchmark FE ultimate 

loads NFE as calculated using GMNIA with imperfection magnitudes of L/1000 and residual stresses 

(R.S.). 
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Figure 8: Increasing influence of residual stresses from major axis buckling to minor axis buckling, as 

well as with increasing strain hardening exponent n (i.e. residual stresses have a reduced influence the 

more rounded the material stress–strain response). 

 

 
Figure 9: Required reference relative bow imperfection breq values for an example hot-rolled steel I-

section with varying member slenderness buckling about the major and minor axes.  
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Figure 10: Required reference bow imperfection breq values for I-sections, for all considered materials 

and both axes of buckling. 

 
Figure 11: Values of the exponents c and d reflecting the dependency of the buckling resistance on the 

yield stress fy and cross-section area A, respectively, for all cases considered.  
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Figure 12 : Values of exponents c and d reflecting the dependency of the buckling resistance on the 

yield stress fy and cross-section area A, respectively, for a hot-rolled S235 steel HEB 100 cross-section 

buckling about the major axis. 

 
Figure 13: Values of exponent e reflecting the dependency of the buckling resistance on the Young’s 

modulus E for all cases considered. 
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  a. S235 

  b. S355 

  c. S420 
Figure 14: Comparisons of the resistance predictions obtained using the proposed method of design by 

second order inelastic analysis Nprop, the benchmark FE models NFE, and the prEN 1993-1-1 buckling 

curves NEC3. 
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Figure 15: Load–deformation paths and ultimate resistance predictions (indicated by the position of the 

symbols) for a hot-rolled S235 steel HEB 100 column buckling about the major axis with 𝜆̅ = 1.5 for a 

range of analysis/design approaches. 
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Figure 16: Load–deformation paths and ultimate resistance predictions (indicated by the position of the 

symbols) for an austenitic (n = 7) stainless steel SHS 100 × 100 × 4 beam-column with 𝜆̅ = 0.5 for a 

range of analysis/design approaches. 
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Table 1: Material model parameters used for comparative parametric studies 

 

Young’s 

modulus 

E 

(N/mm2) 

Yield 

(0.2% 

proof) 

stress fy 

(N/mm2) 

Ultimate 

stress fu 

(N/mm2) 

Ultimate 

strain eu 

Strain 

hardening 

strain esh 

Strain 

hardening 

exponent 

n 

Strain 

hardening 

exponent 

m 

Hot-rolled 

steel 
210,000 

235 360 0.21 0.015 

- - 355 490 0.17 0.017 

420 540 0.13 0.023 

High-

strength 

steel 

210,000 690 770 0.06 0.035 - - 

Cold-

formed 

(C-F) steel 

210,000 355 490 0.17 - 8 3.8 

Austenitic 

(A) 

stainless 

steel 

200,000 280 580 0.50 - 

5.2, 6.8, 7, 

7.2, 7.9, 

9.1, 10.2, 

10.7, 11.8, 

15 

2.3 

Duplex (D) 

stainless 

steel 

200,000 530 770 0.30 - 

4.5, 6.9, 

7.2, 7.9, 8, 

8.1, 8.3, 

9.3, 9.6, 

10.6, 13 

3.6 

Ferritic (F) 

stainless 

steel 

200,000 320 480 0.16 - 

9.8, 11.8, 

13.5, 14, 

15.5, 16.9, 

17.2, 17.4, 

17.8, 18.5, 

21.6 

2.8 
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Table 2: Summary of the statistical analysis results for the proposed approach applied to I-

section columns of varying slenderness (𝜆̅ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) buckling about the 

major and minor axes assessed against the benchmark FE results 

Material Grade No. fy,mean/fy,nom Vfy VA VE b Vd gM1 

Steel 

235 54 1.25 0.055 0.022 0.03 1.03 0.03 1.04 

355 54 1.20 0.050 0.022 0.03 1.04 0.03 1.05 

420 54 1.20 0.050 0.022 0.03 1.05 0.04 1.05 

Stainless 
steel  

A 308 1.30 0.060 0.022 0.03 1.09 0.04 0.98 

D 308 1.10 0.030 0.022 0.03 1.11 0.03 1.02 

F 308 1.20 0.045 0.022 0.03 1.12 0.05 0.98 
 

Table 3: Summary of the statistical analysis results for the proposed approach applied to hollow 

section columns of varying slenderness (𝜆̅ = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) buckling about the 

