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ARTICLE INFO ABSTRACT

Keywords: Background: Treatment resistance (TR) in schizophrenia may be defined by the persistence of positive and/or
Treatment resistance negative symptoms despite adequate treatment. Whilst previous investigations have focused on positive symp-
Prediction

toms, negative symptoms are highly prevalent, impactful, and difficult to treat. In the current study we aimed to

Is\ticil:éh;fe nia develop easily employable prediction models to predict TR in positive and negative symptom domains from first
FEP P episode psychosis (FEP).

Methods: Longitudinal cohort data from 1027 individuals with FEP was utilised. Using a robust definition of TR,
n = 51 (4.97 %) participants were treatment resistant in the positive domain and n = 56 (5.46 %) treatment
resistant in the negative domain 12 months after first presentation. 20 predictor variables, selected by existing
evidence and availability in clinical practice, were entered into two LASSO regression models. We estimated the
models using repeated nested cross-validation (NCV) and assessed performance using discrimination and cali-
bration measures.

Results: The prediction model for TR in the positive domain showed good discrimination (AUC = 0.72). Twelve
predictor variables (male gender, cannabis use, age, positive symptom severity, depression and academic and
social functioning) were retained by each outer fold of the NCV procedure, indicating importance in prediction of
the outcome. However, our negative domain model failed to discriminate those with and without TR, with results
only just over chance (AUC = 0.56).

Conclusions: Treatment resistance of positive symptoms can be accurately predicted from FEP using routinely
collected baseline data, however prediction of negative domain-TR remains a challenge. Detailed negative
symptom domains, clinical data, and biomarkers should be considered in future longitudinal studies.
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1. Introduction

Treatment resistance (TR) in schizophrenia poses challenges for pa-
tients, family, and clinicians (Nucifora Jr et al., 2019). Whilst some in-
dividuals may show a good initial response to treatment before failing to
respond after relapse (Ajnakina et al., 2020), literature suggests that as
many as 25 % of individuals demonstrate a lack of treatment response
from first episode (Bozzatello et al., 2019; Lally et al., 2016).

TR is defined as an inadequate response to two antipsychotic trials
(non-clozapine), each of adequate dose, duration, and adherence
(Howes et al., 2017). Individuals with TR tend to have greater cognitive
impairment, increased number of hospitalisations, more prominent
negative symptoms, higher levels of smoking, alcohol and drug abuse,
more suicide ideation, and reduced life expectancy compared to those
without TR (Andrew et al., 2012; Iasevoli et al., 2016; Kennedy et al.,
2014). In addition to this personal ‘cost’ is the economic burden of long-
term illness. Schizophrenia is estimated to cost £11.8 billion annually in
England with TR responsible for over $34 billion in direct medical costs
per year in the US (Andrew et al., 2012; Kennedy et al., 2014).

Individuals experiencing TR may present with different symptom
profiles (i.e. positive, negative or cognitive) and this profile should be
clarified in research given the different impact, treatment options, and
underlying aetiology associated with each profile (Correll and Schooler,
2020; Howes et al., 2017; Huhn et al., 2019; Sabe et al., 2021). Negative
symptoms in particular present a major challenge for patients and cli-
nicians; they are associated with low remission rates, poor quality of life
and functioning, and unlike positive symptoms, have limited response to
treatment (Cerveri et al., 2019; Galderisi et al., 2018).

Currently, the only medication indicated to have any effect on
negative symptoms is clozapine (NICE, 2014). There is ample evidence
that early identification of TR in positive symptoms and intervention
with clozapine is beneficial (Jones et al., 2022). This includes avoiding
polypharmacy and ensuring patients aren't receiving medication doses
that exceed recommendations (Howes et al., 2012); treatment continu-
ation (Stroup et al., 2015; Vanasse et al., 2016); reduced number of
inpatient days (Gee et al., 2016), and a decrease in hospital admissions
(Stroup et al., 2015). Early identification of TR in the negative domain
could lead to improved outcomes including higher levels of social and
personal functioning, increased remission of negative symptoms, and
better long-term clozapine response (Munoz-Manchado et al., 2023;
Shah et al., 2020).

