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Abstract: System-level advanced analysis is now a viable tool for widespread use in structural 

design. By directly capturing frame and member level instability effects, plasticity, initial 

geometric imperfections and residual stresses in the analysis, the need for subsequent 

individual member checks can be eliminated. The analysis of structural members and frames 

is typically carried out using beam elements, which are unable to capture the effects of local 

buckling. However, local buckling dictates the strength and ductility of cross-sections and the 

extent to which plastic redistribution of forces and moments can be exploited; it cannot 

therefore be disregarded. A proposal is made herein, in which strain limits, defined by the 

continuous strength method, are applied to simulate local buckling in beam element models, 

thereby controlling the degree to which spread of plasticity, force and moment redistribution 

and strain hardening can be utilised in the design of structural elements and systems. Strains 

are averaged over a defined distance along the member length to reflect the fact that local 

buckling  requires a finite length over which to develop and to allow for local moment gradient 

effects. Design is based directly on the application of strain limits to all cross-sections in the 

structure. The accuracy of the proposed method for the design of stainless steel members is 

assessed through comparisons with benchmark shell finite element results; both I-section and 
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hollow section members are considered. Comparisons against current design methods confirm 

the significant benefits of applying the proposed approach in terms of both the accuracy and 

the consistency of the resistance predictions. The reliability of the design approach is 

demonstrated through statistical analyses performed in accordance with EN 1990. Application 

of the proposed method is particularly appropriate for stainless steel structures due to the high 

material value and the complexities presented by the nonlinear material stress–strain response 

for traditional design treatments. The proposed method is due to be included in the two major 

international stainless steel design standards EN 1993-1-4 and AISC 370. 

Keywords: Advanced analysis; Continuous strength method; Equivalent imperfections; Global 

analysis; Inelastic analysis; Local buckling; Nonlinear analysis; Plastic zone analysis; Second 

order effects; Stainless steel; Strain limit. 

 

1. INTRODUCTION 

Stainless steel has a relatively high initial cost compared to carbon steel and it is therefore 

important that design rules enable the material to be utilised to the fullest by recognising its 

particular features, as well as by embracing advanced design methods that may deviate from 

traditional approaches. With advances in computational power and software, system-level 

advanced (second order) inelastic analysis is now viable for widespread use in design [1]. The 

nonlinear material behaviour of stainless steel results in added complexities for traditional 

design, and makes the opportunities offered by more advanced techniques particularly 

advantageous. Second order inelastic analysis enables the distribution of internal forces and 

moments within a structure to be accurately determined since the erosion of stiffness due to 

buckling and plasticity is directly modelled [2]. Advanced analysis is commonly carried out 

using beam element finite element models which are incapable of capturing the effects of local 
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buckling directly since cross-section deformation is not possible. However, disregarding local 

buckling can lead to overestimations of cross-section capacities and hence system strengths. 

This is of particular concern for stainless steel due to the nonlinear stress–strain response and 

the significant development of strain hardening; cross-section capacities, therefore, 

continuously increase under increasing deformation and do not plateau at the traditional plastic 

moment capacity. Shell finite element models are able to accurately capture all cross-section 

behaviour but are considerably more computationally expensive than beam elements.  A design 

approach is presented herein that utilises beam elements, yet safely captures cross-section 

failure across the full local slenderness range through the continuous strength method (CSM). 

The CSM is employed to simulate local buckling by applying strain limits to all the cross-

sections within the member or structure, thereby controlling the extent to which plasticity, 

moment redistribution and strain hardening can be exploited. This method has previously been 

developed and applied to carbon steel structures [3–5] and is extended to stainless steel in this 

study. An alternative approach is to simulate local buckling by defining an effective stress-

strain curve that is a function of the cross-section geometry and loading conditions [6,7]. The 

present paper outlines the proposed approach for the in-plane design of structural stainless steel 

members subjected to bending, compression and combined loading, with the accuracy assessed 

against benchmark shell finite element models; comparisons are also made against current 

Eurocode design predictions. 

 

2. CURRENT EUROCODE PROVISIONS 

 

EN 1993-1-4 [8] provides supplementary rules, beyond those set out in EN 1993-1-1 [9] for 

carbon steel, for the design of stainless steel structures. However, for frame stability and 

structural analysis, no further guidance is currently given. The effect of the characteristic 
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rounded stress–strain curve of stainless steel is therefore ignored in this crucial aspect of 

structural design. The consequences of this were assessed in a study by Walport et al. [10], 

where it was concluded that the material nonlinearity of stainless steel results in greater 

deflections due to the loss of material stiffness and therefore, without due consideration, forces 

and moments are generally underestimated. It was recommended that material nonlinearity 

should always be considered in the global analysis of stainless steel structures, unless the 

structure remains predominantly in the elastic range. 

Traditional design methods, including those set out in EN 1993-1-1 [9] are based on the 

assignment of cross-sections to discrete behavioural classes. Each class represents an idealised 

cross-section response; whether the cross-section possesses sufficient rotation capacity to allow 

the application of plastic analysis and design is also defined. In the case of bending, Class 1 

cross-sections can reach their full plastic moment capacity Mpl and are deemed to have 

sufficient rotation capacity for plastic design. Class 2 cross-sections can attain their plastic 

moment capacity but have insufficient ductility for plastic design. Class 3 cross-sections are 

limited to their elastic moment capacity Mel and Class 4 cross-sections an effective moment 

capacity Meff. This cross-section classification framework has two key limitations when applied 

to stainless steel design. Firstly, in stainless steel structures, plastic redistribution occurs at 

relatively low load levels due to the rounded stress–strain response of the material – not only 

is this issue ignored in the current design provisions (EN 1993-1-4), it is also exacerbated by 

not allowing plastic analysis, even for Class 1 cross-sections. Secondly the cross-section 

resistance in bending is limited to the plastic moment capacity Mpl; this disregards the 

substantial strain hardening of stainless steel, often resulting in very conservative design 

solutions. Material nonlinearity results in added complexities for traditional design approaches 

and therefore the opportunities of design by advanced analysis should be exploited, as 

presented herein. 
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3. BENCHMARK SHELL FINITE ELEMENT MODELLING 

Benchmark shell finite element (FE) models of stainless steel beams, columns and beam-

columns are used in this study to assess the accuracy of both the proposed design approach 

presented in Section 4 and the current Eurocode design provisions. The FE models were 

developed using the general purpose FE software Abaqus [11]; the general modelling approach 

and validation are presented in this section, while the results are utilised in Section 4. 

 

3.1. Modelling approach 

For the benchmark modelling, geometrically and materially nonlinear shell finite element 

analyses with imperfections (GMNIA) were performed. The four-noded reduced integration 

S4R shell element, from the Abaqus element library [11], was employed to create the models 

and used in all benchmark simulations. Both welded I-sections and cold-formed hollow 

sections were modelled, with the web depth and flange width subdivided into 12 elements to 

accurately capture local buckling (both in the elastic and inelastic ranges). The number of 

elements along the length of the member was defined such that the aspect ratio of the elements 

remained close to unity. The modified Riks method was used to trace the full load-deformation 

response of the members.  

The rounded stress–strain response of stainless steel, defined on the basis of the two-stage 

Ramberg–Osgood formulation [12–15] and further described in Section 4.1.2, was 

incorporated into the shell FE models. Note that the Ramberg–Osgood formulation presents 

strains as a function of stress; while this can be problematic for analytical solutions and for 

some software, in the case of most FE software, the Ramberg–Osgood model can be readily 

incorporated by converting the continuous function into a multi-linear representation. In the 
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present study the stress–strain curves were defined by 135 steps for an accurate representation 

of the material behaviour. The engineering stress–strain curves were converted into true stress–

strain curves for compatibility with the adopted element type (S4R [11]) in which changes in 

cross-sectional area during the geometrically nonlinear analyses are captured. For the welded 

I-sections, the ECCS [16] residual stress pattern, as modified for stainless steel by Yuan et al. 

[17], was introduced into the FE models by defining an initial stress condition. Corresponding 

plastic strains were also assigned [18] and a preliminary analysis step was employed prior to the 

application of external loading to allow the residual stresses to equilibrate. For the cold-formed 

hollow sections, residual stresses were not explicitly introduced; this is because the influence of 

the dominant through thickness residual stresses are already present in the material stress–strain 

curves obtained from tests on coupons extracted from cold-formed hollow sections [19] and 

because their influence on the structural behaviour of cold-formed stainless steel tubular 

members have generally been found to be small [20,21]. Sinusoidal local plate imperfections 

were defined with an imperfection magnitude of 1/200 times the plate width, as recommended 

in EN 1993-1-5 [22], and a length close to the local buckling half-wavelength of the cross-

section Lb,cs calculated from a finite strip analysis in CUFSM [23]. Simplified formulae for the 

calculation of local buckling half-wavelengths have also been established [24]. 

Pin and roller support conditions were achieved through the coupling of all nodes of the 

member end cross-sections to a master node and the application of suitable boundary conditions 

to that node. The members were restrained out-of-plane along the flange centrelines at intervals 

close to the local buckling half-wavelength Lb,cs since in-plane stability design is the focus of 

the present paper. Concentrated loads were applied at the bottom of the web and web stiffeners 

with a thickness equal to the web thickness were included in the models at the load locations 

to prevent localised web failure. 
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3.2. Validation 

The shell FE models were validated against the results of 91 experiments on stainless steel I-

section and square/rectangular hollow section (SHS/RHS) members from the literature. 

Different loading configurations were considered, including beams in three- and four-point 

bending [25–27], columns of varying slenderness [27–29] and beam-columns [29–31]. 

