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Abstract—The emerging fluid antenna system (FAS) technology
enables multiple access utilizing deep fades in the spatial domain.
This paradigm is known as fluid antenna multiple access (FAMA).
Despite conceptual simplicity, the challenge of finding the position
(a.k.a. port) that maximizes the signal-to-interference plus noise
ratio (SINR) at the FAS receiver output, cannot be overstated.
This letter proposes to take only a few SINR observations in the
FAS space and infer the SINRs for the missing ports by employing
a conditional generative adversarial network (cGAN). With this
approach, port selection for FAMA can be performed based on
a few SINR observations. Our simulation results illustrate great
reductions in the outage probability (OP) with only few observed
ports, showcasing the efficacy of our proposed scheme.

Index Terms—Antenna position selection, fluid antenna sys-
tems, machine learning, conditional generative adversarial net-
works, outage, fluid antenna multiple access.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) systems have
been a key technology in the physical layer of wireless

communications. The current fifth-generation (5G) is relying
on the use of 64 antennas at the base station (BS) to meet
the capacity requirement [1]. Although antenna sizes tend to
decrease with higher frequency bands, replicating this trend at
the user equipment (UE) is unlikely due to space constraints.
To achieve more spatial diversity at the UE, the emerging fluid
antenna system (FAS) technology is appealing [2], [3].

FAS represents shape-flexible position-flexible antenna sys-
tems and was first introduced by Wong et al. in [4], [5]. Since
then, there have been many studies reporting the fundamental
performance of FAS under different channel models [6], [7],
[8], [9], [10]. The MIMO-FAS setup in which multiple fluid1

antennas are utilized at both the transmitter and receiver ends
was also considered in [11]. A more complete list of recent
work on FAS can be found in [12]. Experimental results on
FAS have also recently been reported in [13], [14].

Multiple access in the spatial domain can also be achieved
in a very different way using FAS. In [15], [16], the concept
of fluid antenna multiple access (FAMA) was introduced. In
particular, if the FAS switches its antenna position to the port
where the sum-interference signal cancels on a per-symbol
basis, then 100+ UEs can be accommodated on the same
channel. Nonetheless, switching the antenna position on a
symbol-by-symbol basis not only is practically challenging but
identifying the best port in this time scale is also not known
to be possible. For this reason, [17] proposed a much simpler
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1Note that the word ‘fluid’ here does not imply the use of actual fluidic
materials for antennas but stresses the flexible nature of the antennas.

Fig. 1: Illustration of the slow FAMA concept.

version, referred to as slow FAMA, which only switches the
position once during each channel coherence time to maximize
the average signal-to-interference plus noise ratio (SINR).

Even though slow FAMA is practically attractive, it requires
SINR measurements at all the possible positions of the FAS.
Note that FAS has fine spatial resolution and hence the number
of switchable positions is large. To deal with this issue, [18]
estimated the channel gains of only a limited number of FAS
ports and then used a long-short-term memory (LSTM)-based
approach to infer the channel gains of the remaining ports. In
[19], another learning-based scheme was presented to solve the
port selection problem in a FAS in time-varying environments.
The slow FAMA problem was also addressed using a LSTM
approach in [20]. These approaches are possible as the FAS
ports are close to each other with correlation to exploit.

Furthering the aforementioned efforts, the conditional gen-
erative adversarial network (cGAN) holds a great promise due
to its ability to learn from both observed data and conditional
information [21]. As a result of the intricate relationships and
correlations among the FAS ports, cGANs are expected to be
effective at estimating the SINRs for closely spaced FAS ports
conditioned on the observation of some ports. Presumably, by
conditioning the generation process on the available port-SINR
observations, a trained cGAN can learn the underlying patterns
and dependencies within the data, empowering it to generate
plausible SINR estimates for the remaining ports.

In this letter, we develop an efficient port selection ap-
proach for slow FAMA employing cGANs to generate the
missing SINR points with least port observations. The cGAN-
based solution generates the envelope of port-SINR using the
available SINR points as labels. Remarkably, the results reveal
its efficacy by accurately generating the missing SINRs even
when fewer than 20% of the SINR points are observed.

