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Abstract—This paper investigates the performance of a single-
user fluid antenna system (FAS), by exploiting a class of elliptical
copulas to describe the dependence structure amongst the fluid
antenna positions (ports). By expressing the well-known Jakes’
model in terms of the Gaussian copula, we consider two cases: (i)
the general case, i.e., any arbitrary correlated fading distribution;
and (ii) the specific case, i.e., correlated Nakagami-m fading.
For both scenarios, we first derive analytical expressions for the
cumulative distribution function (CDF) and probability density
function (PDF) of the equivalent channel in terms of multivariate
normal distribution. Then we obtain the outage probability (OP)
and the delay outage rate (DOR) to analyze the performance
of FAS. By employing the popular rank correlation coefficients
such as Spearman’s ρ and Kendall’s τ , we measure the degree of
dependency in correlated arbitrary fading channels and illustrate
how the Gaussian copula can be accurately connected to Jakes’
model in FAS. Our numerical results demonstrate that increasing
the size of FAS provides lower OP and DOR, but the system
performance saturates as the number of antenna ports increases.
In addition, our results indicate that FAS provides better per-
formance compared to conventional single-fixed antenna systems
even when the size of fluid antenna is small.

Index Terms—Fluid antenna system, arbitrary fading, corre-
lation, Gaussian copula, SISO, outage probability.

I. INTRODUCTION

RECENT advances in diversity and spatial multiplexing
techniques have led to massive multiple-input multiple-

output (MIMO) being a key technology for the fifth-generation
(5G) wireless communication systems, where a large number
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of antennas are equipped in the form of an antenna array at
a base station [1], [2], [3], [4]. Even though the large number
of antennas at the base stations in massive MIMO systems
improves multiplexing gains and network capacity, the same
increment in the number of antennas at user equipment (UE) is
not anticipated. Scaling up the number of antennas at the UE
in massive MIMO systems brings many challenges in terms
of power consumption, complexity and cost of manufacturing,
signal processing requirements, channel estimation, spatial
separation, and etc. Even in high-frequency bands where the
antenna size is smaller, the spatial separation between antennas
in a small space that is customarily required can be a problem
when the number of antennas increases, let alone the cost of
increasing the number of radio frequency (RF) chains.

To tackle this issue, fluid antenna systems (FAS) have been
recently introduced as an emerging technology that promises
to achieve a remarkable diversity gain in the small space of
mobile devices in sixth-generation (6G) wireless networks [5],
[6], [7], [8]. In fact, FAS refers to a system where the antenna
has the ability to switch its position (i.e., ports) instantly1 in a
preset space. By doing so, FAS enables the mobile receiver’s
side2 to obtain spatial diversity without the physical limitations
of half-wavelength antenna spacing. This idea was motivated
by the recent advances in flexible antennas such as liquid metal
antennas or ionized solutions as well as reconfigurable pixel-
like antennas, e.g., [9], [10], [12], [13]. For latest experimental
results on FAS, readers are referred to [14], [15].

A. Related Works

Several contributions have been recently made to investigate
the performance of FAS in various wireless communication
scenarios. In [5], the authors derived analytical expressions
of the probability density function (PDF) and the cumulative
density function (CDF) for their proposed FAS under spatially-
correlated Rayleigh fading channels, and then obtained the
exact and approximated outage probability (OP) in integral-
form and closed-form expressions, respectively. The authors
in [16] recently derived an integral-form expression of the
OP for a point-to-point (P2P) FAS under Nakagami-m fading
channels. In addition, the lower bound of ergodic capacity
for FAS under Rayleigh fading channels was derived in [17].

1Port switching generally leads to a switching delay; however, such a delay
can be reasonably ignored for reconfigurable pixel-based fluid antennas [9].
On the other hand, if fluid antennas are implemented using soft materials by
employing nano-pumps and operating in higher frequency bands, the micro-
fluidic system for the fluid antenna could have a diameter below 1mm, and
the response time is anticipated to fall within the sub-millisecond range [10].
Hence, the switching delay can be assumed to be negligible.

2That said, the use of FAS is not limited to the UE side and some recent
works have explored the advantage of FAS at base stations, see [11].
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Moreover, the OP for large-scale cellular networks that utilize
FAS was analyzed in [18]. Furthermore, in order to apply
practical FAS to realistic wireless networks, the performance
of multiuser communication systems exploiting fluid antennas
was analyzed in [19], [20], [21], [22]. Additionally, the authors
in [23] proposed novel algorithms utilizing a combination of
machine learning methods and analytical approximation to
accurately select the best port with the maximum signal-to-
noise ratio (SNR) in FAS when the system observes only a
few ports. It is rightly understood that the FAS performance
highly depends on the spatial correlation between the fluid
antenna ports. Nevertheless, it was demonstrated in [24] that
most previous investigations may not accurately capture such a
correlation. Despite their proposed model allowing a tractable
analysis, it is overly simplistic and degenerates Jakes’ model
correlation to a single averaged-correlation parameter; hence,
the results are less accurate as reported in further studies. In
this regard, the authors in [25] proposed an eigenvalue-based
model to approximate the spatial correlation given by Jakes’
model, where they indicated that under such model, the FAS
has limited performance gain as the number of ports grows.
Channel estimation for FAS was also addressed in [26]. For a
comprehensive tutorial on FAS, readers can check [27].

However, with all the recent studies and aforementioned
considerations, there are several practical questions over the
FAS to date: (i) What is the correlation structure that needs
to be designed to be able to maximize the performance of
FAS? (ii) How to build a tractable model that can work for
any arbitrary correlation matrix and capture the case of Jakes’
as an example? Therefore, a tractable statistical approach is
required to gain more insight into these important issues.