Given the personal and economic impact of TR it would be beneficial
to predict which individuals are likely to present with TR early in the
course of illness. Whilst there are relatively few clinical prediction
models targeting FEP populations (Lee et al., 2022) prediction research
has started to investigate TR in these individuals (Ajnakina et al., 2020;
Osimo et al., 2023; Smart et al., 2022). Several predictive factors are
repeatedly implicated in TR including longer DUP, cannabis use, male
gender, and younger age of onset (Legge et al., 2019; Smart et al., 2022;
Smart et al., 2021). However, research in this area is still in its infancy
and there is insufficient empirical evidence to suggest the inclusion of
any specific feature or combination of features in TR prediction studies.
LASSO (least-absolute shrinkage and selection operator) models can
perform feature selection of given variables through the shrinkage of
coefficients (Hastie et al., 2015; Steyerberg, 2019). In the current study
we aimed to utilise LASSO modelling to predict TR in FEP individuals
using routinely collected clinical data. In line with best practice guide-
lines that acknowledge distinct clinical profiles (Howes et al., 2017), we
aimed to develop one model to predict TR in the positive domain and
one to predict TR in the negative domain.

2. Materials and methods
We followed the Transparent Reporting of a multivariable prediction

model for Individual Prognosis or Diagnosis (TRIPOD) statement for
reporting the models (Collins et al., 2015) (Supplementary Table 1).
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2.1. Data

The current study utilised data from the National Evaluation of the
Development and Impact of Early Intervention Services (NEDEN) study,
full details of which have been provided previously (Birchwood et al.,
2014). In brief, this was a prospective cohort study that recruited FEP
participants between 2005 and 2009 from 14 early intervention services
across the UK (beyond experiencing FEP, there wasn't any further in-
clusion criteria). Several measures, including assessments of psychosis,
functioning, substance misuse and relapse, were collected at multiple
timepoints. The current study used 12-month follow up data of all
recruited participants.

2.2. Outcome definition

The Treatment Response and Resistance in Psychosis (TRRIP) criteria
(Howes et al., 2017) guided our definition of TR. In line with their
symptom criteria, an individual's condition was defined as treatment
resistant if they experienced at least two symptoms at a moderate
severity or one symptom at a severe severity; <20 % symptom reduction
overall as well as for the domain of interest; at least moderate functional
impairment, with the above remaining persistent from baseline to 12-
month follow-up. We relaxed the medication criteria in line with evi-
dence that antipsychotic response within the first four weeks is indica-
tive of future response (Agid et al., 2003; Long et al., 2023; Samara et al.,
2015). Therefore, an individual needed to have received a therapeutic
dose of at least one antipsychotic medication for a minimum of four
weeks (Supplementary Table 2).

The Positive and Negative Syndrome Scale (Kay et al., 1987) in-
strument was used to measure symptom severity and symptom reduc-
tion. PANSS items are scored from 1 to 7; ratings for moderate and
severe symptoms are identified with scores of 4 and 6, respectively. To
meet TR criteria, participants had to have recorded at least two symp-
toms rated 4 or above, or one symptom rated 6 or above.

The PANSS instrument is measured on an interval scale (1-7). As
ratio calculations require a true zero (Obermeier et al., 2010) we needed
to translate this into a ratio scale. In line with research (Obermeier et al.,
2010) we reduced the PANSS total score by 30 and the domain-specific
subtotals by 7. Upon translating the PANSS into a ratio scale we could
calculate the percentage change in symptom reduction from baseline to
12-months follow-up, and identify which participants met the TR
criteria of experiencing <20 % symptom reduction.

The Global Assessment of Functioning (GAF) scale which previously
constituted Axis V of the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (Aas, 2011) was used to measure functional
impairment. A dual-scale GAF approach was used which documented
symptoms and disability separately. To comply with TRRIP criteria that
functioning should be measured independently of symptoms, we utilised
the disability measure with a threshold of 60 or lower used to classify
moderate impairement.

2.3. Baseline predictors

A total of 20 routinely available sociodemographic and clinical
predictor variables were included based on existing literature. Variables
(for both domains) included age at onset; gender; education (number of
years); cannabis use; and adjusted DUP, defined as the time (in days)
from the onset of psychotic symptoms to initiating treatment. The pos-
itive domain model contained items P1, P2, P3, P4, P5, P6, P7 and the
PANSS Negative Subtotal score; the negative domain model contained
items N1, N2, N3, N4, N5, N6, N7, and the PANSS Positive Subtotal
score. Clinical variables from standardized clinical assessments were
also included in each model, as described below.

