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ABSTRACT: Selective laser sintering (SLS) is an emerging three-
dimensional (3D) printing technology that uses a laser to fuse
powder particles together, which allows the fabrication of
personalized solid dosage forms. It possesses great potential for
commercial use. However, a major drawback of SLS is the need to
heat the powder bed while printing; this leads to high energy
consumption (and hence a large carbon footprint), which may
hinder its translation to industry. In this study, the concept of cold
laser sintering (CLS) is introduced. In CLS, the aim is to sinter
particles without heating the powder bed, where the energy from
the laser, alone, is sufficient to fuse adjacent particles. The study
demonstrated that a laser power above 1.8 W was sufficient to
sinter both KollicoatIR and Eudragit L100-55-based formulations
at room temperature. The cold sintering printing process was found to reduce carbon emissions by 99% compared to a commercial
SLS printer. The CLS printed formulations possessed characteristics comparable to those made with conventional SLS printing,
including a porous microstructure, fast disintegration time, and molecular dispersion of the drug. It was also possible to achieve
higher drug loadings than was possible with conventional SLS printing. Increasing the laser power from 1.8 to 3.0 W increased the
flexural strength of the printed formulations from 0.6 to 1.6 MPa, concomitantly increasing the disintegration time from 5 to over
300 s. CLS appears to offer a new route to laser-sintered pharmaceuticals that minimizes impact on the environment and is fit for
purpose in Industry 5.0.
KEYWORDS: Additive Manufacturing, Automation, Carbon Neutral, Digital Green Innovation, Digital Technology, Green Engineering,
Sustainability

■ INTRODUCTION
Selective laser sintering (SLS) is a three-dimensional (3D)
printing technology that uses energy from a laser to fuse powder
particles together and has been used to fabricate solid dosage
forms.1,2 While there are a number of emerging 3D printing
technologies,3 SLS possesses many desirable attributes,
including suitability for use with existing pharmaceutical
materials, short preprocessing, no need for solvent, and the
capability of printing complex geometries. Despite its infancy,
SLS has been demonstrated to be a versatile technology capable
of fabricating a range of drug delivery systems, including tablets
with braille patterns,4 intrauterine devices,5 drug-loaded
synthetic bone grafts,6 modular devices,7 and complex 3D
gyroid geometries.8 SLS has also been used to print conductive
material,9 microfluidic valves,10 and shape memory polymers,11

all of which are relevant to drug delivery. Beyond pharmaceutics,
SLS has been adopted in industrial sectors, such as the aerospace
and automotive industries.12 Thus, SLS has much potential for
industrial application.

SLS takes advantage of the sintering process; adjacent
particles fuse together when heated with energy from the laser.
The temperature rise often needs to be significant because the
particles must soften or melt, but the time spent at high
temperature is short as the laser passes quickly over the
material.6,13 For polymers, the energy provided during SLS
allows the polymer chains to first disentangle and then migrate
to interlink with the polymer chains in adjacent particles. When
the energy is removed, the interlinked chains cool and remain
entangled together, hence fusing adjacent particles together. In
commercial SLS printers, the energy required to sinter is
supplied from two sources; the powder bed, itself, is preheated in
the printer, thereby raising it to just below its sintering
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temperature, before the laser supplies the energy to exceed the
sintering threshold in a selective manner.14,15 As laser spot sizes
in the order of microns are used, SLS can create dosage forms
with high resolution.16,17 Preheating is intentionally incorpo-
rated in SLS to reduce the energy needed from the laser, which is
believed to cause internal stresses and thermal deformation.2 For
polymers, this may affect the mechanical properties of the
finished part,18 but it is not known if high laser energies are
detrimental to pharmaceutical dosage forms.