B. Motivation and Contributions

As mentioned above, one of the most important challenges
in channel modeling of FAS is to accurately characterize the
spatial correlation between the fluid antenna ports — and
desirably, without a prohibitive complexity. Although great
efforts have been performed in this context, there is a lack of
precise methods that can describe such inherent correlation.
Specifically, generating the joint multivariate distributions of
correlated channels in FAS is extremely demanding due to
mathematical and statistical limitations. For this reason, most
previous works applied either the traditional statistical methods
or asymptotic formulations to describe the fading channel cor-
relation between the fluid antenna ports. One flexible statistical
procedure to overcome this issue is to adopt copula theory
which has become popular recently in performance analysis
of various wireless communication systems, e.g., [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38].

In general, copulas are functions that can: (i) Generate the
joint multivariate distributions of two or more arbitrary random
variables (RVs) by only knowing the marginal distributions;
(ii) describe the negative/positive dependence structure be-
tween two or more arbitrary RVs beyond linear correlation.
Exploiting such properties, the authors in [39] have recently
analyzed the performance of FAS under arbitrary fading dis-
tributions, using the family of Archimedean copulas to derive

the OP in a closed-form expression. However, this approach
can only capture the impact of the number of fluid antenna
ports on the OP performance, and cannot evaluate the effect
of fluid antenna size on the FAS performance — which is an
arguably more important system parameter.

Motivated by the aforesaid observations, this paper proposes
a novel copula-based technique to investigate the performance
of FAS under arbitrary fading distributions. By expressing
the well-known Jakes’ model in terms of Gaussian copula3

to describe the spatial correlation amongst the fluid antenna
ports, we first study a general case that is applicable for any
arbitrary correlated fading distribution, and then analyze a
specific case of correlated Nakagami-m fading channels. In
both cases, we derive compact analytical expressions of the
PDF and CDF for the considered FAS, exploiting Gaussian
copula. Then, to evaluate the system performance, we obtain
the analytical expressions of the OP and delay outage rate
(DOR) for both cases. To gain more insight into the superiority
of our copula-based approach, we also measure the degree of
dependence between correlated antenna ports. Specifically, the
main contributions of our work are summarized as follows:

• We provide general formulations of the CDF, PDF, OP,
and DOR in terms of the multivariate normal distribution
for the considered FAS for any arbitrary fading distribu-
tion and also Jakes’ model as an example.

• In addition, we quantify the structure of dependency
between spatially correlated antenna ports by exploiting
the important rank correlation coefficients such as Spear-
man’s ρ and Kendall’s τ , where the scatterplots for the
2-port FAS are provided for exemplary purposes.

• Furthermore, we derive the CDF, PDF, OP, and DOR
in terms of the multivariate normal distribution under
correlated Nakagami-m fading channels.

• Numerical results show that Gaussian copula can accu-
rately capture the spatial correlation between the fluid
antenna ports in terms of the fluid antenna size and the
number of ports. Moreover, the results reveal that the
performance of FAS highly depends on the fluid antenna
size and the number of ports. Increasing the fluid antenna
size improves the OP and DOR but the performance does
not necessarily get better as the number of ports grows.

C. Paper Organization

The rest of this paper is organized as follows. Section II
describes the system model. Section III presents the statistical
characterization of the equivalent fading distribution at the
FAS receiver end, with the fundamentals of copula theory and
the general arbitrarily correlated fading distribution discussed
in Section III-A and Section III-B, respectively. Section IV
outlines the performance analysis of the considered FAS,
where the analysis of the OP and DOR for the general case
(i.e., arbitrary fading distribution) is provided in Section IV-A,

3Gaussian copula is an elliptical and symmetric copula that is determined
entirely by its correlation matrix, instead of a single parameter as with the
Archimedean copulas. In contrast to other copulas, the univariate margins in
elliptical copula are joined by an elliptical distribution, which provides nice
analytical properties [40].
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Fig. 1. Exemplary illustration of FAS when the fluid antenna is implemented
by shifting a soft radiating material along a linear space. Other designs such
as reconfigurable pixels are possible and likely practically more attractive.

while the specific case (i.e., Nakagami-m) is discussed in
Section IV-B. Then in Section V, the efficiency of analytical
results is illustrated numerically, and finally, the conclusions
are drawn in Section VI.

D. Mathematical Notation

We use boldface upper and lower case letters for matrices
and column vectors, respectively. Cov[·] and Var[·] denote
the covariance and variance operators, respectively. Moreover,
(·)T , (·)−1, |.|, and det(·) stand for the transpose, inverse,
magnitude, and determinant, respectively.

II. SYSTEM MODEL

We consider a wireless communication system as shown
in Fig. 1, where a single-fixed-antenna transmitter sends an
independent message x with transmit power P to a mobile
receiver that is equipped with a fluid antenna. It is assumed
that the fluid antenna includes only one RF chain and K
preset positions (i.e., ports), which are equally distributed on
a linear space of length Wλ where λ denotes the wavelength
of radiation in vacuum. Therefore, the distance between the
first port and the k-th port is given by

dk =

(
k − 1

K − 1

)
Wλ, for k = 1, 2, . . . ,K. (1)

Furthermore, the received signal at the k-th port under flat
fading condition can be expressed as

yk = hkx+ zk, (2)

in which hk denotes the fading channel coefficient of the k-th
port and zk is the independent identically distributed (i.i.d.)
additive white Gaussian noise (AWGN) with zero mean and
variance σ2

n at every port.
Given that the fluid antenna ports can be arbitrarily close

to each other, the fading channel coefficients {hk}∀k are
spatially correlated and have a covariance matrix K. Assuming
two-dimensional isotropic scattering (i.e., rich scattering) and

isotropic receiver ports on the FAS, such spatial correlation
can be characterized by Jakes’ model so that [41]

Khk,hl
= Cov [hk, hl] = σ2J0

(
2π (k − l)

K − 1
W

)
, (3)

where σ2 accounts for the large-scale fading effect and J0 (·)
denotes the zero-order Bessel function of the first kind.