Depression: Calgary Depression Scale for Schizophrenia (Addington
et al., 1990). The CDSS scale is extensively used and distinguishes be-
tween depression, and positive and negative symptoms (Addington
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et al., 2014; Collins et al., 1996).

Premorbid adjustment: Premorbid Adjustment Scale (PAS) (Cannon-
Spoor et al., 1982). PAS scores have been utilised in a multitude of ways
(Larsen et al., 2004). In line with schizophrenia-related research that has
compared premorbid adjustment by combining the social components
and the academic components of the scale (Kilian et al., 2017; Larsen
et al., 2004; Norman et al., 2005), we utilised a similar approach. We
combined the social components (Childhood period: Sociability and
withdrawal + Peer relationships; Early/Late Adolescence periods: So-
ciability and withdrawal + Peer relationships + Social sexual aspects of
life) and the academic components (Scholastic performance + Adapta-
tion to school) to obtain an overall Social PAS score and Academic PAS
score for the Childhood period, Early Adolescence period, and Late
Adolescence period.

2.4. Statistical analysis

Model development and validation was conducted in R (version
2023.06.1 + 524).

2.4.1. Missing data

The current study utilised a two-stage imputation method to handle
missing data: first for outcome classification (where participants had
missing symptom data), and second, for missing variable data.
Following outcome classification, the total missing values for the posi-
tive and negative domain models were 9.59 % and 9.62 %, respectively;
(Supplementary Table 3 for the percentage of missingness per variable).

As the analysis of only individuals with complete data can lead to
bias (Sterne et al., 2009), we imputed the missing values. As we included
variables based on existing literature, we assumed the missing values
were not a result of unobserved data (Sterne et al., 2009) and imputed
these values using multiple imputation by chained equations (Azur
et al., 2011).

2.4.2. Model fitting, training and performance estimation

For the prediction of TR, we fit a LASSO model for each symptom
domain. LASSO is a regression modelling approach that can address
problems of overfitting and overestimation of performance by applying
regularisation terms to the cost function (Ranstam and Cook, 2018;
Tibshirani, 1996). A benefit of LASSO is that it performs feature selec-
tion through the shrinkage of coefficients (Hastie et al., 2015; Steyer-
berg, 2019). This results in a final list of variables and their respective
coefficients that minimises the prediction error of the model (Ranstam
and Cook, 2018). This is of particular importance to the replication of
studies with clinical impact, whereby a limited number of variables
known to be of importance can be collected but other features can be
eliminated.

Model estimation was achieved through nested cross-validation
(NCV). In brief, NCV contains an inner cross-validation loop, used to
perform hyperparameter selection, and an outer cross-validation loop,
used to provide an unbiased estimate of performance (Wainer and
Cawley, 2021). First, we specified a grid of 100 A values. We then per-
formed hyperparameter tuning through 50 repeats of 10-fold cross
validation. Model performance was then estimated through 5 outer-loop
iterations. We assessed performance using measures of discrimination
and calibration. Discrimination refers to a model's ability to distinguish
between someone with and without the outcome of interest whilst
calibration compares the predicted and observed values (Steyerberg and
Vergouwe, 2014). We present ROC (receiver operating characteristic)
curves and concordance (c) statistics for measures of discrimination, and
calibration slope and calibration-in-the-large statistics for measures of
calibration.
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3. Results
3.1. Sample characteristics

The initial NEDEN sample consisted of 1027 participants. During
outcome classification one participant was excluded from each domain
(due to having 100 % missing treatment data after imputation of
symptom data) resulting in a sample of 1026 participants per model.
There were 51 participants (4.97 %) who were treatment resistant in the
positive domain and 56 participants (5.46 %) treatment resistant in the
negative domain (28 exclusively in the positive domain, 33 exclusively
in the negative domain, and 23 in both domains).

Positive Domain: There were no significant differences in age at
onset, education, or DUP between the positive-domain treatment resis-
tant group (PTR) and the non-treatment resistant group (non-TR)
(Table 1). There was an association between gender and treatment
resistant outcome (X2(1) = 5.88, p = .015) with a higher proportion of
males in the PTR group (84.3 %) than the non-TR group (68.2 %). There
was also an association between cannabis use and treatment resistant
outcome (y%(1) = 4.412, p = .036) with a higher proportion of cannabis
use in the PTR group (41.2 %) than the non-TR group (27.6 %).