However, what is known is that the requirement for
preheating is a major disadvantage of SLS. For one, it is
responsible for the high energy consumption and, in turn,
carbon emission recorded for SLS.19 In a recent study that
examined the carbon emissions of five 3D printing techniques,
SLS exhibited the highest carbon emissions ranging from 5 to 50
times more than the other four 3D printing techniques when
printing 10 printlets.19 The same study revealed that reducing
the chamber temperature from 180 to 80 °C was enough to
decrease printing emissions by 41%, which is a positive step
toward green manufacturing.19−22 The second disadvantage of
preheating is it prolongs the printing process, thereby requiring a
longer lead time compared with other 3D printers.14

Furthermore, preheating and subsequent cooling impact the
surrounding, unsintered powder bed (also referred to as the
powder cake). As a result, the powder cannot be reused and,
thus, is wasted.1,23 The powder cake is needed as it acts as a
support to help the sintered parts maintain their structural
integrity during the printing process. Given that environmental
requirements are at the forefront of many economies and
pharmaceutical manufacturing decisions,24 the combination of
relatively high carbon emissions, long lead times, and lack of
recyclability collectively hinder the translational prospects of
pharmaceutical applications of SLS.

As companies and broader economies are committing to
carbon neutrality by 2050, minimizing the carbon emission and
resource waste from SLS printing will ensure the technology
remains fit for purpose in the Industry 5.0 framework.25,26

Recent publications in SLS continue to use high surface and
chamber temperatures ranging between 70 and 150 °C.27

Furthermore, to the best of our knowledge, the energy
consumption between traditional SLS and temperature-free
sintering has not been studied. To date, the sintering of
pharmaceutical formulations at room temperature and their
energy consumption have not been disclosed. This leaves a gap
in scientific knowledge regarding the environmental efficiency of
temperature-free sintering and how it compares to conventional
SLS printing.

To that end, we explored the potential of sintering
pharmaceutical formulations without the need for preheating
the powder bed in order to improve the sustainability of SLS for
fabricating medicines. We demonstrate that sintering can be
solely achieved by the laser, thereby eliminating the need for
both preheating and in situ heating provided that the laser
configuration is appropriate. We hypothesize that the polymer
chains do not distinguish between the energy supplied by the
laser or from heating elements typically found in commercial
laser printers. As long as the energy from the laser is sufficient, it
will facilitate the entanglement of polymer chains in adjacent
particles, thereby allowing sintering to occur. A comparison of
energy consumption between the new processing technique,
which we refer to as “cold laser sintering” (CLS), and a
commercial SLS printer was conducted to elucidate the
sustainability prospect of the new platform. The term “cold”

was selected to maintain consistency with other green
innovation technologies that achieve processability at consid-
erably low temperatures in what otherwise would have been a
high-temperature processes, thereby disrupting the manufactur-
ing status quo.28,29 Furthermore, we characterized the CLS-
printed products with respect to their mechanical, morpho-
logical, chemical structural, and dissolution characteristics by
primarily examining the effect of the laser power. The objective
here was to compare the results to those of SLS-printed products
and evaluate the feasibility of CLS as a new method.

■ EXPERIMENTAL PROCEDURE
Materials. Table 1 lists the polymers, active pharmaceutical

ingredients (APIs), and sintering agent used for this study and their

corresponding suppliers. All APIs were of United States Pharmacopeia
(USP) grade.
CLS and SLS Printing. Pharmaceutical formulations were first

individually sieved through a mesh of 150 �m before being mixed with a
pestle and mortar until a homogeneous mixture was obtained. CLS was
achieved using a commercially available laser engraver (K4 Laser
Engraver, HomdMarket, Guangzhou Gesan Network Technology Co
Ltd., China) that has a blue diode laser with a power of 3.0 W, a
wavelength of 450 nm, and a spot size of 0.05 mm. The laser power was
adjustable through the engraver’s software (K4 software v2.7). Five
grams of the powder mixture was poured onto a weighing boat that was
then placed beneath the laser (Figure 1). Prints were designed using
Microsoft Paint, exported as. png file, and were uploaded to the
engraver’s software. The software was also used to control the printer,
including the key parameters of laser power (0−100%) and laser depth
(0−100%). Once printed, samples were removed using a spatula, and
the powder was manually replenished. Table 2 lists the formulations
tested by the CLS.

