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Math performance is negatively related to math anxiety (MA), though MA may impact 

certain math skills more than others. We investigated whether the relation between MA and 

math performance is affected by task features, such as number type (e.g., fractions, whole 

numbers, percentages), number format (symbolic vs. nonsymbolic), and ratio component size 

(small vs. large). Across two large-scale studies (combined N = 3,822), the MA-performance 

relation was strongest for large whole numbers and fractions, and stronger for symbolic than 

nonsymbolic fractions. The MA-performance relation was also stronger for smaller relative 

to larger components, and MA relating to specific number types may be a better predictor 

of performance than general MA for certain tasks. The relation between MA and estimation 

performance changes depending on task features, which suggests that MA may relate to certain 

math skills more than others, which may have implications for how people reason with numerical 

information and may inform future interventions.
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Adults use mathematics constantly in their everyday lives. As with young children, math 

performance in adulthood encompasses a wide range of skills with different complexity 

levels, ranging from being able to choose the most efficient line in a grocery store (weighing 

the relative number of people in each line and the approximate number of items in their 

carts) to accurately finding a place in line according to an assigned number (as when lining 

up to board a plane), to being able to quickly compute a tip after a meal. Unsurprisingly, 

there are large individual differences among adults in math performance (Dowker, 2019a). 

These individual differences are related to not only variability in practice, strategy use, and 

cognitive skills, but also to affective processes (Batchelor et al., 2019), such as math anxiety 

(MA)—the feeling of tension, fear, or apprehension towards mathematics.

Math Anxiety

Math performance and MA are negatively related (Dowker, 2019b, Mammarella et al., 2019, 

Richardson & Suinn, 1972; see meta-analyses by Hembree, 1990; Ma, 1997; Namkung 

et al., 2019). A recent meta-analysis found a small-to-moderate, but statistically reliable, 

correlation between MA and math performance (r = −.28, Barroso et al., 2021). In general, 

people with higher math anxiety have, or are at risk of having, lower math performance 

(Barroso et al., 2021; Soltanlou et al., 2019); however, the direction of association 

remains unclear because it is difficult to disentangle whether high MA causes lower math 

performance or vice versa.

Over the past 40 years, several accounts of the directionality of the relation and the 

mechanism underlying the relation between MA and math performance have been proposed 

(Ashcraft, 2019; Barroso et al., 2021; Ramirez et al., 2018). According to the Disruption 

Account, math anxiety leads to worry and anxious ruminations that reduce available 

resources of the working memory system that can be allocated towards the math task 

(Eysenck & Calvo, 1992; see also Ashcraft & Kirk, 2001; Beilock & DeCaro, 2007; 

Eysenck, 1997; 2013; Hopko et al., 1998; Lee & Cho, 2018; LeFevre et al., 2005). 
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According to the Reduced Competency Account, MA relates to, and possibly results from, a 

deficiency of basic as well as advanced math skills (Maloney et al., 2010; see also: Maloney 

& Beilock, 2012; Maloney et al., 2011; Nuñez-Peña & Suárez-Pellicioni, 2014). Finally, 

the Interpretation Account proposes that it is an individual’s appraisal of previous math 

experiences as indicators of lack of math ability that leads to math anxiety (Ramirez et 

al., 2018; see also Jamieson et al., 2016; Meece et al., 1990; Park et al., 2014). There is 

empirical evidence supporting each theory, and they are not necessarily mutually exclusive 

(Ashcraft, 2019); the goal of this research is not to take a stand in favor of any theory, 

specifically. However, in the discussion, we will return to these theories to aid in the 

interpretation of our findings.

There is some evidence that MA may be more strongly related to particular aspects of 

mathematics, such as specific subdomains or components of math, or specific math tasks 

or difficulty level of the math task (Dowker, 2019b). For example, there is some evidence 

to suggest math anxiety mostly arises in the context of complex or unfamiliar math tasks 

(Maloney & Beilock, 2012). Existing research on MA and math performance has primarily 

focused on numerical aspects of mathematics (Dowker, 2019b); yet, it remains unclear 

whether the association between math anxiety and math task performance varies depending 

on task features, such as number type (e.g., fractions, whole-numbers, percentages; Mielicki 

et al., in press; Sidney et al., 2021), component size (e.g., large [15/30] vs. small [½]; 

Fitzsimmons et al., 2020a; Fitzsimmons & Thompson, 2022), and number format (e.g., 

symbolic vs. nonsymbolic; Fazio et al., 2014). Here, we investigate the extent to which 

the relation between math anxiety and math performance is modulated by numerical task 

features.

Numerical Task Features Impact Affective Responses to Math

Specific features of numbers in a given math task, such as number type (e.g., fractions, 

whole numbers, etc.) and component size (e.g., 1/5 is a small-component fraction relative to 

the large-component fraction, 60/300) may relate to adults’ feelings of anxiety when solving 

a problem. Prior studies have demonstrated that manipulating features of tasks that make 

problems seemingly more complex (e.g., by using fractions rather than whole numbers; 

using large-component fractions rather than smaller ones) elicits affective responses that 

are related to MA. For example, adults and children endorse liking whole numbers more 

than percentages and fractions (Mielicki et al., 2021; Sidney et al., 2021). Even educators 

with years of experience teaching fraction content report more anxiety about fractions 

than other math content (Mielicki et al., 2021). People also report lower confidence for 

large-component relative to small-component fractions and rate their familiarity higher 

for small-component relative to large-component fractions (Fitzsimmons et al., 2020b). 

The relation between MA, as an affective response to math, and types of numbers may 

follow a similar pattern and vary depending on number type, which may have implications 

for the link between MA and math performance. In the present study, we test how task 

features (number type, format, and component size) impact the relation between MA and 

performance on numerical tasks.
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Numerical Task Features Impact Math Performance

Math is a complex, multidimensional skill, encompassing highly diverse subdomains. 

Investigating specific mathematical skills is essential to obtain a deeper, more nuanced 

understanding of the precise role of affective processes, such as MA, the association 

between MA and math performance, and the potential influence of numerical task features 

on this association. The current study focuses on the number-line estimation (NLE) task, 

which is the “gold standard” for assessing understanding of the relative magnitude of 

rational numbers (Thompson, Sidney, et al., 2022). NLE performance is strongly associated 

with important math outcomes (Fazio et al., 2014; Siegler & Pyke, 2013; Siegler & 

Thompson, 2014; Siegler et al., 2011; Xing et al., 2021). In addition, adults’ NLE 

performance has been shown to relate to their ability to solve health-related ratio problems, 

such as comparing COVID-19 to the common flu by considering deaths relative to cases for 

each disease (Fitzsimmons et al., 2022; Thompson et al., 2021), and being able to solve such 

problems may have implications for health cognition (Mielicki et al., in press). Although 

performance on NLE tasks and MA are negatively correlated (Fitzsimmons & Thompson, 

2021; Lau et al., 2022a; Maloney et al., 2011; Sidney, Thalluri, et al., 2019; Sidney et al., 

2021; Thompson et al., 2021), the relation between NLE and MA has not been explored for 

magnitude understanding across different types of rational numbers.

NLE tasks have been used to assess rational number magnitude understanding across various 

numerical ranges for whole numbers (Fitzsimmons et al., 2021; Landy et al., 2013; Siegler 

& Booth, 2004; Siegler & Opfer, 2003; Siegler & Ramani, 2009; Thompson & Opfer, 2010; 

Thompson & Siegler, 2010; Wall et al., 2016) and fractions (Sidney et al., 2021; Sidney, 

Thalluri et al., 2019; Sidney, Thompson, & Opfer, 2019; Siegler & Thompson, 2014; Siegler 

et al., 2011; Thompson et al., 2021; 2022). Children are less accurate when placing fractions 

on number lines than when placing whole numbers (Fazio et al., 2014), and more accurate 

for both fractions and whole numbers up to 1,000 compared to whole numbers up to 100,000 

(Fitzsimmons & Thompson, 2022). Adults with lower prior knowledge of equivalence (i.e., 

two magnitudes are equal) were less precise when estimating large-component relative to 

small-component equivalent fractions (Fitzsimmons et al., 2020a) than adults with higher 

prior equivalence knowledge. Overall, NLE performance varies depending on the type of 

number being estimated and the size of the components of rational numbers. However, no 

existing work has examined how these task features impact the relation between MA and 

performance on NLE tasks.

Number format, whether numbers are presented symbolically (i.e., as Arabic digits) or 

non-symbolically (e.g., as ratios of dot arrays or line segments), has also been found to 

impact performance on other math tasks. For example, people take longer to compare pairs 

of symbolic fractions than pairs of nonsymbolic fractions (Kalra et al., 2020; Matthews & 

Chesney, 2015). Prior work has shown a stronger association between MA and symbolic 

number processing than nonsymbolic number processing (e.g., Braham & Libertus, 2018; 

Colomé, 2019; Dietrich et al., 2015; Starling-Alves et al., 2021). Thus, number format 

may also impact MA, if symbolic tasks recruit different working memory resources than 

nonsymbolic tasks (van’t Noordende et al., 2021; Xenidou-Dervou et al., 2015), or if people 
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perceive nonsymbolic tasks to be less “math-like” than symbolic tasks due to their lack of 

numbers.

The Current Study

Task features influence people’s NLE precision (Fazio et al., 2014; Wall et al., 2016), 

confidence, attitudes, and sense of familiarity. Given that task features impact reasoning as 

well as affective responses, these features may also impact the relation between MA and 

math performance. In the current research, we investigate the extent to which task features 

change the relation between MA and number line estimation performance. Specifically, in 

two large-scale studies (combined N = 3,822), we investigated, on the one hand, the impact 

of three numerical task features (i.e., number type, number format, and component size) 

on the relation between MA and math performance, and, on the other hand, how adults’ 

general math anxiety and anxiety about specific types of numbers was associated with 

performance on different number line estimation tasks. A more nuanced understanding of 

the specific impact of MA on different aspects of numerical magnitude understanding is 

critical because MA poses a significant obstacle for realizing the full potential of one’s math 

skill development (Dowker et al., 2016).

We conducted preregistered secondary data analyses on two large samples of adults (Study 

1: Lau et al., 2022a; Study 2: Thompson et al., 2021). In Study 1 and 2, we investigated the 

following research questions: (RQ1) Does the relation between MA and performance vary 

by number type (e.g., fractions, whole-numbers, percentages; etc.)? (RQ2) Does the relation 

between MA and performance vary for symbolic vs. nonsymbolic fractions? And (RQ3) 

Does the relation between MA and performance on fraction estimation problems vary by 

component size? Additionally, in Study 2, we also investigated whether the relation between 

MA and NLE performance varied depending on whether the MA measure aligned with the 

behavioral measure (RQ4) by testing whether number-specific MA was a stronger predictor 

than general MA for whole-number and fraction NLE performance. This research question 

was motivated by prior work demonstrating that the relation between attitudes and specific 

behaviors is stronger when the attitude measure and the behavior are measured with similar 

specificity (e.g., Pajares, 1996).