Negative Domain: There were no significant differences in gender,
education, DUP, or cannabis use between the negative-domain treat-
ment resistant group (NTR) and the non-TR group (Table 1). There was a
significant difference in age at onset between the NTR group (mean =
19.73 years, SD = 3.44) and the non-TR group (mean = 21.38 years, SD
= 5.08), t(69.44) = 3.39, p = .001.

3.2. Positive-domain treatment resistance model

The positive domain model demonstrated good discrimination and
calibration (AUC = 0.72, calibration slope = 0.88, calibration-in-the-
large = —0.36, accuracy = 0.68) (Table 2 shows performance measures;
Fig. 1 and Fig. 2 show the ROC curves for each outer fold iteration of the
NCV procedure and associated calibration plots, respectively).

Twelve out of the 20 predictor variables were retained by all five
models (each outer fold iteration of the NCV): male gender, cannabis
use, age, PANSS P7, PANSS P4, PANSS P3, PANSS P1, CDSS, late
adolescence social functioning, late adolescence academic functioning,
early adolescence academic functioning, childhood academic func-
tioning, (Fig. 3 for predictor variables retained following NCV; Supple-
mentary Table 4 details beta coefficients per model).

3.3. Negative-domain treatment resistance model

The negative domain model demonstrated poor discrimination and
calibration (AUC = 0.56, calibration slope = 0.57, calibration-in-the-
large = —1.213, accuracy = 0.57) (Table 2 shows performance mea-
sures; Fig. 4 and Fig. 5 show the ROC curves for each outer fold iteration
of the NCV procedure and associated calibration plots, respectively).

However, two out of the 20 predictors were retained by all tested
models: childhood academic functioning and PANSS N6 (lack of
spontaneity) (Fig. 6 for predictor variables retained following NCV;
Supplementary Table 5 details beta coefficients per model).

4. Discussion

This is the first study to develop clinical prediction models targeting
specific clinical profiles, (positive and negative), for predicting TR in
FEP individuals. Our study builds on research that investigated predic-
tive factors of TR (Bozzatello et al., 2019; Legge et al., 2019; Smart et al.,
2021), and offers support for the use of clinical prediction models in FEP
populations alongside promising research with a similar focus (Ajnakina
et al., 2020; Demjaha et al., 2017; Farooq et al., 2022; Kit and Wong,
2023; Osimo et al., 2023; Smart et al., 2022). It also highlights the need
for increased focus on early negative symptom TR.
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Table 1
Comparison of baseline characteristics between the non-TR and positive domain TR groups, and the non-TR and negative domain TR groups.
Baseline characteristics Non TR = 975 PTR =51 P value Non TR = 970 NTR = 56 P value
Mean (SD)/n (%) Mean (SD) Mean (SD)/n (%) Mean (SD)
Age at onset 21.37 (4.96) 20.08 (4.43) 0.069 21.38 (5.08) 19.73 (3.44) 0.001
Sex (Male) 665 (68.2 %) 43 (84.3 %) 0.015 664 (68.45) 44 (78.6) 0.111
Education (in years) 11.74 (1.86) 11.59 (1.43) 0.574 11.75 (1.87) 11.63 (1.70) 0.623
DUP (in days) 308.06 (640.99) 298.98 (447.77) 0.920 305.88 (613.71) 346.80 (863.76) 0.636
Cannabis use (yes) 269 (27.6 %) 21 (41.2 %) 0.036 268 (27.6) 21 (37.5) 0.110
P1/N1 2.82 (1.68) 3.22 (1.75) 0.106 2.13 (1.40) 2.71 (1.57) 0.003
P2/N2 1.94 (1.25) 1.96 (1.22) 0.924 2.33 (1.34) 2.52 (1.32) 0.303
P3/N3 2.92 (1.68) 3.45 (1.80) 0.028 1.71 (1.07) 2.11 (1.42) 0.043
P4/N4 1.56 (0.98) 1.18 (0.65) <0.001 2.64 (1.55) 3.18 (1.69) 0.012
P5/N5 1.59 (1.07) 1.55 (1.14) 0.795 2.29 (1.36) 2.63 (1.29) 0.073
P6/N6 2.93 (1.61) 2.78 (1.59) 0.522 2.04 (1.37) 2.73 (1.76) 0.005
P7/N7 1.58 (1.09) 1.37 (0.799) 0.084 1.61 (0.98) 1.59 (0.99) 0.888
PANSS Negative/PANSS Positive Total 14.88 (6.59) 15.63 (7.14) 0.434 15.36 (6.11) 15.02 (5.22) 0.684
CDSS 6.32 (5.37) 5.35 (5.11) 0.211 6.33 (5.34) 5.36 (4.97) 0.184
Childhood Social (PAS) 2.40 (2.48) 2.94 (2.53) 0.127 2.34 (2.48) 2.88 (2.42) 0.113
Childhood Academic (PAS) 3.12 (2.49) 4.08 (2.51) 0.008 3.10 (2.48) 3.98 (2.74) 0.011
Early Adolescence Social (PAS) 4.05 (3.50) 4.45 (3.50) 0.428 4.06 (3.52) 3.91 (2.83) 0.750
Early Adolescence Academic (PAS) 4.45 (2.93) 4.84 (2.53) 0.348 4.41 (2.93) 4.98 (3.02) 0.154
Late Adolescence Social (PAS) 4.68 (3.82) 5.76 (4.27) 0.05 4.65 (3.82) 5.39 (4.04) 0.158
Late Adolescence Academic (PAS) 4.58 (3.09) 6.00 (3.37) 0.002 4.69 (3.16) 5.09 (3.15) 0.357

