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A B S T R A C T   

Medicines remain ineffective for over 50% of patients due to conventional mass production methods with fixed 
drug dosages. Three-dimensional (3D) printing, specifically selective laser sintering (SLS), offers a potential 
solution to this challenge, allowing the manufacturing of small, personalized batches of medication. Despite its 
simplicity and suitability for upscaling to large-scale production, SLS was not designed for pharmaceutical 
manufacturing and necessitates a time-consuming, trial-and-error adaptation process. In response, this study 
introduces a deep learning model trained on a variety of features to identify the best feature set to represent 
drugs and polymeric materials for the prediction of the printability of drug-loaded formulations using SLS. The 
proposed model demonstrates success by achieving 90% accuracy in predicting printability. Furthermore, 
explainability analysis unveils materials that facilitate SLS printability, offering invaluable insights for scientists 
to optimize SLS formulations, which can be expanded to other disciplines. This represents the first study in the 
field to develop an interpretable, uncertainty-optimized deep learning model for predicting the printability of 
drug-loaded formulations. This paves the way for accelerating formulation development, propelling us into a 
future of personalized medicine with unprecedented manufacturing precision.   

1. Introduction 

Traditional medicines, which often adopt a one-size-fits-all 
approach, are effective in only 30–50 % of patients (Lancet, 2018). 
This has driven the pharmaceutical industry’s push towards personal
ized medicine, where medications are tailored to individual needs in 
terms of dosage and composition (Nørfeldt et al., 2019). However, the 
pursuit of personalized medicine brings challenges. A major challenge is 
that manufacturing personalized medicines using traditional methods is 
very expensive and inefficient (Seoane-Viaño et al., 2021). Two state-of- 
the-art technologies offer promising solutions to these problems: three- 
dimensional (3D) printing and Machine Learning (ML) (Trenfield et al., 
2022). 

3D printing is a term that describes additive manufacturing tech
nologies that develop 3D objects from computer-aided designs (CAD), 
layer by layer (Andreadis et al., 2022; Krueger et al., 2024). This 
advanced technology enables the seamless tailoring of medicines and 

has been successfully used to develop a range of drug delivery systems 
(Awad et al., 2022; Funk et al., 2024). Selective laser sintering (SLS) is a 
3D printing powder bed fusion technology that has attracted attention 
for pharmaceutical applications owing to its suitability for large-scale 
production and simplicity (Hettesheimer et al., 2018; Seoane-Viaño 
et al., 2024). Utilizing primarily carbon dioxide lasers, this method fuses 
powder particles. The key advantages of SLS include the ability to pro
duce intricate 3D objects without the need for support structures and the 
use of powder feedstock material without requiring solvents (Charoo 
et al., 2020). This technology also allows for the recycling of feedstock 
material and is adaptable to large-scale production. However, SLS 
printing was not initially designed to produce medicines. Therefore, 
developing drug formulations for 3D printing, known as pharma-inks, is 
an iterative process that is difficult to streamline since it relies on user 
expertise to ensure successful printing outcomes (Carou-Senra et al., 
2024). This presents a significant barrier to its implementation in the 
clinic (Awad et al., 2021). Predicting printability before printing 
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medicines could save costs, and resources and eliminate the need for an 
expert in the clinic. 

ML leverages data to learn patterns from data, instead of explicit 
programming, it has proven to be effective in making predictions in 
pharmaceutics (Gavins et al., 2022; Suryavanshi et al., 2023). In recent 
years, there has been a surge of interest in the potential ML applications 
within the field of 3D-printed pharmaceuticals, with studies exploring 
different 3D printing technologies. ML has been employed to optimize 
various aspects of 3D printing (Goh et al., 2021), including process 
parameter optimization (Gan et al., 2019), quality control (Scime and 
Beuth, 2019), and the CAD of 3D printed products (Bin Maidin et al., 
2012). Among these, fused deposition modelling (FDM) has commonly 
emerged, with several successful attempts at predicting printed medi
cines’ printability and mechanical properties (Elbadawi et al., 2020; 
Ong et al., 2022). ML has also shown promise in predicting outcomes for 
pharmaceuticals printed using inkjet technology (Carou-Senra et al., 
2023). Previous work demonstrated the feasibility of using a decision 
tree to predict the effect of energy density and particle size distribution 
on the SLS printability of irbesartan tablets (Madžarević et al., 2021) and 
the use of multi-modal data to predict the printability of SLS formula
tions (Abdalla et al., 2023). While there has been research exploring the 
use of ML in other fields using SLS printing and neural networks (NN) for 
other 3D printing technologies (Mahmood et al., 2021), there has been 
limited research on the use of Deep Learning (DL), a subset of ML which 
mimics human neural circuitry, for SLS printing (Azizi, 2023). 
Furthermore, none of the existing studies have explored explaining or 
addressing the trade-off between accuracy and prediction confidence, a 
frequent problem within the application of ML in healthcare (An et al., 
2023) and pharmaceutics (Bannigan et al., 2023). Moreover, the vast 
array of factors influencing the printability of drug formulations — 
including molecular structure, mechanical properties, particle size, 
melting point, and glass transition temperature, among others − has 
resulted in an inconsistency in the features employed to characterize 
medicines for ML. Evaluating these features and developing calibrated 
models is crucial for enabling accurate and confident predictions of the 
3D printability of medicines. 