Moreover, in order to achieve optimal performance, FAS is
assumed to always activate the best port with the maximum
signal envelope for communication,4 i.e.,

hFAS = max {|h1|, |h2|, . . . , |hK |} . (4)

Furthermore, the received SNR for the FAS can be defined as

γ =
Ph2

FAS

σ2
n

= γ̄h2
FAS, (5)

in which γ̄ = P 2

σ2
n

is the average transmit SNR.

III. STATISTICAL CHARACTERIZATION

In this section, we first characterize the spatial correlation
between the fluid antenna ports in terms of Gaussian copula,
and then derive compact analytical expressions of the channel
distributions for a general case. Next, we measure the structure
of dependency for the FAS by exploiting rank correlation
coefficients. To this end, we find it useful to first briefly review
the concept of copula theory [42].

A. Brief Review of Copula Theory
Definition 1 (d-dimensional copula). Let s = [S1, . . . , Sd]
be a vector of d RVs with marginal CDFs FSi(si) for i ∈
{1, 2, . . . , d}, respectively. Then, the corresponding joint CDF
is defined as

FS1,...,Sd
(s1, s2, . . . , sd) = Pr(S1 ≤ s1, . . . , Sd ≤ sd). (6)

The copula function C(u1, . . . , ud) of the random vector s
defined on the unit hypercube [0, 1]d with uniformly distributed
RVs Ui := FSi(si) over [0, 1] is given by

C(u1, . . . , ud) = Pr(U1 ≤ u1, . . . , Ud ≤ ud), (7)

where ui = FSi
(si).

Theorem 1 (Sklar’s theorem). Let FS1,...,Sd
(s1, . . . , sd) be a

joint CDF of RVs with margins FSi(si) for i ∈ {1, 2, . . . , d}.
Then, there exists one copula function C such that for all si
in the extended real line domain R̄,

FS1,...,Sd
(s1, . . . , sd) = C (FS1(s1), . . . , FSd

(sd)) . (8)

Definition 2 (d-dimension Gaussian copula). The multivariate
Gaussian copula with correlation matrix R ∈ [−1, 1]

d×d is
defined as

CG(u1, . . . , ud) = ΦR

(
ϕ−1(u1), . . . , ϕ

−1(ud); η
)
, (9)

where ϕ−1(·) is the inverse CDF (i.e., quantile function) of
the standard normal distribution, ΦR(·) is the joint CDF of
the multivariate normal distribution with zero mean vector
and correlation matrix R, and η denotes the dependence
parameter of the Gaussian copula which can control the
degree of dependence between correlated RVs.

4In a practical scenario, only a small subset of observed ports is needed to
reach the full channel state information (CSI) [23].
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B. General Case: Arbitrary Correlated Fading Distribution

Classically, spatial correlation in wireless communications
is modeled through linear correlation; e.g., Jakes’ correlation
model is assumed in FAS. Unfortunately, there is no analytical
solution for the received signal in FAS under such model.
Evidently, system performance needs to be analyzed over
correlated fading channels due to the close proximity of the
FAS ports. In this line, while the linear correlation coefficient
is effective in determining elliptical multivariate distributions,
it sometimes falls short in capturing the correlations present
in non-elliptical multivariate distributions like Rayleigh or
Rician fading models since such distributions, being Gaussian-
centric, may not adequately represent simultaneous deep fades
influenced by underlying interdependencies. Moreover, the
linear correlation parameter demonstrates satisfactory perfor-
mance for the majority of the practical d-variate Nakagami-m
distribution; however, its approximation often tends to falter
in the tails, which is momentous because bit errors or outages
mainly occur in deep fade conditions. As a consequence,
there is an increased demand for a more general mathematical
and statistical tool that can accurately model the correlated
fading channel; especially, in FAS. For this purpose, the copula
theory can be considered a tractable approach to address the
challenges related to the structure of dependency in FAS.

Now, choosing the optimum copula that can exactly fit with
the pre-defined system model and also accurately measure
the unknown dependence structure is challenging. In this
regard, although the empirical method is often accurate and
provides realistic observations, it needs real datasets for such
analysis [43], which are usually unavailable; especially for
FAS-based communications. Moreover, while Archimedean
copulas have nice properties and a simple structure that can
accurately describe the structure of dependency, especially
the lower and upper tail dependencies, they do not include
the correlation/covariance matrix and their corresponding rank
correlation cannot be easily derived [44]. In contrast, the Gaus-
sian copula includes a correlation matrix such that each entry
of the matrix is the dependence parameter of the Gaussian
copula, i.e., η. As we later show in detail, η can directly
approximate the correlation provided by Jakes’ model by a
simple transformation of the rank correlations. Additionally,
the Gaussian copula can be extended to incorporate tail
dependence, allowing for the modeling of extreme events and
dependencies in the tails of the distribution [40], which is
particularly important in the performance analysis of wireless
communication systems. Hence, this choice is valid for the
main purposes of this paper.

1) Channel distributions: By exploiting the concept of cop-
ula theory and using the definition of d-dimension Gaussian
copula, we derive the compact analytical expressions of the
CDF and PDF of hFAS in the following theorems.

Theorem 2. The CDF of hFAS = max {|h1|, |h2|, . . . , |hK |}
for any arbitrary correlated fading coefficient |hk|, k ∈
{1, 2, . . . ,K}, with marginal CDF F|hk| (r) by exploiting

Gaussian copula is derived as

FhFAS
(r) = ΦRhk,hl

(
ϕ−1

(
F|h1| (r)

)
, . . . , ϕ−1

(
F|hK | (r)

))
,

(10)

where

ϕ−1
(
F|hK | (r)

)
=

√
2 erf−1

(
2F|hK | (r)− 1

)
, (11)

in which erf−1(·) denotes the inverse of error function
erf(z) = 2√

π

∫ z

0
e−t2dt. The term ΦRhk,hl

(·) is the joint CDF
of the multivariate normal distribution with zero mean vector
and the correlation matrix Rhk,hl

as

Rhk,hl
=


1 η1,2 . . . η1,l

η2,1 1 . . . η2,l
...