Study 1

In Study 1, we performed a secondary data analysis on the dataset from Lau and colleagues 

(2022a) investigating the effects of mathematical understanding on attitudes and behaviors 

towards COVID-19.

Method

Transparency and Openness—The survey flow of all measures is included in the 

Supplemental Materials, and question wording for all survey items is available on the OSF 

page for the project (see Author Note). The data and analytic code are also available on the 

OSF page for the project.
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Participants—A large dataset of adults (N = 2,124), recruited through Qualtrics panels, 

was used in the current secondary data analyses (Lau et al., 2022a). Participants from 

Canada, the United States, and the United Kingdom were recruited in December 2020, and 

were stratified by age, gender, and educational attainment (see Table A1 for demographic 

characteristics). After data cleaning according to preregistered exclusion criteria (for full 

details see “Exclusion Criteria and Outlier Identification” and “Missing Data” from Lau 

et al., 2022a), the final analytic sample was 2,032 participants. Participants were excluded 

when they (a) had multiple submissions, (b) indicated that they were not serious when 

completing the survey, (c) incorrectly answered more than one attention check question 

(e.g., “This is an attention check, please select answer 3 for this item;” Barends & de 

Vries, 2019), (d) had more than 25% missing data from selecting “prefer not to answer”, 

or (e) indicated that they were vaccinated or participated in a COVID-19 vaccination trial. 

Additionally, poor responders on the number-line estimation tasks, defined as participants 

with a median absolute deviation of their estimates below 0.10, were excluded from the final 

analyses.

Tasks and Procedure—The online Qualtrics survey administered in Lau et al. (2022a) 

took approximately 20 minutes to complete and included four sections: demographics, 

basic numeracy, COVID-19 health numeracy, and COVID-19 health-related attitudes and 

behaviors. First, participants completed the consent form followed by a section about 

demographics and other cultural variables. Then, they completed the basic numeracy, 

COVID-19 health numeracy, and COVID-19 health-related attitudes and behaviors sections. 

The order of these three sections was randomized across participants. Details of sampling 

and data collection procedures are available on OSF: https://osf.io/xj874/. For the purpose of 

the current study, only the demographics and basic numeracy sections were analyzed. Below, 

we discuss only the measures used to test our specific research questions.

Demographics: Participants reported their anxiety from 1 = not anxious to 10 = very 

anxious for two items pertaining to trait anxiety, and MA. The one-item MA measure 

has been shown to be strongly correlated with longer MA scales (Ashcraft, 2002; Hart 

& Ganley, 2019; Núñez-Peña et al., 2014). The primary predictor of interest, MA, was 

assessed with the question: “How anxious do you feel when you are expected to do math?” 

Trait anxiety was assessed with the question: “How anxious were you in general, before 

the COVID-19 pandemic?” Participants indicated their gender by selecting one of the 

following options: male, female, non-binary, prefer not to disclose, prefer to self describe. 

If participants selected to self describe, they were prompted to do so in a separate text box. 

Participants also indicated their age, level of education (“How many years of schooling have 

you completed? (Including grade 1/Year 1 and onwards),” and country of residence (U.S., 

U.K., or Canada).

Number Line Estimation Tasks: All participants completed the following number line 

estimation tasks: (a) nonsymbolic fractions, (b) large whole numbers (with 1,000 and 

1,000,000,000 as endpoints), (c) percentages (with 0% to 5% as endpoints), (d) fractions 

(with 0 and 5 as endpoints), and (e) whole-number frequencies (with 0 in 100 and 

100 in 100 as endpoints). All tasks had acceptable internal consistency (Cronbach’s α: 
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whole number frequencies = .61, fractions = .75, whole numbers = .70, percentages 

= .60, and nonsymbolic fractions = .58). The number line estimation task types were 

presented in randomized blocks and individual items were randomized within those blocks 

across participants. The number-line estimation tasks featuring fractions and whole-number 

frequencies included items with either small (e.g., 1/9) or large (e.g., 63/45) numerator and 

denominator components (e.g., Braithwaite & Siegler, 2018a; Fitzsimmons et al., 2020a). 

For all tasks, participants estimated the location of a value on a number line. Estimation 

precision was operationalized as Percent Absolute Error (PAE), the distance of the estimate 

from the exact value adjusting for the range of possible values (Siegler & Booth, 2004). PAE 

= ((|estimate - true value|) / numerical range) * 100. PAE was calculated separately for each 

number type (large whole numbers, percentages, whole-number frequencies, fractions, and 

nonsymbolic ratios). For fractions and whole-number frequencies, we also calculated PAE 

separately for small and large components.

Results

As preregistered (https://osf.io/e6pgh/?view_only=fbabbf180aef4915a1ff6c1ffb82abe9), we 

fit several linear mixed-effects models for item-level PAE using the lme4 package (Bates et 

al., 2012) as in R (version 4.1.1; R Core Team, 2020), and p values were estimated using 

the lmerTest package (Kuznetsova. et al., 2017). Models were fit using restricted maximum 

likelihood estimation (REML). For all mixed-effects models reported below, we followed 

an approach recommended by Barr (2013) to simplify the random-effects structure when 

necessary. We first ran each model with the maximal random structure, including random 

intercepts at the subject and item levels as well as subject-level random slopes for MA. If 

the model failed to converge, we first fixed the correlation between slopes and intercepts 

to zero, then eliminated any by-subject random slopes, and finally eliminated by-item 

random intercepts. Parameters are evaluated with t-tests (for individual contrasts) and Type 

III F-tests (for multi-degree-of-freedom tests of model comparisons) using Satterthwaite’s 

method for estimating degrees of freedom. To further evaluate contrasts and test the simple 

slopes for each level of the factor of interest, we used the emtrends function in emmeans 

(Lenth, 2020), which reports t-tests associated with individual contrasts with Satterthwaite’s 

method for estimating degrees of freedom.

In addition to the predictors of interest, all models included the following preregistered 

covariates: country, gender, education level, age, and trait anxiety. Gender was dummy 

coded with non-males (i.e., females and one nonbinary participant) as the reference 

group. Country was dummy coded with U.S. as the reference group. Education level was 

dichotomized, and dummy coded with “13 years or less” as the reference group. Since all 

models included higher-level interactions with MA, it was grand mean centered so that 

lower-level relations could be interpreted. Trait anxiety and age were standardized such that 

M = 0 and SD = 1. Descriptives and correlations among measures in Study 1 can be found 

in Table 1, and the number of participants in each cell by gender, country, and dichotomized 

education can be found in Table A2.

As preregistered, we first tested whether MA differed by country in a one-way ANOVA. 

Indeed, country differences in MA were present in this data set, F(2, 2018) = 32.01, p < 
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.001. Participants in the U.S. reported lower MA (M = 3.16, SD = 2.46) than participants in 

the U.K. (M = 4.12, SD = 2.69) and Canada (M = 4.16, SD = 2.61), who did not differ. Thus, 

country was included as a covariate in all models for Study 1 reported below1. Consistent 

with prior research (Else-Quest et al., 2010), we observed gender differences2 in MA with 

non-males reporting higher MA than males, t(1966) = 11.00, p < .001, Cohen’s d = 0.49.

Does the Relation Between MA and Performance Vary by Number Type?—To 

test this question, we predicted PAE (i.e., performance on the number-line estimation tasks) 

from MA, number type (large whole numbers, whole number frequencies, fractions, and 

percentages), and their interaction while controlling for the covariates described above. We 

followed up the interaction by testing whether the effect of anxiety was significant for each 

of the number types. Number type was dummy coded with fractions as reference. The model 

with by-subject random slopes failed to converge, so the final model included only subject- 

and item-level intercepts.

The interaction between MA and number type was significant, F(3, 38,213) = 22.20, p < 

.001 (see Table 2). The relation between MA and PAE was significant for all number types 

(fractions: b = 1.07, 95% CI [0.89, 1.25], large whole numbers: b = 0.92, 95% CI [0.74, 

1.11], whole number frequencies: b = 0.59, 95% CI [0.41, 0.77], percentages: b = 0.33, 95% 

CI [0.11, 0.54]), with higher MA associated with higher PAE (Figure 1). However, contrasts 

of the simple slope effects revealed that the relation between MA and PAE was stronger for 

fractions than for whole-number frequencies (b = 0.48, SE = .06, t(38,210) = 5.62, p < .001) 

and percentages (b = 0.75, SE = .10, t(38,210) = 7.18, p < .001). In addition, the relation 

was stronger for large whole numbers than whole-number frequencies (b = 0.33, SE = .09, 

t(38,225) = 3.70, p = .001) and percentages (b = 0.60, SE = .11, t(38,203) = 5.57, p < .001), 

and for whole-number frequencies than percentages (b = 0.27, SE = .10, t(38,213) = 2.56, 

p = .049). Surprisingly, the relation was similar for fractions and large whole numbers (b = 

0.15, SE = .09, t(38,213) = 1.67, p = .343).

Does the Relation Between MA and Performance Vary for Symbolic vs. 
Nonsymbolic Fractions?—To test this question, we predicted PAE from MA, number 

format (symbolic vs. nonsymbolic), and their interaction while controlling for the covariates 

described above. We followed up the interaction by testing whether the effect of anxiety was 

significant for each number format. Number format was coded with symbolic fractions as 

reference. The final model had maximal random structure with random slopes of format by 

subject as well as subject- and item-level intercepts.

1We also ran exploratory models (not preregistered) with three-way interactions with country to examine whether the effects of 
number type, symbolic vs. nonsymbolic fraction format, and component size on the relationship between MA and performance varied 
by country (see Tables A3 to A5 in the Appendix). The only model that featured a significant interaction by country was the model for 
component size (RQ3). The significant interaction suggests that the strength of the relation between MA and performance varied by 
component size for participants in the UK, but for participants in the US and CA the relation did not reach significance. None of the 
models revealed significant two-way interactions for country and MA.
2We also ran exploratory models (not preregistered) with three-way interactions with gender to examine whether the effects of number 
type, symbolic vs. nonsymbolic fraction format, and component size on the relationship between MA and performance varied by 
gender (see Tables A6 to A8 in the Appendix). None of the models revealed significant three-way interactions with gender, suggesting 
that, despite gender differences in MA, the relation between MA and math task performance varies by aspects of the problem similarly 
for males and non-males.
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The interaction between MA and number format was significant, F(1, 2,002.54) = 7.42, p = 

.007 (see Table 3). As can be seen in Figure 2, the relation between MA and number format 

was significant for both symbolic (b = 1.04, 95%CI[0.80, 1.27]) and nonsymbolic tasks (b 
= 0.64, 95%CI[0.38, 0.90]). However, the relation between MA and PAE was stronger for 

symbolic fractions than for nonsymbolic fractions (b = 0.40, SE = .15, t(2003) = 2.72, p = 

.007).