To this end, this study aimed to develop an interpretable, uncertainty 
calibrated DL model to predict the printability of SLS formulations. 
Therefore, a Deep Ensemble was employed, which uses multiple NNs in 
parallel to make predictions, based on the state-of-the-art method 
developed by Lakshminarayanan et al. (Lakshminarayanan et al., 2017) 
for uncertainty quantification (UQ). The Deep Ensemble was supple
mented with explainability analysis and utilized to predict the print
ability of SLS formulations. Multiple features underwent 
experimentation, revealing that the Morgan fingerprint (MFP) features 
offered the best approach for training the ensemble NN and yielded the 
best trade-off between confidence and accuracy, achieving 90 % accu
racy and high confidence. Further explainability analysis revealed ma
terials that either contribute positively or negatively to SLS printability, 
offering insights scientists can use to optimize SLS formulations. 

2. Materials and methods 

2.1. Materials 

All materials and suppliers can be found in Table S1. 

2.2. Pharma-ink preparation process 

Multiple formulations containing a variety of drugs and excipients 
were prepared. All formulations contained Candurin®, a photo- 
absorbent that is needed for printing using a blue diode laser that 
operates at a wavelength of 445 nm (Fina et al., 2017). The materials 
were sieved using a 180 mm sieve and weighed separately to make up 
20 g of the final product. The materials were then mixed with a pestle 
and mortar until a uniform color was obtained and then sieved again 

using a 180 mm sieve. 

2.3. SLS 3D printing 

Cylindrical discs (10 mm diameter x 3.6 mm height) were designed 
on Onshape (Version 1.160, Boston, MA, USA) and the Standard Tri
angle Language (STL) files were exported into the Sintratec central 
programme (Version 1.1, Sintratec Kit, AG, Brugg, Switzerland). The 
pharma-inks were transferred to an SLS printer (Sintratec Kit, AG, 
Brugg, Switzerland) to print the products following the standard pro
cedure found in the literature (Fina et al., 2017). Formulations were 
considered printable if the produced disc had no deformations or char
ring, had good structural integrity and shape, and maintained integrity 
during post-printing processing. 

2.4. Particle size characterization 

The particle size distribution of each material was measured in 
triplicate using a laser diffraction particle size analyzer, the Mastersizer 
Malvern 3000 (Malvern Panalytical, UK) with the Aero S dry powder 
dispersion attachment. An aliquot of the powder was added to the 
feeding tray, and air was used as the dispersion medium. The particle 
size distributions were obtained at 10 %, 50 %, and 90 % of the volume 
distribution. 

2.5. Data curation 

Data was utilised from Abdalla et al. (2023), which comprised in
formation on 169 distinct medicines derived from 77 materials with 
varying material compositions, and whether they could be printed using 
a desktop SLS 3D printer (Sintratec Kit, AG, Brugg, Switzerland) into 
cylindrical discs (10 mm diameter × 3.6 mm height. This dataset was 
further supplemented with in-house formulations, which were devel
oped in an identical matter and literature data (Allahham et al., 2020; 
Barakh Ali et al., 2019; Davis et al., 2021; Fina et al., 2018a; Fina et al., 
2018b; Hamed et al., 2021; Thakkar et al., 2021a; Thakkar et al., 2021b; 
Trenfield et al., 2018; Trenfield et al., 2020) to produce a dataset of 278 
pharma-inks made up of 115 materials. 

