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Urban transport infrastructure is under increasing pressure from rising travel demand in many cities worldwide. It is
no longer sustainable or even economically viable to cope with increased demand by continually adding capacity to
transport networks. Instead, travel demand must be managed by encouraging passengers to adapt their travel
behaviour. This approach necessitates a significantly deeper understanding of the seemingly random variations of
passenger flows than is afforded by the current travel demand modelling techniques. This study presents a new
modelling framework for predicting travel mode choice, through recreating and analysing the choice-set faced by
the passenger at the time of day of their travel. A new data set has been developed by combining individual trip
records from the London Travel Demand Survey (LTDS), with systematically matched trip trajectories alongside their
corresponding mode alternatives from an online directions service and detailed estimates of public transport fares
and car operating costs. The value of the data set is demonstrated by comparing two models of passenger mode
choice based on stochastic gradient boosting trees, one using only the LTDS data and the other with our full data
set. The models are then used to identify the key factors driving passenger mode choice.
Notation
C choice-set
c index of option from choice set
dopt predicted driving trip duration for optimistic traffic
dpes predicted driving trip duration for pessimistic traffic
dtyp predicted driving trip duration for typical traffic
i index of choice situation
Lce multiclass classification error
Lese expected simulation error
Lnll negative log-likelihood loss
N total number of choice situations
bpi,c predicted probability for option c for choice situation i
v traffic variability
yi,c Boolean choice indicator for option c for choice

situation i

1. Introduction
Urban transport networks are facing a number of unprecedented
challenges, most notably how to deal with increased transport
demand from rapid population increase. London is no exception
to this where the population is expected to increase by 25% over
the next 25 years (Greater London Authority, 2016). Over the
same period, the UK government has committed to a legally
binding target to cut greenhouse gas emissions drastically (by
50% of baseline levels by 2027 and 80% by 2050) (Department
for Business, Energy and Industrial Strategy, 2017). Addressing
these challenges requires the intelligent management of travel
demand, combining network improvements with policy and
regulatory changes, that encourage passengers to adapt their travel
behaviour. Transport models used for infrastructure investment
and operations planning conventionally rely on multinomial logit
random utility models (RUMs) to predict passenger mode choice
(Ben-Akiva and Lerman, 1985). These models define utility
equations for each mode, which are used to predict the mode
taken by the passenger for a given trip. RUMs have several
desirable features that help explain their ubiquitous use within
transport modelling: they define a linear function for utility which
is easy for modellers and transport stakeholders to interpret; they
make efficient use of sparse data; and they can be calibrated to
aggregate survey data and passenger/vehicle counts (Train, 2009;
Walker and Ben-Akiva, 2002).

There are two fundamental limitations of the RUM approach. The
first is that separate parameters for each variable must be trained
for each covariate within the utility equation. This increases the
model complexity by order of (n2) for input predictors in terms of
the parameters that must be estimated. This severely limits the
number of predictors used in a RUM as problems arise with the
convergence of parameter estimates in models with high
dimensionality (Nyquist, 1991; Zahid and Tutz, 2013). Second,
the utility specification must be defined beforehand by the
modeller prior to fitting the model. In practice, this restricts
modellers to using coarse categorical covariates and only
investigating first-order interactions of the covariates with the
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input predictors. Therefore, these models do not provide the level
of insight into the seemingly random variations of passenger
flows required for effective travel demand management.

The adoption of several notable transportation-related technologies,
such as live travel information feeds, mobile phone-based location
services, contactless smart cards, vehicle tracking cameras and
connected vehicles, has driven a step change in the availability of
data on passenger movements of several orders of magnitude. These
data provide the opportunity to build much richer models of
passenger behaviour, which directly infer the relationship between
transport and environment conditions, and passenger travel decisions.
These models could be used to generate passenger flows with finer
spatial, temporal and behavioural granularity than is possible with
current techniques. However, there have been limited attempts at
integrating these disparate data sources to create cohesive models.

1.1 Applications of machine learning to predicting
travel mode choice

Several studies have investigated the use of data-driven machine-
learning models as an alternative to RUMs for predicting mode
choice. These approaches include applications of artificial neural
networks (Cantarella and de Luca, 2003, 2005; Hagenauer and
Helbich, 2017; Hensher and Ton, 2000; Omrani, 2015; Omrani
et al., 2013; Xie et al., 2003; Zhao et al., 2010), support vector
machines (Hagenauer and Helbich, 2017; Omrani, 2015; Xian-Yu,
2011; Zhang and Xie, 2008), decision trees (DTs) (Tang et al., 2015;
Xie et al., 2003) and ensemble methods (Biagioni et al., 2009;
Hagenauer and Helbich, 2017; Rasouli and Timmermans, 2014).

These studies have made an important contribution in
demonstrating the suitability of machine-learning classifiers for
predicting passenger mode choice. However, the models are
limited by their input data, which are typically the raw data from
the trip diaries of travel surveys. These data sets do not include
any details of the choice-set faced by a passenger when choosing
mode of travel, and so the impacts of attributes of each mode,
such as duration and cost, cannot be investigated.

This study identifies four further limitations of previous studies.

(a) Machine-learning models are treated as discrete classifiers,
predicting one mode with probability 1 and all others with
probability 0. The primary use case for mode choice models is
probabilistic simulation. As such, it is more beneficial for mode
choice models to output well-calibrated choice probabilities.

(b) Classification accuracy is often used as the primary metric for
assessing predictive power. This is an unsuitable metric for
comparing classifiers as it exhibits the accuracy paradox (see
Section 2.2.2 and the study by Bruckhaus (2007)).