Does the Relation Between MA and Performance on Whole-Number 
Frequency and Fraction Estimation Vary by Component Size?—In Study 1, 

whole number frequencies and fractions were presented with either small (e.g., “1 in 9” 

or 4/7) or large (e.g., “80 in 96” or 63/45) numerical components. To investigate whether 

the relation between MA and number line estimation performance varied by component 

size, we first fit a model that included the three-way interaction between MA, number type 

(whole number frequencies, fractions), and component size (small, large) as a predictor as 

well as all main effects. Both number type and component size were dummy coded, and 

fractions and small components were reference groups. The model with by-subject random 

slopes failed to converge, so the final model included only subject- and item-level intercepts. 

The three-way interaction was not significant, so we reran the model collapsing across tasks 

(see Figure 3), with MA, component size, and their interaction as predictors, along with the 

covariates.

The model with maximal random structure failed to converge, so the final model included 

only subject- and item-level random intercepts. The interaction between MA and component 

size was significant (see Table 4), so we followed up the interaction by testing whether 

the effect of anxiety was significant for each component size. As can be seen in Figure 3, 

the relation between MA was significant for both small, b = 0.98, 95%CI[0.79, 1.16], and 

large components, b = 0.74, 95%CI[0.55, 0.93], with higher MA associated with higher 

PAE. However, the relation between MA and PAE was stronger for small compared to large 

components, b = 0.23, SE = .09, t(22.098) = 2.68, p = .007.

Study 2

In Study 2, we conducted a conceptual replication and extension of Study 1, using data from 

Thompson and colleagues (2021), who investigated whether an educational intervention that 

taught adults how to calculate case-fatality rates improved COVID-19 related math problem-

solving. We again investigated whether the relation between MA and performance varied by 

type of number (RQ1) and whether the relation between MA and performance varied for 

symbolic vs. nonsymbolic fractions (RQ2) with a different nonsymbolic task than that used 

in Study 1. In addition, we included number-specific MA items (e.g., specifically relating to 

anxiety about fractions) to address whether the relation between MA and NLE performance 

varies depending on whether the MA measure aligns with the behavioral measure (RQ4). In 

other words, whether number-specific MA measures are better predictors of performance on 

number-specific math tasks than general MA measures (e.g., MA related to whole numbers 

better predicts NLE performance with whole-numbers). Finally, we explored which type of 

MA measure (general, whole-number specific or fraction-specific) was most predictive of 

nonsymbolic ratio comparison performance.
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Method

Transparency and Openness—The survey flow of all measures is included in the 

Supplemental Materials, and question wording for all survey items is available on the OSF 

page for the project (see Author Note). The data and analytic code are also available on the 

OSF page for the project.

Participants—Thompson et al. (2021) sampled 2000 American adults, who were 

deemed to have provided a “quality complete” survey by the Qualtrics data collection 

team. Sampling was stratified by age, gender, and educational attainment. A total of 

1,820 participants met preregistered inclusion criteria (https://osf.io/97vda). Thompson and 

colleagues (2021) excluded participants who took the survey twice, who had participated in 

a prior survey that used many of the same measures, and who missed more than one of five 

attention checks embedded in the survey (Gilman et al., 2017). Furthermore, participants 

who showed random or inattentive responding on the math tasks were excluded as has been 

done in prior work (e.g., Sidney et al., 2021). Specifically, participants were excluded if they 

provided estimates that only varied within 10% of the line (i.e., the same location for each 

trial). Additionally, participants were excluded for consistently selecting either the left or 

right option for the nonsymbolic ratio comparison task. Finally, participants were excluded if 

they provided nonsensical responses to health-related math problem solving items.

Because both parent studies were conducted with a Qualtrics panel of participants at similar 

points in time, we excluded overlapping participants (n = 30) who took part in both Lau 

et al. (2022a) and Thompson et al. (2021) from our analyses in Study 2. Thus, the final 

sample used for the analyses reported below was N = 1,790 (see Table A1 for demographic 

characteristics).

Tasks and Procedure—Participants completed an approximately 45-minute online 

survey via Qualtrics. After this baseline survey, participants had the opportunity to complete 

10 days of follow-up daily diaries. The diary questionnaires took approximately 5 minutes 

to complete and primarily asked participants about their COVID-19 health cognitions and 

health-related behaviors.

Of relevance for these secondary data analyses, participants first completed a section on 

their sociodemographic characteristics. Prior to the educational intervention, participants 

also rated their MA for math in general as well as MA for specific number types (i.e., whole 

numbers, fractions, percentages, whole number frequencies), and they completed symbolic 

and nonsymbolic number magnitude tasks. Then, participants completed the educational 

intervention or a control task, described above, that was not related to the research questions 

for the current secondary data analyses. However, participants completed the fraction and 

large whole-number number line estimation tasks and the nonsymbolic ratio comparison 

task after the educational intervention. Thus, we tested whether there were condition 

differences on these variables (see Table A9 in the Appendix) and included condition in 

the models as a covariate.

As in Study 1, the primary outcome measure was number-line estimation performance. In 

Thompson et al. (2021), participants estimated the location of large symbolic whole numbers 
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up to 1 billion (Cronbach’s α = .85) and symbolic fractions within the 0–5 range on number 

lines (Cronbach’s α = .74). As in Study 1, estimation precision was operationalized as 

percent absolute error (PAE). Participants also completed a nonsymbolic ratio comparison 

task (Cronbach’s α = .73). For this measure, participants judged which pair of line segments 

had the larger ratio of white to black line segments (Matthews et al., 2016). Accuracy on this 

task was calculated as the proportion of correctly answered items out of 18 total items.

As in Study 1, MA was the primary predictor of interest. Participants completed five MA 

items, however, for the purposes of this study, we analyzed their ratings for three items. Each 

item included the prompt “On a scale of 1 to 10, with 10 being the most anxious” and then 

included specific text (italicized) for each MA measure (indicated in parentheses): how math 
anxious are you? (general), how math anxious are you about whole numbers (numbers like 
34 or 57)? (whole number), how math anxious are you about fractions (numbers like 3⁄4 or 
5⁄7)? (fraction).

We also included trait anxiety as a covariate. Thompson and colleagues (2021) administered 

the Trait Anxiety scale (Spielberger et al., 1970) before and after the intervention. For the 

current study, we analyzed participants’ responses from the pre-intervention assessment. 

Participants indicated the extent to which statements like, “I am ‘calm, cool, and collected’ 

described themselves. The scale included 20 items with a scale of 1 = almost never to 4 

= almost always. Nine of these items were reverse coded such that higher values indicated 

more anxiety. The sum score was used in the current analyses.

Finally, as in Study 1, we also included age, gender, and level of educational attainment 

(Less than high school diploma, high school diploma/GED, Some college [no degree], 

Associate’s degree, Bachelor’s degree, Graduate degree) as covariates in our statistical 

models. Participants indicated their gender by indicating which gender they MOST 

identified with (male, female, nonbinary, different identity). Participants also had the option 

to choose not to report this information.

Study 2 Results

As preregistered, we fit several mixed-effects models, including by-subject random slopes 

where possible. In addition to the predictors of interest, all models included the following 

covariates: gender, education, age, condition, and trait anxiety. We dummy coded gender 

with non-males as the reference group. We dummy coded condition with control as the 

reference group. We dichotomized and dummy coded education level with “No College” 

as the reference group compared to “Some College and Above”. We grand mean centered 

MA, and we standardized general anxiety and age such that M = 0 and SD = 1. As in 

Study 1, parameters are evaluated with t-tests (for individual contrasts) and Type III F-tests 

(for multi-degree-of-freedom tests of model comparisons) using Satterthwaite’s method for 

estimating degrees of freedom. To address whether the relation between MA and NLE 

performance varies depending on whether the MA measure aligns with the behavioral 

measure (RQ4), we compared several linear regression models with the same covariates as 

those described for the mixed-effects models above. Correlations among measures in Study 

2 can be found in Table 5.
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As preregistered, we first tested whether MA differed by condition in an independent-

samples t-test. There were no condition differences in whole number PAE, fraction PAE, 

nonsymbolic comparison accuracy, general MA, whole-number MA, or fraction MA (see 

Table A6). As in Study 1, and consistent with prior research (Else-Quest et al., 2010), 

we observed gender differences3 in MA with non-males reporting higher MA than males, 

t(1788) = 6.00, p < .001, Cohen’s d = 0.27.

Does the Relation Between MA and Performance Vary by Number Type?—To 

test this question, we fit a linear mixed-effects model predicting PAE from general MA, 

number type (large whole numbers and fractions) and their interaction with our covariates 

described above. Number type was dummy coded with fractions as reference. The final 

model included random slope of number type by subject as well as subject- and item-level 

random intercepts

The interaction between MA and number type was significant (see Table 6). As in Study 1, 

the relation between MA and PAE was significant for both fractions, b = 1.00, 95% CI [0.83, 

1.17], and large whole numbers, b = 1.53, 95% CI [1.21, 1.86], (see Figure 4), with higher 

MA associated with higher PAE. However, in Study 2, this relation was stronger for large 

whole numbers than for fractions (b = 0.54, SE = .16, t(1,788) = 3.38, p < .001).

Does the Relation Between MA and Performance Vary for Symbolic vs. 
Nonsymbolic Fractions?—First, in line with prior work (Fazio et al., 2016; Rittle-

Johnson et al., 2001), we coded item-level accuracy on the number line estimation task by 

dichotomizing PAE based on a cut-off value of 10% error4 (i.e., PAE ≤ 10% was coded as 

correct, and PAE > 10% was coded as incorrect). The mean proportion correct for each item 

using this method can be found in Table A12. Then, we fit a logistic mixed-effects model 

predicting the likelihood of accuracy from MA, number format (symbolic, nonsymbolic), 

and their interaction. Task type was coded with symbolic fractions as reference. The final 

model included random slope of task by subject as well as subject- and item-level random 

intercepts.

The interaction between MA and number format was significant (see Table 7). As can be 

seen in Figure 5, MA significantly related to the likelihood of accuracy for both symbolic 

and nonsymbolic fraction tasks was significant. However, as in Study 1, the relation between 

MA and accuracy was stronger for symbolic fractions than for nonsymbolic fractions.