A commercial SLS printer was used to compare the performance of
the CLS process with that of conventional SLS printing. For SLS
printing, 20 g of powder was transferred to the SLS printer (Sintratec
Kit, AG, Switzerland). The printer has a blue diode laser with a power of
2.3 W and a wavelength of 445 nm. Tablets were designed using
computer-aided design (CAD) software (Onshape, PTC, USA) with a
diameter of 10 mm and a thickness of 1 mm to match the dimensions of
the CLS prints. The CAD models were then exported as an .stl file and
uploaded on the printer’s software (Sintratec Central software, v2.5.1).
SLS printing was performed at a chamber temperature of 90 °C, surface
temperature of 110 °C, and laser scanning speed of 90 mm/s. Three
samples were printed per printing run. Formulation F1 was used for the
comparison.
Characterization. Physical Properties. The diameter and thick-

ness of the prints were measured by using a digital Vernier caliper. The
weight was also determined using a scale (XS105 Dual Range, Mettler
Toledo, Switzerland).
X-ray Diffraction (XRD). The XRD patterns were obtained with a

Rigaku MiniFlex 600 (Rigaku, Wilmington, MA, USA) equipped with a
Cu K� X199 ray source (� = 1.5418 Å). The intensity and voltage

Table 1. Excipients and APIs and Their Corresponding
Suppliers

material supplier

polymers Eudragit L100−55 Evonik, UK
KollicoatIR BASF, UK
Kollidon VA64 BASF, UK
Plasdone S-630 Ashland, UK
ParteckMXP Sigma-Aldrich, UK

API paracetamol Sigma-Aldrich, UK
aspirin Sigma-Aldrich, UK
ibuprofen Sigma-Aldrich, UK

sintering agent Candurin Gold Sheen Azelis, UK
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applied were 15 mA and 40 kV, respectively. Samples were scanned
between 2� = 3−60° with a stepwise size of 0.02° at a speed of 10°/min.
Differential Scanning Calorimetry (DSC). Powdered samples (5−

10 mg) were analyzed using Tzero pans (TA Instruments, DE, USA). A
Q2000 DSC (TA Instruments, DE, USA) equipped with an
autosampler and nitrogen for both cooling and purging (50 mL/min)
was used to determine the thermal profiles of all samples. Following
initial acclimatization to 40 °C, the temperature was raised to 200 °C at
a heating rate of 10 °C/min. For printed samples, a pestle and mortar
were used to grind the prints into a powder.
Attenuated Total Reflectance Fourier Transform Infrared Spec-

troscopy (ATR-FTIR). The vibrational bands of the samples were
obtained using a Spectrum 100 spectrometer (PerkinElmer, CT, USA).
Similar to DSC characterization, the raw materials were added as-
sieved, whereas prints were first ground into powder using a pestle and
mortar. Samples were added onto the crystal, and the force of the arm of
the universal attenuated total reflectance accessory (UATR) was set to
130. The spectral data was analyzed with the Essential FT-IR software
(V3.10.016, Operant LLC, WI, USA). Data was collected over the
wavenumber range from 4000 to 650 cm−1 with a resolution of 2 cm−1

and 8 scans obtained per sample.
Drug Loading. Samples were placed in separate volumetric flasks

with 250 mL of distilled water and under magnetic stirring until
complete dissolution. Samples of the solution were then withdrawn
using a syringe equipped with a 0.22 �M filter (Millipore Ltd., Ireland),
and the concentration was determined using a UV−vis spectrometer
(Cary 100, Agilent Technologies, UK) at 247 nm.
Dissolution Study. A dissolution bath was used to determine the

release profile of the CLS prints. A USP II dissolution apparatus (PTWS
100, Pharmatest, Hainburg, Germany) was filled with 900 mL of 0.1 M