II. SYSTEM MODEL

A. System Model

As shown in Fig. 1, a downlink multiuser system is consid-
ered where a BS equipped with U fixed-position antennas is
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communicating with U UEs. An N -port FAS is deployed at
each UE, allowing the radiating element to be switched to the
most effective port for optimizing system performance. Each
user’s FAS has ports distributed over a linear scale of size Wλ,
where λ is the carrier wavelength.2 It is assumed that the u-th
BS antenna is assigned to transmit information signals to UE
u. Furthermore, ignoring the delay caused by port switching,3

the received signal at port k of UE u is given by

y
(u)
k = g

(u,u)
k xu +

U∑
u′=1
u′ 6=u

g
(u′,u)
k xu′ + n

(u)
k , (1)

where g(u
′,u)

k is the complex channel coefficient from antenna
u′ of the BS to port k of UE u with zero mean and variance
of σ2, xu denotes the transmitted symbol dedicated to UE u
and nk is the complex Gaussian noise at port k of UE u with
zero mean and variance of σ2

n. Based on (1), the port selection
problem to maximize the SINR at UE u is given by [17]

ks-FAMA
u = argmax

k
γk, (2)

where we have the SINR at port k as
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|g(u,u)k |2∑U
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|g(u

′,u)
k |2 + σ2

n

. (3)

The outage probability (OP), defined based on a target SINR
threshold, γ, is expressed as

pout = Pr

{
max

k
γk ≤ γ

}
. (4)

Also, the system multiplexing gain can be defined as [17]

m = U(1− pout), (5)

which estimates the capacity scaling of the network.

B. Channel Model

Given that the channel follows a complex Gaussian distribu-
tion with zero mean and variance of σ2, the magnitude follows
a Rayleigh distribution with probability distribution function

p∣∣∣g(u,u)
k

∣∣∣(r) = 2r

σ2
e
−r2

σ2 , for r ≥ 0, (6)

with E{|g(u,u)k |2} = σ2. Since the FAS ports can be very
close to each other, their channels are correlated. For a line-
shaped fluid antenna of length Wλ in rich isotropic scattering
environments, the cross-correlation of the channels between
any two ports follows the Jake’s model [22] so that

E
{
g
(u,u)
k g

(u,u)∗
`
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)
, (7)

2The model can be easily extended to cope with a two-dimensional FAS
at each UE. In this letter, however, we consider a linear FAS for simplicity.

3This is reasonable for reconfigurable pixel-based FASs in [14].

where J0(.) is the zero-order Bessel function of the first kind.
This model follows from the one used in [20] such that the
channels for all the ports can be expressed as
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where w ∈ CN×1 represents a vector, each element of which
follows an independent and identically distributed (i.i.d.) zero-
mean complex Gaussian random variable with unit variance.
Here, the superscript (u, u) is omitted to simplify the nota-
tions. Additionally, A ∈ CN×N denotes a matrix designed to
establish correlations between the ports of the FAS. To design
A, initially based on (7), stacking all the values of φk,` for
k, p = 1, 2, . . . , N, k 6= `, will result in the N × N matrix
Φ. Then using eigenvalue decomposition, Φ can be written as
Φ = UΣUT . Thus, by A = UΣ1/2, (7) will be met [20].4

C. Port Selection

For slow FAMA. the objective is to enhance system perfor-
mance by dynamically selecting the optimal port that maxi-
mizes the received SINR at each UE. As long as the receiver
has access to the SINR across all of the ports, selecting the
optimal port would be straightforward. However, in the FAS
architecture, many ports are often located close together, so it
is impossible to access all SINR ports at once. Consequently,
estimating the channel gain of each individual port becomes
infeasible. Nonetheless, assuming that only a subset K of ports
are observed and the remaining P ports are unobserved but
inferred, the port selection problem in (2) becomes5

ks-FAMA
u = argmax

{
{γk}k∈K, {γ̃p}p∈P

}
, (9)

where γ̃p denotes the unobserved SINR at port p.
Based on the optimization problem (9), it becomes apparent

that estimating the SINR of the unobserved ports could signif-
icantly reduce the complexity of the port selection problem,
especially when compared to the scenarios where all ports are
observed. By doing so, the computational burden associated
with exhaustive SINR observation diminishes, rendering the
task more manageable and resource-efficient.

III. CGAN-BASED ALGORITHM

A standard generative adversarial network (GAN) comprises
a generative model (a.k.a. generator), and an adversarial model
(a.k.a. discriminator), engaged in competitive interaction. The
generator is tasked for synthesising data samples, while the
discriminator aims to distinguish between real and synthetic
samples. Through iterative training, GANs learn to generate
increasingly realistic outputs, capturing complex data distri-
butions across diverse domains. On the other hand, cGANs

4Large-scale fading is not considered in our model because the effects of
large-scale fading and distance-dependent path loss are normally cancelled
using power control to normalize the performance over different users.