major and minor axes assessed against the benchmark FE results 

Material Grade No. fy,mean/fy,nom Vfy VA VE b Vd gM1 

Steel 

235 36 1.25 0.055 0.027 0.03 1.03 0.01 1.05 

355 36 1.20 0.050 0.027 0.03 1.03 0.01 1.05 

420 36 1.20 0.050 0.027 0.03 1.02 0.01 1.05 
High-

strength 
steel 

690 36 1.10 0.035 0.027 0.03 0.99 0.00 1.10 

Cold-
formed 

steel 
355 36 1.20 0.045 0.027 0.03 1.15 0.04 0.97 

Stainless 
steel  

A 66 1.30 0.060 0.027 0.03 1.16 0.04 0.94 

D 66 1.10 0.030 0.027 0.03 1.13 0.04 1.01 

F 66 1.20 0.045 0.027 0.03 1.09 0.03 0.99 
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Table 4: Summary of the statistical analysis results for the proposed approach applied to I-

section beam-columns of varying slenderness (𝜆̅ = 0.5, 1.0, 1.5) buckling about the major and 

minor axes assessed against the benchmark FE results 

Material Grade No. fy,mean/fy,nom Vfy VA VE b Vd gM1 

Steel 

235 36 1.25 0.055 0.022 0.03 1.02 0.01 0.95 

355 36 1.20 0.050 0.022 0.03 1.01 0.01 0.99 

420 36 1.20 0.050 0.022 0.03 1.04 0.02 0.96 

Stainless 
steel 

A 36 1.30 0.060 0.022 0.03 1.04 0.02 0.95 

D 36 1.10 0.030 0.022 0.03 1.05 0.03 1.05 

F 36 1.20 0.045 0.022 0.03 1.04 0.03 1.01 

 

Table 5: Summary of the statistical analysis results for the proposed approach applied to hollow 

section beam-columns of varying slenderness (𝜆̅ = 0.5, 1.0, 1.5) buckling about the major and 

minor axes assessed against the benchmark FE results 

Material Grade No. fy,mean/fy,nom Vfy VA VE b Vd gM1 

Steel 

235 52 1.25 0.055 0.027 0.03 1.02 0.01 0.97 

355 52 1.20 0.050 0.027 0.03 1.01 0.01 1.01 

420 52 1.20 0.050 0.027 0.03 1.01 0.01 1.02 

High-
strength 

steel 
690 52 1.10 0.035 0.027 0.03 1.00 0.00 1.06 

Cold- 
formed 

steel 
355 52 1.20 0.045 0.027 0.03 1.06 0.03 1.00 

Stainless 
steel  

A 36 1.30 0.060 0.027 0.03 1.08 0.05 0.96 

D 36 1.10 0.030 0.027 0.03 1.06 0.04 1.06 

F 36 1.20 0.045 0.027 0.03 1.07 0.04 0.99 
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Table 6: Summary of comparisons between benchmark FE resistance NFE and that defined 
using the range of considered design methods Ne0 for the two worked examples; all models 
utilised the linear Timoshenko B31 beam element. 

Imperfection 
e0 

Analysis 
type 

Cross-section 
resistance 

Worked example 1 – 
S235 steel HEB 100  
I-section (Lb,cs = 170 

mm, 𝜆̅! = 0.27) 
column buckling about 

major axis NFE/Ne0 

Worked example 2 – 
austenitic stainless 

steel (fy = 280 N/mm2,  
n = 7) stainless steel 

SHS 100×4 (Lb,cs = 84 
mm, 𝜆̅! = 0.42) beam-

column NFE/Ne0 

Benchmark 
L/1000 + R.S. 

Plastic 
zone 

CSM strain limit 
1.00 

1.00 

 EC nonlinear 
plastic M-N check 0.90 

e0,el,tab Elastic EC linear elastic 
M-N check 0.89 0.70 

e0,pl,tab Elastic EC linear plastic 
M-N check 0.84 0.81 

e0,el,tab 
Plastic 
zone 

CSM strain limit 
0.91 

0.99 

EC nonlinear 
plastic M-N check 0.90 

e0,pl,tab Plastic 
zone 

CSM strain limit 
0.83 

0.99 

EC nonlinear 
plastic M-N check 0.90 

e0,prop (Eq. 
(21)) 

Plastic 
zone 

CSM strain limit 
0.97 

1.00 

EC nonlinear 
plastic M-N check 0.90 

  