The measured cross-section geometry, material properties and imperfection magnitudes from 

the tests were used as input parameters for the FE validation models. Where available, different 

material properties were applied to the flanges and web of the welded I-sections. For the hollow 

sections, the rounded corner geometry was modelled explicitly with five elements in each 

corner; also, enhanced corner material properties, owing to the effect of work hardening, were 

assigned to the curved corner regions plus an extension of 2t, where t is the material thickness, 

in accordance with the findings of [32]. 

A summary of the shell FE model validation, including the mean and coefficient of variation 

(COV) of the shell FE model to test failure load ratios, is given in Table 1. Generally, the shell 

FE models were able to accurately predict the experimental failure loads for both the I-section 

and SHS/RHS members, with an overall average FE-to-test ultimate load ratio of 1.00 and a 

corresponding COV of 0.057. 

Figures 1 and 2 show typical load–deformation curves obtained from tests [25,31] and the shell 

FE models for I-sections under three-point bending (3PB) and SHS/RHS under combined 

bending and compression, respectively. The numerical simulations can be seen to be in close 

agreement with the observed physical behaviour. Overall, the FE models are therefore 

considered to provide reliable results against which the proposed design method can be 

benchmarked. 
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4. DESIGN BY SECOND ORDER INELASTIC ANALYSIS USING BEAM FINITE 

ELEMENTS WITH STRAIN LIMITS 

In this section, a method of design by second order inelastic analysis using beam finite element 

models with strain limits is developed. To simulate local buckling in the beam element models, 

the continuous strength method (CSM) has been utilised. The continuous nature of the 

approach allows cross-sections of all classes to be designed in a consistent manner. Failure of 

a member or structure is defined as the first to occur of (1) the CSM strain limit is reached or 

(2) the peak load is attained [10]. The latter criterion is typically critical in stability governed 

scenarios. 

 

4.1. The continuous strength method 

The continuous strength method (CSM) is a deformation-based method that replaces the earlier 

described concept of cross-section classification with a continuous relationship between cross-

section slenderness and deformation (strain) capacity [33–35]. The CSM has two key 

components (1) a continuous ‘base curve’ determining the maximum strain εcsm that a cross-

section can withstand under the applied loading, and (2) a constitutive model to capture the 

nonlinear stress–strain characteristics of the material. In this study it is the first component that 

will be utilised to simulate local buckling by limiting strains in the beam elements models. This 

approach is described in the following subsections. 

 

4.1.1. Base curve 

The base curve defines the maximum strain εcsm that a cross-section of a given local slenderness 

𝜆̅p can withstand prior to failure. The base curve implicitly includes the influence of local 

geometric imperfections and residual stresses on the cross-section response. For use in manual 
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design calculations, in conjunction with a simplified elastic, linear hardening material model, 

the CSM base curve is given by Eqs. (1) and (2), where 𝜆̅p is the local cross-sectional 

slenderness discussed later, εy is the yield strain equal to the yield stress fy divided by the 

Young’s modulus E, εu is the ultimate strain estimated as εu =1˗fy/fu for austenitic and duplex 

stainless steel and as εu =0.6(1˗fy/fu) for ferritic stainless steel, where fu is the ultimate stress, 

and C1 is a coefficient equal to 0.1 for austenitic (A) and duplex (D) stainless steels and 0.4 for 

ferritic (F) stainless steels [34,36]. Eq. (1) defines the CSM strain limit for non-slender cross-

sections while Eq. (2) defines the CSM strain limit for slender cross-sections, where local 

buckling occurs prior to reaching the yield resistance. Two upper limits are included in Eq. (1): 

the first, Ω (denoted Λ in AISC 370 [37]), is a project specific design parameter that defines 

the maximum allowable level of plastic deformation [3] while the second, C1εu/εy, prevents 

overpredictions of material strength when using the CSM for hand calculations with a 

simplified elastic, linear hardening stress–strain model. In this study values of Ω=15 (generally 

recommended to prevent excessive deformations) and Ω=30 are considered. 

𝜀csm

𝜀y
=

0.25

𝜆̅p
3.6    but  ≤ (𝛺,

𝐶1𝜀u

𝜀y
)   for   𝜆̅p ≤ 0.68 (1) 

𝜀csm

𝜀y
= (1 −

0.222

𝜆̅p
1.05 ) 

1

𝜆̅p
1.05     for  0.68 < 𝜆̅p ≤ 1.6 (2) 

To facilitate hand calculations, the CSM employs an elastic, linear hardening material model 

[34] in conjunction with Eqs. (1) and (2), as indicated above. However, for design by second 

order inelastic analysis of stainless steel structures, which is the focus of the present study, the 

more accurate two-stage Ramberg–Osgood material model [14] described in Section 4.1.2 can 

be used since the necessary computations are performed numerically; this difference in material 

model requires an adjustment to the CSM base curves. Eqs. (3) and (4) describe the adjusted 

CSM base curves for use in second order inelastic analysis with the two-stage Ramberg–
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Osgood material model for non-slender and slender cross-sections, respectively. Essentially, to 

account for the difference between the bilinear and rounded stress–strain curves, a constant 

strain of 0.2% is added to the base curve for 𝜆̅p ≤ 0.68, while a stress-level dependent strain is 

added in the slender range (i.e. 𝜆̅p > 0.68). The modifications from Eqs. (1) and (2) to Eqs. (3) 

and (4) are illustrated in Figure 3. 

𝜀csm

𝜀y
=

0.25

𝜆̅p
3.6

+
0.002

𝜀y
   but  ≤ Ω  for   𝜆̅p ≤ 0.68 (3) 

𝜀csm

𝜀y
= (1 −

0.222

𝜆̅p
1.05 ) 

1

𝜆̅p
1.05 +

0.002(𝜎 𝑓y⁄ )
𝑛

𝜀y
    for  0.68 <  𝜆̅p ≤ 1.0 (4) 

where σ is the maximum compressive stress, fy is the yield (0.2% proof) stress and n is the 

strain hardening exponent defined in Section 4.1.2. Note that the range of applicability of Eq. 

(4) is reduced relative to Eq. (2) (from 𝜆̅p = 1.6 to 𝜆̅p = 1.0), since Eq. (2) is used for checking 

individual members for which it has been extensively verified [38], while Eq. (4) can be applied 

to complete structural systems. For structural systems comprising members with slender cross-

sections, the loss of stiffness associated with local buckling can affect the distribution of forces 

and moments around the frame, which may require specific attention either through a reduced 

stiffness approach [39] for beam elements or through explicit modelling using shell elements.  

The cross-section slenderness 𝜆̅p quantifies the susceptibility of a cross-section to local 

buckling and is calculated using Eq. (5), where σcr,cs is the local elastic buckling stress of the 

full cross-section. This can be obtained either using numerical methods e.g. CUFSM [23] or 

using the simplified expressions of Gardner et al. [40].  

𝜆̅p = √
𝑓y

𝜎cr,cs
 (5) 
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4.1.2. Material model 

The rounded stress–strain response of stainless steel is described on the basis of the two-stage 

Ramberg–Osgood formulation [14,15], as given by Eqs. (6) and (7), and included in prEN 

1993-1-14 [41], where ε and σ are the strain and stress, respectively, E is the Young’s modulus, 

fu is the ultimate stress, Ey is the tangent modulus at the 0.2% proof stress, defined by Eq. (8), 

ε0.2 is the total strain at the 0.2% proof stress, equal to 0.002 + fy/E, εu is the ultimate strain, and 

n and m are the strain hardening exponents. 

𝜀 =
𝜎

𝐸
+ 0.002 (

𝜎

𝑓y
)

𝑛

       for       𝜎 ≤ 𝑓y (6) 

𝜀 = 𝜀0.2 +
𝜎 − 𝑓y

𝐸y
+ (𝜀u − 𝜀0.2 −

𝑓u − 𝑓y

𝐸y
) (

𝑓 − 𝑓y

𝑓u − 𝑓y
)

𝑚

     for     𝑓y < 𝜎 ≤ 𝑓u (7) 

𝐸y =
𝐸

1 + 0.002𝑛 𝐸 𝑓y⁄
 (8) 

In this study, the standardised material properties for numerical parametric studies defined by 

Afshan et al. [42] have been employed, as summarised in Table 2. For the hollow sections, 

weighted average properties for each cross-section were calculated from the flat and corner 

properties given in Table 2 [32]. 

 

4.2. Strain averaging approach 

In the proposed design approach, outer-fibre compressive strains obtained from beam FE 

models, εEd, are checked against the CSM strain limits εcsm, defined by Eqs. (3) and (4) to 

simulate the effects of local buckling, as given by Eq. (9). The member or structural resistance 

shall satisfy the requirements of Eq. (10), where FRd = FRk/γM1 and FRk is defined based on the 

first to occur of (1) the CSM strain limit is reached or (2) the peak load is attained.  
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𝜀Ed

𝜀csm
≤ 1.0 (9) 

𝐹d

𝐹Rd
≤ 1.0 (10) 

Since local buckling requires a finite length over which to develop, rather than restricting the 

peak compressive strain from beam FE models to the CSM strain limit, instead the CSM strain 

limit is applied to an average strain obtained over a characteristic length along the members. 

This characteristic length is taken as the elastic local buckling half-wavelength of the cross-

section Lb,cs (denoted Lel in AISC 370 [37]) [3], as obtained numerically or using the simplified 

expressions given in [24]; CUFSM [23] was employed in the present paper. The value of Lb,cs 

also defines the maximum element length. This design method is expected to be included in 

the next version of the two major international stainless steel design standards, EN 1993-1-4 

and AISC 370. 

 

4.3. Shear resistance check 

In the proposed approach, a separate shear resistance check, following the EN 1993-1-4 [8] 

recommendations, should be performed. EN 1993-1-4 [8] prescribes that the design shear force 

VEd at each cross-section be less than or equal to the plastic shear capacity of the cross-section 

Vpl,Rd given by Eq. (11), where Av is the shear area of the cross-section [9] and M0 is the partial 

factor for cross-section resistance, with a recommended value for stainless steel of 1.1 [8]. 