Does the Relation Between MA and NLE Performance Vary Depending on 
Whether the MA Measure Aligns with the Behavioral Measure?—To test this 

question, we preregistered an approach of fitting several non-nested linear regression 

models, and comparing them to determine which model best fit the data. For number-line 

estimation performance with each number type (large whole numbers and fractions), we 

3We also ran exploratory models (not preregistered) with three-way interactions with country to examine whether the effects of 
number type, symbolic vs. nonsymbolic fraction format, and component size on the relationship between MA and performance varied 
by gender (see Tables A10 and A11 in the Appendix). As in Study 1, none of the models revealed significant three-way interactions 
with gender. In addition, we tested for gender interactions for RQ4 (which type of math anxiety is most predictive for different tasks). 
The interaction did not emerge as significant for any of the models (see Table A15 in the Appendix).
4The pattern of results did not change when we tested a cutoff value of 5% and 15%.
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compared R2, AIC, and BIC for a model with general MA as a predictor to models 

with whole-number MA, and fraction MA as predictors. We also compared the models 

using Cox tests. These analyses can be found in the Appendix (Tables A13 and A14). In 

general, our preregistered analyses support similar conclusions to those we describe below. 

In addition to these preregistered analyses, we also fit additional linear regression models 

including general MA and number-specific MA to address whether MA that was specific 

to the behavioral measure (i.e., fraction MA for fraction PAE and whole-number MA for 

whole-number PAE) explained additional unique variance when all types of MA were 

entered into the model. We ultimately decided to report those models here because they are 

easier to interpret. We entered all three types of MA: general, whole number, and fraction 

in separate models for whole-number and fraction PAE. Multicollinearity was acceptable (all 

VIF values < 3) in all models.

As can be seen in Table 8, only whole-number MA significantly predicted whole-number 

PAE. This suggests that for whole numbers, the relation between MA and PAE does depend 

on whether the MA measure aligns with the behavioral measure.

The pattern of results for fraction PAE was different, as can be seen in Table 8. In this 

model, all three types of MA predicted fraction PAE, as did trait anxiety. This suggests 

that for fractions, both whole-number MA and fraction MA matter for performance, perhaps 

because people rely on whole number strategies when reasoning about fractions (Alibali 

& Sidney, 2015) and whole-number knowledge is a predictor of fraction understanding 

(Hansen et al., 2015; Siegler et al., 2011). In other words, if one is anxious about whole 

numbers, this could relate to fraction performance. Our analyses above suggest the reverse 

is not true: fraction anxiety does not relate to whole-number PAE after accounting for 

whole-number anxiety. However, in both cases, MA was a stronger predictor of performance 

when it aligned with performance than when it did not.

We conducted similar analyses to address the exploratory question of which type of 

MA would be most predictive of nonsymbolic ratio comparison performance (again, our 

preregistered analyses can be found in the Appendix in Tables A13 and A14). The results 

of the linear regression analysis can be found in Table 8. The pattern of results for accuracy 

on the nonsymbolic comparison measure differed from that of NLE for both whole numbers 

and fractions. Only fraction-specific and whole-number-specific MA predicted performance, 

whereas general MA did not. This suggests that for nonsymbolic ratio comparison, the 

relation between MA and performance is stronger for specific types of MA than for general 

MA. However, both fraction-specific and whole-number-specific MA predicted unique 

variance.

General Discussion

This research adds to the understanding of how specific task features may impact the 

relation between MA and performance on NLE tasks that tap understanding of numerical 

magnitude. Measuring different aspects of core numerical abilities using the same task 

allows for powerful differentiation of effects. Across two large panels of adult participants, 

we investigated whether the relation between MA and math performance differed depending 
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on task features, such as rational number type, number format, and component size. As 

shown in Table 9, we saw general support for our hypotheses across both studies, but in 

some instances, the strength of the relations was surprising. We did not anticipate that the 

MA-performance relation would be stronger for large whole numbers than for fractions 

(Study 2). This may have occurred because the large whole-number estimation task was 

more difficult than the fraction task (see PAE by number type in Table 5), and it is 

possible that this large, unfamiliar numerical range elicited more anxiety than fractions 

(Fitzsimmons, et al., 2021; Landy et al., 2013). Also, it is possible that multiple specific 

types of MA predicted fraction performance, but not large whole-number performance 

because whole-number reasoning contributes towards fraction reasoning. In fraction tasks, 

adults rely both on strategies that directly tap fraction magnitudes and ones focused on 

whole-number numerator and denominator components (Fazio et al., 2016; Fitzsimmons et 

al., 2020a; Sidney, Thompson, & Opfer, 2019; see also Alibali & Sidney, 2015). Relying on 

fraction strategies to reason about whole numbers may be less likely given the progression 

of typical instruction in U.S. schools (CCSSM, 2018). That is, if one is anxious about whole 

numbers, that anxiety may have implications for reasoning about both large whole numbers 

and fractions. Whereas, if one has higher fraction MA and lower whole number MA, higher 

fraction MA may play less of a role in whole number reasoning.

In the current studies, we did not set out to find evidence for or against any particular 

account of the mechanisms underlying the relation between MA and math performance (e.g., 

Disruption Account, Reduced Competency Account, Interpretation Account). However, 

these accounts can help explain how task features may impact the relationship between 

MA and performance on numerical tasks. For example, in line with the Disruption Account, 

it could be that the task features elicit similar levels of MA, but the MA is more or less 

disruptive depending on the cognitive demands of the different task features. If different task 

features change the way working memory resources are recruited, for example, then anxious 

ruminations related to MA could be more disruptive for tasks that require more resources. 

We did not administer any working memory measures in these studies, so our data cannot 

address the effects of task features on working memory demands. Another possibility, more 

in accordance with the Reduced Competency Account and the Interpretation account, could 

be that task features elicit different levels of MA, which then interferes with performance. 

For example, certain task features may be more strongly related to past failures in math, 

and therefore elicit more MA which may interfere with performance (perhaps also by 

taxing working memory). Recent research suggests that perceptions of ease and difficulty 

are differentially related to attitudes about whole numbers and fractions, respectively 

(Mielicki et al., 2021). In addition, MA may relate to students’ willingness to engage in 

study strategies that prioritize more difficult math content, and that choosing to engage in 

effortful strategies mediates the relationship between MA and math performance (Jenifer 

et al., 2022). Although we did not collect data on perceptions of the relative difficulty of 

different number types or formats, participants may have appraised them differently based 

on challenging past experiences with different number types (e.g., failing at fractions), 

which may have changed the relation between MA and performance.

The difference in the strength of the relation between MA and performance on symbolic 

relative to nonsymbolic fractions observed in both studies could be interpreted as consistent 
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with the Interpretation Account. In Study 1, participants performed similarly on the 

symbolic and nonsymbolic fraction tasks, whereas in Study 2, participants performed better 

on the nonsymbolic task relative to the symbolic task. Across both studies, however, the 

relation between MA and performance was stronger for symbolic relative to nonsymbolic 

fractions. Fractions are notoriously difficult mathematical content (Alibali & Sidney, 2015; 

Braithwaite & Siegler, 2018a; DeWolf & Vosniadou, 2015; Fazio et al., 2016; Fitzsimmons 

et al., 2020a; Opfer & DeVries, 2008; Sielger et al., 2011; Siegler & Thompson, 2014; 

Stafylidou & Vosniadou, 2004). As such, learners likely have some negative experiences 

unique to learning fractions, which may contribute to fraction-specific math anxiety and 

to the negative attitudes people hold towards fractions specifically (Mielicki et al., 2021; 

Sidney et al., 2021). Nonsymbolic fractions (as they were instantiated in our current study) 

are likely not as common in math education as symbolic fractions, and thus people may 

not have the same number or strength of negative experiences related to nonsymbolic 

fractions as they do for symbolic fractions. In contrast, the difficulty people experience when 

learning symbolic fractions may contribute to the stronger negative relation between MA 

and performance on symbolic fraction tasks relative to nonsymbolic ones. Future research 

elucidating mechanisms underlying MA will need to account for the relations between MA 

associated with the specific features of a given math task and performance on the task.

One strength of using these two large-scale datasets to answer similar questions was our 

ability to test for replication of findings. However, our data sets contained somewhat 

different tasks (i.e., the nonsymbolic tasks); therefore, in some instances, we have 

conceptually replicated rather than directly replicated our findings. Although our samples 

were collected around the same time from the same Qualtrics panels, we determined that 

only 30 participants overlapped across our two datasets (Total N = 3,822) by comparing 

Qualtrics IDs and IP addresses. However, it is possible that there may have been additional 

unidentified overlapping participants.

It is also an open question for future research to assess why U.S. participants self-reported 

lower MA than participants in the U.K. and Canada and how and whether this lower 

MA relates to lower standardized math performance in the U.S. than these other countries 

(National Center for Education Statistics, 2021; Schleicher, 2019). Although not the focus 

of the current study, it is possible that instructional practices unique to each of the three 

countries included in these analyses could inform math achievement, content-specific math 

anxiety and attitudes, or both achievement and emotions related to math content. To our 

knowledge, systematic research relating to differences in fraction instruction across the U.S., 

U.K., and Canada is lacking. Moreover, even within the U.S. there is no nationally mandated 

set of instructional practices, so these can differ widely across the states and urban and rural 

environments. However, there is research suggesting important differences in mathematics 

instruction across different countries and continents. For instance, several Asian countries 

rely more on analogies in instruction compared to the U.S., and this difference has been 

linked to better math achievement (Richland et al., 2007). In terms of fraction-specific 

instruction, the U.S. emphasizes the part-whole interpretation of fractions more than the 

measurement interpretation, which is more common in Asian countries (Alajmi, 2012; 

Torbeyns et al., 2015). However, the part-whole interpretation is also more prevalent in 

European countries relative to Asian countries (Charalambous et al., 2010), thus it is 

Mielicki et al. Page 15

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unclear whether the U.K. and Canada differ from the U.S. in this approach. Other work 

has shown that fraction division is underrepresented in U.S. textbooks relative to other 

fraction content (Braithwaite et al., 2017) and relative to some Asian countries (Son & 

Senk, 2010). However, other work has also shown that textbooks in the U.S. and China 

may both feature biased input related to fraction arithmetic (Braithwaite & Siegler, 2018b). 

Understanding the connection between content-specific MA and instructional practices is an 

important direction for future research.

Future work should also explore the extent to which the relation between MA and task 

performance varies by task feature and by gender. Negative math experiences may also be 

related to gender. Although gender differences were not focal in the current research, we 

did observe gender differences in MA. Specifically, non-males reported higher MA than 

males across both studies, which is consistent with prior findings that females tend to report 

higher MA than males despite similar levels of math achievement (Else-Quest et al., 2010). 

In addition, prior work with U.S. samples examining negative attitudes towards fractions 

does suggest that women may be more likely to report fraction-specific negative attitudes 

relative to men (Mielicki et al., 2021; Sidney et al., 2021). Generally, even in the absence 

of gender differences in math achievement or performance, women may experience lower 

math self-concept (John et al., 2022) and even lower item-level confidence on number line 

estimation (Rivers et al., 2021) and health-related math problems (Scheibe et al., 2021) 

relative to men. Given the persistent underrepresentation of women in STEM (National 

Center for Science and Engineering Statistics, 2021), understanding how math experiences, 

MA, and math attitudes vary by gender is an important direction for future work.