HCL (pH 1.2) to simulate gastric conditions. The paddle speed was set
to 500 rpm, and the temperature was 37 ± 0.5 °C. Five mL dissolution
samples were withdrawn at predefined times (min). The dissolution
samples were then filtered through a 0.22 �m PTFE filter (Merck
Millipore Ltd., Ireland), and the concentration was calculated using a
UV−vis spectrometer (Cary 100, Agilent Technologies, UK). A total of
three repeats was used per group.
Disintegration Test. The Petri dish method was used to determine

the disintegration time of CLS prints. A 100 mm diameter glass Petri
dish containing 20 mL of distilled water was maintained at 37 ± 0.5 °C.
CLS tablets (10 mm × 1 mm) were placed on the Petri dish, and the
time needed for total disintegration was recorded. Three prints were
tested for each group.
Energy Consumption. Energy consumptions of both the CLS and

SLS printer were measured with an energy meter (Electrocorder AL-
2VA, Acksen Ltd., UK) with a 5 s sampling rate.
Mechanical Testing. Friability of the CLS tablets was determined

using a friability tester (Erweka type TAR 10, Erweka GmbH,
Heusenstamm, Germany). Tablets were added to the drum of the
tester and rubbed at 25 rpm for 4 min. The tablets were weighed before
and after the test, and their weight loss as a percentage was recorded. In
addition, a dynamic mechanical analyzer (DMA) was used to calculate
the flexural properties of rectangular prints (20 mm × 10 mm). Samples
were placed in the DMA (Q800, TA Instruments, USA) equipped with
the three-point bending clamp (submersion option).30 Measurements
were performed under ambient conditions and with the furnace open.
Samples were analyzed at a ramp rate of 0.5 N/min. Three repeats were
used for each group where their length, width, and thickness were
measured using a digital Vernier calliper.

Figure 1. (A) CLS and (B) commercial SLS printing steps.

Table 2. Print Polymer and API Composition as a Function of w/w %�

formulation KollicoatIR Eudragit L100-55 ParteckMXP Kollidon VA64 Plasdone S-630 Para Asp Ibu

F1 92 5
F2 62 35
F3 57 40
F4 57 40
F5 57 40
F6 57 40
F7 57 40
F8 57 40
F9 92 5
F10 92 5
F11 92 5

aAll formulations contained 3 w/w % Candurin. Para, paracetamol; Asp, aspirin; Ibu, ibuprofen.
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Microstructural Analysis. Scanning electron microscopy (SEM) was
used to image the sample microstructure. Samples were adhered onto a
carbon adhesive attached to an aluminum stub. Samples were gold-
coated using a sputter coater (Quorum Q150RS plus, Lamda
Photometric, UK) for 120 s. Samples were then inserted into the
scanning electron microscope (Phenom Pro Desktop, Thermo Fisher
Scientific, UK) and imaged at 5 kV.

■ RESULTS
We began our study by attempting to print the formulations
from the seminal work by Fina et al.31 using the commercial SLS
printer but at room temperature (formulations F1−F4 from
Table 2). However, no evidence of sintering was observed in

which the powder cake remained in its particulate form. In
contrast, CLS was successfully found to sinter the same
formulations into a solid dosage form, which confirmed our
hypothesis that the energy supplied by the laser, alone, was
sufficient to sinter the powder. The findings emphasize the
limitation of the commercial printer’s laser configuration,
including laser power, for sintering at room temperature.

Furthermore, different shapes were sintered using formulation
F1 to elucidate the potential of CLS for fabricating different
geometric features (Figure 2A). Visual inspection revealed a
rough surface (Figure 2B) with SEM imaging highlighting
typical sintering features, such as pores and sintering necks
(Figure 2C). In addition, the versatility of CLS was tested by

Figure 2. Multiscale imaging of formulation F1 prints processed by CLS. (A) Different geometries were printed by CLS. (B) Digital microscope image
of the tablet print. (C) SEM image of (B).