Abbreviations: Non-TR = Non Treatment Resistant; PTR = Positive domain treatment resistant group; NTR = Negative domain treatment resistant group; DUP =
Duration of Untreated Psychosis; PANSS = Positive and Negative Syndrome Scale; CDSS = Calgary Depression Scale for Schizophrenia; PAS = Premorbid Adjustment

Scale.

Table 2
Performance measures for the positive-domain and negative-domain LASSO
models.

Performance measure Positive-domain Negative-domain

AUC 0.72 0.56
Calibration slope 0.88 0.57
Calibration-in-the-large —0.36 —1.213
Sensitivity 0.65 0.50
Specificity 0.69 0.57
PPV 0.10 0.06
NPV 0.97 0.95
Accuracy 0.68 0.57

Abbreviations: AUC = Area under the curve; PPV = Positive Predictive Value;
NPV = Negative Predictive Value.

The performance of our positive domain model identifies an ability
to predict positive domain-TR from initial clinical contact using routine
data. Theoretically, TR could be identifiable after 12 weeks (Howes
et al., 2017) however, delays in clozapine initiation often exceed this
timescale (John et al., 2018; Stokes et al., 2020). Whilst the relative
effectiveness of clozapine may not be conclusively greater if initiated
earlier (Jones et al., 2020), delays in administration can worsen quality
of daily life and negatively impact treatment response (Gee et al., 2016;
Howes et al., 2012; Stroup et al., 2015; Vanasse et al., 2016; Yoshimura
et al., 2017). As clozapine has shown to be superior to other antipsy-
chotics in the treatment of positive symptoms, in the short and long term
(Siskind et al., 2016), the accurate early identification of FEP individuals
with a positive domain profile could be invaluable from a personal and
economic standpoint.

We intentionally selected feature variables based on their evidence
and likelihood of being routinely collected upon presentation to ser-
vices. This was to ensure the models were as clinically appropriate as
possible. Male gender and cannabis use were retained in each positive
domain model. These findings align with research which has reported
men to be 1.57 times more likely to be treatment resistant (Siskind et al.,
2022), with cannabis use associated with worse clinical outcomes
(Ajnakina et al., 2020; Legge et al., 2019; Patel et al., 2016). Addition-
ally, items P1 (Delusions), P3 (Hallucinatory behaviour), P4 (Excite-
ment), and P7 (Hostility) from the PANSS scale were also retained in
each model. These results suggest some PANSS items may be more

69

predictive of TR than others and individual items of the PANSS should be
included in predictive studies in addition to the positive subtotal score
which is more commonly reported.