(c) Parameters for the machine-learning classifiers, such as the
number of DTs in an ensemble, are not selected in a
methodological and unbiased way. Model performance is highly
dependent on chosen parameter values, so it is important that a
rigorous selection method is used (Hoos et al., 2014).
30
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(d) While stochastic gradient boosting DTs (GBDTs) have been
shown to have best in class performance in a number of similar
tasks (Brown and Mues, 2012; Caruana and Niculescu-Mizil,
2006; Chapelle and Chang, 2011; Zhang et al., 2017), they have
seen limited use for predictive transport modelling.

To address these requirements, this study presents a new
modelling framework for predicting mode choice, through
recreating and analysing the choice-set faced by the passenger at
the time of travel. GBDTs are used to predict mode choice, with
parameter values selected using sequential optimisation.
Continuous choice probabilities are obtained for all modes, and
the model fit is primarily assessed using log-likelihood loss.

2. Data and methods

2.1 The data set
A new data set has been developed by combining individual
records of the London Travel Demand Survey (LTDS) with closely
matched trip trajectories alongside their corresponding mode
alternatives (i.e. the choice-set faced by the passenger at the time of
travel) from a directions application programming interface (API)
and precise estimates of public transport fares and car operating
costs. This represents the most comprehensive and closely tailored
travel data set for estimating travel choices in a major metropolitan
area. The full dataset is available as supplementary material to this
paper on the website of this journal.

2.1.1 London Travel Demand Survey
A consistent set of individual records from the LTDS from April
2012 to March 2015 is used to build the data set. This comprises
134 486 trips made by 57 640 London residents within Greater
London (TfL, 2015). There are three elements to the survey: a
household questionnaire, individual questionnaires and individual
trip diaries. Each household is surveyed on one day of the year.

The household questionnaire contains details of household
structure and characteristics, as well as household members and
vehicle ownership. Each household member over 5 years of age
completes the individual questionnaire and trip diary. The
individual questionnaire details socioeconomic and travel-related
information. The trip diary records details of each stage of every
journey made on the survey date, alongside the journey purpose,
modes used, trip start time and duration.

The trips in the LTDS are preprocessed before building the new
data set. Short trips within a single postcode area are removed.
Next, each trip is assigned to one of the four main modes:
walking, cycling, public transport, and driving (which includes
car passenger, taxi, van and motorbike). For mixed mode
journeys, the assigned mode is the mode used to travel the most
distance. Trips made by other modes – for example, coach or
boat – account for less than 0·5% of journeys and so are omitted.

Finally, each trip is assigned to one of five journey purposes,
derived from the origin and destination purposes in the LTDS.
 the ICE under the CC-BY license 
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These purposes are employer’s business (B), home-based work
(HBW), home-based education (HBE), home-based other (HBO)
and non-home based other (NHBO).

2.1.2 Directions API
The Google Maps directions API allows for the retrieval of predicted
journey information, including optimal route and duration. The
calculation of the route and duration depends on the mode specified.

■ Walking: The route and duration returned are independent of
departure time, with routes prioritising footpaths and pavements.

■ Cycling: The route and duration are independent of departure
time, with routes prioritising cycle paths and quieter roads
where available.

■ Public transport: The routes and durations are extracted for
specific times of the day and days of the week, matching the
surveyed trip. The route and duration are calculated using
timetable information. The returned route is broken into
separate stages for each walking/bus/rail leg of the journey.
Transfers between services represent separate stages.

■ Driving: The routes and durations are extracted for specific
times of the day and days of the week, matching the surveyed
trip. The route and duration are calculated using a traffic model
that represents the typical traffic conditions on that day and
time. Three traffic levels can be specified which impact both
route and duration: optimistic, pessimistic and best guess.

2.1.3 Travel costs
The estimation of travel costs makes full use of the socioeconomic
and demographic profiles from the LTDS with the corresponding
route and duration data from the directions service. The costs are
closely tailored to represent accurately public transport fares, fuel
prices and the Central London Congestion Charge.

2.1.3.1 PUBLIC TRANSPORT FARES

Public transport fares are determined for single trips using Oyster
card/contactless payment.

The fares for buses and trams are charged per boarding, independent
of trip length. There is no peak/off-peak pricing or zoning of fares.
The three fare levels – full, half (for reduced bus fare holders or
children aged 16–18 who live outside London) or free (for all
children under 16, children aged 16–18 living in London, Transport
for London (TfL) staff, police or national concession buspass
holders) – are applied as per each relevant LTDS journey. These fare
types are determined for each passenger from the LTDS information.

Fares for National Rail, London Underground, London Overground
and the Docklands Light Railway are dependent on four variables:
fare zones (zones 1–9 plus extension fares for specific stations
outside these zones), services used (seven fare types for different
rail services), time of day (peaks from 06.30 to 09.30 and from
16.30 to 19.30) and passenger fare type (normal, child under 16,
16+, disabled persons’ railcard, other discount railcards and free).
The TfL Unified API has been used as far as possible to collect the
 [ University College London] on [26/09/24]. Published with permission by the I
correct fares across the variants above. For rail fares, the fare type
is determined by travel stage. For instance, the peak/off-peak
classification is determined from the start time of each
corresponding stage. As with any major metropolitan area, there are
some exceptions to address within the train fare scheme.