...
. . .

...
ηk,1 ηk,2 . . . 1

 , (12)

where ηk,l = J0

(
2π(k−l)
K−1 W

)
is the dependence parameter of

Gaussian copula which can be chosen freely to control the
correlation between the corresponding channel coefficients.

Proof. Since the structure of dependency between correlated
RVs in the Gaussian copula is denoted by a correlation
matrix with corresponding dependence parameters, we first
determine the correlation matrix between the arbitrary channel
coefficients in terms of Jakes’ model. Hence, by exploiting the
covariance matrix in (3) and considering Cholesky decompo-
sition, the correlation matrix Rhk,hl

that includes dependence
parameter ηk,l is obtained as

Rhk,hl
=

Cov [hk, hl]√
Var [hk] Var [hl]

= J0

(
2π (k − l)

K − 1
W

)
. (13)

Next, by using the definition of the CDF, FhFAS
(r) can be

mathematically expressed as

FhFAS
(r) = Pr (max {|h1|, |h2|, . . . , |hK |} ≤ r) (14)

= Pr (|h1| ≤ r, |h2| ≤ r, . . . , |hK | ≤ r) (15)
= F|h1|,|h2|,...,|hK | (r, r, . . . , r) (16)
(a)
= C

(
F|h1|(r), F|h2|(r), . . . , F|hK |(r)

)
, (17)

where (a) is obtained from Theorem 1. Now, by inserting the
Gaussian copula from (9) into (14), then plugging the marginal
CDF of arbitrary fading channels into the obtained result for
ud = F|hk|(r), and finally considering the correlation matrix
in (13), the proof is completed. ■

Theorem 3. The PDF of hFAS = max {|h1|, |h2|, . . . , |hK |}
for any arbitrary correlated fading coefficient |hk|, for k ∈
{1, 2, . . . ,K}, with marginal PDF f|hk| (r) and marginal
CDF F|hk| (r) by exploiting Gaussian copula is derived as

fhFAS
(r) =

K∏
k=1

f|hk| (r)

×
exp

(
− 1

2

(
ϕ−1

hK

)T (
R−1

hk,hl
− I

)
ϕ−1

hK

)
√

det (Rhk,hl
)

, (18)
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Fig. 2. Scatterplots describe the structure of dependency between two arbitrary correlated fading channels |h1| and |h2| with uniform marginal distributions
u1 and u2 under Gaussian copula that includes correlation matrix Rh1,h2

.

where det (Rhk,hl
) denotes the determinant of the correla-

tion matrix Rhk,hl
, I is the identity matrix, and ϕ−1

hK
=[

ϕ−1
(
F|h1|(r)

)
, . . . , ϕ−1

(
F|hK |(r)

)]T
is given by (11).

Proof. By applying the chain rule to FhFAS
(r) provided

in (10), and then considering the marginal distributions of
arbitrary fading channels, we have

fhFAS (r) =

K∏
k=1

f|hk| (r)

×
∂KΦRhk,hl

(
ϕ−1

(
F|h1| (r)

)
, . . . , ϕ−1

(
F|hK | (r)

))
∂F|h1|(r) . . . ∂F|hK |(r)︸ ︷︷ ︸
cG(F|h1|(r)),...,(F|hK |(r))

, (19)

where cG
(
F|h1| (r)

)
, . . . ,

(
F|hK | (r)

)
is the Gaussian copula

density which can be computed mathematically as

cG
(
F|h1| (r)

)
, . . . ,

(
F|hK | (r)

)
=

exp
(
− 1

2

(
ϕ−1

hK

)T (
R−1

hk,hl
− I

)
ϕ−1

hK

)
√
det (Rhk,hl

)
. (20)

Now, by inserting (20) into (19) and considering the correla-
tion matrix Rhk,hl

, the proof is completed. ■

2) Dependence measurement: In order to gain more insight
into how our copula-based analytical results can describe the
structure of dependency between correlated fading channel
coefficients over the fluid antenna ports, we here provide the
scatterplots of two arbitrarily correlated fading channels |h1|
and |h2| by using Gaussian copula over the 2-port FAS in
Fig. 2. To do so, by considering uniformly distributed RVs
u1 = F|h1| (|h1|) and u2 = F|h2| (|h2|), we generate n = 1000
random vectors from the Gaussian copula CG (u1, u2) with
correlation matrix Rh1,h2 consisting of two dependence pa-
rameters η1,2 and η2,1. Given that we considered Jakes’ model
to describe the spatial correlation between the fluid antenna
ports, both dependence parameters highly depend on the fluid
antenna size W . Thus, we can observe from Fig. 2 that as the
size of the fluid antenna increases (decreases), the scattering
between data generated by the Gaussian copula increases
(decreases), meaning that the spatial correlation between the
fluid antenna ports becomes weaker (stronger). Furthermore,
these observations are completely separate from the marginal

distributions of channel coefficients, which means that |h1| and
|h2| can be modeled by any arbitrary marginal distributions
whereas they still have the same rank correlation. However,
to realize the spatial correlation between the fluid antenna
ports under specific channel distributions, we just need to
apply the inverse CDF of the corresponding distribution to the
uniformly distributed RVs u1 and u2 (i.e., |h1| = F−1

|h1| (u1)

and |h2| = F−1
|h2| (u2)), in which the spatial correlation for a

specific scenario will be analyzed in the next section.
On the other hand, it should be noted that the dependence

parameter of Gaussian copula η in Def. 2 does not necessarily
express the linear correlation between two or more RVs, since
when non-linear transformations are applied to those RVs, the
linear correlation cannot be maintained anymore (as it happens
in the copula definition). For this reason, a rank correlation that
can measure the statistical dependence between the ranking of
two RVs is often used to describe the correlation between RVs.
In other words, unlike the linear correlation coefficient which
can only describe linear dependence between RVs, rank cor-
relations are preserved under any monotonic transformation,
and thus can significantly describe the non-linear correlation
between RVs. In this regard, Spearman’s ρ, denoted as ρs, and
Kendall’s τ , denoted as τk, are the two most popular rank
correlation coefficients which can accurately describe such
dependence between RVs since they are invariant to the choice
of the marginal distribution. Additionally, ρs and τk for the
two arbitrary RVs with the corresponding copula C can be
expressed, respectively, as [42]