Our decision to combine the social and academic components of the
PAS scale for each life period, to investigate premorbid adjustment, is
similar to other approaches (Kilian et al., 2017; Larsen et al., 2004;
Norman et al., 2005). The academic component of each life period was
retained by each positive domain model. The idea of academic perfor-
mance being a premorbid marker of future disease outcome has been
suggested previously (Dickson et al., 2020); of relevance to the current
study, they report those who later developed schizophrenia, those with a
family history of schizophrenia, and those reporting psychotic-like ex-
periences, had poorer academic achievement. The current study offers
support for academic achievement being implicated in FEP outcomes.
Our study suggests that academic performance could be a predictive
factor of future illness trajectories, particularly in those identified as
being at risk of FEP, and an opportunity for early preventative
approaches.

Whilst the model for predicting positive domain-TR discriminated
between those with and without the outcome, the model for negative
domain-TR did not perform well. Negative symptoms are a multifaceted
problem presenting a complex challenge for clinicians. They are one of
the first reported symptoms in those with schizophrenia (Correll and
Schooler, 2020) yet one of the most persistent (Chang et al., 2011).
There may be primary negative symptoms as well as secondary negative
symptoms resulting from comorbidities, treatments, medications, envi-
ronmental factors, psychosocial factors, and brain abnormalities (Correll
and Schooler, 2020; Galderisi et al., 2018; Kelley et al., 1999; Sarkar
et al., 2015). With a prevalence of up to 90 % for the presence of at least
one negative symptom during FEP (Heiden et al., 2016) these symptoms
remain an immense burden on the people living with them (Cerveri
etal., 2019; Galderisi et al., 2018). The complexities of negative domain-
TR are further exacerbated by their appearance at any point during
illness (Correll and Schooler, 2020). Cumulatively, these factors may
contribute to the difficulty of predicting negative domain-TR in the
current study. Our findings reflect research which reported baseline
assessments may not predict the development of negative symptoms
(Chang et al., 2011). It is important to acknowledge two considerations
1) if negative symptoms are secondary to FEP related causes, these may
not be identifiable from illness onset and 2) the variables included in the
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Fig. 1. shows the receiver operating characteristic curves for each positive domain model. The AUC (area under the curve) is presented (with confidence intervals).

current study are indicative of positive domain-TR and not negative
domain-TR. As this is the first study to investigate different symptom
profiles, the essential predictive features of TR for negative symptoms
are less well known.

Whilst our study highlights the difficulty in predicting negative
domain-TR, it highlights the need for future research to unpack the
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complexities surrounding these symptoms. Research has identified that
certain medications are more effective in reducing negative symptoms
than others (Cerveri et al., 2019; Huhn et al., 2019; Sabe et al., 2021).
Several recommendations for the treatment of negative symptoms have
also been made including the provision of social skills training, an an-
tidepressant add-on to antipsychotic medication, cognitive remediation,
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Fig. 2. shows the calibration plots associated with each positive domain model (plots created using the val.prob. function in the Regression Modelling Strategies

(rms) package in r).

exercise interventions, and rehabilitation interventions (Galderisi et al.,
2021). Thus, the early identification of individuals who are treatment
resistant in the negative domain could result in a targeted pharmaco-
logical and psychosocial approach.

Despite an inability to predict which individuals will be treatment
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resistant in the negative domain our study highlights several concepts
regarding positive and negative symptom profiles. 33 participants were
treatment resistant exclusively in the negative domain. Research ac-
knowledges that the typical treatment resistant patient is one with
positive symptoms and that antipsychotic medication primarily seeks to
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Fig. 3. shows how many models (each outer fold iteration of the nested cross validation procedure) retained each baseline predictor variable. The boxplots
demonstrate the beta coe > icient values, and range of values, assigned to each variable (positive domain model).

address these (Correll and Schooler, 2020; Howes et al., 2017). How-
ever, with 33 negative domain treatment resistant patients and 23 in-
dividuals treatment resistant in both domains, this highlights the
importance of addressing both symptom profiles; these symptoms co-
exist and need to be co-treated (Sarkar et al., 2015). Our model pipe-
line did identify variables that may contribute to negative domain TR
(Fig. 6), including PANSS N6 (Lack of Spontaneity). This finding sup-
ports literature investigating the overlap between schizophrenia and
autistic spectrum disorder and specifically, the convergent symptoms
between them (Duffy and Healy, 2011; Jutla et al., 2022), and research
which has identified autistic traits in treatment resistant schizophrenia
patients (Nakata et al., 2020), offering a potential new avenue to explore
in negative domain TR. Cumulatively, these findings add to existing
literature that explores the contribution of individual assessment items,
and combination of these items, in FEP patient outcomes (Izquierdo
et al., 2021; Ortiz et al., 2020).