First, there are several pairs of stations on the TfL network where a
free walking interchange between lines is permitted, when exiting
from one station and reentering at a paired station. To allow for
this, a data set of all free transfer station pairs on the TfL network
has been assembled to identify routes where separate services
constitute one continuous journey. Second, there is often more than
one route available between two stations, each with different fares.
In the real world, these fares are determined either by tapping the
contactless payment card on a special interchange card reader at
certain stations or by exiting and reentering a station with a free
interchange. If more than one fare is available, the TFL Unified
API returns a list detailing the available fares and the required
transfer stations. To ensure that the correct fare is assigned, a list of
transfer stations from the directions result is assembled, and this is
used to determine if the required transfer station is passed through.

For complex, multilegged journeys, the total public transport fare
is calculated as the sum of the individual fares for each separate
part. A new fare is recorded each time a bus is boarded or a
journey exits and reenters a station without a free interchange.

2.1.3.2 DRIVING

The driving costs consist of operating cost and the congestion
charge cost. Parking costs are not directly included here as there
are no data to determine parking rates at the destination. Instead,
parking costs are accounted for as part of the residual in model
estimation, following Jin et al. (2002). The operating cost is
calculated using the vehicle operating costs (VOCs) formula
presented in the UK Department for Transport (DfT, 2014)
Transport Analysis Guidance (WebTAG), with the fuel type
determined by the vehicle(s) available to the household. The
lowest cost fuel type is assumed if there is more than one vehicle
in the household. If the household owns no vehicle, an average
fuel type is used. The congestion charge is included if the driving
route crosses the congestion charge zone. The charge is ignored
for journeys on weekends, bank holidays and outside hours, as
well as for other exemptions and zero-charge vehicles.

2.1.4 Processing the data set
An automated script has been written to process the data, the
overall structure of which is illustrated in Figure 1. This develops
the initial work from Hillel et al. (2016).

Six directions API requests are made for each LTDS trip:
walking; cycling; public transport; and driving under optimistic,
pessimistic and best-guess traffic conditions. For the public
transport and driving requests, the requested departure time and
date are matched by day of week and start time to the original
trip, with the departure time set for two weeks after the request
31
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date to ensure that the routes are calculated for typical conditions
and do not include planned public transport disruptions or real-
time traffic. Figure 2 illustrates the routes generated by the
directions API for a single trip.
32
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The durations of each separate stage in the public transport route
are analysed to calculate the access duration, interchange duration
and on-board durations for bus and rail. A measure of the traffic
variability for the driving route is calculated as follows

v ¼ dopt − dpes
dtyp1.

where dopt, dpes and dtyp are the durations for optimistic,
pessimistic and best-guess traffic, respectively, as predicted by the
directions API.

Each public transport and driving entry is then processed to add
the public transport and driving costs.

Finally, the authors remove trips that are out of the scope of the
study. The authors retain all trips that meet the following criteria: (a)
the routes for all modes are completely contained within the
bounding box of the combination of the London Boroughs, M25
orbital motorway and all TfL stations; (b) all steps within the
suggested public transport route use only TfL services and/or stations
(this ensures that all fares are correctly estimated); and (c) the
suggested public transport route has at least one public transport step
(i.e. it is not purely walking).

The finished data set contains entries for 81 086 journeys across
3 years (2012/2013–2014/2015). The data set is naturally
imbalanced, with different ratios of trips for walking (17·6%),
cycling (3·0%), public transport (35·3%) and driving (44·2%).

Figure 3 is generated by projecting the path for the driving option
(under best guess traffic) for all trips in the data set, showing the
data set’s geographical coverage. The trips are projected at low
transparency, so the line intensity represents how frequently the
LTDS

Trip details

Directions API

Choice-set
routes

Cost profile

Cost model

Choice-set
durations

Choice-set
costs

Choice-set
dataset

Passenger
details

Figure 1. Flow chart of data set building process
Figure 2. Diagram of routes generated by directions API for a
single trip
 Figure 3. Diagram of driving paths in data set
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underlying road is used in the data set. A summary of the
attributes for each trip in the data set is given in Table 1.

2.2 Model training and comparison
The data set provides details of the choice-set faced by the
passenger at the time of travel, out of walking, cycling, public
transport and driving. Machine-learning models of mode choice
are trained in order to predict the likely choices made by the
passenger and investigate the relationship between the network
and environment conditions and mode choice.

The primary use case for mode choice models is probabilistic
simulation of future trips, where the mode choice for each trip is
drawn randomly from a probability distribution across each mode.
This presents a supervised probabilistic classification problem. A
mode choice model must therefore generate a probability
distribution for the mode choice for each trip from a feature
vector of attributes of the trip.

In order to emulate the use case of predicting future trips, the data
set is divided by survey year into a training set (2 years, April
 [ University College London] on [26/09/24]. Published with permission by the I
2012–March 2014), used for model optimisation, cross-validation
performance estimation, final model training and a holdout test set
(1 year, April 2014–March 2015), used for the performance
evaluation of the final models.

Two machine-learning models are trained on the data set, one
using only the socioeconomic and demographic profile data from
the LTDS and the other also using the additional choice-set data
from the directions API and cost models (see Table 1 for a list of
corresponding attributes). These are referred to as the raw data
model and the choice-set model, respectively.