Figure 3. Digital microscopy image of formulation F1 processed by (A) CLS and (B) SLS prints. The images reveal a similar surface morphology
between the two processed printlets (scale = 1 mm).
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printing the remaining F5−F11 formulations composed of other
pharmaceutical grade polymers, which were Eudragit L100-55,
Parteck MXP, Kollidon VA64, and Plasdone S-630. The results
revealed that CLS was capable of sintering these formulations,
thus demonstrating its compatibility with five pharmaceutical-
grade polymers. The results for Eudragit will be discussed below,
whereas the evidence for Parteck, Kollidon, and Plasdone can be
found in the Supporting Information (Figures S1 and S2).

We then compared the energy consumption between CLS
and the commercial SLS printer by printing three printlets for
each technology from formulation F1. For the SLS printer, we
applied the same parameters from the seminal work by Fina et
al.,31 which were a chamber and surface temperature of 90 and

110 °C, respectively (Figure 3). This allowed us to determine
whether CLS was energy efficient. The total energy required for
SLS was 1.01 kWh. That included the following steps:
preheating, building, and cooling (Figure 4A).32 For CLS, the
total energy required was 0.01 kWh. Thus, CLS was able to
reduce the energy consumption by 99% compared with SLS.
The total time needed to print three dosage forms by SLS was
138 min, encompassing the preheating, sintering, and cooling
stages. In contrast, CLS required 13 min to fabricate three
printlets. These findings highlight that a more energy-efficient
laser sintering process is attainable compared to conventional
SLS printing.

Figure 4. Panel (A) presents the energy consumption results for both SLS and CLS for printing three printlets of 10 mm × 1 mm dimensions using
formulation F1. The inset provides a zoomed-in view of the CLS results. The three printlets of (B) CLS and (C) SLS are also presented.

Figure 5. (A) From left to right, printlets of formulation F1 processed at L60, L80, and L100. SEM images were taken of each printlet, and the
micrographs for (B) L60, (C) L80, and (D) L100 are presented.
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Effect of Laser Power.Once it was confirmed that CLS was
capable of fabricating solid dosage forms, the effect of the laser
power was investigated. The commercial printer used by Fina et
al. does not provide the opportunity to control the laser power,
and thus, there was an opportunity to understand the effect of
the laser power on formulation F1.

Three different laser powers were tested: 40%, 60%, 80%, and
100%�referred to as L40, L60, L80, and L100 with L100 being
equivalent to 3.0 W. It was found that laser powers above L60
were capable of sintering the formulation, whereas L40 did not.
Several features were observed with an increasing laser power.
For one, the printlets color changed with the color become a
deeper shade of gold (Figure 5A). Microstructural analysis
revealed that the porosity decreased with increasing laser power
(Figure 5B−D). Moreover, the sintering necks were found to be
thicker at L100. In addition to exhibiting comparatively high
porosity, samples sintered at L60 displayed evidence of tears
(Figure 6), possibly as a result of partial sintering, which caused
particles to fall off.

Mechanically, the samples were found to vary significantly in
their flexural properties (Figure 7A). The flexural strength
increased from 0.62 ± 0.04 MPa at L60 to 0.91 ± 0.10 MPa at

L80 and to 1.84 ± 0.39 MPa when sintered at L100. A similar
trend was observed for the failure strain, whereby increasing the
laser power resulted in an increase in the fracture resistance. In
fact, samples sintered at L100 did not fracture completely like
samples sintered at a lower laser power (Figure 7B).
Collectively, the flexural analysis revealed that increasing the
laser power improved both the strength and the ductility of the
sintered samples. The fractured samples were imaged using SEM
to reveal potential causes of failure at the microstructural level.
SEM revealed that fracturing occurred on the sintering necks,
thereby inferring that they were structurally the weakest point.
Furthermore, thicker sintering necks were more resistant to
fracturing (Figure 7C,D). Friability of the F1 formulation under
different laser conditions was also recorded. The results were
1.87%, 0.73%, and 0.23% for L60, L80, and L100. Thus, the
latter two complied with the US pharmacopeia requirements for
uncoated tablets as they were less than 1%, thereby making them
suitable for handling and packing.33