𝑉pl,Rd =
𝐴v

𝑓y

√3
⁄

𝛾M0
 

(11) 

Following EN 1993-1-1 [9], for cross-sections subjected to combined bending and shear, an 

allowance is made for the effect of the shear force on the moment resistance. When the design 
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shear force VEd is less than half the plastic shear capacity Vpl,Rd, the full bending moment 

resistance can be achieved but when VEd exceeds half the plastic shear capacity Vpl,Rd, a reduced 

moment resistance must be calculated with a reduced yield strength equal to (1-ρ)fy applied to 

the shear area, where ρ is calculated using Eq. (12). 

𝜌 = (
2𝑉Ed

𝑉pl,Rd
− 1)

2

 (12) 

As recommended for the design of steel structures by second order inelastic analysis in [3], in 

the approach proposed herein for stainless steel design, the influence of shear force on bending 

resistance is accounted for through the reduction factor ρcsm, given by Eq. (13).  

𝜌csm = {

1                       for             𝑉Ed ≤ 0.5𝑉pl,Rd

0.5

0.5 + 𝜌
           for             𝑉Ed > 0.5𝑉pl,Rd

 (13) 

This reduction factor is applied to the CSM strain limit εcsm. For cross-sections where the design 

shear force VEd exceeds half the plastic shear capacity 0.5Vpl,Rd, the cross-section must satisfy 

the requirements of Eq. (14). Note that the shear check (i.e. VEd/Vpl,Rd ≤ 1) is still required in 

the proposed design approach. Also note that for cross-sections with slender webs, shear 

buckling must also be considered. 

𝜀Ed

𝜌csm𝜀csm
≤ 1.0         for        𝑉Ed > 0.5𝑉pl,Rd (14) 

Figure 4 shows the effect of shear on the normalised bending capacity Mu/Mpl, where Mu is the 

moment capacity at failure and Mpl is the plastic moment capacity equal to the plastic section 

modulus Wpl multiplied by the yield stress fy, of an austenitic stainless steel IPE 140 cross-

section with varying member length under three-point bending. Observing the shell FE results, 

it can be seen that for very short member lengths, shear effects begin to dominate the beam 

behaviour, causing a sharp drop in bending capacity. If shear is ignored in these cases, the beam 
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FE models yield unconservative resistance predictions relative to the benchmark shell FE 

results. However, applying the shear reduction factor ρcsm to the CSM strain limit, as well as 

the general shear check i.e. VEd/Vpl,Rd ≤ 1, results in capacity predictions that are safe sided and 

accurate compared with the benchmark shell FE results, yet with significant capacity 

enhancements over the EN 1993-1-4 predictions. Similar conclusions can be drawn from 

Figure 5, which shows normalised moment–shear interaction data obtained from the shell FE 

simulations, where Vu is the ultimate FE shear capacity, for a range of austenitic stainless steel 

I-sections (HEA 160, 220, 280, 600, 800, 900; HEB 100, 200, 240, 300, 550, 700; HEM 240) 

subjected to three-point bending with varying member length L ranging from 2.5Lb,cs to 40Lb,cs. 

In cases of very high shear, the shell FE models did not reach a peak capacity and failure was 

defined as the load at which the ratio of the tangent stiffness to the initial elastic stiffness of the 

model was equal to 0.01 [43]. Note that the level of plastic deformation is limited to Ω = 15 in 

the comparisons shown. 

 

4.4. Initial geometric imperfections and residual stresses  

EN 1993-1-1 [9] and prEN 1993-1-1 [44] provide equivalent bow imperfections that implicitly 

account for the combined effects of geometric and material (i.e. residual stresses) 

imperfections. These equivalent bow imperfections are for use with second order elastic 

analysis with a subsequent linear cross-section check; they are not, in general, appropriate for 

use in design by second order inelastic analysis and can give over-predictions (i.e. 

unconservative results) or under-predictions (i.e. conservative results) of buckling resistance 

depending on the form of the adopted material stress–strain curve [45]. In the case of design 

by second order inelastic analysis of stainless steel members and structures, the nonlinear 

material model results in early yielding, and use of the prEN 1993-1-1 [44] equivalent bow 

imperfections (determined for either a linear elastic or linear plastic cross-section check) leads 
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to highly conservative capacity predictions.  Equivalent bow imperfections for use with second 

order inelastic, or geometrically and materially nonlinear, analysis, have been developed by 

Walport et al. [45]. The normalised equivalent bow imperfection magnitude e0/L for use in 

design by second order inelastic analysis is given by Eq. (15), where L is the member length 

and α is the imperfection factor. These equivalent imperfection magnitudes are used in the 

present study to account for the combined effects of geometrical imperfections and residual 

stresses; the influence of material yielding is directly captured in the analysis while the varying 

influence of residual stresses for different cross-section types and axes of buckling is, as in the 

case of the equivalent bow imperfections for use in second order elastic analysis [44,46], 

captured through the imperfection factor α. 

𝑒0

𝐿
=

𝛼

150
     but     

𝑒0

𝐿
≥

1

1000
 (15) 

Note that the equivalent bow imperfections given by Eq. (15) for use in design by second order 

inelastic (plastic zone, distributed plasticity and fibre) analysis were calibrated against 

benchmark FE ultimate loads generated using geometrically and materially nonlinear analysis 

with geometric imperfections of L/1000 and appropriate residual stresses [45].  

5. APPLICATION OF PROPOSED DESIGN METHOD 

The accuracy of the proposed approach of design by second order inelastic analysis with strain 

limits is assessed in this section for a wide range of structural stainless steel members. The 

beam finite element (FE) models employed to apply the design method were established in 

Abaqus using the 2-noded linear Timoshenko beam elements B31OS and B31 for the open (I-

sections) and closed (SHS/RHS) cross-sections, respectively. Since there is no change in cross-

section geometry under load for the adopted beam element type, engineering stresses and 

strains were incorporated into the models without the need for conversion into true stresses and 
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strains (as required in the shell FE models described in Section 3). The beam FE models were 

discretised such that the element length was equal to that used in the shell FE models. 

Application of the design method to members subjected to bending, compression and combined 

compression and bending is assessed with respect to the benchmark ultimate loads determined 

using the shell FE models as described in Section 3. Comparisons are also made against the 

results obtained using conventional Eurocode design calculations.  

 

5.1. Members subjected to bending 

Application of the proposed approach of design by second order inelastic analysis with CSM 

strain limits to stainless steel members subjected to bending is described in this section. Figure 

6 shows the results for an example simply-supported beam under three-point bending and the 

application of the proposed approach. While the beam FE model continues deforming under 

increasing load with no peak since local buckling is not captured by this element type, the 

benchmark shell FE model, which does capture local buckling, fails at a peak moment. The 

modelled cross-section is Class 1 and therefore applying a Eurocode cross-section check results 

in a conservative bending resistance prediction equal to plastic moment capacity Mpl. For the 

HEA 800 cross-section considered, the cross-section slenderness in bending 𝜆̅p is equal to 0.34, 

which corresponds to a CSM strain limit εcsm/εy of 13.8 from Eq. (3); this strain limit is applied 

to the outer compressive fibre of the cross-section of the beam element model. As can be seen 

in Figure 6, adopting this approach results in a capacity prediction close to but on the safe side 

of the peak moment from the shell FE model, and with a 30% increase in capacity over the 

Eurocode prediction. 

The normalised bending capacities Mu/Mel, where Mel is the elastic moment capacity equal to 

the elastic section modulus Wel multiplied by the yield stress fy,  for a series of austenitic 
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stainless steel I-section beams subjected to three-point bending are shown in Figure 7. The 

local moment gradient was kept approximately constant in each member by defining the 

member length equal to 10 times the local buckling half-wavelength Lb,cs for each cross-section 

modelled. It can be seen that the upper limit of Ω = 15 results in more conservative predictions 

for the stockier cross-sections and increasing this limit to Ω = 30 allows for more accurate 

representation of the shell FE model behaviour. Close agreement is achieved between the shell 

FE model results and the results from the beam FE models with CSM strain limits. 

In total, over 800 simply-supported austenitic, duplex and ferritic stainless steel I-sections and 

hollow section beams with varying local slenderness have been assessed under three- and four-

point bending. Table 3 provides a summary of the capacity predictions for both the proposed 

method Mprop (with Ω = 15) and EN 1993-1- 4 [8] MEC, normalised by the benchmark shell FE 

results Mshell. The current Eurocode design provisions can be seen to be very conservative for 

stainless steel design, with an overall mean value of MEC/Mshell of 0.78, while the proposed 

approach provides consistently more accurate capacity predictions, with an overall mean value 

of Mprop(Ω = 15)/Mshell of 0.93. Figure 7 illustrates the consistent and significant benefits of 

adopting the proposed approach over the traditional EN 1993-1-4 rules for the design of 

members subjected to bending. 

 

5.2. Members subjected to compression 

Application of the proposed approach of design by second order inelastic analysis with CSM 

strain limits to stainless steel members subjected to compression is described in this section.  

The assessment was carried out on 1185 pin-ended columns (591 I-section and 594 hollow 

section members), considering austenitic, duplex and ferritic stainless steel grades, major axis 

buckling, a range of cross-section slenderness values λ̅p and three member slenderness values 
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(𝜆̅ = 0.5, 1.0, 1.5). A summary of the results is presented in Table 4. Ultimate buckling 

capacities determined using the benchmark shell FE modelling, the beam FE modelling with 

CSM strain limits and the traditional EN 1993-1-4 design resistance functions normalised by 

the plastic squash load Npl, equal to the cross-section area A multiplied by the yield stress fy, 

are compared in Figures 8 and 9 for austenitic stainless steel I- and hollow section columns, 

respectively. Note that for the design of the members with low cross-section slenderness, the 

peak load factor governed, while for members with slender cross-sections, the CSM strain limit 

was reached prior to the peak load factor being achieved. 