2.2.1 Gradient boosting trees
This paper investigates the use of GBDTs to predict passenger
mode choice. GBDTs are a class of ensemble methods, which make
predictions by combining the votes of several shallow DT weak
learners (Friedman, 2002). GBDTs have been shown to consistently
outperform other classification algorithms in a range of tasks
(Brown and Mues, 2012; Caruana and Niculescu-Mizil, 2006;
Chapelle and Chang, 2011; Zhang et al., 2017). Despite this, they
have seen limited use for predictive transport modelling.
Table 1. Data set attributes and descriptions
Type
 Group
 Attribute
CE 
Description
ID and context
 Context
 trip_id
 Unique ID for each trip

travel_mode
 Mode of travel chosen by LTDS trip

ori_postcode
 Origin postcode of the trip

desti_postcode
 Destination postcode of the trip
Socioeconomic and
demographic profile (from
LTDS)
Categorical
 purpose
 Journey purpose for trip (B, HBW, HBE, HBO and NHBO)

fare_type
 Public transport fare type of passenger (16+, child, disabled,

free and full)

fuel_type
 Fuel type of passenger’s vehicle (diesel/petrol/hybrid car or

diesel/petrol LGV)

driving_license
 Whether the traveller has a driving licence

sex
 Gender of passenger
Ordered
numerical
age
 Age of passenger in years

distance
 Straight line trip distance

car_ownership
 Car ownership of household (no cars, less than one car per adult

and one or more cars per adult)

bus_scale
 Percentage of the full bus fare paid by the passenger

start_time
 Start time of trip

day_of_week
 Day of the week of travel

travel_month
 Month of year of travel
Choice-set data (from
directions cost models)
Walking
 dur_walking
 Duration of walking route

Cycling
 dur_cycling
 Duration of cycling route

Public
transport
dur_pt:rail
 Duration spent on rail services on public transport route

dur_pt:bus
 Duration spent on bus services on public transport route

dur_pt:access
 Duration walking to/from first/last stop on public transport route

dur_pt:interchange
 Total duration of public transport interchanges interchanges

dur_pt:total
 Duration of whole public transport route (dur_pt:access+

dur_pt:rail+dur_pt:bus+dur_pt:interchange)

cost_pt
 Cost of whole public transport route

n_ints
 Total number of public transport interchanges (rail–rail, bus–bus,

bus–rail and rail–bus)

Driving
 dur_driving
 Duration of driving route
cost_driving:VOC
 Vehicle operation costs of driving route

cost_driving: con_charge
 Congestion charge for driving route

traffic_var
 Traffic variability (shown in Equation 2)
LGV, light goods vehicle
33
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As well as their predictive performance, GBDTs have a number of
other properties that make them suitable for mode choice prediction.

■ They are highly robust: GBDTs are invariant under monotonic
transformations of individual input variables, insensitive to
long-tail distributions and outliers, can handle missing values,
and are robust to the inclusion of highly correlated and/or
irrelevant input variables (Friedman, 2001). This limits the
need for data preprocessing and feature selection.

■ They can be interpreted using relative feature importance: the
contributions towards minimising the cost function of each input
feature at each split can be summed across the ensemble to
provide the relative importance of each feature (Friedman, 2001).

■ They produce well-calibrated choice probabilities when
trained using a log-likelihood error term (Niculescu-Mizil and
Caruana, 2005).

XGBoost (eXtreme Gradient Boosting; see the study by Chen and
Guestrin (2016)) is a cross-platform implementation of GBDT, with
an interface available with Python. Zhang et al. (2017) show
XGBoost has the highest accuracy in 42·25% of 71 benchmarks
compared with ten alternative state-of-the-art machine-learning
classifiers. This is twice the number of the next-highest performing
classifier, Random Forests (another ensemble-of-trees classifier).

2.2.2 Assessing model fit
There are many performance metrics that can be used to compare
the fit of different classifiers and define the cost function during
model training (Seliya et al., 2009). Machine-learning mode
choice papers in the literature typically use multiclass
classification error (CE, Lce) as the primary performance metric.
This is where a discrete label is generated for each trip by
selecting the mode with the highest predicted probability. The
proportion of trips where the label is not equal to the mode
originally taken (i.e. incorrect classification) is then calculated.

There are two primary limitations to this approach. Firstly, the model
is treated as a discrete classifier, predicting a single class with
probability 1 and all other classes with probability 0. The primary
use case for mode choice models is a simulation, where trips are
assigned to each mode with a probability p. As such the class
probabilities are a more relevant output for mode choice models, and
the performance metric used should reflect this. This limitation
applies to other performance metrics calculated from the confusion
matrix, including false positive/negative rates and F1 score.

Second, for imbalanced data sets, where the distribution between
classes is not equal, high-classification accuracy can be achieved by a
trivial classifier, which always predicts the class with the highest
prior. This is known as the accuracy paradox (Bruckhaus, 2007).
This is a valid issue for mode choice prediction, where certain modes
(e.g. cycling) represent a much lower overall share of trips made.

Negative log-likelihood loss (NLL, Lnll, also known as cross-
entropy loss or logarithmic score) is defined as
34
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Lnll ¼ −
1

N

XN
i¼1

XC
c¼1

yi,c ln bpi,c
2.

where bpi,c is the predicted probability of taking option c from the
choice-set C for choice i and yi,c is the actual choice made (1 for
the chosen option and 0 for all others). Minimising Lnll is
equivalent to maximising the likelihood of the observed data
given the model. As such, using Lnll as the cost function during
model training results in maximum likelihood estimation.

As log-likelihood loss is a representation of the overall likelihood
of the data given the model, it inherently handles imbalanced data
sets and treats mode choice as a stochastic process. Log-
likelihood therefore reflects the use case for mode choice models
and is more suitable than CE/accuracy for assessing mode choice
model fit. However, log-likelihood scores are difficult to interpret
physically. As such, the expected simulation error (ESE, Lese) is
also provided, defined as

Lese ¼ 1 −
1

N

XN
i¼1

XC
c¼1

yi,cbpi,c
3.

