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Abstract: Advancements in brain imaging technologies have facilitated the development of
“real-world” experimental scenarios. In this study, participants engaged in a household chore –
completing a laundry cycle – while their frontal lobe brain activity was monitored using fNIRS.
Participants completed this twice using both fragranced and unfragranced detergent, to explore
if fNIRS is able to identify any differences in brain activity in response to subtle changes in
stimuli. Analysis was conducted using Automatic IDentification of functional Events (AIDE)
software and fNIRS correlation-based signal improvement (CBSI). Results indicated that brain
activity, particularly in the right frontopolar and occasionally the left dorsolateral prefrontal
cortex, was more pronounced and frequent with the unfragranced detergent than the fragranced.
This suggests that completing tasks in an environment where a pleasant and relaxing fragrance is
present might be less effortful compared to an odourless environment.
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1. Introduction

Technological advancements over the past thirty years in the neuroimaging field have led to a
significant increase in the number and types of devices used in brain imaging research. More
researchers are bringing their participants out of the laboratory and into the real world, to study
brain responses to specific stimuli and cognitive processes in contexts that are more relevant
to the participants themselves [1]. As a result, the development of both hardware systems and
research protocols have seen substantial growth in the past decades [2].

At the hardware level, the scene in recent years has been dominated by electroencephalography
(EEG) devices [3,4]. New mobile systems can sometimes offer a good trade-off between mobility
needs for the participants and accuracy/richness of the data for the experimenter, with some
devices reaching as many as 64 channels. Moreover, the wireless communication they offer has
allowed researchers to use mobile EEG devices in very different contexts, from the development
of brain-computer interfaces (BCIs) [5,6], to neurofeedback protocols [7,8,9].

Very recently, other technologies that were once considered impossible to be used in a mobile
setting, like magnetoencephalography (MEG) have also seen the development of prototypes
allowing participants to move freely in real-life scenarios [10,11]. However, both EEG and MEG
are subject to limitations that impose sometimes strong trade-offs to researchers in order to collect
data from participants outside of the lab.

Specifically, EEG is prone to electrical noise from the muscles around the electrodes (facial
muscles, tongue, jaw, eye movements) that can severely compromise the quality of the recordings.

#528275 https://doi.org/10.1364/BOE.528275
Journal © 2024 Received 23 Apr 2024; revised 5 Jul 2024; accepted 25 Jul 2024; published 23 Aug 2024

https://orcid.org/0009-0002-8359-1215
https://orcid.org/0009-0005-0640-043X
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.528275&amp;domain=pdf&amp;date_stamp=2024-08-23


Research Article Vol. 15, No. 9 / 1 Sep 2024 / Biomedical Optics Express 5462

In fact, brain and muscle signals are both of the electric type, but muscle signals tend to be at
least one order of magnitude larger in amplitude [12,13]. Moreover, the already low spatial
resolution offered by EEG is further reduced by mobile systems that normally provide very few
(<20) electrodes in order to increase comfort for the participants. Additionally, commercially
available devices often offer very low sampling rate compared to lab-based devices, therefore
not allowing researchers to obtain clear, dense data to analyse and interpret. This is especially
important in contexts where data quality is essential, for example when developing new brain
markers or investigating new brain signatures through novel paradigms [14]. For MEG, the
biggest drawback is that the environment in which both the devices and participants operate
needs to be magnetically fully isolated, and mobility for the participants is still limited given the
current technologies available [15].

Nowadays, the brain imaging technique that offers the best trade-off between accuracy and
mobility is functional near-infrared spectroscopy (fNIRS) [16,17]. fNIRS has been successfully
exploited in the past years as a fully mobile technology and this, in turn, has led to the development
of a wide range of devices that can be used in real-life environments [18,19,20]. This achievement
was, in part, made possible by the unique ability of fNIRS to be easily integrated (both in terms
of hardware and data collection) with EEG in mobile systems [21,22].

The continuous cycle of improvements in hardware and equipment leading in turn to the
development of novel out-of-the-lab protocols has also facilitated the improvement of data
analysis platforms, and the standardisation of best practices for the use and handling of fNIRS
data, as well as enabling the creation of tools to further explore fNIRS data [23,24,25]. Among
these, the AIDE (Automatic IDentification of functional Events) platform has gained interest
in the fNIRS community for its ability to mark significant brain activation events in conditions
where the rigorous epoching of the data becomes difficult to obtain due to the nature of the
naturalistic protocols [26]. AIDE reverses the traditional approach of analysing brain responses
in response to a specific protocol (for example, “what are the brain patterns in response to a
participant looking at a picture?”) and instead attempts to determine significant events starting
from the analysis of brain activity (i.e. “based on this fNIRS dataset, when is my participant
looking at the picture?”). The advantages of this approach should be immediately clear: using
tools like AIDE, researchers are able to leave the lab and truly exploit fNIRS in naturalistic
settings, where determining a clear sequence of marked events is not always possible [27].