ρs = 12

∫∫
[0,1]2

u1u2dC (u1, u2)− 3, (21)

τk = 4

∫∫
[0,1]2

C (u1, u2) dC (u1, u2)− 1. (22)

In particular, for the two arbitrary correlated fading channel
coefficients |h1| and |h2| with the Gaussian copula CG, which
is defined in terms of bivariate normal distribution, ρsk,l

and
τkk,l

can be, respectively, expressed in terms of ηk,l as

ρsk,l
=

6

π
arcsin

(ηk,l
2

)
, (23)

τkk,l
=

2

π
arcsin (ηk,l) . (24)
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Therefore, by inserting the correlation matrix Rhk,hl
from (13)

which depends on the fluid antenna size W into (24) and
(23), we provide the dependence measurement between two
arbitrary correlated channel coefficients |h1| and |h2| over the
FAS in terms of the rank correlations ρsk,l

and τkk,l
in Tab. I.

It is worth noting that the rank correlation coefficients are
strictly less than the Gaussian dependence parameter unless
ηk,l is exactly one (i.e., full correlation).

Remark 1. It is worth mentioning that in (13) each entry
of the covariance matrix in Jakes’ model (i.e., correlation
parameter) is connected to each entry of the correlation
matrix of the Gaussian copula (i.e., the Gaussian copula
parameter ηk,l that controls the dependency) with the help of
the Cholesky decomposition. Then, it is necessary to check how
the underlying copula (e.g., the Gaussian copula in this paper)
can be accurately matched with the given arbitrary marginal
distributions. Despite several various approaches exist for this
purpose [45], one of the main methods is to describe the
structure of dependency based on rank correlation coefficients
such as Spearman’s ρ and Kendall’s τ for the considered
copula, as they are provided in (23) and (24) for the Gaussian
copula. While this technique is mathematically based, it can
provide useful insights into the behavior of the dependence
structure. By examining the results in Table I, the accuracy of
the Gaussian copula in describing the correlation between the
channel gains in FAS can be observed. This will be validated
through scatterplot analysis under the Gaussian copula and
Monte-Carlo simulations using Jakes’ model later in Sect. IV,
for the exemplary case of Nakagami-m fading.

Remark 2. In comparison with the previous contributions that
exploited the Archimedean copulas in FAS [39], [46], the an-
alytical relation between rank correlation coefficients and the
copula dependence parameter is less complicated under the
Gaussian copula. For instance, in [46], an estimation between
Spearman’s ρ and the dependence parameter of the Clayton
copula was used to approximate Jakes’ model, which makes
the results less accurate. In contrast, the relation between
ρs and the Gaussian copula parameter, which is provided
in (23) is exact; thereby, Jakes’ model is approximated more
accurately in this paper.

Remark 3. The derivation of the distribution of the maximum
of K correlated random variables requires for the evaluation
of K-fold nested integrals [47], which is prohibitively complex
specially as the FAS size grows. Although complexity can be
reduced if the equivalent distribution of the SNR is formu-
lated using an ϵ-rank approximation for the relevant set of
eigenvalues, a multi-fold nested integration of ϵ-rank order
over Marcum Q-functions is still required even for the case
of Rayleigh fading [25]. Compared to these alternatives, the
Gaussian copula approach provides an alternative solution
that requires the evaluation of the multivariate normal CDF
with arguments computed using the inverse error function;
both are available in commercial software packages like
Matlab through mvncdf and erfinv, respectively. Besides,

TABLE I
DEPENDENCE MEASUREMENT IN TERMS OF THE FLUID ANTENNA SIZE W

FOR THE CONSIDERED FAS WHEN K = 2

Dependence measurement for a 2-port FAS
Size W η1,2 η2,1 ρs1,2 ρs2,1 τk1,2 τk2,1

W = 0.05 0.98 0.98 0.97 0.97 0.86 0.86
W = 0.1 0.90 0.90 0.89 0.89 0.72 0.72
W = 0.5 0.30 0.30 0.29 0.29 0.20 0.20
W = 1 0.22 0.22 0.21 0.21 0.14 0.14
W = 2 0.16 0.16 0.15 0.15 0.10 0.10
W = 4 0.11 0.11 0.10 0.10 0.07 0.07
W = 6 0.09 0.09 0.09 0.09 0.06 0.06

the arbitrary choice of underlying fading distribution (e.g.,
Nakagami-m in the example here considered) is directly
captured through its marginal CDF in the argument of the
erfinv evaluations. Since the evaluation of nested integrals
over sophisticated special functions is not required, complexity
is notably reduced when using our approach.

IV. PERFORMANCE ANALYSIS

Here, we first derive compact analytical expressions of the
OP and DOR for a general case. Then in order to evaluate the
FAS performance, we obtain the OP and DOR under correlated
Nakagami-m fading channels as a special case.

A. General Case: Arbitrary Correlated Fading Distribution

1) OP analysis: OP is a key performance metric in wireless
communication systems which is defined as the probability
that the random SNR γ is less than an SNR threshold γth,
i.e., Pout = Pr (γ ≤ γth). Hence, we derive the OP for the
considered FAS in the following theorem.