This is equivalent to the mean predicted probability for the
selected mode subtracted from 1 and provides the expected
proportion of incorrect mode assignments when using the model
for simulation. Unlike CE, this metric also treats mode choice as a
stochastic process. However, it still suffers from the accuracy
paradox. As such, it should be interpreted as a secondary metric
that demonstrates the impacts of using two different models in
simulation.

In order to evaluate the real-world performance of a model, it is
necessary to validate the performance metric on data unseen during
the model training. Cross-validation splits the data into k folds and
trains k separate models, with each model is trained on k − 1 folds of
the data and tested on the remaining fold. The performance is then
averaged over the k models. This provides performance estimates
that are more robust to sampling noise than those obtained with a
single validation sample and allows the performance to be estimated
across all the data available for model training and evaluation.
Kohavi (1995) investigated cross-validation and bootstrapping for
model selection and found that stratified tenfold cross-validation
provides the most accurate estimate of real-world performance.

Varma and Simon (2006) show that cross-validation provides a
biased estimate of true performance if cross-validation is also used
for model optimisation. For large data sets, a separate holdout test
sample not seen during model training can be used to provide an
estimate of model performance. This is known as holdout sample
testing. When predicting future trips, there are likely to be changes in
unobserved explanatory variables not present in the input feature
 the ICE under the CC-BY license 
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vector. These changes will further reduce model performance when
predicting future trips compared with the predicted cross-validation
performance. By testing the model on a holdout sample from a future
year that has not been seen during model training, the use case for a
model predicting future trips can be emulated.

2.2.3 Hyperparameter optimisation
A classification model is an instance of an algorithm fitted to
training data. As with other machine-learning classifiers, GBDTs
have a set of hyperparameters, which control how the model fits
to input data during training. In order to maximise model
performance, it is necessary to select hyperparameter values that
minimise the generalisation error resulting from the bias–variance
trade-off for the specified task (Hastie et al., 2008).

Models with high bias underfit to the training data and fail to
account for relevant correlations between input features and mode
choice that are present in the real-world test data. Models with
high variance overfit to noise in the test data and as such will
introduce correlations in the model that are not present in other
data samples. Both these scenarios will have two primary impacts
with respect to mode choice simulation: (a) the increased error
will result in lower predictive performance, therefore reducing
simulation accuracy, and (b) there are more likely to be invalid
inferences on the relationship between transport and environment
decisions, which can be interpreted from the model.

Model generalisation error is highly dependent on chosen
hyperparameter values (Friedman, 2001; Hoos et al., 2014). As
such, it is important to employ a rigorous and unbiased method
for hyperparameter selection. The hyperparameters for XGBoost
are presented in Table 2.

n_estimators and learning_rate are the primary
hyperparameters of GBDTs. n_estimators limits the overall
size of the ensemble, and should be set such that performing
another round of boosting does not improve the error score on
the data. In XGBoost, this can be set dynamically using the
early_stopping_rounds variable, which specifies the
maximum extra trees that can be added to the model without
the error score improving. Once this number of rounds is repeated
without the score improving, the training process is terminated.
 [ University College London] on [26/09/24]. Published with permission by the I
When using this method, n_estimators is approximately
inversely proportional to the learning_rate, which controls
overfitting by limiting the weighting of each individual tree’s
contribution to the ensemble. This slows down the training
process, requiring a higher n_estimators, and therefore more
time for the model to converge, resulting, however, in increased
overall performance. Friedman (2001) found that small values of
learning rate (£0·1) dramatically improve model performance.

Optimal values for the remaining hyperparameters must be
determined experimentally. max_depth limits the order of
interaction of input features in all trees in the ensemble. gamma,
min_child_weight, reg_alpha and reg_lambda also
all control the bias–variance trade-off by limiting the complexity
of individual. subsample, colsample_bytree and
colsample_bylevel introduce randomness to make the
training procedure more robust to noise. max_delta_step is
similar to learning_rate except it defines an absolute limit
(rather than a multiplier) of the gain from each tree in the ensemble.

Sequential model-based optimisation (SMBO) algorithms,
otherwise known as Bayesian optimisation algorithms, can learn
from previous hyperparameter selections in order to converge to
an optimal solution in an iterative process. SMBO has been
shown to outperform other methods of hyperparameter selection,
including manual search, grid search and random search (Bergstra
et al., 2014; Snoek et al., 2012). The Hyperopt package (Bergstra
et al., 2015) provides a Python implementation of the tree-
structured Parzen estimator (TPE) algorithm (Bergstra et al.,
2011), which minimises a cost function by drawing values from
prior probability distributions. The cost function and the
probability distributions in the search space must be specified by
the user, as well as the total number of iterations.