2.6. Machine learning models 

All ML models were run on a MacBook Pro (Operating System: 
macOS 12.6; Processor: 2.9 GHz Dual-Core Intel Core i5; RAM Memory: 
8 GB; Apple, CA, USA). Python (Version 3.10.4) was used to run the ML 
models (Python Software Foundation). DL models were run on a Server 
(Operating System: Ubuntu 20.04 LTS; Processor: AMD EPYC 7282 16- 
core 2.8 GHz; RAM Memory: 512 GB, GPU: RTX 3090 24 GB). Python 
was used to run the ML models (Python Software Foundation). All ML 
models were deployed using the Scikit-learn (Version 1.1.1) Python 
package (Pedregosa et al., 2011), except for extreme gradient boosting, 
which was deployed through its library (Xgboost Version 1.6.1) and the 
Deep Ensemble was deployed using PyTorch Lightning (Version 2.0.4) 
(Chen and Guestrin, 2016). To help visualize the data, two dimension
ality reduction models were employed, t-SNE (van der Maaten and 
Hinton, 2008) and UMAP (McInnes et al., 2018). 

2.6.1. Shapley values 
SHAPley additive explanations (SHAP) is an algorithm that calcu

lates each feature’s contribution to the positive or negative predictions 
(Lundberg and Lee, 2017). To understand the decisions made by the 
ensemble, SHAPley values were computed using the Python SHAP 
package (Version 0.42.1). 

2.6.2. Deep ensemble 
An ensemble model of 5 identical NNs was employed to predict the 

printability of medicines (Lakshminarayanan et al., 2017). Each member 
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of the ensemble was trained on the entire dataset but with different 
initializations of the random weights. Each NN in the ensemble was a 
residual feed-forward network with N layers, each with a hidden size of 
H and rectified linear unit (ReLU) activation function. The input to each 
network was a vector of size F, where F is the number of input features, 
and the output was a probability distribution obtained through a sig
moid activation function. Each network was independently trained 
using binary cross-entropy loss function and Adam optimizer. 1D Batch 
Normalization was used after each layer to improve the training stability 
and robustness to initialization. The predictions of the individual 
ensemble members were combined after the sigmoid activation by 
taking an average over the probabilities. The hyperparameters tuned 
were the learning rate (0.01, 0.001, 0.0001), the depth and width of the 
networks between (32, 64, 128) nodes and hidden size (1, 2, 3), weight 
decay (0.01, 0.001, 0.00001). For the Embedding model attention 
dropout was also tuned (0.0, 0.1, 0.2). The training was done for 25, 50 
and 100 epochs for each model. The code for the NN has been made 
available as a supplementary file. 

The input features used F for the first layer of a NN were varied. Prior 
to inputting into the NN, all features were normalized to a range of 0 to 
1. The different features which were inputted into the model are 
described below:  

• Drug formulation composition: The most fundamental feature was 
a one-hot encoded feature vector, F = 77, of the different materials 
that comprise the pharma-ink. Materials present were assigned a 
fraction representing their proportion in the formulation and absent 
materials were assigned 0. This approach was included because it is 
commonly used in the majority of 3D printing machine learning 
papers, allowing for direct comparison of model performance. 
Furthermore, this feature set is the most interpretable and provides 
clear insights into the utilized formulations.  

• Embeddings: The feature set consisted of learning an input 
embedding lookup table based on material ID with an added bias 
depending on the proportion of the material in the drug, which was 
summed together, F = 32. Additionally, a self-attention mechanism 
was trialed into the input of each NN.  

• Morgan fingerprint: The MFP is a binary vector which represents 
the molecular structure of materials (Morgan, 1965). The simplified 
molecular-input line-entry system (SMILES) notation for each ma
terial was obtained from Pubchem, and the MFP (2048 bits, radius 2) 
was computed using Rdkit (Version 2022.9.5). Each MFP was scaled 
by the proportion of the material in the pharma-ink, with the latter 
represented as an array of the material fingerprints, F = 16348.  

• MFP and particle size: The MFP of materials, scaled according to 
their proportion in the pharma-ink, was combined with the particle 
size of the individual materials and a binary score to identify whether 
the material was sieved before printing. Particle size is critical for the 
SLS printer used, as the layer size is approximately 100 μm; hence, 
materials with a particle size greater than 180 μm do not print suc
cessfully. Particle size and size distribution also influence particle 
flow, making them valuable inputs for the model. Two different 
approaches were compared as inputs: using the median particle size 
(with a feature vector size of F = 16400) and using both the median 
and range of particle sizes (with a feature vector size of F = 16408). 
These variations were explored to understand the effect of different 
representations of particle size on the model’s performance. 