In deriving the equivalent bow imperfections for use in design by second order inelastic 

analysis [45], as for second order elastic analysis [44,46,47], solutions were sought that were 

independent of member slenderness and therefore a level of conservatism was accepted in the 

predicted member capacities. This is reflected in the results shown in Figures 8 and 9 where, 

as observed by Walport et al. [45], it can be seen that capacity predictions from the proposed 

design method become more conservative as the member slenderness reduces.  

An additional source of conservatism is that the first order distribution of stresses was utilised 

in the calculation of the cross-section slenderness (which is dependent on the elastic local 

buckling stress) and hence the CSM strain limit for the studied compression members; this is  

consistent with traditional EN 1993-1-4 design, where cross-section classification is generally 

determined based on the first order stress distribution. In reality, due to second order effects, 

the distribution of stresses is modified under increased loading; were the more favourable (due 

to the increased bending component) second order distribution of stresses to be utilised in the 

calculation of the strain limits, slightly increased deformation capacities and hence resistance 

predictions would be achieved.  
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5.3. Members subjected to combined compression and bending 

In this section, the accuracy of the proposed approach is assessed for the in-plane design of 

stainless steel beam-columns. The assessment was carried out on a total of 297 hollow section 

beam-columns considering both major and minor axis buckling, three member slenderness 

values (𝜆̅ = 0.5, 1.0, 1.5), and three bending moment distributions along the member length (ψ 

= 1.0, 0, -0.5), achieved by changing the ratio of applied end moments ψ = M2/M1, where M1 

and M2 are the applied end moments. The ratio of applied compression to bending was varied 

to cover the full range of loading scenarios from pure compression to pure bending. 

Figures 10 to 12 show normalised M-N interaction diagrams for some example hollow section 

beam-columns subjected to combined compression and bending with ψ = 0, ψ = 1 and ψ = -

0.5, respectively. In the figures, the resistance predictions obtained using the proposed design 

approach (i.e. beam element GMNIA + CSM strain limits) are compared with the shell 

benchmark FE capacities, as well as two alternative EN 1993-1-4 [8] design approaches: (i) 

utilising a second order elastic analysis (GNIA) with a linear interaction cross-section check, 

and (ii) traditional member buckling checks. Note that the member buckling checks were 

carried out utilising the revised interaction equations for hollow sections, based on the work 

carried out by Zhao et al. [48], included in the Fourth Edition of the Design Manual for 

Structural Stainless Steel [49] and expected to be included in the upcoming revision of EN 

1993-1-4. In the classification  of the cross-sections, the simplified definition of ε that is due to 

be included in the upcoming revision of EN 1993-1-4 [50], given by Eq. (16), was utilised.  

𝜀 = √
235

𝑓y
 (16) 

The performed second order elastic analyses (GNIA) incorporated the equivalent bow 

imperfections included in prEN 1993-1-1 [44,46]; while Figures 10 and 12 present results for 
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Class 1 cross-sections and therefore utilise the equivalent bow imperfections for use with a 

linear plastic interaction M-N check, the cross-section presented in Figure 11 is Class 3 for the 

bending dominated cases and Class 4 in the compression dominated cases and therefore utilises 

the equivalent bow imperfections for use with a linear elastic interaction M-N check.  

Good agreement can be seen between the proposed design approach and the benchmark FE 

results, while both EN 1993-1-4 design approaches result in significantly more conservative 

predictions, particularly in the bending dominated cases. This is emphasised in Figure 13, 

which shows the normalised radial resistance for the three considered design methods relative 

to the benchmark shell FE results, where the normalised radial resistance 𝜀i, where i signifies 

the design approach considered, is calculated using Eq. (17), where RFE and Rd are the radial 

distances measured from the origin to the data point in M-N space determined from the 

benchmark shell FE model and the considered design approach, respectively – see Figure 14. 

Values of 𝜀i larger than unity indicate conservative strength predictions. Table 5 presents a 

summary of the normalised radial resistances, including the mean and COV values for each 

design method. 

𝜀i =
𝑅FE

𝑅d
 (17) 

Second order elastic analysis with a linear cross-section check results in more accurate 

resistance predictions than the member buckling checks, but the predictions are still overly 

conservative compared with the benchmark shell FE results, particularly in the bending 

dominated cases. While the effects of geometric imperfections and residual stresses are 

accounted for in the analysis through the equivalent bow imperfections, the beneficial effects 

of local moment gradients and strain hardening are ignored. The proposed approach is accurate 

and consistent with an overall mean normalised radial resistance 𝜖prop of 1.11 and COV of 0.061 

compared with overall mean normalised radial resistances of 1.30 and 1.21 and COVs of 0.167 
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and 0.088 for the EN 1993-1-4 member buckling checks (𝜖EC-trad) and GNIA + cross-section 

checks (𝜖EC-adv), respectively.  

Overall, the proposed method of design by beam element second order inelastic analysis with 

CSM strain limits is more accurate and consistent compared to EN 1993-1-4 design, 

particularly for bending dominated cases. The design approach captures the beneficial effects 

of moment gradients on both global and local buckling, as well as strain hardening, and 

eliminates the need for buckling checks, the determination of effective lengths and moment 

gradients factors and the calculation of effective section properties for Class 4 cross-sections.  

 

6. RELIABILITY ANALYSIS 

The reliability analysis of the proposed design approach is assessed in this section. In the 

Eurocodes, partial safety factors M1 are applied in order to ensure the required level of 

reliability; EN 1993-1-4 [8] gives a recommended value for the partial safety factor M1 of 1.1 

for stainless steel. The required partial safety factor M1 for use in design by second order 

inelastic analysis with CSM strain limits is assessed herein using the first order reliability 

method (FORM) set out in EN 1990 [51] for each design case considered. A target reliability 

index β of 3.8, corresponding to an overall target failure probability of 10-6 per year over a 50 

year design life, was assumed as recommended in EN 1990.  

The values of the material overstrength fy,mean/fy,nom, where fy,mean is the mean yield stress and 

fy,nom is the nominal yield stress, and the corresponding coefficient of variation of the yield 

strength Vfy were taken as those specified in Afshan et al. [52], as presented in Tables 6 to 8. 

The COV of the cross-sectional area VA, calculated according to the formulae detailed in [52] 

and the variability of the dimensional parameters provided in prEN 1993-1-1 [44], were taken 

as 0.022 and 0.027 for the I-sections and hollow sections, respectively, and the COV of the 
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Young’s modulus VE taken equal to 0.03 [44]. The mean correction factor b was determined 

based on averaging the ratios of the benchmark resistances obtained from the shell FE models 

re to the predicted resistances obtained from the proposed design method rt, as given by Eq. 

(18) [45,53]. 

𝑏 =
1

𝑛
∑

𝑟e,i

𝑟t,i

𝑛

𝑖=1

 (18) 

To accurately account for the varying dependency on the basic variables – yield stress fy, cross-

sectional area A and Young’s modulus E – for each individual design case considered, the 

dependence of the resistance, presented as the exponent (c, d and e) to which each basic variable 

should be raised were calculated using Eqs. (19)–(21), following the procedures set out in 

[45,52], where N1.05fy is the buckling load calculated from a numerical analysis with the yield 

stress fy multiplied by 1.05, N1.05A is the buckling load calculated from a numerical analysis 

with the cross-sectional area A multiplied by 1.05, N1.05E is the buckling load calculated from 

a numerical analysis with the Young’s modulus E multiplied by 1.05 and Nfy, NA and NE 

represent the original buckling load with no alterations to the yield stress, cross-sectional area 

or Young’s modulus. Note that in the calculation of N1.05fy that the ultimate stress fu was also  

multiplied by 1.05 to prevent a reduction in the slope of the second-stage of the Ramberg-

Osgood material model. Using these exponents, the combined coefficient of variation Vrt was 

calculated for each design case.  

𝑐 =
ln (𝑁1.05𝑓y

𝑁𝑓y
⁄ )

ln(1.05𝑓y 𝑓𝑦⁄ )
 (19) 

𝑑 =
ln(𝑁1.05𝐴 𝑁𝐴⁄ )

ln(1.05𝐴 𝐴⁄ )
 

(20) 
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𝑒 =
ln(𝑁1.05𝐸 𝑁𝐸⁄ )

ln(1.05𝐸 𝐸⁄ )
 

(21) 

As discussed in Walport et al. [45], while the use of the mean value of the Young’s modulus E 

= 200000 N/mm2 is suitable for the resistance functions set out in EN 1993-1-4 [8] due to the 

partial safety factors having been calibrated on the basis of this reference value, it is not suitable 

for use in design by second order inelastic analysis. Consider, for example, a very slender 

column – the resistance obtained from a second order inelastic analysis will be dominated by 

the Young’s modulus and close to the Euler load; use of the mean value of Young’s modulus 

will result approximately in a mean (i.e. fiftieth percentile), rather than the traditionally targeted 

characteristic (i.e. fifth percentile) resistance, to which a partial safety factor is applied to 

achieve the design value of the resistance. Use of the characteristic value of E (i.e. the fifth 

percentile) is therefore recommended, as employed herein, in design by second order inelastic 

analysis. 

Tables 6 to 8 present a summary of the results of the reliability analysis carried out according 

to EN 1990 [51]; Table 6 presents the results for members subjected to bending, Table 7 

presents the results for members subjected to compression and Table 8 presents the results for 

members subjected to combined compression and bending. The partial safety factor, as well as 

the mean correction factor b and the coefficient of variation of the predicted resistances relative 

to the benchmark shell FE resistances V are presented for each case. For assessment of the 

proposed design approach for members subjected to bending, since there is an increasing level 

of conservatism for low and high cross-section slenderness, the test and FE data was grouped 

by cross-section slenderness (𝜆̅p ≤ 0.4, 0.4 < 𝜆̅p ≤ 0.9, 𝜆̅p > 0.9); the values of b and V were 

calculated for each group and these were used to calculate the overall partial safety factor M1. 