Theorem 4. The OP for the considered FAS under arbitrary
correlated fading channels by exploiting Gaussian copula is
given by

Pout = ΦRhk,hl

(
ϕ−1

(
F|h1| (γ̂)

)
, . . . , ϕ−1

(
F|hK | (γ̂)

))
,

(25)

in which ϕ−1
(
F|hK | (γ̂)

)
=

√
2 erf−1

(
2F|hK | (γ̂)− 1

)
, γ̂ =√

γth

γ̄ , and the correlation matrix Rhk,hl
is defined in (12).

Proof. By substituting the SNR of the FAS from (5) into the
definition of OP, we have

Pout = Pr

(
max {|h1|, . . . , |hK |} ≤

√
γth
γ̄

)
= FhFAS

(γ̂) ,

(26)

where by utilizing the CDF in (10), the proof is completed. ■

2) DOR analysis: DOR is an important performance metric
for designing ultra-reliable and low-latency communications
(URLLC), which is defined as the probability that the time
required to successfully transmit a certain amount of data R
in a wireless channel with a bandwidth B is greater than a
threshold duration Tth, i.e., Pdor =Pr (Tdt > Tth), where

Tdt =
R

B log2 (1 + γ)
(27)
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represents the delivery time [48]. Hence, the DOR for the
considered FAS can be derived in the following theorem.

Theorem 5. The DOR for the considered FAS under arbitrary
correlated fading channels by exploiting Gaussian copula is
given by

Pdor = ΦRhk,hl

(
ϕ−1

(
F|h1|

(
T̂
))

, . . . , ϕ−1
(
F|hK |

(
T̂
)))

,

(28)

where ϕ−1
(
F|hK |

(
T̂
))

=
√
2 erf−1

(
2F|hK |

(
T̂
)
− 1

)
,

T̂ =

√
e
R ln 2
BTth

γ̄ , and Rhk,hl
is obtained from (12).

Proof. By applying the SNR of the FAS to the definition of
the DOR, we have

Pdor = Pr

(
R

B log2 (1 + γ)
> Tth

)
(29)

= Pr

(
γ ≤ exp

(
R ln 2

BTth

)
− 1

)
(30)

= Pr

hFAS ≤

√
e

R ln 2
BTth − 1

γ̄

 (31)

= FFAS

(
T̂
)
, (32)

which after using (10), completes the proof. ■

Remark 4. It is worth noting that the obtained analytical
results in Theorems 2, 3, 4, 5 are valid for any choice of arbi-
trary correlated fading distributions. Though these analytical
results, except the PDF, are expressed in terms of the CDF
of multivariate normal distributions, they can be estimated
numerically by adopting different methods [49], [50], [51]
and there is no need to solve any complicated integral. In
addition, in contrast to [39] which did not consider the size
of the fluid antenna for describing the channel correlation, we
can see that our copula-based analytical results can accurately
describe the spatial correlation between the fluid antenna ports
in terms of Jakes’ model, and hence, we can consider the fluid
antenna size in the performance analysis of the FAS.

B. Special Case: Correlated Nakagami-m Fading
To analyze the efficiency of the considered FAS in terms

of the OP and DOR under typical fading conditions, here
we consider that the channel coefficients follow Nakagami-m
distribution, where the parameter m ≥ 0.5 describes the fading
severity. The Nakagami-m distribution is chosen due to its
versatility in representing different fading conditions through
the parameter m (e.g., Rayleigh distribution when m = 1), and
its relevance in correlated scenarios where spatial correlation
arises naturally from the FAS. Therefore, the marginal PDF
and CDF of the fading channel coefficient |hk| with the shape
parameter m and the spread parameter µ can be, respectively,
written as

fNak
|hk| (r) =

2mm

Γ(m)µm
r2m−1e−

m
µ r2 , (33)

FNak
|hk| (r) =

γ
(
m, m

µ r2
)

Γ(m)
, (34)

in which the terms Γ(·) and γ(·, ·) are gamma function and
the lower incomplete gamma function, respectively.

Corollary 1. The CDF of hFAS = max {|h1|, |h2|, . . . , |hK |}
under correlated Nakagami-m fading coefficient |hk|, for
k ∈ {1, 2, . . . ,K}, with marginal CDF FNak

|hk| (r) by utilizing
Gaussian copula is derived as

FNak
hFAS

(r) = ΦRhk,hl

√
2 erf−1

2γ
(
m, m

µ r2
)

Γ(m)
− 1


, . . . ,

√
2 erf−1

2γ
(
m, m

µ r2
)

Γ(m)
− 1

 . (35)

Proof. By inserting (34) into (11) and plugging the obtained
result into (10), the proof is completed. ■

Corollary 2. The PDF of hFAS = max {|h1|, |h2|, . . . , |hK |}
under correlated Nakagami-m fading coefficient |hk|, for
k ∈ {1, 2, . . . ,K}, with marginal PDF fNak

|hk| (r) and marginal
CDF FNak

|hk| (r) by exploiting Gaussian copula is derived as

fNak
hFAS

(r) =

(
2mm

Γ(m)µm r2m−1e−
m
µ r2

)K

√
det (Rhk,hl

)

× exp

(
−1

2

(
ϕNak

hK

−1
)T (

R−1
hk,hl

− I
)
ϕNak

hK

−1
)
, (36)

where

ϕNak
hK

−1
=

√2 erf−1

2γ
(
m, m

µ r2
)

Γ(m)
− 1


, . . . ,

√
2 erf−1

2γ
(
m, m

µ r2
)

Γ(m)
− 1

 . (37)

Proof. By substituting the marginal distribution of the
Nakagami-m channel |hK | from (33) and (34) into (18) and
considering the correlation in (12), the proof is completed. ■