Physicochemical analyses were conducted before and after
CLS processing to reveal the effect of the laser on the
formulation. XRD analysis of raw paracetamol revealed its
distinct crystalline structure (Figure 8A). Some of these peaks
were still present in the physical mixture; however, they
diminished following CLS processing at all three laser powers.
This suggests that paracetamol was amorphised during printing.
DSC analysis of the printlets at all three laser powers revealed the
absence of melting at 170 °C, which was present in the raw
paracetamol (Figure 8B). For further clarity, ATR-FTIR was
performed since it is capable of detecting amorphous materials.
The results revealed that the KollicoatIR peaks34 dominated the
FTIR spectra for formulations processed at L60, L80, and L100.
The fingerprinting region (1500−650 cm−1) is a region that
uniquely identifies materials, but as can be seen in Figure 9,
between 1500 and 650 cm−1, all three raw materials’ vibrational

Figure 6. SEM micrographs of formulation F1 processed at L60 at
different microscales. Samples processed at this laser power exhibited
“tears,” which suggest low cohesion in the material at the microscale,
which causes particles to “fall off.”

Figure 7. (A) Flexural mechanical properties of formulation F1 processed at different laser powers (n = 3). (B) Photograph images of L60 (top) and
L100 (bottom) following a flexural test. SEM micrograph images of (C) L60 and (D) L100 following a flexural test.
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bands overlap. However, raw paracetamol contains peaks
between 1644 and 1507 cm−135 that are not present in either
KollicoatIR or Candurin, which were also present in L60, L80,
and L100 formulations. Thus, the results suggest that para-
cetamol is present in the printlets in an amorphous state.

A drug loading efficiency analysis was performed to verify the
presence of paracetamol within the printlets using UV−vis
spectroscopy; drug loadings varied between 99.68 ± 4.03% and
105.25 ± 1.71% (Table 3). Thus, it is clear that paracetamol

remained intact at all three laser powers. In addition, the
disintegration time was also recorded because fast disintegration
times are characteristic of SLS prints.36 Printlets produced at
L60 were found to dissolve in 5.21 ± 0.76 s, while at L80 they
required 53.39 ± 6.91 s (Table 3). However, samples sintered at
L100 showed no signs of disintegrating, and the tests were
stopped after 300 s. Therefore, while the laser power did not
affect drug loading, it did affect the disintegration time.

Drug dissolution was performed to determine the release
profile of the printlets as a function of the laser power (Figure
10). Prints processed at L60 were found to achieve 100% release

by 10 min, whereas 100% release for prints processed at L80
required 30 min. Prints processed by the highest laser power of
L100 required 120 min to achieve 100% release, which is
significantly longer than formulations processed at either L60 or
L80. Therefore, increasing the laser power reduced the rate of
drug release.
Effect of Drug Loading. In their seminal study, Fina et al.31

were able to record a maximum drug loading of 35 w/w % using
the KollicoatIR formulations. The authors tested Eudragit L100-
55 and also recorded a maximum of 35 w/w % drug loading.
Using the CLS, the same was also observed, whereby the
maximum paracetamol loading was 35 w/w % for both
polymers. At 40 w/w % paracetamol, KollicoatIR formulations
could not sinter (Figure 11A), whereas Eudragit L100-55

Figure 8. Physicochemical analysis of the raw materials, formulation F1 powder mixture (PM), and samples processed at different laser powers using
(A) XRD and (B) DSC. Both XRD and DSC suggest that CLS amorphised paracetamol.

Figure 9. ATR-FTIR results of the raw materials and formulation F1
processed at different laser powers. The dashed gray line highlights
peaks unique to paracetamol that were also found in formulations
processed by CLS. The data suggest that paracetamol remained intact.