Table 6 presents the mean values of b, V and M1. 
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It can be seen from Tables 6 to 8 that the mean predictions are safe sided, with all b values 

greater than unity, and that the required partial safety factors M1 for design by second order 

inelastic analysis with CSM strain limits are less than the recommended value of 1.1 for 

stainless steel. Therefore, the design method can be safely adopted in conjunction with this 

partial factor. Note that if the values of fy,mean/fy,nom and Vfy are taken as 1.2 and 0.045 instead 

of 1.3 and 0.060 (as assumed in the reliability analyses performed in the development of AISC 

370 [37]) that the calculated values of M1 still lie below the recommended value of M1 equal 

to 1.1 in all cases.   

7. SUMMARY OF DESIGN PROPOSALS AND WORKED EXAMPLES 

A summary of the design proposals made herein, and the steps involved in the application of 

the method are shown in Figure 15. Two worked examples are presented in this section to 

illustrate the application of the proposed design method of beam element second order inelastic 

analysis with CSM strain limits. Worked example 1 considers a duplex stainless steel RHS 

200×100×5 member under three-point bending and worked example 2 considers an austenitic 

stainless steel HEB 140 I-section member subjected to combined major axis bending and 

compression. Note that centreline dimensions have been used in all the following calculations, 

with the effects of fillets and corner radii ignored.  

7.1. Worked example 1 

Worked example 1 considers an S450 Grade 1.4462 duplex stainless steel (fy = 450 N/mm2) 

RHS 200×100×5 simply-supported beam of 1.5 m span subjected to a centrally applied point 

load Fd = 230 kN, as shown in Figure 16. A stiffener at the point of the applied load prevents 

load failure under the concentrated transverse force. Following the design approach outlined in 

Figure 15, it is first necessary to calculate the full cross-section local buckling stress σcr,cs [40] 

(step 1a) and the local buckling half-wavelength Lb,cs [24] (step 1b). With these values, the 
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corresponding cross-section slenderness 𝜆̅p (step 1c) and CSM strain limit 𝜀csm (step 1d) values 

are calculated. A second order inelastic analysis with equivalent bow imperfections is then 

carried out under the design loading (steps 2 and 3). Finally, the CSM strain limit is evaluated 

against the averaged strains from the beam FE model at all cross-sections (steps 4 and 5), and 

the resistance verification under the applied loading is performed (step 6). 

7.1.1. Step 1a: Calculation of full cross-section local buckling stress σcr,cs 

The expressions developed by Gardner et al. [40] are used in this section to calculate the full 

cross-section local buckling stress σcr,cs. The plate buckling coefficients for the isolated internal 

flange under uniform compression with simply-supported 𝑘f
SS and fixed 𝑘f

F boundary 

conditions are 𝑘f
SS=4.0 and 𝑘f

F=6.97. For the internal web in bending, these are equal to 

𝑘w
SS=23.9 and 𝑘w

F =39.6. The corresponding elastic buckling stresses are: 𝜎cr,f
SS = 1913 MPa, 

𝜎cr,f
F = 3333 MPa, 𝜎cr,w

SS = 2713 MPa and 𝜎cr,w
F = 4494 MPa.  

Since the maximum compressive stress in the flange and web are the same, the load correction 

factors βf and βw are equal to unity. The lower and upper bounds to the full cross-section local 

buckling stress are therefore:  

𝜎cr,p
SS = min(𝛽f𝜎cr,f

SS , 𝛽𝑤𝜎cr,w
SS ) = 1913 MPa  

𝜎cr,p
F = min(𝛽f𝜎cr,f

F , 𝛽𝑤𝜎cr,w
F ) = 3333 MPa  

The interaction coefficient ζ, to account for the effects of element interaction, is given, for an 

I-section under major axis bending, by: 

𝜁 = (0.24 − 𝑎f𝜙)0.6  

where 𝜙 = 𝜎cr,f
SS 𝜎cr,w

SS⁄ = 0.70 and af = 0.24 − [0.1 (
ℎ

𝑏
− 1)]

1

0.6
 but af ≤ 0.24, hence af = 0.22. 

Therefore, 𝜁 = 0.23, and the full cross-section local buckling stress σcr,cs is calculated  
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𝜎cr,cs = 𝜎cr,p
SS + 𝜁(𝜎cr,p

F − 𝜎cr,p
SS ) = 1913 + 0.23(3333 − 1913) = 2240 MPa  

Note that using the finite strip analysis software CUFSM [23] would give a full cross-section 

local buckling stress of 2328 MPa.  

7.1.2. Step 1b: Calculation of local cross-section slenderness 𝜆̅p 

The local cross-section slenderness 𝜆̅p can be calculated using Eq. (5), and in the case of the 

critical cross-section: 

𝜆̅p = √
𝑓y

𝜎cr,cs
= √

450

2240
= 0.45 

 

7.1.3. Step 1c: Calculation of CSM strain limit εcsm 

Based on the cross-section slenderness, the CSM strain limit may be calculated using Eqs. (3) 

and (4). For the critical cross-section, where 𝜆̅p=0.45, the CSM strain limit εcsm/εy is given by: 

𝜀csm

𝜀y
=

0.25

𝜆̅p
3.6 +

0.002

𝜀y
=

0.25

0.453.6
+

0.002

450/191000
= 5.28 

 

7.1.4. Step 1d: Calculation of local buckling half-wavelength Lb,cs 

The expressions developed by Fieber et al. [24] are used in this section to calculate the local 

buckling half-wavelength based on the full cross-section local buckling stress calculated in 

Section 7.1.1.  

The lower and upper bound local buckling half-wavelengths are given by 𝐿b,p
F  = 70 mm and 

𝐿b,p
SS  = 104 mm. 

Finally, the local buckling half-wavelength is given by 

𝐿b,cs = 𝐿b,p
SS − 𝜁(𝐿b,p

SS − 𝐿b,p
F ) = 104 − 0.23(104 − 70) = 96 mm  
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Note that using the finite strip analysis software CUFSM [23] would give a local buckling half-

wavelength of 98 mm.  

7.1.5. Steps 2 and 3: Beam FE analysis 

In this design example, a member length L of 1500 mm is considered with 64 elements used to 

discretise the member length and, therefore, four whole elements lie within the local buckling 

half-wavelength (Lb,cs/(L/64) = 96/(1500/64) = 4.10). The material properties for S450 Grade 

1.4462 duplex stainless steel were taken as fy = 450 N/mm2, fu = 650 N/mm2, and n = 8, as 

obtained from prEN 1993-1-4 [50], and m = 2.94 and εu = 0.31, as calculated using the 

expression in prEN 1993-1-14 [14,41], with the characteristic value of E = 191000 N/mm2, and 

were employed through the two-stage Ramberg-Osgood material model. Figure 17 shows the 

response of the member from the second order inelastic Riks [11] analysis. 

7.1.6. Steps 4 and 5: Verification against CSM strain limits 

Cross-section resistance is verified by applying the CSM strain limit to the outer fibre 

compressive strains output from the beam FE analysis. By employed strain averaging, the 

beneficial effects of moment gradients are captured. As outlined in Section 7.1.5, in this 

example, four whole elements lie within the local buckling half-wavelength. The beam is under 

three-point bending and therefore the location of the critical cross-section is at the centre of the 

beam; the presence of the stiffener locally constrains the shape of the cross-section and hence 

the local buckling half-wavelength is located to either side of the stiffener. The characteristic 

resistance of the member (i.e. FRk) is equal to the load at which the average strain over this 

local buckling half-wavelength reaches the CSM strain limit. 

7.1.7. Step 6: Resistance verification against applied loading 

Since there is no peak load in the analysed simply-supported beam, the load level at which the 

average strain over the local buckling half-wavelength for each cross-section first reaches the 
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CSM strain limit denotes the characteristic value of the resistance of the member. It is necessary 

to apply the partial safety factor to get the design resistance, as given by Eq. (10). In this worked 

example, the CSM strain limit is reached at a load factor of 1.12 (FRk
 = 258 kN). Hence, the 

design resistance FRd is given by: 

𝐹Rd =
𝐹Rk

𝛾M1
=

258

1.1
= 235 kN 

 

And 

𝐹d

𝐹Rd
=

230

235
= 0.98 ≤ 1.0    ∴  Pass 

 

Note that if an EN 1993-1-4 [8] cross-section check, where the cross-section is limited to the 

plastic moment capacity Mpl, is applied and used to calculated the resistance of member, the 

member would fail. 

 

7.2. Worked example 2 

Worked example 2 considers an S210 Grade 1.4301 austenitic (fy=210 N/mm2) stainless steel 

HEB 140 I-section member with a length L = 5600 mm subjected to the design loading Fd 

resulting in a major axis bending moment My,Ed = 52.4 kNm and axial compression NEd =48.2 

kN , as shown in Figure 18. Following the design approach outlined in Figure 15, it is first 

necessary to calculate the full cross-section local buckling stress σcr,cs [40] (step 1a) and the 

local buckling half-wavelength Lb,cs [24] (step 1b). As discussed in Section 5.2, these are 

calculated based on the first order stress distribution. Note that these parameters vary along the 

member length with the changing stress distribution; for simplicity the results presented below 

are for the critical cross-section only. With these values, the corresponding cross-section 

slenderness 𝜆̅p (step 1c) and CSM strain limit 𝜀csm (step 1d) values are calculated. A second 

order inelastic analysis with equivalent bow imperfections is then carried out under the design 
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loading (steps 2 and 3). Finally, the averaged strains from the beam FE model are evaluated 

against the CSM strain limits at all cross-sections (steps 4 and 5), and the applied loading is 

assessed against the calculated resistance (step 6). 