2.3 Experimental methodology
GBDT models are used for both the raw data and the choice-set
models, implemented using the XGBoost library. The models are
trained to predict the actual mode taken in the LTDS
(travel_mode). The choice probabilities are calculated for all
four modes in each model. The models are trained with NLL as
the cost function to minimise. The framework for model training
is shown in Figure 4.
Table 2. Description of XGBoost hyperparameters
Hyperparameter
 Description
max_depth
 Maximum limit of the depth (number of levels) of each tree in the ensemble

Learning_rate
 Multiplicative factor of the information contributed by each tree in the ensemble

n_estimators
 Number of boosting rounds/trees in the ensemble

gamma
 Threshold for the minimum loss reduction for a split on a leaf node of each tree in the ensemble

min_child_weight
 Threshold for the minimum weight of each child node after splitting in each tree in the ensemble

subsample
 Random subsample ratio of observations (rows) in the data set for training each tree

colsample_bytree
 Random subsample ratio of features (columns) in the data set which can be considered for splitting in each tree

colsample_bylevel
 Random subsample ratio of features (columns) in the data set which can be considered for splitting at each level of each tree

reg_alpha/lambda
 Regularisation terms that penalise tree complexity in cost function calculation at each split

max_delta_step
 Maximum absolute limit of information contributed to ensemble by an individual tree
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The data set is preprocessed prior to training the mode choice
models. The categorical data are one-hot encoded, so that an
n-class categorical variable is replaced with n binary variables. An
additional sine and cosine are calculated for cyclical data
(start_time, day_of_week and travel_month) to
preserve the cyclical ordering. These are included as features
alongside their linear representation. This results in a total of 30
features in the raw data model and 44 in the choice-set model.
The processed data sets are then divided by year into a training/
evaluation set (2012/2013–2013/2014) and a holdout test
sample (2014/2015). The training/evaluation set is used for
hyperparameter selection and cross-validation performance
estimation and to train the final mode choice models. The final
models are then tested on the holdout sample.

Hyperparameter selection is performed in the Hyperopt library
using a TPE search with 100 iterations for each model. Stratified
tenfold cross-validation is used to estimate the loss in each
iteration of hyperparameter selection, as recommended by Kohavi
(1995). The folds are grouped by household, so that all members
from the same household appear in only one fold. This ensures
that linked journeys (return journeys or journeys made together by
multiple members of a household) do not appear across folds,
36
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which would boost apparent cross-validation performance,
overstating it compared with true performance on unseen data.
The number of boosting rounds in each iteration of
hyperparameter selection is set dynamically using the extra trials
variable, as explained in Section 2.2.2. Extra rounds are
performed until the log-likelihood loss does not improve for 50
consecutive additional rounds, with a total cap of 6000 rounds.
The learning rate is set at 0·01 during the hyperparameter search.
This allows all 1000 XGBoost models (100 iterations, ten folds
for each iteration) to train within a reasonable time on a modern
personal computer (<24 h on an eight-core 3·1 Ghz server). The
search spaces for the other hyperparameters are given in Table 3.
These values are modified from the default search space for
XGBoost in the Hyperopt-sklearn library (Komer et al., 2014).

Cross-validation is then performed for each model with the optimal
hyperparameters to provide a cross-validation performance estimate.
Again, tenfold cross-validation is used, with the folds grouped by
household. The choice probabilities are predicted for each
validation fold in cross-validation. The probabilities across all ten
folds are used to calculate the log-likelihood loss. The expected
simulation accuracy is also provided.

The mode choice models are then trained on all of the training
data (2012/2013–2013/2014). The feature importances are
calculated from these models using the ensemble gain, which is
defined as the total sum of improvement to the log-likelihood loss
across all splits in the ensemble. Finally, the models are tested on
the future year holdout sample (2014/2015) to assess their real
world performance. Both the log-likelihood loss and ESE rate are
also provided.

3. Results and discussion
Table 4 shows the average NLL, ESE and CE for each model, for
both tenfold cross-validation on the training set and holdout
validation of the final models with the test set. The choice-set
model achieves better performance than the raw data model across
all metrics, for both cross-validation and holdout testing.

The predicted performance in cross-validation is higher than that
achieved in holdout-validation for all metrics for both models.
Dataset

Preprocessing

Training set Test set

Hyperparameter
optimisation

Optimal
hyperparameters

Model
cross-validation

Final mode choice
model training

Cross-validation
performance Feature

importances Model testing

Holdout sample
performance

Figure 4. Flow chart of experimental methodology
Table 3. XGBoost hyperparameter search spaces
 t
Hyperparameter
he ICE under the CC-BY license 
Distribution
 Range
max_depth
 Uniform
 1:14

learning_rate
 Fixed
 0·01

n_estimators
 Variable
 See text

gamma
 Log-uniform
 0:5

min_child_weight
 Log-uniform
 1:100

subsample
 Log-uniform
 0·5:1

colsample_bytree
 Log-uniform
 0·5:1

colsample_bylevel
 Log-uniform
 0·5:1

reg_alpha
 Log-uniform
 0:1

reg_lambda
 Log-uniform
 1:4

max_delta_step
 Log-uniform
 0:10
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This demonstrates that cross-validation on the training data
overestimates the performance for predicting mode choice for
future trips. As such, the holdout sample results are used to
indicate real-world performance in the discussion.

GBDTs are non-parametric models. As such, traditional
significance tests based on log-likelihood, such as restricted model
likelihood ratio tests or Bayesian/Akaike information criterion,
cannot be applied. However, as the models are validated on out-
of-sample data, overfitting does not need to be accounted for
within the test statistics, and, as such, the relative likelihood can
be used to compute a confidence interval directly. Over the 26 320
observations in the test data set, the total log-likelihoods are
−18 869·7 and −17 140·7 for the raw data model and the choice-
set model, respectively. The relative likelihood is therefore e−1729.
This demonstrates that adding choice-set information to the data
set significantly improves the model’s predictive ability at all
confidence levels.

The ESE of the choice-set model is 10·6% lower than that of the
raw-data model, which illustrates the real-world benefit of adding
choice-set information to the feature vector for mode choice
models used in transport simulation.