Remark 5. It is worth mentioning that the spatial correlation
between correlated Nakagami-m fading coefficients |h1| and
|h2| under Gaussian copula can be measured by applying the
inverse CDF of Nakagami-m to the uniformly distributed RVs
u1 and u2 (i.e., |h1| = FNak−1

|h1| (u1) and |h2| = FNak−1

|h2| (u2)).
Following this approach, Fig. 3 illustrates the scatterplots
of fading coefficients |h1| and |h2| with Nakagami-m fading
under the Gaussian copula (i.e., Figs. 3(a)–3(d)) and Jakes’
model (i.e., Figs. 3(e)–3(h)). A comparison between these
two sets of scatterplots reveals that the Gaussian copula
model closely mirrors the dependency structure observed in
Jakes’ model, confirming that for small (large) fluid antenna
size W , the fading channel coefficients are highly (slightly)
correlated. Moreover, it is evident that for various values of W ,
despite the Gaussian copula effectively capturing the overall
trend and distribution shape observed in Jakes’ model, there
are slight differences in how tail dependences are captured.
However, these differences will later prove not to have a
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Fig. 3. Scatterplots describe the structure of dependency between two correlated Nakagami-m fading channels |h1| and |h2| when m = 1 under: (a)–(d)
Gaussian copula, and (e)–(h) Jakes’ model.

major impact when evaluating system performance. Therefore,
this comparison suggests that the Gaussian copula is capable
of effectively modeling the dependency structure between the
fading channels, providing a close approximation to Jakes’
model across various scenarios.

Remark 6. By carefully observing the results in Figs. 4(a)
and 4(b), it is evident that our Gaussian copula-based model
effectively mimics the CDF and PDF curves of Jakes’ model,
where it aligns well with Jakes’ model, demonstrating a
similar trend in fading behavior. However, slight differences
exist, indicating that while the proposed model is designed to
replicate Jakes’ model, it introduces minor adjustments that
can better fit specific cases. Despite these subtle variations, the
overall performance of the proposed model suggests that it is a
reliable approximation that preserves the main characteristics
of the standard Jakes’ model, such as the fading amplitude
distribution. Moreover, we can see that as K changes from 4
to 8 for small values of W , the CDF and PDF remain almost
constant, which means that the FAS performance does not
necessarily improve as K grows. However, for large values
of W , the CDF and PDF remarkably shift to the right as
K increases, i.e., the performance improves. In addition, we
observe that as W grows for a fixed value of K (e.g., K = 8),
the CDF and PDF significantly shifts to the right, meaning
that for constant K, increasing the fluid antenna size improves
considerably the FAS performance.

Corollary 3. The OP for the considered FAS under correlated
Nakagami-m fading channels by exploiting Gaussian copula

is given by

PNak
out = ΦRhk,hl

√
2 erf−1

2γ
(
m, m

µ γ̂2
)

Γ(m)
− 1


, . . . ,

√
2 erf−1

2γ
(
m, m

µ γ̂2
)

Γ(m)
− 1

 . (38)

Proof. By assuming r = γ̂ in (35), the proof is completed. ■

Corollary 4. The DOR for the considered FAS under cor-
related Nakagami-m fading channels by exploiting Gaussian
copula is given by

PNak
dor = ΦRhk,hl

√
2 erf−1

2γ
(
m, m

µ T̂ 2
)

Γ(m)
− 1


, . . . ,

√
2 erf−1

2γ
(
m, m

µ T̂ 2
)

Γ(m)
− 1

 . (39)

Proof. By assuming r = T̂ in (35), the proof is done. ■

V. NUMERICAL RESULTS

In this section, we present numerical results to gain more
insight into the OP and DOR performance of FAS. It should
be noted that the analytical results obtained in (38) and (39)
are expressed in terms of the CDF of a multivariate normal
distribution that technically has no closed-form expression.
Nonetheless, it can be estimated numerically through various
algorithms or implemented by the mathematical package of
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(a)

(b)

Fig. 4. (a) CDF and (b) PDF of FAS for selected values of K and W when
m = 3 and µ = 1.

programming languages such as MATLAB, Python, and R.
Additionally, as shown in Algorithm 1, the Gaussian copula
can be simulated by applying the Cholesky decomposition of
the given correlation matrix R to obtain the lower triangular
matrix A, such that AAT = R [52]. We also consider the
conventional single-input single-output (SISO) fixed-antenna
system as a benchmark to compare with the proposed FAS.

Algorithm 1 Gaussian Copula Simulation
Step 1. Compute A, such that AAT = R
Step 2. Generate s = (S1, . . . , Sd), such that Si ∼ N (0, 1)
for i = 1, . . . , d
Step 3. Calculate Vi =

∑i
j=1 Ai,jSi for i = 1, . . . , d

Step 4. Return Ui = ΦR (Vi) for i = 1, . . . , d

The behavior of the OP and DOR versus the average
transmit SNR γ̄ for given numbers of fluid antenna ports K
and selected values of fluid antenna size W under correlated
Nakagami-m fading channels is illustrated in Figs. 5 and
6, respectively. As expected, we can see that the OP and