7.2.1. Step 1a: Calculation of full cross-section local buckling stress σcr,cs 

The expressions developed by Gardner et al. [40] are used in this section to calculate the full 

cross-section local buckling stress σcr,cs. The plate buckling coefficients for the isolated 

outstand flange under uniform compression with simply-supported 𝑘f
SS and fixed 𝑘f

F boundary 

conditions are 𝑘f
SS=0.43 and 𝑘f

F=1.25. For the internal web under combined compression and 

major axis bending, these are equal to 𝑘w
SS=21.47 and 𝑘w

F =35.82. The corresponding elastic 

buckling stresses are: 𝜎cr,f
SS = 2181 MPa, 𝜎cr,f

F = 6341 MPa, 𝜎cr,w
SS = 11088 MPa and 𝜎cr,w

F = 

18496 MPa.  

Since the maximum compressive stress in the flange and web are the same, the load correction 

factors βf and βw are equal to unity. The lower and upper bounds to the full cross-section local 

buckling stress are therefore:  

𝜎cr,p
SS = min(𝛽f𝜎cr,f

SS , 𝛽𝑤𝜎cr,w
SS ) = 2181 MPa  

𝜎cr,p
F = min(𝛽f𝜎cr,f

F , 𝛽𝑤𝜎cr,w
F ) = 6341 MPa  

The interaction coefficient ζ, to account for the effects of element interaction, is given, for an 

I-section under major axis bending, by: 

𝜁 = 0.15
𝑡f

𝑡w
𝜙     but     𝜁 ≥

𝑡w

𝑡f

(0.4 − 0.25𝜙)  
 

where 𝜙 = 𝜎cr,f
SS 𝜎cr,w

SS⁄ = 0.197. Therefore, 𝜁 = 0.205, and the full cross-section local buckling 

stress σcr,cs is calculated as: 



30 

 

𝜎cr,cs = 𝜎cr,p
SS + 𝜁(𝜎cr,p

F − 𝜎cr,p
SS ) = 2181 + 0.205(6341 − 2181) = 3034 MPa  

Note that using the finite strip analysis software CUFSM [23] would give a full cross-section 

local buckling stress of 3096 MPa.  

7.2.2. Step 1b: Calculation of local cross-section slenderness 𝜆̅p 

The local cross-section slenderness 𝜆̅p can be calculated using Eq. (5), and in the case of the 

critical cross-section: 

𝜆̅p = √
𝑓y

𝜎cr,cs
= √

210

3034
= 0.26 

 

7.2.3. Step 1c: Calculation of CSM strain limit εcsm 

Based on the cross-section slenderness, the CSM strain limit may be calculated using Eqs. (3) 

and (4). For the critical cross-section, where 𝜆̅p = 0.26, the CSM strain limit εcsm/εy is given by: 

𝜀csm

𝜀y
=

0.25

𝜆̅p
3.6 +

0.002

𝜀y
=

0.25

0.263.6
+

0.002

210/191000
= 33.7 

 

However, the CSM strain limit εcsm/εy is limited to 15 (Ω=15) and therefore, εcsm/εy = 15. 

7.2.4. Step 1d: Calculation of local buckling half-wavelength Lb,cs 

The expressions developed by Fieber et al. [24] are used in this section to calculate the local 

buckling half-wavelength based on the full cross-section local buckling stress calculated in 

Section 7.2.1.  

The lower and upper bound local buckling half-wavelengths are given by 𝐿b,p
F  = 116 mm and 

𝐿b,p
SS  = 268 mm. 

Finally, the local buckling half-wavelength is given by 
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𝐿b,cs = 𝐿b,p
SS − 𝜁(𝐿b,p

SS − 𝐿b,p
F ) = 268 − 0.205(268 − 116) = 237 mm  

Note that using the finite strip analysis software CUFSM [23] would give a local buckling half-

wavelength of 250 mm.  

7.2.5. Steps 2 and 3: Beam FE analysis 

In this design example, the member length is 5600 mm, which corresponds to a member 

slenderness 𝜆̅ equal to 1.00. 72 elements were used to discretise the member length and, 

therefore, for the critical cross-section, three whole elements lie within the local buckling half-

wavelength (Lb,cs/(L/72) = 237/(5600/72) = 3.05). An equivalent bow imperfection in the shape 

of a half-sine wave and with a magnitude equal to e0 = αL/150 (but ≤ L/1000) = 18.3 mm was 

modelled. The material properties for S210 Grade 1.4301 austenitic stainless steel were taken 

as fy = 210 N/mm2, fu = 500 N/mm2, and n = 7, as obtained from prEN 1993-1-4 [50], and m = 

2.18 and εu = 0.58, as calculated using the expression in prEN 1993-1-14 [14,41], with the 

characteristic value of E = 191000 N/mm2, were employed through the two-stage Ramberg-

Osgood material model. Figure 19 shows the response of the member from the second order 

inelastic Riks [11] analysis. 

7.2.6. Steps 4 and 5: Verification against CSM strain limits 

Cross-section resistance is verified by applying the CSM strain limit to the outer fibre 

compressive strains output from the beam FE analysis. By employed strain averaging, the 

beneficial effects of moment gradients are captured. As outlined in Section 7.2.5, in this 

example, three whole elements lie within the local buckling half-wavelength. While in this 

design case, the analysis does exhibit a peak load, the CSM strain limit is reached at a lower 

load level and therefore governs. The element that reaches the CSM strain limit first defines 

the critical cross-section and the characteristic resistance of the member (i.e. FRk); in this 

example, the critical element is at the top end of the member (see Figure 19). 
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7.2.7. Step 6: Resistance verification against applied loading 

The load level at which the first cross-section reaches the CSM strain limit gives the 

characteristic value of the resistance of the structure. It is necessary to apply the partial safety 

factor to obtain the design resistance, as given by Eq. (10). In this worked example, the CSM 

strain limit is reached at a load factor α of 1.15 i.e. FRk/Fd = 1.15. 

𝐹Rd =
𝐹Rk

𝛾M1
 

 

Hence 

𝐹d

𝐹Rd
=

1

1.15/1.1
= 0.96 ≤ 1.0    ∴  Pass 

 

Note that if the resistance of the member was calculated using an EN 1993-1-4 linear plastic 

cross-section check applied to the results of a second order plastic analysis with corresponding 

equivalent imperfections [47], the member would fail. 

8. CONCLUSIONS 

Beam finite elements are commonly used in advanced structural frame analysis for their 

computational efficiency but they are unable to capture the effects of local buckling. The 

development of a new method of structural stainless steel design by second order inelastic analysis 

where local buckling is simulated through the application of CSM strain limits has been presented. 

Design by advanced analysis is particularly appropriate for stainless steel structures due to the high 

material value and the complexities presented by the nonlinear material stress–strain response for 

traditional design treatments. Comparisons against current design methods confirm the consistent 

and significant benefits of the proposed method. A reliability analysis was conducted following EN 

1990 with the derived partial safety factors below the target value of 1.1 in all cases confirming the 

safety of the design approach. The proposed method is due to be incorporated into the two major 

international stainless steel design standards – EN 1993-1-4 and AISC 370. 



33 

 

ACKNOWLEDGEMENTS 

Funding for this investigation was received from the Imperial College PhD Scholarship scheme 

and the Engineering and Physical Sciences Research Council (EPSRC).  

REFERENCES 

[1] Trahair, N.S. 2018. Trends in the Code Design of Steel Framed Structures. Advanced 

Steel Construction, 14: 37–56. 

[2] Walport, F., Gardner, L., & Nethercot, D.A. 2019. A method for the treatment of second 

order effects in plastically-designed steel frames. Engineering Structures, 200: 109516. 

[3] Fieber, A., Gardner, L., & Macorini, L. 2019. Design of structural steel members by 

advanced inelastic analysis with strain limits. Engineering Structures, 199: 109624. 

[4] Gardner, L., Yun, X., Fieber, A., & Macorini, L. 2019. Steel design by advanced 

analysis: material modeling and strain limits. Engineering, 5: 243–9. 

[5] Fieber, A., Gardner, L., & Macorini, L. 2020. Structural steel design using second-order 

inelastic analysis with strain limits. Journal of Constructional Steel Research, 168: 

105980. 

[6] Thai, H.T., Uy, B., & Khan, M. 2015. A modified stress-strain model accounting for the 

local buckling of thin-walled stub columns under axial compression. Journal of 

Constructional Steel Research, 111: 57–69. 

[7] Du, Z.L., Liu, Y.P., He, J.W., & Chan, S.L. 2019. Direct analysis method for 

noncompact and slender concrete-filled steel tube members. Thin-Walled Structures, 

135: 173–84. 

[8] EN 1993-1-4:2006 + A1: 2015. Eurocode 3 - Design of steel structures - Part 1-4: 

General rules - Supplementary rules for stainless steels. Brussels: CEN; 2015. 



34 

 

[9] EN 1993-1-1. 2005. Eurocode 3: Design of steel structures - Part 1-1: General rules and 

rules for buildings. Brussels: CEN; 2005. 

[10] Walport, F., Gardner, L., Real, E., Arrayago, I., & Nethercot, D.A. 2019. Effects of 

material nonlinearity on the global analysis and stability of stainless steel frames. 

Journal of Constructional Steel Research, 152: 173–82. 

[11] ABAQUS. 2014. Abaqus CAE User’s Manual, Version 6.14. Pawtucket, USA: Hibbitt, 

Karlsson & Sorensen, Inc.; 2014. 

[12] Mirambell, E., & Real, E. 2000. On the calculation of deflections in structural stainless 

steel beams: an experimental and numerical investigation. Journal of Constructional 

Steel Research, 54: 109–33. 