For both models, the CE is significantly lower than the ESE. As
such, it initially appears that treating the choice-model as a discrete
classifier results in a more accurate representation of mode choice
than outputting continuous probabilities for simulation. However, as
CE discretises the model predictions, it does not account for
uncertainty in model predictions. Crucially, this results in aggregate
mode shares, which do not represent those observed in the data. This
is critical for aggregate transportation models, where passenger flows
are the key model output. Table 5 shows the observed mode shares
in the test and train data set, as well as the predicted and expected
mode shares from classification and simulation, respectively, for each
model. The mode shares from discrete classification differ
significantly from the observed mode shares, with the most common
mode, driving, being overrepresented in the model results and the
less common modes (walking and cycling) being underrepresented.
In the case of cycling, there are around 100 times fewer trips
predicted by the model in classification than observed in the data.
For both models, the expected mode shares from simulation match
much more closely to the observed mode shares. These results
highlight the issue of using classification accuracy, and other metrics
 [ University College London] on [26/09/24]. Published with permission by the I
based on the discrete confusion matrix, to evaluate mode choice
model performance.

Figure 5 shows violin distribution plots of the predicted mode
choice probabilities for the selected mode within the holdout test
data set for each model – that is, the probability predicted by the
model for the mode actually taken by the passenger. The choice-
set model distribution is skewed more towards higher
probabilities than the raw data model distribution, both for all
modes (Figure 5(a)) and for each individual mode (Figure 5(b)).
In each case, the median and quartiles are all higher for the
choice-set model. This shows that the choice-set model tends to
predict the correct mode with higher probability than the raw data
model.

Figure 5(b) shows that both models predict highest choice
probabilities for the selected mode for driving and public
transport trips, followed by walking trips and finally cycling trips.
This is a result of the mode shares of trips in the data set, as seen
in Table 5.

3.1 Hyperparameter optimisation
Figure 6 shows the cross-validation log-likelihood loss for each
iteration of hyperparameter selection for the choice-set and raw-
data model. It shows a significant improvement in log-likelihood
loss score for both classifiers, with both models converging
towards an optimal solution. This improvement is a result of
SMBO identifying hyperparameter values, which mininimise the
generalisation error from bias and variance.

The primary hyperparameters (n_estimators and
learning_rate) are set on each iteration to achieve the
minimum log-likelihood loss, and so all improvement in loss is
achieved by optimising the remaining hyperparameters. Both
models have found a solution close to the optimum after around
40 iterations. The worst-case guess for the models result in a log-
likelihood loss of 0·715 and 0·643 for the raw data model and
choice-set model, respectively. This represents a substantial
Table 4. Performance metrics for each model (lower is better)
Metric

Validation
method
Raw data
model
Choice-set
model
NLL
 Cross-validation
 0·694
 0·635

ESE
 Cross-validation
 0·390
 0·349

CE
 Cross-validation
 0·276
 0·242

NLL
 Holdout sample
 0·717
 0·651

ESE
 Holdout sample
 0·393
 0·351

CE
 Holdout sample
 0·285
 0·252
Table 5. Observed aggregate mode shares for the train and test
sets, as well as predicted (classification) and expected (simulation)
aggregate mode shares for holdout validation set for raw data
model and choice-set model
C
E under the CC-BY lic
Walking
ense 
Cycling
 PT
 Driving
Observed

Train: %
 17·50
 2·82
 34·88
 44·80

Test: %
 17·80
 3·27
 36·10
 42·83
Raw data model

Classification: %
 15·36
 0·03
 35·46
 49·16

Simulation: %
 16·96
 2·94
 36·71
 43·39
Choice-set model

Classification: %
 15·63
 0·04
 36·51
 47·82

Simulation: %
 16·98
 2·88
 36·30
 43·84
PT, public transport
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difference in performance compared with the optimal values of
0·694 and 0·634. In particular when considering that the primary
hyperparameters, which have the highest impact on predictive
performance, are optimised separately for each iteration. This
highlights the need for a rigorous hyperparameter selection
procedure when comparing machine-learning models.

Table 6 shows the optimised hyperparameters for the raw data and
choice-set models. In both cases, the optimal solution is an
ensemble with a large number (>1000) of DTs of limited depth
(£6). This depth allows for up to fourth-order interactions of input
features in each tree of the raw data model and fifth order in the
choice-set model.

3.2 Feature importances
Figure 7 shows the ranked relative feature importances of each
feature in each model, calculated using the ensemble gain. Classes
of features are grouped by category to form compound features,
as shown in Figures 7(c) and 7(d). This includes the categorical
features that were one-hot encoded (faretype, fueltype and
purpose) and cyclical data, which had a sine and cosine added
(start_time, day_of_week and travel_month) for both
38
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models, as well as the different subcategories of the public
transport duration and driving cost (dur_pt and
cost_driving) in the choice-set model.

In general, the choice-set model has more balanced feature
importances than the raw data model. In the raw data model, the
two features with the highest importance (distance and
All modes
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Figure 5. Violin frequency plots of predicted mode choice probabilities for raw data and choice-set modes for (a) all modes combined
(predicted probability of chosen mode) and (b) separated by transport mode (predicted probability of chosen mode). Dashed lines mark
median and interquartile ranges of each distribution. PT, public transport
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Figure 6. Cross-validation log-likelihood loss at each iteration of hyperparameter optimisation for (a) raw data model and (b) choice-set model
Table 6. Optimised hyperparameters for tuned models (stated to
four significant figures)
 t
Hyperparameter
he ICE under the CC-BY lice
Raw data model
nse 
Choice-set model
max_depth
 5
 6