DOR decrease as the average transmit SNR increases. From
Figs. 5(a) and 6(a), it can also be observed that as K grows,
the performance of OP and DOR improves for large values
of fluid antenna size (e.g., W = 6) which is in alignment
with the findings of [25]. However, increasing K does not
affect the system performance for small values of fluid an-
tenna size (e.g., W = 0.5), meaning that the OP and DOR
remain almost constant. In other words, when K rises for a
fixed W , the space between ports decreases and the spatial
correlation between them increases, and thus lower diversity
gain is reached until eventually saturated. Furthermore, we
can observe from Figs. 5(b) and 6(b) that increasing the
fluid antenna size W for larger K provides more noticeable
effects on the improvement of OP and DOR compared with
smaller K. Moreover, it can be seen that increasing the spatial
separation between the fluid antenna ports by increasing W
for a fixed K, and hence reducing the spatial correlation, can
greatly ameliorate the system performance in terms of the OP
and DOR. Figs. 5(c) and 6(c) indicate that by simultaneously
increasing W and K, spatial correlation between fluid antenna
ports becomes balanced, and consequently lower OP and DOR
are achieved. Besides, it can be seen that the FAS provides
better performance in terms of the OP and DOR compared
with the conventional SISO system in all scenarios even if
the fluid antenna has large K and small space. The main
reason behind this improvement is due the capability of FAS in
switching to the best port within a finite size W . Furthermore,
in both Figs. 5(c) and 6(c), we can observe that our Gaussian
copula-based model closely follows the behavior of Jakes’
model across different configurations of K and W . For each
parameter set, the OP and DOR curves for the proposed model
and Jakes’ model overlap or are very close, demonstrating that
our proposed model provides a highly accurate approximation
(see Remarks 5 and 6). While the curves for the Gaussian
copula model and Jakes’ model are mostly aligned, small
deviations can be observed at certain SNR levels. These minor
differences suggest that while the proposed model is highly
accurate, it is still an approximation and might have slight
estimation errors under certain conditions.

The impact of fading parameter m on the performance
of OP and DOR for given values of K and W under
correlated Nakagami-m fading channels is investigated in
Figs. 7(a) and 7(b), respectively. It is clearly seen that the
efficiency of the OP and DOR improves under a mild fading
condition (e.g., m = 3) than when a stronger one (e.g.,
m = 0.5) is considered, especially when the average SNR
γ̄ grows. Regarding the importance of fluid antenna size W
in realistic scenarios, we evaluate the behavior of the OP and
DOR in terms of W for different values of γ̄ in Figs. 8(a)
and 8(a), respectively. As expected, increasing the spatial
separation between the fluid antenna ports for a fixed K can
provide lower values of the OP and DOR. We can also see
that even under small values of γ̄ and W such as 0.5, FAS
offers better performance than the SISO system.

Fig. 9(a) shows the DOR performance against the amount
of transmitted data R for different values of W and K in
FAS. As expected, we can see that the DOR performance
becomes worse as R increases. Nonetheless, increasing the
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(a) (b) (c)

Fig. 5. OP versus average transmit SNR γ̄ for selected values of W and K when γth = 10dB, m = 1, and µ = 1.

(a) (b) (c)

Fig. 6. DOR versus average transmit SNR γ̄ for selected values of W and K when γth = 10dB, B = 2MHz, R = 5Kbits, Tth = 3ms, m = 1, and µ = 1.

(a) (b)

Fig. 7. (a) OP and (b) DOR versus average transmit SNR γ̄ for selected values of fading parameter m when γth = 10dB, K = 3, W = 2.5, B = 2MHz,
R = 5Kbits, Tth = 3ms, and µ = 1.
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(a) (b)

Fig. 8. (a) OP and (b) DOR versus fluid antenna size W for selected values of fading parameter K and γ̄ when γth = 10dB, B = 2MHz, R = 5Kbits,
Tth = 3ms, and µ = 1.

(a) (b)

Fig. 9. (a) DOR versus amount of data R and (b) DOR versus bandwidth B for selected values of fading parameter K and γ̄ when γth = 10dB, B = 2MHz,
R = 5Kbits, Tth = 3ms, and µ = 1.

number of fluid antenna ports as well as the fluid antenna
size can lead to a lower DOR when a fixed amount of data
is sent. For instance, sending R = 6Kbits amounts of data
becomes almost impossible with low delay when W and K
are small or when the SISO system is considered, but it can be
transmitted with small delay if FAS is considered with large
values of W and K. The impact of bandwidth B variations
on the DOR performance for the considered FAS is illustrated
in Fig. 9(b). It is obvious that the preset amounts of data
can be sent with a lower delay when the channel bandwidth
increases. Additionally, it can be seen that for a fixed B,
the DOR performance significantly improves as W and K

increase, meaning that data can be transmitted with a lower
delay in FAS compared with the SISO system.

VI. CONCLUSIONS

In this paper, we studied the performance of FAS under
arbitrary correlated fading channel coefficients, in which we
exploited copula theory to describe the dependence structure
between the fluid antenna ports. To this end, we first expressed
Jakes’ model in terms of Gaussian copula and then derived
compact analytical expressions for the CDF, PDF, OP, and
DOR in terms of multivariate normal distribution for a general
case, which are valid for any arbitrary choice of fading distri-
bution. Next, we quantified the spatial correlation between the
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fluid antenna ports with the help of popular rank correlation
coefficients (i.e., Spearman’s ρ and Kendall’s τ ) and indicated
the accuracy of using Gaussian copula in FAS. To analyze
the performance in typical scenarios, we obtained analytical
expressions of the CDF, PDF, OP, and DOR under correlated
Nakagami-m fading channels. Numerical results indicated that
the system performance highly depends on the antenna size
and the number of ports. Increasing the fluid antenna size
provides lower OP and DOR but increasing the number of
ports does not necessarily offer a better performance.
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backscatter communication under arbitrary fading dependence,” IEEE
Trans. Veh. Technol., vol. 71, no. 5, pp. 5593–5598, May 2022.

[33] K. L. Besser and E. A. Jorswieck, “Bounds on the secrecy outage
probability for dependent fading channels,” IEEE Trans. Commun.,
vol. 69, no. 1, pp. 443–456, Jan. 2021.

[34] F. R. Ghadi and W.-P. Zhu, “Performance analysis over corre-
lated/independent Fisher-Snedecor F fading multiple access channels,”
IEEE Trans. Veh. Technol., vol. 71, no. 7, pp. 7561–7571, Jul. 2022.

[35] I. Trigui, D. Shahbaztabar, W. Ajib, and W. P. Zhu, “Copula-based
modeling of RIS-assisted communications: Outage probability analysis,”
IEEE Commun. Lett., vol. 26, no. 7, pp. 1524–1528, Jul. 2022.
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