Despite the many strengths of this study, including the use of multiple datasets that allow for 

validation of findings, the geographically diverse samples, large-scale nature of recruitment, 

and the preregistered approach to data collection and analysis, several limitations must be 

noted. All data were collected cross-sectionally, and data were drawn from correlational 

survey measures. As such, we are unable to establish directionality or causality between 

measures of MA and math performance. However, our approach allows for some amount 

of within-person control, which allows us greater purchase on our questions of interest 

regarding number type.

Another potential limitation of this work is that we relied on single-item measures of MA, 

though this approach is common for measuring MA and has been shown to be strongly 

correlated with longer MA scales (Ashcraft, 2002; Hart & Ganley, 2019; Núñez-Peña et 

al., 2014). A recent meta-analysis showed that the correlation between MA measured with 

a single-item and math performance tends to be lower than the correlation between math 

performance and other measures of MA (Barroso et al., 2021). Although we did observe 

significant relations between MA and performance on the math tasks in this study, it is 

possible that some of these relations would be even stronger with a different measure of MA. 

Nevertheless, a single-item MA measure does not capture all of the nuance of this complex 

construct. Prior work has described the multifaceted nature of MA in a variety of ways. 

For instance, some work has distinguished between affective and cognitive components 

of MA (Ho et al., 2000; Liebert & Morris, 1967), whereas other work has distinguished 

between anxiety related to learning math and anxiety about having one’s math performance 
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evaluated (Cipora et al., 2015; Hopko et al., 2003). The association between MA and 

math performance is found to be different for different components of MA (e.g., Dowker, 

2019b). For example, some work including both cognitive (i.e. concerns about how one 

is performing and the fear of failure) and affective (i.e., emotions of fear, nervousness, 

and tension with their associated physiological reactions, which occur in the presence of 

numerical stimuli, whether or not there is a threat of failure or evaluation; Wigfield & 

Meece, 1988) dimensions of MA, suggests that math performance is related to the affective 

but not the cognitive dimension (e.g. Dowker, 2019b; Sorvo et al., 2017). Future work 

should address how these different components of math anxiety may interact with different 

numerical task features to change the relationship between MA and performance on math 

tasks.

Constraints on Generality

Although we recruited large samples across two studies, and in Study 1 the samples were 

geographically diverse, the current studies do not test whether these findings generalize to 

participants not from Western, Educated, Industrialized, Rich, Democratic nations. Some 

prior work suggests that the negative relationship between MA and math achievement 

is present across countries (Foley et al., 2017) and geographic regions (Barroso et al., 

2021), although there are also important between-country distinctions that may impact 

this relationship (Lau et al., 2022b). For instance, the level of gender equality in a given 

country may contribute to gender differences in MA (Stoet et al., 2016). Similarly, the 

current studies do not test whether these findings generalize to different racial groups. A 

recent meta-analysis examining the relation between MA and math achievement suggests 

that the negative relationship between the two may also be similar across different racial 

groups (Barroso et al., 2021). However, this meta-analysis dichotomized race as more or 

less than 75% White, and thus does not capture the nuances of different racial identities. 

The effects of educational practices in math classrooms may vary for minority groups 

depending on whether these practices align with the specific values and norms of the 

minority communities (Dasgupta et al., 2022), which could have implications for the 

relationship between MA and performance on math tasks. In addition, in the current 

studies we dichotomized gender into male and non-male, which obviously excludes the 

experiences of people with gender identities that do not align well with these categories. 

Given that the samples of participants who did not identify as either male or female was 

quite small in both studies, future work is needed to better understand how our findings 

may apply to people with different gender identities. Finally, researchers have begun to 

explore how the intersection of racial and gender identities may also relate to math anxiety 

(Owusua et al., under review). This type of work is critical for understanding the complex 

dynamics that inform how individuals learn and do math, and to better support individuals 

in historically underrepresented groups. Thus, although the findings from the current studies 

reveal interesting potential moderators of the relation between MA and performance, future 

work is needed to test the generalizability of these findings.

Conclusions

By demonstrating the multifaceted connection between MA and math performance, our 

findings have implications for future MA interventions. Our research builds off prior work 
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demonstrating varying associations of MA with various math skills (Dowker, 2019b). We 

showed that differences in numerical task features, within the same math task (i.e., NLE), 

also impact the association between MA and math performance. Thus, researchers and 

educators may be able to differentiate MA interventions by task features such as number 

type, format, and component size. Future research can also assess whether alerting both 

students and teachers that MA differs not only by math task, but also by task features such as 

number type reduces MA and improves learning for more difficult math topics. Our findings 

are an important step towards better understanding the link between MA and performance 

on math tasks.

Appendix

Table A1

Demographic Characteristic for Study 1 and Study 2 Samples

Study 1 Study 2

Country CA UK US US

N 677 675 680 1790

Age 54.80 (13.94) 54.20 (14.44) 70.10 (7.81) 46.00 (16.90)

% Some College 74% 59% 76% 46% (46% non-male)

% Non-male 53% 53% 44% 49%

% White 78% 91% 94% 73%

Table A2

Number of Participants by Gender and Education Level for each Country in Study 1 Sample

Male Non-male

CA Less than college 84 92

College 237 266

US Less than college 72 90

College 309 209

UK Less than college 134 143

College 177 218

Table A3

Linear Mixed-Effects Models for NLE with Different Number Types and Country 

Interaction Terms for Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 25.28 (2.01) 12.57*** 18.49 Subject (Intercept) 48.40

MA 1.04 (0.16) 6.50*** 4559.19 Item (Intercept) 22.40

Type-WNF −6.93 (2.76) −2.51* 16.47 Residual 300.80

Type-P −9.20 (3.38) −2.72* 16.47
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Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Type-WN −1.03 (2.90) 0.36 16.47

Gender −3.84 (0.37) −10.38*** 2009.01

Country (CA) −0.32 (0.59) −0.53 4153.47

Country (UK) 1.98 (0.60) 3.28** 4049.23

Education −3.69 (0.40) −9.30*** 2009.37

Age −0.71 (0.22) −3.28** 2009.27

Trait Anxiety 0.45 (0.20) 2.22* 2009.70

MA*Type-WNF −0.31 (0.16) −2.00* 38199.44

MA*Type-P −0.82 (0.19) −4.26*** 38190.98

MA*Type-WN 0.05 (0.16) 0.28 38187.22

MA* Country-CA −0.09 (0.21) −0.42 4785.80

MA* Country-UK −0.02 (0.21) −0.11 4754.38

Type-WNF*Country-CA −2.32 (0.56) −4.15*** 38197.17

Type-P*Country-CA −2.00 (0.68) −2.94** 38190.22

Type-WN*Country-CA −2.55 (0.58) −4.36*** 38191.60

Type-WNF*Country-UK −3.94 (0.56) −7.05*** 38201.34

Type-P*Country-UK −5.57 (0.68) −8.14*** 38192.07

Type-WN*Country-UK −4.24 (0.59) −7.24*** 38191.55

MA*Type-WNF*Country-CA −0.11 (0.22) −0.49 38199.46

MA*Type-P*Country-CA 0.20 (0.26) 0.77 38198.03

MA*Type-WN*Country-CA −0.20 (0.23) −0.89 38199.94

MA*Type-WNF*Country-UK −0.08 (0.21) −0.40 38200.16

MA*Type-P*Country-UK 0.35 (0.26) 1.34 38192.56

MA*Type-WN*Country-UK −0.06 (0.22) −0.25 38191.76

Note. Fractions, non-males, the U.S., and 13 years [of education] or less were the reference groups. MA: mean-centered 
math anxiety, WNF: whole-number frequencies (with 0 in 100 and 100 in 100 as endpoints), P: percentages (with 0% to 5% 
as endpoints), WN: large whole numbers (with 1,000 and 1,000,000,000 as endpoints.
*
p < .05.

**
p < .01.

***
p < .001.

Table A4

Linear Mixed-Effects Models for NLE with Symbolic and Nonsymbolic Fractions and 

Country Interaction Terms for Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 25.82 (1.82) 14.16*** 9.79 Subject (Intercept) 121.60

MA 1.07 (0.21) 5.13*** 2050.47 Format|Subject 145.30

Format −0.62 (2.97) −0.21 7.66 Item (Intercept) 16.70

Gender −2.75 (0.50) −5.55*** 2001.67 Residual 284.50

Country (CA) −1.23 (0.78) −1.57 2162.92

Mielicki et al. Page 19

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Country (UK) 0.95 (0.79) 1.19 2189.05

Education −4.28 (0.53) −8.07*** 2000.92

Age −1.66 (0.29) −5.71*** 1993.61

Trait Anxiety 0.39 (0.27) 1.42 1998.38

MA*Format −0.71 (0.27) −2.68** 1998.47

MA* Country-CA −0.11 (0.28) −0.38 1991.21

MA* Country-UK −0.08 (0.28) −0.29 1992.22

Format*Country-CA −0.51 (0.95) −0.53 1998.30

Format*Country-UK −3.31 (0.95) −3.48** 1996.03

MA*Format*Country-CA 0.65 (0.37) 1.78 2001.93

MA*Format*Country-UK 0.46 (0.36) 1.26 1994.61

Note. Symbolic fractions, non-males, the U.S., and 13 years [of education] or less were the reference groups. MA: 
mean-centered math anxiety.
*
p < .05.

**
p < .01.

***
p < .001.

Table A5

Linear Mixed-Effects Models for NLE with Small and Large Rational Number Components 

and Country Interaction Terms for Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 22.83 (2.46) 9.28*** 11.16 Subject (Intercept) 51.90

MA 1.08 (0.16) 6.59*** 3438.16 Item (Intercept) 34.20

Component −1.35 (3.40) −0.40 10.20 Residual 311.70

Gender −3.74 (0.41) −9.12*** 2007.86

Country (CA) −1.62 (0.62) −2.63** 3213.22

Country (UK) −0.40 (0.63) −0.64 3160.66

Education −4.15 (0.44) −9.44*** 2008.57

Age −0.86 (0.24) −3.56*** 2007.58

Trait Anxiety 0.10 (0.23) 0.45 2009.93

MA*Component −0.31 (0.16) −1.94 22103.82

MA* Country-CA −0.32 (0.22) −1.48 3548.93

MA* Country-UK 0.02 (0.22) 0.08 3537.00

Component*Country-CA 0.18 (0.57) 0.32 22095.32

Component*Country-UK 0.55 (0.57) 0.97 22096.21

MA*Component*Country-CA 0.36 (0.22) 1.65† 22097.56

MA*Component*Country-UK −0.15 (0.22) −0.71 22097.83

Note. Small components, non-males, the U.S., and 13 years [of education] or less were the reference groups. MA: 
mean-centered math anxiety.
†
p < .10,
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*
p < .05.