[13] Rasmussen, K.J.R. 2003. Full-range stress–strain curves for stainless steel alloys. 

Journal of Constructional Steel Research, 59: 47–61. 

[14] Arrayago, I., Real, E., & Gardner, L. 2015. Description of stress-strain curves for 

stainless steel alloys. Materials and Design, 87: 540–52. 

[15] Gardner, L., & Yun, X. 2018. Description of stress-strain curves for cold-formed steels. 

Construction and Building Materials, 189: 527–38. 

[16] ECCS. 1984. Ultimate limit state calculations of sway frames with rigid joints. No 33, 

Technical Committee 8 of the European Convention for Constructional Steelwork 

(ECCS), 1984. 

[17] Yuan, H.X., Wang, Y.Q., Shi, Y.J., & Gardner, L. 2014. Residual stress distributions in 

welded stainless steel sections. Thin-Walled Structures, 79: 38–51. 

[18] Kucukler, M., Xing, Z., & Gardner, L. 2020. Behaviour and design of stainless steel I-

section columns in fire. Journal of Constructional Steel Research, 164: 105890. 



35 

 

[19] Jandera, M., Gardner, L., & Machacek, J. 2008. Residual stresses in cold-rolled stainless 

steel hollow sections. Journal of Constructional Steel Research, 64: 1255–63. 

[20] Gardner, L., & Nethercot, D.A. 2004. Numerical modeling of stainless steel structural 

components — A consistent approach. Journal of Structural Engineering, ASCE, 130: 

1586–601. 

[21] Ellobody, E., & Young, B. 2005. Structural performance of cold-formed high strength 

stainless steel columns. Journal of Constructional Steel Research, 61: 1631–49. 

[22] EN 1993-1-5. 2009. Eurocode 3 - Design of steel structures - Part 1-5 : Plated structural 

elements. Brussels: CEN; 2009. 

[23] Li, Z., & Schafer, B.W. 2010. Buckling analysis of cold-formed steel members with 

general boundary conditions using CUFSM: Conventional and constrained finite strip 

methods. Proceedings Twentieth International Specialty Conference on Cold-Formed 

Steel Structures,: 17–31. 

[24] Fieber, A., Gardner, L., & Macorini, L. 2019. Formulae for determining elastic local 

buckling half-wavelengths of structural steel cross-sections. Journal of Constructional 

Steel Research, 159: 493–506. 

[25] Bu, Y., & Gardner, L. 2018. Local stability of laser-welded stainless steel I-sections in 

bending. Journal of Constructional Steel Research, 148: 49–64. 

[26] Theofanous, M., & Gardner, L. 2010. Experimental and numerical studies of lean duplex 

stainless steel beams. Journal of Constructional Steel Research, 66: 816–25. 

[27] Afshan, S., & Gardner, L. 2013. Experimental study of cold-formed ferritic stainless 

steel hollow sections. Journal of Structural Engineering ASCE, 139: 717–28. 

[28] Theofanous, M., & Gardner, L. 2009. Testing and numerical modelling of lean duplex 



36 

 

stainless steel hollow section columns. Engineering Structures, 31: 3047–58. 

[29] Burgan, B.A., Baddoo, N.R., & Gilsenan, K.A. 2000. Structural design of stainless steel 

members — comparison between Eurocode 3, Part 1.4 and test results. Journal of 

Constructional Steel Research, 54: 51–73. 

[30] Bu, Y., & Gardner, L. 2019. Laser-welded stainless steel I-section beam-columns: 

Testing, simulation and design. Engineering Structures, 179: 23–36. 

[31] Zhao, O., Gardner, L., & Young, B. 2016. Buckling of ferritic stainless steel members 

under combined axial compression and bending. Journal of Constructional Steel 

Research, 117: 35–48. 

[32] Cruise, R.B., & Gardner, L. 2008. Strength enhancements induced during cold forming 

of stainless steel sections. Journal of Constructional Steel Research, 64: 1310–6. 

[33] Gardner, L. 2008. The continuous strength method. Proceedings of the Institution of 

Civil Engineers - Structures and Buildings, 161: 127–33. 

[34] Afshan, S., & Gardner, L. 2013. The continuous strength method for structural stainless 

steel design. Thin-Walled Structures, 68: 42–9. 

[35] Gardner, L., Wang, F., & Liew, A. 2011. Influence of strain hardening on the behavior 

and design of steel structures. International Journal of Structural Stability and 

Dynamics, 11: 855–75. 

[36] Bock, M., Gardner, L., & Real, E. 2015. Material and local buckling response of ferritic 

stainless steel sections. Thin-Walled Structures, 89: 131–41. 

[37] AISC. 2020. Draft Specification for Structural Stainless Steel Buildings, ANSI / AISC 

370. 

[38] Zhao, O., Afshan, S., & Gardner, L. 2017. Structural response and continuous strength 



37 

 

method design of slender stainless steel cross-sections. Engineering Structures, 140: 14–

25. 

[39] Zhang, X., Rasmussen, K.J.R., & Zhang, H. 2015. Structural modeling of cold-formed 

steel portal frames. Structures, 4: 58–68. 

[40] Gardner, L., Fieber, A., & Macorini, L. 2019. Formulae for calculating elastic local 

buckling stresses of full structural cross-sections. Structures, 17: 2–20. 

[41] prEN 1993-1-14. 2019. Eurocode 3 – Design of steel structures – Part 1-14: Design by 

FE analysis. CEN, Draft 1. 

[42] Afshan, S., Zhao, O., & Gardner, L. 2019. Standardised material properties for 

numerical parametric studies of stainless steel structures and buckling curves for tubular 

columns. Journal of Constructional Steel Research, 152: 2–11. 

[43] dos Santos, G.B., Gardner, L., & Kucukler, M. 2018. A method for the numerical 

derivation of plastic collapse loads. Thin-Walled Structures, 124: 258–77. 

[44] prEN 1993-1-1. 2020. Eurocode 3 – Design of steel structures – Part 1-1: General rules 

and rules for buildings: 1–118. 

[45] Walport, F., Gardner, L., & Nethercot, D.A. 2020. Equivalent bow imperfections for use 

in design by second order inelastic analysis. Structures, 26: 670–85. 

[46] Lindner, J., Kuhlmann, U., & Jörg, F. 2018. Initial bow imperfections e0 for the 

verification of flexural buckling according to Eurocode 3 Part 1-1 – additional 

considerations. Steel Construction, 11: 30–41. 

[47] Lindner, J., Kuhlmann, U., & Just, A. 2016. Verification of flexural buckling according 

to Eurocode 3 part 1-1 using bow imperfections. Steel Construction, 9: 349–62. 

[48] Zhao, O., Gardner, L., & Young, B. 2016. Behaviour and design of stainless steel SHS 



38 

 

and RHS beam-columns. Thin-Walled Structures, 106: 330–45. 

[49] SCI. 2017. Design Manual for Structural Stainless Steel Design. Fourth Edition. SCI 

Publication No. P413. UK: The Steel Construction Institute; 2017. 

[50] prEN 1993-1-4. 2020. Eurocode 3 - Design of steel structures - Part 1-4: General rules - 

Supplementary rules for stainless steels. CEN, Draft 2. 

[51] EN 1990. 2002. Eurocode - Basis of structural design. Brussels: CEN; 2002. 

[52] Afshan, S., Francis, P., Baddoo, N.R., & Gardner, L. 2015. Reliability analysis of 

structural stainless steel design provisions. Journal of Constructional Steel Research, 

114: 293–304. 

[53] Meng, X., Gardner, L., Sadowski, A.J., & Rotter, J.M. 2020. Elasto-plastic behaviour 

and design of semi-compact circular hollow sections. Thin-Walled Structures, 148: 

106486. 

 



39 
 

 

Figure 1: Shell FE model validation against a series of three-point bending tests on laser-

welded austenitic stainless steel I-sections reported by Bu and Gardner [25]. 

 
Figure 2: Shell FE model validation against a series of ferritic stainless steel SHS beam-

column tests reported by Zhao et al. [31]. 
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Figure 3: Illustration of modification of CSM base curves to reflect the use of different 

material models – an elastic, linear hardening material model for simplified hand calculations 

[34,35] and a compound Ramberg–Osgood material model for use in design by second order 

inelastic analysis, as proposed herein. 
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Figure 4: Effect of shear on the bending capacity of an austenitic stainless steel IPE 140 

cross-section with varying member length under three-point bending. 
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Figure 5: Moment-shear interaction for beams under three-point bending predicted by shell 

FE benchmark modelling, beam FE modelling with CSM strain limits and EN 1993-1-4 

cross-section checks. 
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Figure 6: Response of an austenitic stainless steel HEA 800 simply-supported beam under 

three-point bending 

 

Figure 7: Capacity predictions for austenitic stainless steel I-sections of varying local 

slenderness subjected to three-point bending. 
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Figure 8: Resistance predictions of austenitic stainless steel I-section columns of varying 

cross-section slenderness 𝜆ҧp buckling about the major axis for three values of member 

slenderness (𝜆ҧ = 0.5, 1.0, 1.5). 
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Figure 9: Resistance predictions of austenitic stainless steel hollow section columns of 

varying cross-section slenderness 𝜆ҧp buckling about the major axis for three values of 

member slenderness (𝜆ҧ = 0.5, 1.0, 1.5). 
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Figure 10: Normalised ultimate capacities of austenitic stainless steel SHS 100 × 100 × 4 

pin-ended beam-columns buckling about the major axis with ψ = 0 considering three values 

of member slenderness (𝜆ҧ = 0.5 (squares), 1.0 (triangles), 1.5 (circles)). 
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Figure 11: Normalised ultimate capacities of duplex stainless steel RHS 100 × 60 × 2.5 pin-

ended beam-columns buckling about the major axis with ψ = 1 considering three values of 

member slenderness (𝜆ҧ = 0.5 (squares), 1.0 (triangles), 1.5 (circles)). 
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Figure 12: Normalised ultimate capacities of ferritic stainless steel RHS 120 × 60 × 5 pin-

ended beam-columns buckling about the minor axis with ψ = -0.5 considering three values 

of member slenderness (𝜆ҧ = 0.5 (squares), 1.0 (triangles), 1.5 (circles)). 
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a. Design proposal 

 b. EN 1993-1-4 member checks 

 
c. GNIA + EN 1993-1-4 C-S checks 

Figure 13: Comparison of the resistance predictions obtained using the proposed design 

method and EN 1993-1-4 with the benchmark shell FE results.  
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Figure 14: Definition of θ in normalised M-N interaction diagram. 
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Figure 15: Steps involved in the application of the proposed design method.  