5In this letter, an ‘observed’ port means that the port’s SINR is available.
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Fig. 2: A sample architecture of a cGAN.

introduce an extension by incorporating additional condition-
ing information into the generative process. Unlike standard
GANs that generate data samples solely from random noise
vectors as the input of the generator network, cGANs take into
account auxiliary input, in the form of labels or context infor-
mation, to generate outputs conditioned on specific attributes
or characteristics, as illustrated in Fig. 2. The integration of
conditioning information empowers cGANs to generate highly
customizable and controllable outputs. cGANs possess unique
ability to generate realistic data samples based on a given set
of observations. In the context of channel gain estimation for
unobserved ports, this characteristics proves indispensable. By
leveraging the available observations, a cGAN algorithm can
intelligently infer the channel gains of the remaining ports.
Thus, the proposed cGAN algorithm not only offers a means
to mitigate the complexity of port selection but also capitalizes
on the inherent correlations among ports to provide accurate
estimations of channel gains, thereby enhancing the overall
efficiency and effectiveness of the communication system.

A. Data Generation

To employ cGAN, the first step is to generate a dataset
and the corresponding labels. To do so, first the SINR vector
γ ∈ RN is generated using (3), where the n-th element
of γ is γn. Then it will be reshaped to a matrix of size√
N ×

√
N denoted by Γ.6 The labels L for training are

included in the vector of length |K| storing the SINRs of the
observed ports. To normalize the dataset for training while pre-
serving its distribution, we employ a max-min normalization
technique. This involves transforming each data point such
that its value falls within the range of [0, 1]. The process
works by subtracting the minimum value of the dataset from
each data point and then dividing by the difference between
the maximum and minimum values. This ensures that the
transformed data maintains the relative relationships between
its values, preserving the dataset’s overall distribution. Finally,
after generating a sufficient number of data samples, the
dataset is saved as the tuple D = {Γ,L}.

6We assume that N is a perfect square number. However, if N is not
a perfect square, we can pad Γ with zeros to create a square matrix. This
step is necessary because during the training process, the cGAN will perform
convolutions on the input, which necessitates a square matrix.

B. Objective of cGAN

In a typical cGAN architecture, there are two networks,
a generative model G parameterized by the neural network
(NN) weights θ and a discriminative model D parameterized
by the NN weights ψ. To learn a generator distribution pg
over the dataset D, the generator builds a mapping function
from a prior normal noise distribution pZ(z) and the labels
from the dataset to the data space as G(z; θ). On the other
hand, the discriminator outputs a scalar value to distinguish
whether the input sample and the corresponding label are real
or generated by the generator network. Both generator G and
discriminator D are trained simultaneously. The NN weights
of the generator are adjusted to minimize log(1−D(G(z|L))),
which represents the generator loss, assessing the generator’s
ability to produce data that is indistinguishable from real
data by the discriminator. Furthermore, the NN weights of
the discriminator are modified to minimize log(D(G|L)),
which corresponds to the discriminator loss, quantifying the
discriminator’s effectiveness in distinguishing between real
and generated samples. Moreover, to ensure the right direction
of the generator optimization, we add an L2 loss [24], [25] to
the cGAN loss, which is expressed as

L2 = E{‖G(z|L)− Γ‖2}. (10)

This L2 loss function measures the discrepancy between the
generated output and the true data, thus encouraging the gen-
erator to produce more accurate and realistic results. Hence,
the overall cGAN network can be viewed as a two-player min-
max game with the value function V (G,D) [21]

min
G

max
D

V (G,D) = Ex∼pΓ(x){log(D(x|L))}

+ Ez∼pZ(z){log(1−D(G(z|L)))}
+ tL2, (11)

where t is a weighting factor emphasizing the importance of
the L2 norm. The detailed parameters of the cGAN networks
are provided in Table I. The inference complexity is primarily
determined by the generator’s forward pass, given by

O

(
L∑

i=1

ni ×mi

)
, (12)

where L is the number of layers, ni represents the number of
neurons in layer i and mi denotes the number of connections
from layer i− 1 to layer i.

IV. SIMULATION RESULTS

In this section, we provide the simulation results to evaluate
the efficacy of the proposed algorithm. The simulations were
conducted using Python 3.10.0, with Keras employed for the
development of the cGAN.7 Rayleigh fading was considered
across all the simulations involving channel envelopes, with
a linear structure adopted for the fluid antenna configuration.
The number of ports was set to N = 144 and the dataset was
generated using (3). We generated 4×105 data samples to train

7The source code of the Keras implementation of the cGAN is accessible
via https://keras.io/examples/generative/conditional gan/.

https://keras.io/examples/generative/conditional_gan/
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TABLE I: cGAN-based port selection structures.