2.6.3. Model performance 
Model performance was evaluated using 5-fold cross-validation, 

where the data is split into 5 folds and the model’s ability to predict 
each fold is evaluated (Ting et al., 2010). The four metrics used were 
accuracy, area under the receiver operating characteristic curve 
(AUROC), log loss, and Brier scores (Table 1). 

3. Results and discussion 

3.1. Ensemble performance 

This study aimed to develop an uncertainty-optimized DL model to 
assess the printability of SLS formulations, therefore an ensemble of five 
neural networks, a state-of-the-art uncertainty quantification method 
was used. Initially, the study compared the performance of the ensemble 
NN with traditional non-DL-based machine learning models from pre
vious work (Abdalla et al., 2023) to assess its suitability for the SLS 
dataset. Results from the comparative scores demonstrate that the Deep 
Ensemble notably outperformed the conventional models for the 
Formulation dataset (Fig. 1). This is evident by the low Brier score, 
which measures uncertainty, coupled with high accuracy and area under 
the receiver operator characteristic curve (AUROC). This finding con
tradicts existing literature, demonstrating that tree-based models 
generally surpass DL for small-to-medium sized tabular data sets 
(Grinsztajn et al., 2022). 

Due to the model’s promising potential, it was evaluated further. In 
addition to the feature sets used previously (Abdalla et al., 2023), three 
additional feature sets were selected. The MFP feature set was incor
porated, given its successful track record in numerous drug discovery 
and pharmaceutical machine learning studies. The caveat is that the 
MFP is often considered too simplistic, with multiple materials having 
the same MFP (Dhakal et al., 2022). Secondly, particle size data was 
concatenated with the MFP within the model. This integration ac
knowledges the critical role of particle flow in SLS printability 
(Madžarević et al., 2021). Lastly, an experiment used an embedding 
lookup table based on material identification, coupled with an attention 
mechanism, to investigate the model’s ability to learn insightful infor
mation about the constituent materials of the formulations. 

Both the ensemble and individual NNs were trained using the 
different feature sets, the performance comparison for predicting the 3D 
printability of drug formulations is presented in Table 2. Given all the 
algorithmic metrics, the ensemble of independent NNs dominates a 
single NN on all metrics on average. The best-performing feature set 
incorporated both the MFP and particle size, achieving a high accuracy 
and AUROC and low uncertainty, as measured using the Brier score and 
log loss. This was closely followed by the MFP feature set alone. Both 
features perform worse without the implementation of proportions −
0.8824 accuracy (data not shown). The worst-performing features are 
Embedding (with attention) and Embedding (without attention). This is 
likely due to the small size of the dataset, meaning that the model is not 
able to learn the embeddings, especially when attention is employed. 
Overall, the results suggest that the MFP and particle size features are 

Table 1 
Common ML metrics. TP: true positive, TN: true negative, FP: false positive, FN: 
false negative, AUROC: area under the receiver operator characteristic curve, N: 
population size, C: number of classes, yi: actual value, pi: predicted probability.  

Metric Focus Calculation 

Accuracy The proportion of correct 
predictions among all 
predictions made 

TP + TN
TP + TN + FP + FN 

Log loss Model calibration metric, error 
between the predicted 
probabilities and the actual 
binary labels 

∑C
j=1yijlog

(
pij

)

Brier 
score 

Model calibration metric, 
measures the mean squared 
difference between the 
predicted probabilities and the 
binary labels 

1
N
∑N

i=1

(
yi − pi

)2 

AUROC Measures the ability of a model 
to distinguish between positive 
and negative classes, across 
different probability 
thresholds. 

The area under the curve of true 
positive against false positive rate at 
different probability thresholds; 0.5 
refers to random chance and 1.0 is a 
perfect model  
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the most effective in confidently predicting the printability of SLS 
pharma-inks, and these features have been used in the qualitative 
analysis. 