Table 3. Drug Loading Efficiency and Disintegration Time
for Formulation F1 Processed by CLS at Different Laser
Powers (� = 3)

sample loading efficiency (%) disintegration time (s) mass (mg)

L60 99.68 ± 4.03 5.21 ± 0.76 20.9 ± 1.45
L80 105.25 ± 1.71 53.39 ± 6.91 27.90 ± 1.51
L100 103.38 ± 0.14 >300 37.40 ± 1.35

Figure 10. Paracetamol release profile for formulation F1 processed by
CLS at different laser powers (n = 3).

Figure 11. Digital microscope images of both (A,C,E) KollicoatIR and
(B,D,F) Eudragit L100-55 formulations processed by CLS at 40 w/w %
drug loading using (A,B) paracetamol, (C,D) aspirin, and (E,F)
ibuprofen. Note that KollicoatIR containing 40 w/w % paracetamol
could not be printed.
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presented with large fractures (Figure 11B). As sintering is a
function of formulation thermal properties, we tested the same
composition but replaced paracetamol with either aspirin or
ibuprofen. Compared with paracetamol, both aspirin and
ibuprofen have lower melting points and, thus, are potentially
more amenable to cold sintering. Using 40 w/w % aspirin, the
KollicoatIR formulation began to partially sinter (Figure 11C),
whereas the Eudragit L100-55 formulation sintered and was free
of fractures (Figure 11D). For using 40 w/w % ibuprofen, both
formulations successfully sintered (Figure 11E,F). Thus, the
results highlight that the drug melting point can affect sintering.

■ DISCUSSION
The study was conceived following the recent findings that SLS,
despite its many advantages, is energy-intensive and potentially
more environmentally harmful than other 3D printing
technologies.19 There is a pressing need to pursue digital
green innovations, which will not only add economic value to
industries who utilize such innovation37 but also help to improve
planetary health. Herein, we confirmed that solid dosage forms
can be fabricated with CLS without the need for pre- or in situ
heating of the powder. As expected, CLS was found to be
considerably less energy-demanding compared with a commer-
cial SLS printer (Figure 4A). Consequently, CLS was
comparable in its carbon emission to other 3D printing
techniques,19,20 which means it offers a sustainable alternative
to SLS for producing solid dosage forms. Potentially, this could
lead to cost savings in the long run because of the reduced energy
consumption. While more work is needed, the long-term vision
will be the development of an industrial CLS device that 3D
prints medicines while aligning with global sustainability goals.

Second, precluding the need for heating means that the
physicochemical properties of the powder bed can be preserved.
The powder bed acts as a support for both SLS and CLS, and any
changes to its properties will compromise the stability, efficacy,
and safety of the final product. Consequently, the unused
powder will have to be discarded. Thus, by avoiding heating of
the entire powder bed, any unused powder can potentially be
recycled. This not only reduces material wastage but also
contributes to the optimization of resources. By allowing for
reuse of the powder cake, the overall consumption of raw
materials is reduced, thereby leading to further cost savings.
Moreover, recycling minimizes the environmental footprint
associated with sourcing and processing new materials. As such,
the capability of recycling the powder bed amplifies the
sustainability benefits of the CLS process, which makes it an
even more attractive option for industries focused on sustainable
production methods.

This is the first study to compare the energy consumption of
both SLS and CLS, and more work is needed to realize their
translational potential, especially within the emerging Industry
5.0 framework.25,38 It is understood that manufacturing
enterprises are interested in green innovation, but currently,
their discussions remain at the theoretical level. Hence, it is
anticipated that the findings of this study will help to provide a
framework for achieving their green innovation goals.37 The
present findings compliment previous work where there is a
growing body of literature seeking to achieve green innovation in
3D printing. Beyond drug delivery, green innovation for 3D
printing has explored the possibility of both recycling and
upcycling feedstocks.39 Other research has explored the
potential of using 3D printing materials that can sequester
carbon from the environment, thereby minimizing its impact.40