**
p < .01.

***
p < .001.

Table A6

Linear Mixed-Effects Models for NLE with Different Number Types and Gender Interaction 

Terms for Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 27.08 (2.01) 13.51*** 18.27 Subject (Intercept) 48.40

MA 0.94 (0.12) 7.93*** 4426.52 Item (Intercept) 22.40

Type-WNF −9.51 (2.75) −3.46** 16.24 Residual 301.20

Type-P −13.03 (3.37) −3.86** 16.24

Type-WN −0.83 (2.89) −0.29 16.24

Gender −4.21 (0.46) −9.17*** 4704.81

Country (CA) −1.95 (0.49) −4.00*** 2010.35

Country (UK) −1.06 (0.50) −2.11* 2009.56

Education −3.67 (0.40) −9.23*** 2010.20

Age −0.71 (0.22) −3.29** 2010.39

Trait Anxiety 0.45 (0.20) 2.23* 2010.84

MA*Type-WNF −0.37 (0.11) −3.19** 38212.27

MA*Type-P −0.56 (0.14) −3.95*** 38210.50

MA*Type-WN −0.06 (0.12) −0.50 38213.40

MA* Gender 0.27 (0.18) 1.56 4768.28

Type-WNF*Gender 0.85 (0.46) 1.86 38207.13

Type-P*Gender 2.64 (0.56) 4.68*** 38198.09

Type-WN*Gender −1.04 (0.48) −2.16* 38199.98

MA*Type-WNF*Gender −0.17 (0.18) −0.97 38205.66

MA*Type-P*Gender −0.17 (0.22) −0.78 38201.81

MA*Type-WN*Gender −0.32 (0.19) −1.71 38204.02

Note. Fractions, non-males, and the U.S. were the reference group. MA: mean-centered math anxiety, WNF: whole-number 
frequencies (with 0 in 100 and 100 in 100 as endpoints), P: percentages (with 0% to 5% as endpoints), WN: large whole 
numbers (with 1,000 and 1,000,000,000 as endpoints.
*
p < .05.

**
p < .01.

***
p < .001.

Table A7

Linear Mixed-Effects Models for NLE with Symbolic and Nonsymbolic Fractions and 

Gender Interaction Terms for Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 27.04 (1.81) 14.91*** 9.57 Subject (Intercept) 121.60

MA 0.88 (0.16) 5.66*** 2095.83 Format|Subject 145.80

Format −3.24 (2.94) −1.10 7.39 Item (Intercept) 16.70
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Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Gender −3.90 (0.60) −6.49*** 2005.77 Residual 284.50

Country (CA) −1.51 (0.65) −2.31* 2000.26

Country (UK) −0.58 (0.67) −0.86 1996.65

Education −4.27 (0.53) −8.03*** 2002.60

Age −1.67 (0.29) −5.77*** 1994.76

Trait Anxiety 0.39 (0.27) 1.42 1999.99

MA*Format −0.08 (0.20) −0.39 2000.94

MA* Gender 0.25 (0.23) 1.07 1991.24

Format*Gender 2.66 (0.78) 3.39** 2000.68

MA*Format*Gender −0.47 (0.30) −1.55 2003.49

Note. Symbolic fractions, non-males, the U.S., and 13 years [of education] or less were the reference groups. MA: 
mean-centered math anxiety.
*
p < .05.

**
p < .01.

***
p < .001.

Table A8

Linear Mixed-Effects Models for NLE with Small and Large Rational Number Components 

and Gender Interaction Terms for Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 22.90 (2.46) 9.32*** 11.09 Subject (Intercept) 51.80

MA 0.87 (0.12) 7.07*** 3353.42 Item (Intercept) 34.20

Component −1.50 (3.39) −0.44 10.10 Residual 311.70

Gender −4.12 (0.47) −8.72*** 3506.60

Country (CA) −1.52 (0.54) −2.81** 2008.21

Country (UK) −0.09 (0.56) −0.16 2008.01

Education −4.12 (0.44) −9.36*** 2009.25

Age −0.85 (0.24) −3.56*** 2008.71

Trait Anxiety 0.10 (0.23) 0.44 2011.03

MA*Component −0.15 (0.12) −1.32 22093.66

MA* Gender 0.22 (0.18) 1.22 3538.62

Component*Gender 0.79 (0.47) 1.68 22094.57

MA*Component*Gender −0.10 (0.18) −0.55 22096.78

Note. Small components, non-males, the U.S., and 13 years [of education] or less were the reference groups. MA: 
mean-centered math anxiety.
†
p < .10,

*
p < .05.

**
p < .01.

***
p < .001.
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Table A9

Descriptive Statistics of Main Measures by Condition for Study 2

Control Experimental

M SD M SD t(1788) p value

NLE-WN 0.25 0.21 0.24 0.20 1.00 .200

NLE-F 0.19 0.11 0.19 0.10 0.80 .400

Non-Sym. Comparison Accuracy 0.67 0.20 0.66 0.20 0.40 .700

MA 5.06 2.92 4.99 2.83 0.50 .600

MA-WN 3.94 2.78 3.94 2.75 0.02 1.00

MA-F 5.30 3.04 5.23 3.04 0.50 .600

Note: NLE-WN: mean PAE for large whole numbers, NLE-F: mean PAE for fractions, MA: general math anxiety, 
MA-WN: MA for whole numbers, MA-F: MA for fractions.

Table A10

Linear Mixed-Effects Models for NLE with Different Number Types and Gender Interaction 

Terms for Study 2

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 21.38 (1.03) 20.76*** 15.93 Subject (Intercept) 69.00

MA 1.02 (0.12) 8.47*** 1786.84 Type|Subject 273.62

Type 7.95 (1.79) 4.43** 13.91 Item (Intercept) 7.79

Gender −0.35 (0.47) −0.73 1781.92 Residual 258.73

Education −4.86 (0.47) −10.38*** 1782.00

Age −0.21 (0.24) −0.89 1782.00

Trait Anxiety −1.28 (0.25) −5.03*** 1782.00

Condition −0.36 (0.46) −0.79 1782.00

MA*Type 0.12 (0.22) 0.52 1786.00

MA*Gender −0.02 (0.17) −0.13 1781.95

Type*Gender −4.96 (0.91) −5.43*** 1786.00

MA*Type*Gender 0.61 (0.32) 1.92 1786.00

Note. Fractions, non-males, no college education, and control condition were the reference groups.
*
p < .05.

**
p < .01.

***
p < .001.

Table A11

Logistic Mixed-Effects Models for Accuracy on Tasks with Symbolic and Nonsymbolic 

Fractions with Gender Interaction Terms for Study 2

Fixed Effects Random Effects

Estimate (SE) z-value Variance

Constant −0.55 (0.15) −3.59*** Subject (Intercept) 1.21

MA −0.12 (0.02) −7.42*** Format|Subject 1.08
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Fixed Effects Random Effects

Estimate (SE) z-value Variance

Format 1.19 (0.18) 6.50*** Item (Intercept) 0.19

Gender 0.17 (0.06) 2.61**

Education 0.35 (0.04) 7.89***

Age 0.12 (0.02) 5.38***

Trait Anxiety 0.09 (0.02) 3.82***

Condition 0.00 (0.04) 0.07

MA*Format 0.04 (0.02) 2.40*

MA*Gender −0.02 (0.02) −0.85

Format*Gender −0.13 (0.07) −1.96

MA*Format*Gender 0.02 (0.02) 0.88

Note. SE and df = 48,314 are used to represent standard error of the mean and degrees of freedom, respectively. Symbolic 
fractions, non-males, no college education, and control condition were the reference groups.
*
p < .05.

**
p < .01.

***
p < .001.

Table A12

Proportion Correct for Each Fraction NLE Item using a 10% Accuracy Cutoff

Item Value PAE
M (SD)

Proportion Correct

1 1/19 14% (24%) 0.71

2 4/7 23% (22%) 0.46

3 7/5 20% (18%) 0.39

4 13/9 19% (17%) 0.39

5 8/3 18% (13%) 0.33

6 11/4 17% (13%) 0.36

7 10/3 18% (16%) 0.42

8 7/2 21% (18%) 0.38

9 17/4 21% (23%) 0.50

Table A13

Preregistered Regression Models for RQ4 in Study 2

NLE-WN NLE-F Non-Sym. Comp. Acc.

Variable β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE)

Constant 0.20*** 
(0.04)

0.21*** 
(0.04)

0.19*** 
(0.04)

0.25*** 
(0.04)

0.27*** 
(0.04)

0.24*** 
(0.04)

−0.09* 
(0.04)

−0.10* 
(0.04)

−0.08 
(0.04)

MA 0.20*** 
(0.02)

0.27*** 
(0.02)

−0.20*** 
(0.02)

MA-WN 0.25*** 
(0.02)

0.27*** 
(0.02)

−0.21*** 
(0.02)

MA-F 0.20*** 
(0.02)

0.29*** 
(0.02)

−0.20*** 
(0.02)
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NLE-WN NLE-F Non-Sym. Comp. Acc.

Variable β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE)

Gender −0.28*** 
(0.05)

−0.30*** 
(0.05)

−0.27*** 
(0.05)

−0.03 
(0.04)

−0.07 
(0.04)

−0.02 
(0.04)

0.04 
(0.05)

0.07 
(0.05)

0.04 
(0.05)

Education −0.08 
(0.05)

−0.07 
(0.05)

−0.07 
(0.05)

−0.49*** 
(0.04)

−0.48*** 
(0.04)

−0.47*** 
(0.04)

0.18*** 
(0.05)

0.17*** 
(0.05)

0.16*** 
(0.05)

Age −0.09*** 
(0.02)

−0.08*** 
(0.02)

−0.09*** 
(0.02)

−0.01 
(0.02)

0.002 
(0.02)

0.002 
(0.02)

0.14*** 
(0.02)

0.13*** 
(0.02)

0.13*** 
(0.02)

Trait 
Anxiety

−0.09*** 
(0.03)

−0.07** 
(0.02)

−0.08** 
(0.02)

−0.12*** 
(0.02)

−0.08*** 
(0.02)

−0.11*** 
(0.02)

0.06* 
(0.03)

0.03 
(0.02)

0.04 
(0.02)

Condition −0.06 
(0.05)

−0.06 
(0.05)

−0.06 
(0.05)

−0.03 
(0.04)

−0.03 
(0.04)

−0.03 
(0.04)

−0.03 
(0.05)

−0.02 
(0.05)

−0.03 
(0.05)

R2 0.07 0.10 0.07 0.13 0.13 0.14 0.07 0.08 0.07

Adjusted 
R2

0.07 0.09 0.07 0.13 0.13 0.14 0.07 0.08 0.07

AIC 4959 4913 4959 4844 4840 4822 4963 4947 4964

BIC 5003 4957 5003 4888 4883 4866 5007 4991 5008

Residual 
SE

0.96 0.95 0.96 0.93 0.93 0.93 0.97 0.96 0.97

F(6, 
1783)

23.34*** 31.68*** 23.39*** 44.70*** 45.55*** 48.87*** 22.70*** 25.52*** 22.47***

Note. Standardized coefficients are reported here. All models were based on 1,790 observations. Non-males, no college 
education, and control condition were the reference groups.
*
p < .05.