3.1.1. Qualitative analysis 
To gain insights into the decision-making processes of the model, the 

hidden features connecting to the output layer of each NN in the 
ensemble were extracted and compressed into two dimensions using 
UMAP and t-SNE. Although dimensionality reduction may lead to the 
loss of information regarding the model’s decision-making process, it 
provides a visualization that enables general explanations for the 
model’s decisions. The resulting plots are in Fig. 2. Two different NN 

hidden representations were plotted to highlight the ability of each NN 
to focus on different areas of the feature space. It is important to note 
that prior to inputting the data into the ensemble, dimensionality 
reduction of the data shows no inherent clustering or grouping of the 
data, demonstrating that the individual NNs can make meaningful de
cisions with the data. This is in line with previous research which 
demonstrated that unsupervised learning methods alone are insufficient 
for classifying the printability of medicines (O’Reilly et al., 2021). 

The resulting plots show clear clustering for models that performed 
well, while poorly performing models have no inherent clustering 
(Figure S1). These visualizations can serve practitioners as a sanity 
check which can be performed on the hidden features to see if the model 

Fig. 1. Comparison of traditional ML model performance with the Deep Ensemble. The higher the accuracy and AUROC the better the performance and the 
lower the log loss and Brier score the lower the uncertainty, indicating a better calibrated model. Abbreviations: RF: random forest, LR: logistic regression, SVM: 
support vector machine classifier, GB: gradient boosting, XGB: extreme gradient boosting, DTr: decision tree, MLP: multilayer perceptron, KNN: K nearest neighbors, 
EXTr: extra trees. 

Table 2 
Performance comparison on 5-fold cross-validation for different features predicting the printability of SLS formulations. Single denotes a single network; Ensemble 
denotes combining predictions of 5 networks. The best results are highlighted in bold. Abbreviations: MFP: morgan fingerprint, AUROC: area under the receiver 
operator characteristic curve.  

Features Accuracy Log-loss Brier score AUROC 

Single Ensemble Single Ensemble Single Ensemble Single Ensemble 

Formulation  0.7365  0.7765  0.5637  0.5498  0.1897  0.1822  0.7933  0.8381 
Embedding (with attention)  0.6329  0.7647  3.9405  0.5676  0.3411  0.1749  0.7724  0.8746 
Embedding (without attention)  0.5012  0.5412  14.9726  0.7521  0.4939  0.274  0.5257  0.4986 
MFP  0.9035  0.9059  0.3166  0.2755  0.0768  0.0706  0.9311  0.9403 
MFP and particle size  0.9224  0.9294  0.2853  0.2667  0.0677  0.0612  0.9347  0.9347 
MFP and particle size distribution  0.9129  0.9059  0.3507  0.2774  0.0768  0.0688  0.9352  0.946  
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to be deployed can make meaningful predictions. While the plots show 
large clusters of printable and non-printable formulations, they also 
identify subclusters of formulations with the same or similar materials 
and different grades and proportions of the same material. The model is 
also able to differentiate between polymers consisting of the same 
monomers and correctly classify their printability, despite not being 
given this information; this is likely through differences in particle size. 
Particle size plays a role in classification, as seen in clusters with 
different material structures but similar particle sizes, for example, 
formulations containing Benecel K100LV and polyvinyl alcohol (Fig. 2 −
UMAP 1; highlighted in brown). Furthermore, incorporating material 
proportions was crucial in accurately classifying formulations, this is 
evident as printable and non-printable formulations with identical ma
terials but varying proportions were correctly classified by the model, 
despite clustering together. 

The plots demonstrate that the model correctly identifies materials 
that make formulations non-printable. For example, the model accu
rately clustered formulations containing Tween 80, polyethylene glycol 
(PEG) 2000, and PEG 400, as being non-printable. Similarly, the model 
correctly identified a cluster of materials containing triethyl citrate 
(TEC), Tween 80, and polypropylene glycol (PPG) as not printable, 
despite their different molecular structures (Fig. 2 − UMAP 1; high
lighted in violet). The only commonality was that their particle size was 
set to zero, as they were all liquids at room temperature. This demon
strates the model’s ability to correctly identify the importance of particle 
size as an input, which played a crucial role in modifying the expected 
outcome. 