Strengths of our study include developing, for the first time, pre-
diction models distinguishing between positive and negative treatment
resistant clinical profiles in FEP. We utilised a relatively large dataset
from a longitudinal cohort study that allowed for the identification of TR
at 12 months (Birchwood et al., 2014). With LASSO regression and
repeated NCV we generated unbiased estimates of model performance
with the identification of predictive features. It has been identified that
psychiatric research suffers from missing data not being handled
correctly and that multiple imputation methods can be a statistical
advantage (they offer a robust approach, accounting for statistical un-
certainty with the benefit of handling different variable types (Azur
etal., 2011; Moons et al., 2006)). Further, we included variables readily
available upon patient presentation to services, ensuring an easily
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employable, clinically appropriate model.

Limitations include a small number of outcome cases for the positive
and negative domain models. Whilst research has acknowledged that the
10 events per variable (EPV) rule is not a strict criterion (Riley et al.,
2020; van Smeden et al., 2019), low EPVs tend to result in poorer per-
formance (Steyerberg et al., 2003). The low number of outcome cases
may be explained by our strict TR criterion; we may have under-
estimated the prevalence of TR in the current dataset. Future studies
may investigate alternative definitions of TR, including different anti-
psychotic treatment criteria and symptom improvement thresholds
(Haddad and Correll, 2018; Leucht et al., 2009; Schennach-Wolff et al.,
2010; Suzuki et al., 2012). The low number of outcome cases may
explain why there were no significant differences in DUP between the
PTR and non-TR groups. It should be noted, our positive domain model
still performed relatively well. This could be explained by our use of
LASSO which has shown to handle cases with low EPVs and is recom-
mended where prespecified predictors are used in small datasets (Pavlou
et al., 2016; Steyerberg et al., 2000). Another limitation is the lack of an
external validation. Whilst NCV allows for an unbiased estimate of
model performance, it is limited to one dataset. An external validation
allows for an examination of reproducibility and it determines how the
model generalises to new individuals (Ramspek et al., 2021). A next step
for the current study is to externally validate our positive domain model.
Another consideration is our prespecified predictor variables. Whilst our
selection was based on clinical expertise and literature as is recom-
mended (Steyerberg, 2019), we may inadvertently have omitted vari-
ables that were predictive factors of TR. The results of our negative
domain model highlight a gap in the literature regarding predictive
factors of negative domain-TR and future research should seek to
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Fig. 4. shows the receiver operating characteristic curves for each negative domain model. The AUC (area under the curve) is presented (with confidence intervals).

investigate this. With growing support for the existence of two sub-
domains of negative symptoms (avolition/apathy and diminished
expression) (Correll and Schooler, 2020), and research investigating the
trajectory and predictors of apathy in FEP individuals (Lyngstad et al.,
2020) as well as psychological factors underpinning and associated with
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diminished expression in schizophrenia (Garcia-Mieres et al., 2020),
there may be potential for predicting individual negative symptoms. As
these subdomains have a unique association with functioning and
quality of life (Garcia-Fernandez et al., 2022) they may have a unique
association with TR. Future research may investigate cognition in
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Fig. 5. shows the calibration plots associated with each negative domain model (plots created using the val.prob. function in the Regression Modelling Strategies
(rms) package in r).

negative domain-TR, which is linked to negative symptoms (Foussias regarding the validity of cognitive measures (Kumari et al., 2017) future
et al., 2014), but has so far proven problematic to explore as cognition studies may seek to utilise scales with more detailed psychopathology
data is often not routinely collected. Relatedly, as the PANSS scale investigation.

doesn't exclusively measure negative symptoms and has questions In conclusion, we have shown that it is possible, using routinely
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Fig. 6. shows how many models (each outer fold iteration of the nested cross validation procedure) retained each baseline predictor variable. The boxplots
demonstrate the beta coefficient values, and range of values, assigned to each variable (negative domain model).

collected information, to predict positive domain-TR in FEP individuals
from initial clinical contact. This demonstrates an opportunity for early
intervention and provides an exciting outlook for the research and
implementation of clinical predictions models in psychiatric
populations.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.schres.2024.09.010.
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