2. Create beam FE model 
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Figure 17 
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Figure 16: Worked example 1: RHS 200×100×5 cross-section subjected to major axis 

bending. All dimensions in mm. Not to scale. 

 

Figure 17: Worked example 1: Design of a duplex (fy
 = 450 N/mm2, E = 191000 N/mm2) 

stainless steel RHS 200×100×5 beam under three-point bending.  
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Figure 18: Worked example 2: HEB 140 cross-section under combined compression and 

major axis bending. All dimensions in mm. Not to scale. Note that ψw = -0.9 corresponds to 

the critical cross-section in the member. 

 

Figure 19: Worked example 2: Design of an austenitic (fy = 210 N/mm2, E = 191000 N/mm2) 

stainless steel HEB 140 beam-column with 𝜆ҧ = 1.0. 
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Table 1: Summary of shell FE model validation; comparison of the experimental and numerical 

ultimate capacities (FE/Test) for stainless steel I-section and SHS/RHS members under 

different loading conditions. 

Member Reference Section Grade Loading 
No. of 

tests 

FE/Test 

Mean COV 

Beams 

Bu & Gardner 

[25] 
I-section Austenitic 

3PB 4 1.01 0.022 

4PB 4 1.01 0.018 

Theofanous & 

Gardner [26] 
SHS/RHS Duplex 3PB 8 1.04 0.026 

Afshan & Gardner 

[27] 
SHS/RHS Ferritic 

3PB 4 0.98 0.026 

4PB 4 1.02 0.049 

Columns 

Theofanous & 

Gardner [28] 

SHS Duplex - 6 0.99 0.050 

RHS Duplex 
Major 3 0.94 0.092 

Minor 3 0.94 0.067 

Afshan & Gardner 

[27] 

SHS Ferritic - 7 1.05 0.059 

RHS Ferritic Major 4 0.99 0.056 

Burgan, Baddoo, 

Gilsenan [29] 
I-section Austenitic 

Major 6 0.99 0.039 

Minor 6 1.03 0.073 

Beam-

columns 

Burgan, Baddoo, 

Gilsenan [29] 
I-section Austenitic Major 8 1.02 0.032 

Bu & Gardner 

[30] 
I-section Austenitic 

Major 6 0.99 0.057 

Minor 6 0.98 0.053 

Zhao, Gardner, 

Young [31] 
SHS/RHS Ferritic 

Major 6 1.01 0.011 

Minor 6 0.93 0.021 
    Total 91 1.00 0.057 

 

 

 

 

 

 

 

 



55 

 

Table 2: Two-stage Ramberg–Osgood material model parameters [42] used for parametric 

studies. 

Cross-

section 

Grade fy (N/mm2) fu (N/mm2) εu n m 

I-sections Austenitic 280 580 0.50 9.1 2.3 

Duplex 530 770 0.30 9.3 3.6 

Ferritic 320 480 0.16 17.2 2.8 

Hollow 

section flats 

Austenitic 460 700 0.20 7.1 2.9 

Duplex 630 780 0.13 7.5 4.8 

Ferritic 430 490 0.06 11.5 4.6 

Hollow 

section 

corners 

Austenitic 640 830 0.20 6.4 7.1 

Duplex 800 980 0.03 6.1 6.7 

Ferritic 590 610 0.01 5.7 6.8 

 

Table 3: Summary of the resistance predictions determined using the proposed method Mprop 

and EN 1993-1-4 MEC, normalised by the benchmark shell FE results Mshell for austenitic, 

duplex and ferritic stainless steel I- and hollow section members subjected to three- (3PB) and 

four- (4PB) point bending. 

Section type Load case No. MEC/Mshell Mprop(Ω=15)/Mshell 

Mean COV Mean COV 

I- 

section 

3PB 267 0.73 0.066 0.92 0.078 

4PB 267 0.82 0.082 0.95 0.084 

Hollow 

section 

3PB 267 0.77 0.089 0.92 0.072 

 Total 801 0.78 0.093 0.93 0.084 

 

Table 4: Summary of the resistance predictions determined using the proposed method Nprop 

and EN 1993-1-4 NEC, normalised by the benchmark shell FE results Nshell for austenitic, duplex 

and ferritic stainless steel I- and hollow section columns buckling about the major axis. 

Section type Grade No. NEC/Nshell Nprop/Nshell 

Mean COV Mean COV 

I-section Austenitic 225 1.00 0.036 0.92 0.032 

Duplex 150 0.92 0.049 0.94 0.034 

Ferritic 216 0.93 0.062 0.92 0.034 

Hollow 

section 

Austenitic 213 0.94 0.057 0.89 0.032 

Duplex 168 0.92 0.063 0.88 0.024 

Ferritic 213 0.89 0.064 0.86 0.045 

 Total 1185 0.93 0.067 0.90 0.045 
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Table 5: Summary of radial resistance predictions for the three considered design methods: (i) 

Beam FE + CSM strain limit εprop, (ii) EN 1993-1-4 member checks εEC-trad and (iii) GNIA + 

EN 1993-1-4 cross-section checks εEC-adv relative to the benchmark shell FE results for 

austenitic, duplex and ferritic stainless steel hollow section beam-columns. 

Member 

slenderness 𝜆̅ 

No. εprop εEC-trad εEC-adv 

Mean COV Mean COV Mean COV 

0.5 99 1.12 0.076 1.23 0.140 1.26 0.075 

1.0 99 1.11 0.053 1.32 0.170 1.22 0.074 

1.5 99 1.09 0.045 1.36 0.172 1.14 0.087 

Total 297 1.11 0.061 1.30 0.167 1.21 0.088 

 

Table 6: Summary of the statistical analysis results for the proposed design method assessed 

against the benchmark shell FE results for austenitic, duplex and ferritic stainless steel I- and 

hollow section members subjected to three- (3PB) and four- (4PB) point bending. 

Section  

type 

Load 

case 
Grade No. 

fy,mean/ 

fy,nom 
Vfy VA VE b V M1 

I-

section 

3PB Austenitic 89 1.3 0.060 0.022 0.03 1.095 0.061 0.98 

Duplex 89 1.1 0.030 0.022 0.03 1.138 0.041 1.02 

Ferritic 89 1.2 0.045 0.022 0.03 1.104 0.045 1.00 

4PB Austenitic 89 1.3 0.060 0.022 0.03 1.051 0.034 0.99 

Duplex 89 1.1 0.030 0.022 0.03 1.116 0.041 1.05 

Ferritic 89 1.2 0.045 0.022 0.03 1.054 0.034 1.04 

Hollow 

section 

3PB Austenitic 89 1.3 0.060 0.027 0.03 1.152 0.054 0.98 

Duplex 89 1.1 0.030 0.027 0.03 1.149 0.038 1.05 

Ferritic 89 1.2 0.045 0.027 0.03 1.117 0.038 1.01 
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Table 7: Summary of the statistical analysis results for the proposed design method assessed 

against the benchmark shell FE results for austenitic, duplex and ferritic stainless steel I- and 

hollow section columns buckling about the major axis. 

Section  

type 
Grade 𝜆̅ No. 

fy,mean/ 

fy,nom 
Vfy VA VE b V M1 

I-

section 

Austenitic 

0.5 76 

1.3 0.060 0.022 0.03 

1.101 0.015 0.87 

1.0 76 1.080 0.048 0.96 

1.5 76 1.081 0.009 0.94 

Duplex 

0.5 50 

1.1 0.030 0.022 0.03 

1.068 0.024 1.00 

1.0 50 1.072 0.033 1.03 

1.5 50 1.057 0.040 1.09 

Ferritic 

0.5 72 

1.2 0.045 0.022 0.03 

1.070 0.027 0.95 

1.0 72 1.096 0.029 0.95 

1.5 72 1.095 0.038 1.02 

Hollow 

section 

Austenitic 

0.5 71 

1.3 0.060 0.027 0.03 

1.083 0.024 0.90 

1.0 71 1.135 0.015 0.88 

1.5 71 1.155 0.011 0.91 

Duplex 

0.5 56 

1.1 0.030 0.027 0.03 

1.111 0.032 0.98 

1.0 56 1.135 0.008 0.95 

1.5 56 1.145 0.007 0.98 

Ferritic 

0.5 71 

1.2 0.045 0.027 0.03 

1.092 0.031 0.89 

1.0 71 1.187 0.010 0.82 

1.5 71 1.198 0.032 0.87 

 

Table 8: Summary of the statistical analysis results for the proposed design method assessed 

against the benchmark shell FE results for austenitic, duplex and ferritic stainless steel hollow 

section beam-columns. 

Grade No. fy,mean/fy,nom Vfy VA VE b V M1 

Austenitic 99 1.3 0.060 0.027 0.03 1.079 0.021 0.93 

Duplex 99 1.1 0.030 0.027 0.03 1.161 0.045 0.99 

Ferritic 99 1.2 0.045 0.027 0.03 1.051 0.029 0.99 

 

 

 