The model correctly clusters formulations containing the same ma
terial but different grades, however their correct classification is 
inconsistent. For example, formulations containing Blanose 12M31P EP 
(printable) and Blanose 9M31F, 7MF (non-printable) are grouped (Fig. 2 
− t-SNE 1; highlighted in red). Conversely, 12M31P EP is classified as 
printable by the model even though it has the same proportion of Bla
nose as the non-printable inks. This outcome exceeds expectations and 
highlights the model’s ability to identify subtle material differences. On 
the other hand, a formulation containing Klucel LF was wrongly clas
sified because it clustered with non-printable inks containing Klucel of 
different grades (Fig. 2 − UMAP 2; highlighted in violet). Different 
grades of materials are challenging to distinguish because manufac
turers determine grades differently and they require different features to 
be identified. For instance, Klucel grades have varying molecular 
weights and particle sizes, but this could not be included since the 
molecular weights of multiple materials were not disclosed by the 

manufacturers. As a result, the model had difficulty differentiating be
tween the various grades of certain materials, highlighting a weakness in 
its ability to classify them correctly. 

The plots provide other valuable insights into potential reasons for 
the misclassification of the printability of formulations. For instance, a 
formulation containing PEG 2000 is misclassified as printable because it 
clusters with other, larger molecular weight PEGs (Fig. 2 − UMAP 1; 
highlighted in red). However, its smaller molecular weight results in a 
lower melting point, making it unprintable. Some misclassifications 
were also observed in formulations surrounded by unrelated materials in 
terms of structure and particle size, which could explain the inaccurate 
classification (Fig. 2 − UMAP 2; highlighted in red). For example, the 
model struggles with classifying a formulation containing multiple 
materials − Candurin®, mannitol, magnesium stearate, polyvinyl pro
pylene (PVP), riboflavin, TEC, and xylitol. It was classified as printable, 
but there was no clear relationship with surrounding formulations, 
which were a mixture of printable and non-printable inks indicating the 
model’s confusion in grouping it (Fig. 2 − t-SNE 2; highlighted in red). 
Misclassifications also occur due to the presence of proximate formu
lations with materials that had similar structures, such as the incorrect 
classification of a formulation containing cellulose acetate as non- 
printable, which was grouped with non-printable formulations con
taining ethyl cellulose and chitosan, which are all polysaccharides 
(Fig. 2 − t-SNE 1; highlighted in violet). 

While the combined feature set of particle size and MFP yielded the 
best performance in this study, the marginal difference compared to 
using the MFP alone warrants careful consideration. Notably, the MFP 
feature set had a higher AUROC, indicating a reduced likelihood of false 
positives, which could otherwise lead to significant waste. Integrating 
particle size necessitates additional laboratory work for its determina
tion, adding complexity and resource demands to the process. Given the 
near-similar performance achieved by the MFP alone, without the 
requirement for any lab work, the justification for employing both MFP 
and particle size together becomes challenging. The MFP alone offers a 
pathway to save time and resources and enhance process automation. As 
a result, it was concluded that further studies should prioritize the 
exclusive use of the MFP, aligning with the broader goals of efficiency 
and effectiveness. 

3.2. Exploring model performance on a larger dataset 

The advantage of identifying an optimal feature set that bypasses the 
need for additional laboratory tasks allowed for dataset expansion by 

Fig. 2. T-sne and umap visualization of hidden features of the input data and the final hidden layer of the different individual nn. printable, not printable predictions 
and misclassifications of the ensemble are denoted, and circles highlight notable clusters. 
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including formulations from the scientific literature. This integration, 
otherwise inhibited by the local unavailability of certain materials, can 
be used to improve the model’s performance, and broaden its applica
bility. The new dataset consists of 278 formulations made up of 115 
materials. Exploratory data analysis of the new dataset revealed a 
similar trend to the initial data set. Candurin® was in 96.7 % of the drug 
formulations, and the most frequently used drug was Paracetamol, 
which was in 26 % of all the formulations (Fig. 3A). Table S2 enumerates 
the frequency of use of each material. Overall, 53.8 % of the formula
tions were successfully employed to print tablets (Fig. 3), meaning the 
target predictions are slightly less balanced than the previous pre
dictions. This is anticipated as the mined literature only included posi
tive data, which is a major barrier to ML in formulation development 
(Bannigan et al., 2023). 

The model was re-trained with the new data, using the MFP—the 
best-performing dataset—and the drug formulation composition to 
explore explainability. A reduction in model performance became 
evident with the introduction of the new dataset (Table 3), likely due to 
previous overfitting, i.e. the previous model was not generalizable. 
Despite performing well on the unseen testing set, the materials in the 
previous dataset were much more similar. The initial dataset included 
multiple grades of the same material and other materials that share 
many chemical characteristics, and hence similar MFPs so that the 
model could perform well on the test set. Conversely, the new data set 
includes many new materials and forms a more heterogeneous data set, 
so although performance is reduced, this model is likely to be less overfit 
and more robust for classifying external data. In line with previous 
findings, this data demonstrates that the model trained using the MFP 
outperformed the drug formulation composition model. The model 
based on formulation composition showed improved performance than 
that observed with the smaller dataset. Additionally, on average, the 
ensemble improved compared to a single NN. 