**
p < .01.

****
p < .001.

Table A14

Summary of Cox Tests for RQ4 in Study 2

Model Comparison Estimate (SE) z p

WN PAE

 WN vs. General −7.16 (5.13) −1.40 .163

 General vs. WN −40.45 (3.94) −10.26 < .001

 WN vs. Fraction −12.21 (4.94) −2.47 .013

 Fraction vs. WN −43.25 (3.82) −11.33 < .001

Fraction PAE

 Fraction vs. General −30.14 (5.98) −5.04 < .001

 General vs. Fraction −45.84 (5.55) −8.25 < .001

 Fraction vs. WN −39.67 (5.74) −6.91 < .001

 WN vs. Fraction −51.33 (5.42) −9.47 < .001

Nonsymbolic Comparison Accuracy

 General vs. WN 26.03 (4.02) 6.47 < .001

 WN vs. General −14.62 (4.46) −3.28 .001

 General vs. Fraction −17.26 (4.03) −4.29 < .001

 Fraction vs. General −18.17 (3.99) −4.55 < .001

 WN vs. Fraction −17.67 (4.30) 4.11 < .001
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Model Comparison Estimate (SE) z p

 Fraction vs. WN −29.23 (3.85) −7.60 < .001

Table A15

Preregistered Regression Models for RQ4 with Gender Interaction Terms for Study 2

NLE-WN NLE-F Non-Sym. Comp. Acc.

Variable β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE)

Constant 0.21*** 
(0.04)

0.21*** 
(0.04)

0.20*** 
(0.04)

0.25*** 
(0.04)

0.27*** 
(0.04)

0.24*** 
(0.04)

−0.09* 
(0.04)

−0.10* 
(0.04)

−0.09 
(0.04)

MA 0.16*** 
(0.03)

0.28*** 
(0.03)

−0.21*** 
(0.03)

MA-WN 0.21*** 
(0.03)

0.27*** 
(0.03)

−0.20*** 
(0.03)

MA-F 0.17*** 
(0.03)

0.29*** 
(0.03)

−0.17*** 
(0.03)

Gender −0.28*** 
(0.05)

−0.30*** 
(0.05)

−0.27*** 
(0.05)

−0.03 
(0.04)

−0.07 
(0.04)

−0.02 
(0.04)

0.04 
(0.05)

0.07 
(0.05)

0.04 
(0.05)

Education −0.08 
(0.05)

−0.07 
(0.05)

−0.07 
(0.05)

−0.49*** 
(0.04)

−0.48*** 
(0.04)

−0.47*** 
(0.04)

0.17*** 
(0.05)

0.17*** 
(0.05)

0.16*** 
(0.05)

Age −0.09*** 
(0.02)

−0.08*** 
(0.02)

−0.09*** 
(0.02)

−0.01 
(0.02)

0.002 
(0.02)

0.002 
(0.02)

0.14*** 
(0.02)

0.13*** 
(0.02)

0.13*** 
(0.02)

Trait 
Anxiety

−0.08*** 
(0.03)

−0.07** 
(0.02)

−0.07** 
(0.02)

−0.12*** 
(0.02)

−0.08*** 
(0.02)

−0.11*** 
(0.02)

0.06* 
(0.03)

0.03 
(0.02)

0.04 
(0.02)

Condition −0.06 
(0.05)

−0.07 
(0.05)

−0.06 
(0.05)

−0.03 
(0.04)

−0.03 
(0.04)

−0.03 
(0.04)

−0.03 
(0.05)

−0.02 
(0.05)

−0.02 
(0.05)

MA*Gender 0.07 
(0.05)

−0.004 
(0.04)

0.02 
(0.05)

MA-
WN*Gender

0.07 
(0.05)

−0.01 
(0.04)

−0.03 
(0.05)

MA-
F*Gender

0.05 
(0.05)

0.01 
(0.04)

−0.05 
(0.05)

R2 0.07 0.10 0.07 0.13 0.13 0.14 0.07 0.08 0.07

Adjusted R2 0.07 0.09 0.07 0.13 0.13 0.14 0.07 0.08 0.07

AIC 4959 4913 4960 4846 4841 4824 4965 4949 4965

BIC 5009 4962 5010 4895 4891 4874 5014 4998 5015

Residual SE 0.96 0.95 0.96 0.93 0.93 0.93 0.97 0.96 0.97

F(7, 1782) 20.40*** 27.50*** 20.20*** 38.30*** 39.00*** 41.90*** 19.50*** 21.90*** 19.40***

Note. Standardized coefficients are reported here. All models were based on 1,790 observations.
*
p < .05.

**
p < .01.

****
p < .001.
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Public Significance Statement

Math anxiety is a well-documented obstacle for math achievement. The extent to which 

math anxiety relates to performance on tasks assessing understanding of numerical 

magnitude may change depending on task features. Across two pre-registered studies, 

the relation between math anxiety and performance was strongest for large whole 

numbers and fractions compared to other rational number types, stronger for symbolic 

than non-symbolic fractions, and stronger for small-relative to large-component fractions. 

These findings contribute to a more nuanced understanding of the relation between math 

anxiety and different aspects of numerical magnitude understanding. Math anxiety may 

relate to certain aspects of numerical magnitude understanding more than others, which 

has implications for developing more targeted educational interventions and for designing 

accurate assessments of mathematical understanding.
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Context

This work is the result of a collaboration of researchers across different laboratories 

and institutions, united by an interest in factors that relate to numerical competencies, 

and how these competencies, in turn, play out in real-world contexts. In the two studies 

described here, the authors address a set of preregistered research questions through a 

secondary data analysis of two large data sets exploring how numerical competencies 

relate to attitudes and perceptions of COVID-19.
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Figure 1. 
Interaction Between MA and Different Types of Numbers (Fractions, Large Whole 

Numbers, Whole-Number Frequencies, and Percentages) in Study 1

Note. WN = whole numbers. Country, gender, education level, age and trait anxiety were 

included as covariates. Math anxiety was grand-mean centered. Error ribbons represent 

standard error of the effect.

Mielicki et al. Page 36

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Interaction Between MA and Number Format (Symbolic vs. Nonsymbolic Fractions) in 

Study 1

Note. Country, gender, education level, age and trait anxiety were included as covariates. 

Math anxiety was grand-mean centered. Error ribbons represent standard error of the effect.

Mielicki et al. Page 37

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Interaction between MA and Component Size (Small vs. Large) in Study 1

Note. Country, gender, education level, age and trait anxiety were included as covariates. 

Math anxiety was grand-mean centered. Error ribbons represent standard error of the effect.
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Figure 4. 
Interaction Between MA and Type of Number (Fractions vs. Large Whole Numbers) in 

Study 2

Note. WN = whole numbers. Age, gender and level of education were included in the model 

as covariates. Math anxiety was grand-mean centered. Error ribbons represent standard error 

of the effect.
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Figure 5. 
Interaction Between MA and Number Format (Symbolic vs. Nonsymbolic Fractions) in 

Study 2

Note. Age, gender and level of education were included in the model as covariates. MA was 

grand-mean centered. Error ribbons represent standard error of the effect.

Mielicki et al. Page 40

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mielicki et al. Page 41

Ta
b

le
 1

M
ea

ns
, S

ta
nd

ar
d 

D
ev

ia
tio

ns
, a

nd
 C

or
re

la
tio

ns
 f

or
 a

ll 
M

ea
su

re
s 

in
 S

tu
dy

 1

V
ar

ia
bl

e
M

SD
1

2
3

4
5

6
7

1.
 N

L
E

-W
N

F
0.

12
0.

11

2.
 N

L
E

-F
0.

21
0.

14
.2

5*
*

[.
21

, .
29

]

3.
 N

L
E

-P
0.

10
0.

10
.3

8*
*

.2
6*

*

[.
35

, .
42

]
[.

22
, .

30
]

4.
 N

L
E

-W
N

0.
20

0.
14

.4
2*

*
.3

5*
*

.3
1*

*

[.
38

, .
45

]
[.

31
, .

39
]

[.
27

, .
35

]

5.
 N

L
E

-N
S

0.
18

0.
14

.2
7*

*
.2

9*
*

.2
6*

*
.3

1*
*

[.
23

, .
31

]
[.

25
, .

33
]

[.
22

, .
30

]
[.

27
, .

35
]

6.
 M

A
3.

81
2.

63
.2

3*
*

.2
6*

*
.1

6*
*

.2
3*

*
.1

7*
*

[.
18

, .
27

]
[.

22
, .

30
]

[.
12

, .
21

]
[.

19
, .

27
]

[.
13

, .
21

]

7.
 T

ra
it 

A
nx

ie
ty

3.
70

2.
42

.1
4*

*
.1

3*
*

.1
0*

*
.1

9*
*

.1
6*

*
.4

5*
*

[.
09

, .
18

]
[.

09
, .

17
]

[.
06

, .
14

]
[.

14
, .

23
]

[.
12

, .
20

]
[.

41
, .