Studies into the use of artificial intelligence (AI) have also been
investigated, whereby AI can minimize the wasteful practice of
trial-and-error and for preventative maintenance.41 Further-
more, SLS has been said to possess the potential to be an
environmentally benign technology for rapid prototyping
compared with traditional processes.42 Thus, it is anticipated
that these green innovations�hardware, formulation, and AI
input�will converge to help ensure pharmaceutical 3D printing
is environmentally sustainable.22,43

The final aim will be to realize the potential of CLS as a robust
industrial pharmaceutical fabrication technique. However, its
versatility extends beyond just large-scale production. CLS
could also serve as an invaluable tool for rapid screening
applications in the laboratory. Removing heating elements can
reduce the size of the printer, which means the technology has
the potential to be compact and require smaller amounts of
powder. This, in turn, translates to cost savings and efficient
utilization of resources. Additionally, the inherent efficiency of
the CLS technique means that the process is expedited, thereby
allowing for faster lead times. This rapidity is particularly
beneficial when quick assessments or iterative testing are
needed, which ensures that potential issues or variations in
material properties can be identified and addressed promptly. As
such, industries looking for both production and prototype
solutions might find CLS to be a twofold benefit meeting both
their fabrication and rapid screening needs.

Moreover, a compact printer will be more likely to be adopted
in clinics because of its space-saving design and ease of
integration into existing infrastructures. Such a compact
footprint allows clinics, even those with limited space, to utilize
the technology without the need for extensive modifications or
renovations. This not only reduces the barriers to adoption but
also ensures that clinics can rapidly deploy and benefit from the
technology, thereby enhancing their service offerings and
improving patient care outcomes.

As expected, altering the laser power was found to alter several
features of the final product. Interestingly, altering the laser
power was found to produce ductile/flexible films, which is
unheard of because SLS has been reported to produce brittle
dosage forms.44,45 Previous work in SLS of engineering polymers
has also reported that samples become less brittle with
increasing laser power.45,46 The reason for this is because
wider sintering necks improve the overall toughness of the
product. Thus, the study alludes to the possibility of producing
flexible films, which will further expand the utility of CLS, as
flexible films are desirable.47 The flexural strength was
comparable to previous work investigating 3D-printed oral
dosage forms where 3D-printed chocolate dosage forms were
found to have a flexural strength of 0.75 ± 0.09 MPa.48

Aside from mechanical properties, this study demonstrated
that the dosage forms made by CLS possessed desirable features
seen in those fabricated by commercial SLS printers, including
API amorphization, friability, fast disintegration times, and fast
drug release.31,36 Further research is, indeed, warranted. The
immediate goal is to scale up the technology to ascertain its
capability to fabricate 3D structures, thereby broadening its
range of applications. It is evident that CLS holds significant
promise as a laser fabrication technology perfectly aligned with
the principles of Industry 5.0 and characterized by human-
centricity and sustainability. The realization of this potential
hinges on demonstrating CLS’s ability to produce personalized
dosage forms and its commitment to maintaining a minimal
environmental footprint.
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■ CONCLUSION
The study set out to determine the feasibility of cold laser
sintering formulations previously fabricated by using a
commercial SLS printer. It was found that the energy from the
laser was sufficient to sinter KollicoatIR, Eudragit L100-55,
Plasdone S-630, Parteck MXP, and Kollidon VA64 formulations
requiring a minimum laser power of 1.8 W. Further increases to
the laser power were found to reduce porosity, increase the
flexural mechanical properties, and reduce the disintegration
and drug release properties of the final solid dosage product. The
energy consumption, and by extension carbon emission, for
printing three printlets using CLS with the highest laser power
(3.0 W) was 99% less than that needed for a commercial SLS
printer to also print three printlets. Thus, the study
demonstrated the potential for redefining laser sintering that is
fit for purpose in Industry 5.0. The findings of this study are
encouraging, and future work will seek to scale-up the
technology, with the long-term vision being an industrial CLS
manufacturing process.
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H.; Sienkiewicz, M.; Mikolaszek, B.; Kucinśka-Lipka, J. PLA−Potato
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