This research builds on the work of (Abdalla et al., 2023), which 
demonstrated the high accuracy of predicting SLS printability of medi
cines. However, this paper shows enhanced model performance and 
identifies the MFP as the optimal feature set for predicting printability. 
The advantage of this feature set over the previously used in vitro 
characterisation methods (Fourier transform infrared spectroscopy, X- 
ray powder diffraction, and Dynamic Scanning Calorimetry) is that it 
requires no prior lab work. Furthermore, the developed model is both 
uncertainty-optimised and more interpretable, allowing users to have 
greater confidence in the predictions and a better understanding of the 
model’s decision-making process. These improvements in interpret
ability and uncertainty optimisation can be applied to all current ma
chine learning research in 3D printing, which has yet to demonstrate 
these aspects effectively. 

Multiple studies have been carried out in the past few years inves
tigating the use of ML to predict printability. Previous research on the 
printability of formulations reveals that NN has surpassed tree-based 
models in performance (Elbadawi et al., 2020; Muñiz Castro et al., 
2021). This is notable even though the analysis utilized tabular data, a 

condition under which NN doesn’t usually outperform tree-based 
models (Grinsztajn et al., 2022). In addition, the Deep Ensemble 
demonstrated performance comparable to other models, despite relying 
on a smaller dataset. A particular resemblance can be seen in the work 
by Madžarević et al. (2021) as they also employed SLS printing in their 
study. The work displayed performance metrics similar to the present 
study. However, it is worth noting that the data was largely consistent, 
comprising a small (27 formulations) dataset of similar formulations, all 
containing irbesartan. This similarity increases the likelihood of over
fitting in the model. Most other papers in this field have focused on 
thermal properties, which are less relevant for SLS printability. Unlike 
the technologies that depend on thermal polymers, SLS printing em
phasizes the importance of particle flow as a critical factor (Madžarević 
et al., 2021). Compared to other studies, the dataset herein was the 
smallest, yet the performance was on par with the others. 

3.3. Validating the Deep ensemble 

Finally, the developed model was tested using lab data to evaluate 
the model’s application in real-life scenarios. New formulations 
(Table S3) were developed, and their compositions inputted into the 
model to assess printability before actual printing trials. Subsequent 
printing attempts with the drug formulation validated the model’s 
predictions. Overall, 52 different formulations were tested, of which 
46% are printable. Model performance on this data is in Table 4. 

The reduced performance of the model on the new data was antici
pated, as this data included materials that had never been encountered 
during training. This unfamiliarity is reflected in the high log loss scores, 
indicating that the new data falls outside the training data distribution. 
In line with the literature, this highlights the utility of an ensemble 
approach in determining such discrepancies (Nemani et al., 2023). This 
is particularly observed with the model trained using the MFP dataset, as 
most misclassified drug formulations are those containing materials that 
were not included in the training dataset. Some misclassifications were 
due to the presence of different grades of the same materials in the 
training dataset. For instance, a drug formulation containing Kollidon 
CL-SF was wrongly classified as printable, likely because the training set 
included the printable Kollidon CL-M. As both drug formulations would 
have an identical MFP, the model failed to differentiate between them. 
This issue could potentially have been mitigated by incorporating par
ticle size into the model, enabling the recognition of different material 
grades. Such an addition would offer a more nuanced understanding of 
the differences between these closely related materials. The drug 
formulation composition model demonstrated significantly poorer per
formance compared to the MFP dataset. This outcome is expected, as the 
MFP dataset reveals the chemical composition of pharma-inks, enabling 
the model to learn fundamental insights about formulations. These in
sights can then be applied to other formulations with different materials 
but similar chemical properties. In contrast, the formulation dataset 
limits the model to leveraging prior knowledge of formulations that 
share the same materials. 