learning_rate
 0·01
 0·01

n_estimators
 1340
 1440

gamma
 0·02379
 0·2871

min_child_weight
 21
 31

subsample
 0·7
 0·55

colsample_bytree
 0·75
 0·6

colsample_bylevel
 0·55
 0·8

reg_alpha
 0·0044 85
 0·0068 64

reg_lambda
 2·369
 2·057

max_delta_step
 6
 1
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car_ownership) account for 67% of the total information
in the model, whereas in the choice-set model, the two
features with the highest importance (car_ownership and
dur_walking) only account for 29%. Figure 7(a) shows that
the duration features added to the choice-set model from the
directions API have high relative importance, as does
traffic_percent. Within the public transport duration, the on-
board bus, on-board rail and access durations are all of similar
importance. The impacts of these additional features on aggregate
passenger flows can be investigated when using the choice-set
model for transport simulation. In both models, sex and travel

month are of low relative importance, suggesting that there are
not strong month-by-month or gender variations in the mode
distributions.
 [ University College London] on [26/09/24]. Published with permission by the I
4. Predictive framework
The methodology to build the data set and train the mode choice
model presented in Sections 2.1.4 and 2.3 form a general
framework for building a predictive mode choice model, that
can be applied to any major city. The model can then be used to
predict the mode choice for a previously unseen journey within a
larger transportation simulation model.

The results of this study highlight the advantages of this approach
over existing techniques. Adding detailed choice-set information
to the feature vector significantly improves the predictive ability
of the model, in terms of both overall log-likelihood and ESE.
This improves the accuracy of passenger flows generated by the
model. Additionally, the model has added flexibility, as the
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Figure 7. Relative feature importance (ensemble gain) with compound features for (a) choice-set model (relative feature importances) and
(b) raw data model (relative feature importances). Subfeature labels and proportions for compound features are given in (c) for the choice-
set model (compound features) and (d) for the raw data model (compound features)
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impacts of the additional features on mode choice can be
investigated to determine experimentally the expected passenger
flows under changing conditions.

The automated model optimisation and training process allows the
mode choice model to be developed without specification and
testing of the utility function or feature interactions beforehand.
The maximum tree depth of the choice-set model allows for fifth-
order interactions of input features in each tree, which is outside
the scope of what could be modelled within a RUM.

Overall, the improvements in mode choice prediction open up
the opportunity for city-scale transport network simulation at
high temporal and spatial resolution, by simulating the choices
of individuals on the network in an agent-based approach.
These simulations could provide transport network operators with a
significantly deeper understanding of passenger flow variations and
allow for reliable quantitative analysis of network improvements,
policy and regulatory changes and potential disruptions.

A script has been written that automates the process of recreating the
choice-set for new trips for mode choice prediction and can be used
to batch process a data set of trips from an origin–destination matrix.

(a) Predict/collate trip origin, destination, departure time, and
travel day-of-week for the trip(s).

(b) Generate directions API requests for walking; cycling; public
transport; and driving under optimistic, pessimistic and best-
guess traffic using information from step (a). Use the result of
step (b) to determine walking, cycling, public transport and
driving durations, number of interchanges and traffic variability.

(c) Predict/collate fare type, bus-scale and fuel-type. Assume
default values if they are not available.

(d) Use the cost model with information from steps (c) and (d) to
determine public transport fare, driving VOCs and congestion
charge.

(e) Predict/collate as many as possible from purpose, driving
license, sex, age, car ownership and travel month.

( f ) Use choice-set model to predict mode choice probabilities
from feature vector defined from information from steps (a)
and (c)–( f ).

4.1 Missing data
GBDTs inherently handle missing values during prediction with
an optimal direction for missing values at each split determined
during training. As such, the modelling framework is robust to
missing values when predicting mode choice.

As a minimum, the trip origin, destination, departure time and
travel day-of-week need to be specified. This allows the choice-
set to be recreated from the directions API using accurate
timetable and traffic information for the public transport
and driving trips. Within the cost model, default values are
assumed for the cost profile (fueltype: average car;
faretype: full; bus_scale: 1).
40
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The remaining attributes in the feature vector are not critical, and a
prediction can be obtained even if no values are present in the data.

5. Conclusions
This study presents a new data fusion approach for recreating choice-
sets faced by passengers at the time of day of their travel. This
methodology has been used in this paper to create a comprehensive,
closely tailored travel data set, developed from trip diaries from the
LTDS from 2012 to 2015. This data set is used to train GBDT
models of passenger mode choice. The models are capable of
predicting well-calibrated choice probabilities, which make them
useful in understanding people’s travel choices whilst accounting for
the diversity and variability of human behaviour.

The performance of the models is evaluated using NLL, estimated
on the data using k-fold cross-validation, with the folds grouped
by household. The results demonstrate that adding choice-set
information to the model input data significantly improves the
mode choice model’s predictive capability, in terms of both log-
likelihood loss and overall classification accuracy.

SBMO is used for hyperparameter selection for the mode choice
models. The results demonstrate the impact of hyperparameter
selection on model performance and highlight the requirement for
rigorous hyperparameter selection procedures when comparing
machine-learning models.

Adding choice-set information to the travel choice model allows
the impacts of the additional variables on passenger flows to be
determined experimentally. Additionally, the flexible nature of
GBDT models allows for complex feature interactions without
prior specification of a utility function.

The methodology in this paper has been used to form a
general framework for creating new mode choice models for
transport simulation for infrastructure investment and operations
management, which can be applied to any city with similar
travel surveys worldwide. These models present the opportunity for
a significantly deeper understanding of passenger flow variations.
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