48
]

8.
 A

ge
59

.7
5

14
.4

4
−

.0
7*

*
−

.1
5*

*
−

.0
3

−
.0

9*
*

−
.1

5*
*

−
.2

2*
*

−
.3

0*
*

[−
.1

2,
 −

.0
3]

[−
.1

9,
 −

.1
1]

[−
.0

7,
 .0

1]
[−

.1
3,

 −
.0

4]
[−

.1
9,

 −
.1

1]
[−

.2
6,

 −
.1

7]
[−

.3
4,

 −
.2

6]

N
ot

e.
 N

L
E

-W
N

F:
 P

er
ce

nt
 a

bs
ol

ut
e 

er
ro

r 
(P

A
E

) 
fo

r 
N

L
E

 u
si

ng
 w

ho
le

-n
um

be
r 

fr
eq

ue
nc

ie
s 

(w
ith

 0
 in

 1
00

 a
nd

 1
00

 in
 1

00
 a

s 
en

dp
oi

nt
s)

, N
L

E
-F

: P
A

E
 f

or
 N

L
E

 u
si

ng
 f

ra
ct

io
ns

 (
w

ith
 0

 a
nd

 5
 a

s 
en

dp
oi

nt
s)

, 
N

L
E

-P
: P

A
E

 f
or

 N
L

E
 u

si
ng

 p
er

ce
nt

ag
es

 (
w

ith
 0

%
 to

 5
%

 a
s 

en
dp

oi
nt

s)
, N

L
E

-W
N

: P
A

E
 f

or
 N

L
E

 u
si

ng
 la

rg
e 

w
ho

le
 n

um
be

rs
 (

w
ith

 1
,0

00
 a

nd
 1

,0
00

,0
00

,0
00

 a
s 

en
dp

oi
nt

s)
, N

L
E

-N
S:

 P
A

E
 f

or
 N

L
E

 u
si

ng
 

no
ns

ym
bo

lic
 f

ra
ct

io
ns

, M
A

: m
at

h 
an

xi
et

y 
(1

–1
0 

sc
al

e)
, T

ra
it 

A
nx

ie
ty

: s
um

 s
co

re
 o

f 
tr

ai
t a

nx
ie

ty
. P

A
E

 is
 a

 m
ea

su
re

 o
f 

er
ro

r 
an

d 
hi

gh
er

 v
al

ue
s 

re
fl

ec
t l

es
s 

ac
cu

ra
te

 e
st

im
at

es
. V

al
ue

s 
in

 s
qu

ar
e 

br
ac

ke
ts

 
in

di
ca

te
 th

e 
95

%
 c

on
fi

de
nc

e 
in

te
rv

al
 f

or
 e

ac
h 

co
rr

el
at

io
n.

 T
he

 c
on

fi
de

nc
e 

in
te

rv
al

 is
 a

 p
la

us
ib

le
 r

an
ge

 o
f 

po
pu

la
tio

n 
co

rr
el

at
io

ns
 th

at
 c

ou
ld

 h
av

e 
ca

us
ed

 th
e 

sa
m

pl
e 

co
rr

el
at

io
n 

(C
um

m
in

g,
 2

01
4)

.

* p 
<

 .0
5.

**
p 

<
 .0

1.

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mielicki et al. Page 42

Table 2

Linear Mixed-Effects Models for NLE with Different Number Types in Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 26.82 (2.00) 13.41*** 18.09 Subject (Intercept) 48.30

MA 1.07 (0.09) 11.60*** 4037.84 Item (Intercept) 22.40

Type-WNF −9.03 (2.74) −3.29** 16.00 Residual 301.50

Type-P −11.65 (3.36) −3.47** 16.00

Type-WN −1.25 (2.88) −0.44 16.00

Gender −3.83 (0.37) −10.37*** 2011.19

Country (CA) 1.94 (0.49) 3.98*** 2011.27

Country (UK) −1.04 (0.50) −2.09* 2010.53

Education −3.69 (0.40) −9.31*** 2011.47

Age −0.71 (0.22) −3.28** 2011.34

Trait Anxiety 0.45 (0.20) 2.23* 2011.82

MA*Type-WNF −0.48 (0.09) −5.62*** 38210.24

MA*Type-P −0.75 (0.10) −7.17*** 38209.83

MA*Type-WN −0.15 (0.09) −1.66 38212.76

Note. Fractions, non-males, the U.S., and 13 years [of education] or less were the reference groups. MA: mean-centered math anxiety, WNF: Main 
effect of whole-number frequencies (with 0 in 100 and 100 in 100 as endpoints) compared to fractions, P: main effect of percentages (with 0% 
to 5% as endpoints) compared to fractions, NLE-WN: main effect of large whole numbers (with 1,000 and 1,000,000,000 as endpoints) compared 
to fractions, MA*WNF: interaction of math anxiety and number type comparing whole-number frequencies to fractions, MA*P: interaction of 
math anxiety and number type comparing percentages to fractions, MA*WN: interaction of math anxiety and number type comparing large whole 
numbers to fractions.

*
p < .05.

**
p < .01.

***
p < .001.
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Table 3

Linear Mixed-Effects Models for NLE with Symbolic and Nonsymbolic Fractions in Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 26.39 (1.81) 14.62*** 9.38 Subject (Intercept) 121.90

MA 1.04 (0.12) 8.53*** 2201.46 Format|Subject 147.60

Format −1.77 (2.92) −0.61 7.12 Item (Intercept) 16.70

Gender −2.75 (0.50) −5.55*** 2003.61 Residual 284.50

Country (CA) −1.51 (0.65) −2.30* 2001.08

Country (UK) −0.58 (0.67) −0.86 1997.33

Education −4.28 (0.53) −8.06*** 2002.97

Age −1.67 (0.29) −5.77*** 1995.35

Trait Anxiety 0.39 (0.27) 1.42 2000.63

MA*Format −0.40 (0.15) −2.72** 2002.55

Note. Symbolic fractions, non-males, the U.S., and 13 years [of education] or less were the reference groups.

*
p < .05.

**
p < .01.

***
p < .001.
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Table 4

Linear Mixed-Effects Models for NLE with Small and Large Rational Number Components in Study 1

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 22.65 (2.45) 9.23*** 11.03 Subject (Intercept) 51.80

MA 0.97 (0.10) 10.14*** 3148.79 Item (Intercept) 34.20

Component −1.08 (3.39) −0.32 10.00 Residual 311.70

Gender −3.74 (0.41) −9.13*** 2010.08

Country (CA) 1.51 (0.54) 2.78** 2009.13

Country (UK) −0.07 (0.55) −0.13** 2009.01

Education −4.15 (0.44) −9.45*** 2010.63

Age −.085 (0.24) −3.55*** 2009.65

Trait Anxiety 0.10 (0.23) 0.45 2012.01

MA*Component −0.23 (0.09) −2.68** 22097.91

Note. Small components, non-males, the U.S., and 13 years [of education] or less were the reference groups.

*
p < .05.

**
p < .01.

***
p < .001.
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Table 6

Linear Mixed-Effects Models for NLE with Different Number Types in Study 2

Fixed Effects Random Effects

Estimate (SE) t-value df Variance

Constant 21.92 (1.05) 20.95*** 16.95 Subject (Intercept) 88.72

MA 0.97 (0.10) 9.90*** 2097.04 Item (Intercept) 7.75

Type 5.40 (1.69) 3.19** 11.00 Residual 323.31

Gender −1.99 (0.51) −7.95*** 1783.00

Education −4.06 (0.51) −7.95*** 1783.00

Age −0.64 (0.26) −2.41* 1783.00

Trait Anxiety −1.40 (0.28) −5.08*** 1783.00

Condition −0.56 (0.50) −1.11 1783.00

MA*Type 0.54 (0.09) 6.04*** 21467.00

Note. Fractions, non-males, no college education, and control condition were the reference groups.

*
p < .05.

**
p < .01.

***
p < .001.
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Table 7

Logistic Mixed-Effects Models for Accuracy on Tasks with Symbolic and Nonsymbolic Fractions in Study 2

Fixed Effects Random Effects

Estimate (SE) z-value Variance

Constant −0.50 (0.15) −3.30*** Subject (Intercept) 1.21

MA −0.13 (0.01) −11.38*** Task type 1.08

Format 1.12 (0.18) 6.22*** Item (Intercept) 0.19

Gender 0.07 (0.04) 1.74

Education 0.35 (0.04) 7.90***

Age 0.12 (0.02) 5.43***

Trait Anxiety 0.09 (0.02) 3.83***

Condition 0.01 (0.04) 0.05

MA*Format 0.05 (0.01) 4.53***

Note. SE and df = 48,317 are used to represent standard error of the mean and degrees of freedom, respectively. Symbolic fractions, non-males, no 
college education, and control condition were the reference groups.

*
p < .05.

**
p < .01.

***
p < .001.
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Table 8

Linear Regression Summary for Specific Math Tasks with Different Types of MA as Predictors in Study 2

Whole Number PAE Fraction PAE Nonsymbolic Comparison Accuracy

Variable β (SE) ΔR2 β (SE) ΔR2 β (SE) ΔR2

Constant 0.20*** (0.04) - 0.24*** (0.04) - −0.09* (0.04) -

General MA 0.01 (0.04) < .001 0.07* (0.04) .002 −0.05 (0.04) .001

Whole-Number MA 0.20*** (0.03) .020 0.17*** (0.03) .012 −0.08* (0.03) .003

Fraction MA 0.06 (0.03) .002 0.12*** (0.03) .007 −0.13*** (0.03) .009

Gender −0.29*** (0.05) .020 −0.02 (0.04) < .001 0.05 (0.05) < .001

Education −0.06 (0.05) .001 −0.47*** (0.04) .054 0.16*** (0.05) .007

Age −0.08*** (0.02) .001 0.01 (0.02) < .001 0.13*** (0.02) .015

Trait Anxiety −0.08*** (0.02) .001 −0.12*** (0.02) .012 0.05* (0.02) .003

Condition −0.06 (0.05) < .001 −0.03 (0.04) < .001 −0.03 (0.05) < .001

R2 0.10 0.16 0.09

Adjusted R2 0.09 0.15 0.08

Residual SE 0.95 0.92 0.96

F(8, 1781) 24.40*** 41.40*** 20.90***

Note. Standardized coefficients are reported here. PAE is a measure of error so higher values reflect less accurate performance. All models were 

based on 1,790 observations. ΔR2 columns indicate the change in R2 when that predictor is removed from the model. Non-males, no college 
education, and control condition were the reference groups.

*
p < .05.

**
p < .01.

***
p < .001.
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Table 9

Summary of Findings Across Study 1 and Study 2

Research Question Prediction Findings from
Study 1

Findings from
Study 2

Does the relation between MA and 
performance vary by number type? 
(RQ1)

The relation will be strongest 
for fractions relative to other 
number types. We did not have 
specific predictions about other 
comparisons.

The relation was significant 
for all number types but 
was stronger for fractions and 
large whole numbers than for 
whole number frequencies and 
percentages.

The relation was significant 
for both number types but 
was stronger for large whole 
numbers than fractions.

Does the relation between 
MA and performance vary by 
number format (i.e.symbolic vs. 
nonsymbolic) fractions? (RQ2)

The relation will be stronger for 
symbolic than nonsymbolic tasks.

The relation varied by format 
and was stronger for symbolic 
than nonsymbolic tasks.

Replicated Study 1 with a 
different nonsymbolic task.

Does the relation between MA and 
performance on fraction estimation 
problems vary by component size? 
(RQ3)

The relation will be stronger for 
large-compared to small-component 
fractions.

The relation varied by 
component size but was 
stronger for small-component 
fractions.

Only assessed in Study 1.

Does the relation between MA and 
NLE performance vary depending 
on whether the MA measure aligns 
with the math measure? (RQ4)

Alignment between MA and 
behavioral measures should lead 
to stronger relations between MA 
and NLE for number-specific as 
opposed to non-specific measures 
of MA.

Only assessed in Study 2. The relation was stronger 
when the MA measure 
aligned with the math 
measure, but this varied by 
number type.
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