Fig. 3. Exploratory data analysis. (A) The distribution of use of different materials in the drug formulations and the (B) printability of different inks.  
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To improve the model’s performance on materials within the initial 
dataset, the best approach is to re-train the model with an expanded 
dataset including new, more diverse materials. Other approaches to 
improve model generalizability include augmenting the data, adding 
noise to the training data, or adopting a semi-supervised approach to 
training the model (Bishop and Nasrabadi, 2006). 

3.4. Exploring explainability 

To validate the model’s decision-making and gain further insight into 
its decision-making, the hidden features linking to the output layer of 
each neural network in the ensemble were extracted and compressed 
into two dimensions using UMAP and t-SNE, and compared to the input 
data (Fig. 4). Again, the model demonstrated that although the data 
initially was not clustered, it could group the printable and non- 
printable formulations. The subclusters here are similar to those seen 
before (Fig. 2) − formulations with different proportions of the same 
material and those with different grades of the same material and ma
terials with similar structures are grouped. However, while the plots 
provide some interpretability to the model’s performance, they do not 
provide explainability and other methods should be used for this 
purpose. 

To further explore model explainability and discern what materials 

contribute to a printable drug formulation, as well as which materials to 
avoid, the SHAP values of the model trained on the formulation 
composition dataset were calculated (Fig. 5). Notably, most of the ma
terials demonstrate no contribution to the decisions made—a result 
anticipated due to the infrequent use of most materials, leading to zero 
values in most formulations and, thus, no contribution to the final de
cision. However, common trends were observed, such as the strong 
negative contribution of TEC, PPG, and PEG 400, to the printability of 
the formulations. This trend was consistent with the training dataset, 
where no inks containing these materials were found to be printable. In 
contrast, materials like Kollicoat® IR, Eudragit® RSPO, mannitol, and 
Eudragit® L100-55, which are frequently used in SLS formulations, were 
found to contribute positively to the decisions made. 

These plots hold significant value for scientists in guiding effective 
formulation development. By recognizing what contributes positively to 
SLS formulations and what materials have a negative impact, re
searchers can tailor their inks and include specific components to ach
ieve a printable drug formulation. 

4. Conclusion 

The innovative approach presented in this study fuses two powerful 
technologies, ML and 3D printing, to evaluate the capacity of various ML 
models to predict SLS formulations’ printability. An ensemble of NNs 
was trained on diverse features to confidently predict the printability of 
drug formulations, whilst focusing on interpretability. An Ensemble NN 
trained on the MFP of pharma-inks emerged as the optimal approach to 
predict SLS printability, it yielded the best balance between confidence 
and accuracy, achieving 90 % accuracy. Subsequent explainability 
analysis revealed the materials that contributed positively or negatively 
to SLS printability. This study is the first to evaluate the use of an 
interpretable, uncertainty-calibrated DL ensemble in both the field of 3D 
printing and pharmaceutics and the proposed workflow can be used to 

Table 3 
Performance comparison on 5-fold cross-validation for different features predicting the 3D drug formulation printability. Single denotes a single network; Ensemble 
denotes combining predictions of 5 networks. The best results are highlighted in bold. Abbreviations: MFP: morgan fingerprint, AUROC: area under the receiver 
operator characteristic curve.  

Features Accuracy Log-loss Brier Score AUROC 

Single Ensemble Single Ensemble Single Ensemble Single Ensemble 

Formulation  0.8071  0.8286  0.6060  0.7371  0.1485  0.1480  0.8652  0.8988 
MFP  0.8543  0.8428  0.4709  0.5165  0.1238  0.1141  0.8956  0.9172  

Table 4 
Performance comparison of the Deep Ensemble on predicting the printability of 
SLS formulations. Abbreviations: MFP: morgan fingerprint, AUROC: area under 
the receiver operator characteristic curve.  

Features Accuracy Log-loss Brier Score AUROC 

Formulation  0.6731  4.3512  0.2444  0.7351 
MFP  0.8077  1.1081  0.1675  0.8348  

Fig. 4. t-SNE and UMAP visualization of hidden features of the input data and the final hidden layer of the different individual NNs. Printable, Not Printable 
predictions and Misclassifications of the ensemble are denoted. 
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Fig. 5. SHAP analysis for the ensemble Neural Network (NN). The color of each dot represents the material contribution to the decision (high is pink and low is blue), 
and the horizontal position determines whether the material contributed positively or negatively to the printability of the formulation. The swarm plot for each 
member of the NN is shown, as well as the swarm plot for the entire ensemble. 
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accelerate the development of personalized medicines. 
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