Discriminator
Layer Type Output Shape, Stride / Padding
InputLayer (12, 12, X)
Conv2D (6, 6, 64), 2 / Same
LeakyReLU (6, 6, 64)
Conv2D (3, 3, 128), 2 / Same
LeakyReLU (3, 3, 128)
GlobalMaxPooling2D (128,)
Dense (1,)

Generator
Layer Type Output Shape, Stride / Padding
InputLayer (|Y|,)
Dense (27,)
LeakyReLU (27,)
Reshape (3, 3, |Y|)
Conv2DTranspose (6, 6, 128), 2 / Same
LeakyReLU (6, 6, 128)
Conv2DTranspose (12, 12, 128), 2 / Same
LeakyReLU (12, 12, 128)
Conv2D (12, 12, 1)

the cGAN. The number of observed ports is sampled evenly
across the ports. The batch size is set to be 32 and the learning
rate for the generator and discriminator is set to be 0.0003
and 0.0002, respectively. Moreover, the weighting factor t for
the L2 loss is set to be 40. Also, the number of epochs for
training the cGAN is 1000. Furthermore, the input noise for
the generator z is sampled from the Gaussian distribution with
zero mean and unit variance with the dimension of 128. Thus,
the input Y of the generator is Y = z + L. Also. the input
channel X for the discriminator consists of the number of
labels, i.e., |K|. That is X = |K|. Furthermore, the average
signal-to-noise ratio (SNR) is set to be 10 dB. Also, all users
are i.i.d. and randomly generated.

Fig. 3 demonstrates the OP of FAMA against the number of
observed ports for different values of target SINR γ. The label
“Reference” in the results indicates the situation which uses
the observations only to select the best port, while the label
“Ideal” indicates the scenario where the underlying channel of
all ports is known and the best port is always selected. Finally,
the label “Proposed” indicates the usage of the cGAN-based
channel gain generation to find the missing SINRs for selecting
the port. As expected in Fig. 3, increasing W reduces the
OP because FAS has greater ability to avoid the interference
by selecting the optimal port. Additionally, a greater number
of observations correlates with lower OP. Furthermore, as
anticipated, OP rises with increasing the target SINR, γ.

In Fig. 4, we plot the OP and multiplexing gain against
the number of UEs for different values of W with N = 144
and γ = 0 dB. In the simulations, we have assumed that only
20% of the ports are observed. It can be observed that initially
the OP is low which leads to the multiplexing gain reaching
its upper bound. Also, by increasing the number of users, the
multiplexing gain also increases which shows that the FAS at
each UE can resolve the inter-user interference. However, by
further increasing the number of users, the system reaches its
capacity of serving the maximum number of users and the OP
then increases, suppressing the multiplexing gain.

Fig. 5 illustrates the OP and multiplexing gain results but
against the size of FAS W with N = 144 and γ = 0
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Fig. 3: OP against the number of observed ports with the total
number of ports N = 144 and U = 2.
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Fig. 4: OP and multiplexing gain against the number of users
with the total number of ports N = 144 and the SINR target
γ = 0 dB when 20% of the ports are observed.

dB. As before, it is assumed that only 20% of the ports are
observed. The results indicate that as the FAS size increases,
the likelihood of finding a port where interference is mini-
mized increases, and thus the multiplexing gain increases by
switching to the best port. The proposed cGAN method also
successfully generated the envelope of the SINR, even for large
W values, resulting in a small performance loss compared with
the ideal scenario in which all ports are observed.

Finally, Fig. 6 illustrates the OP against the number of ports
N . Here, a comparison is made between the proposed cGAN
approach with the LSTM approach in [20]. For the both cGAN
and LSTM methods, it is assumed that only 25% of the ports
are observed. The results demonstrate that when W = 0.5,
the LSTM method and the proposed cGAN method have the
same performance. Additionally, for W = 0.5, i.e., the size
of FAS is relatively small,8 there is significant correlation
among the ports and as a result, it is easy for either LSTM
or cGAN to figure out the trend of the SINR envelope. By

8What is considered ‘small’ varies with the actual operating frequency. In
this letter, the results may be interpreted as having an operating frequency of
f = 10 GHz with the size W representing what is feasible for a laptop-sized
FAS and they ensure that the channel exhibits rich scattering.
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Fig. 5: OP and multiplexing gain against the size of the fluid
antenna, W with N = 144 and γ = 0 dB.
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Fig. 6: OP against the number of ports, N with U = 3 users
in the network and γ = 0 dB.

increasing W , the cGAN method begins to surpass the LSTM
method. This demonstrates the robustness and capability of
the proposed cGAN method in estimating the missing port-
SINRs when dealing with a large number of ports, confirming
the superiority of the proposed approach.

V. CONCLUSION

In this letter, the port selection problem in slow FAMA sys-
tems was addressed, with an emphasis that this was performed
with only few SINR observations made. Using the limited
SINR observations from the observed ports, we have proposed
a cGAN-based solution to generate the SINR envelope for
the unobserved ports. Our results have shown that the cGAN
can generate accurate results when only a small subset of the
ports are available. The results also revealed that the proposed
cGAN solution can greatly reduce the OP even when less than
20% of the ports were observed.
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