Despite its flexibility and ability to operate in extremely different research contexts, to date,
fNIRS has not been widely exploited in the fragrance industry, or more generally, in olfactory
research [28]. Moreover, the only significant contributions in the field have been made either in
clinical settings [29,30], or in lab-based settings [31]. However, the sense of smell is involved
in an extremely wide range of commonplace daily activities: from the scent of a shampoo or
conditioner during the morning shower to the candle lit during the yoga session in the evening,
we are constantly exposed to odours and actively seek olfactory experience from the consumer
products we use. Targeting one such real-life scenario, we assess the feasibility of using fNIRS
record brain activity from consumers and provide useful information on the brain processes
behind such activities. We chose to use a laundry cycle in our experiment for numerous reasons:
it is a truly out-of-the-lab activity that most households perform; it involves a high level of
movement and is familiar enough to standard consumers to allow for full replicability of the
laundry process without compromising the naturalistic aspect of the test (i.e. without providing
too stringent instructions to the participants). Moreover, to investigate the sensitivity of the brain
imaging tool, we asked our participants to complete the experiment twice, once with a fragranced
detergent and once with an unfragranced detergent, to check if any perceivable differences
between the two conditions can be highlighted by fNIRS recordings, with particular interest
shown to the prefrontal cortex (PFC), as it is commonly targeted in odour based fNIRS studies.
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The aim of the current paper is therefore to investigate whether neuroimaging techniques
-specifically fNIRS- can be employed in naturalistic scenarios to study the effects of olfactive
stimuli on brain activation patterns in the PFC. To the best of our knowledge, this is the very
first example of an fNIRS-based protocol run in the fragrances and flavours industry, where
naïve consumers are placed in an ecologically valid environment to perform a test mimicking
a real-life scenario, such as doing laundry. The use of fNIRS in combination with AIDE may
prove beneficial for studies involving odour, a highly evocative stimulus, where emotional and
well-being aspects of human nature are more difficult to both encourage and measure in restrictive,
time-controlled environments. We aim to test the efficacy and sensitivity of this paradigm,
and provide an example of a data handling pipeline to explore consumer responses to real-life
scenarios.

We hypothesise that fNIRS is a suitable tool to record brain activity in a highly noisy context
such as a laundry cycle. To prove this point, we expect to find significant differences, in terms of
brain activation, between two very similar scenarios in the experiment, where the only difference
is the presence or absence of a fragrance in the washing detergent.

2. Materials and methods

2.1. Participants

16 participants were included in the analysis for this study (age M= 50.9 and SD= 14.7, 5 males
and 11 females). The study was approved by Givaudan’s Internal Review Board, ethics no.
2019-002 (equivalent to an ethics committee) and all participants signed the informed consent
prior to taking part in the experiment.

2.2. Procedure and paradigm

The study was conducted in the laundry booths facilities at the Givaudan site in Ashford, UK.
Each of the booths used (10 m3, 21 °C, 50% RH (relative humidity)) is equipped with a European
front-loading washing machine (Miele Front Loaders WKB120) with a front tray for detergent
and fabric conditioner (Fig. 1). For the current experiment, a standard programme was selected
before the arrival of the participants, so that they were asked to only press the “Start” button
and avoid any confusion or discrepancy across participants during the test. Three booths were
used by each participant for the test, and in each booth they performed one of the three phases of
the dynamic phase (see details below – Fig. 2). Moreover, the Fragranced and Unfragranced
conditions were performed in two different sets of booths to prevent any odour contamination of
the environment or the fabrics, particularly due to fabric detergent build-up or carry-over effects
of the fragrance.

The entire experimental session consisted of two main parts: 1) the dynamic phase; 2) the
static experiment (Fig. 2). All participants first completed the dynamic phase, followed by the
static phase. The timeline of the study is show in Fig. 2.

2.2.1. Dynamic experiment

The dynamic phase comprised three main tasks (Fig. 2):

1) Wash: participants were brought into the first booth equipped with a washing machine and
a basket of dry clothes placed on top of the washing machine. Each participant received a
standard set of laundry to wash, representative of a standard washing machine load. The
set contained a total of 1.6 kg of fabric items, comprising shirts, towels and pillow cases.
This standard laundry load was used throughout the experiment, including the following
two phases. The participants were given instructions to place the basket on the floor, empty
the content of the basket into the washing machine, open the plain bottle of detergent and
pour it into the bottle’s lid to reach a specified quantity of 20 ml, place it in the washing
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Fig. 1. Picture of the three stages of the dynamic phase of the experiment; (a) washing, (b)
drying/hanging, (c) folding.

 

Fig. 2. Timeline of the experimental protocol. After the neuroimaging setup, participants
carried out the dynamic phase twice followed by the static experiment.

machine drum and finally start the washing cycle of the washing machine (express 40
°C wash cycle, 1,000 spin/min). No specific instruction was given on how to handle the
detergent (for example, if smelling it before pouring it in the cap) in order to maintain the
highest level of naturalistic setting possible. At this point, they were asked to leave the
booth.

2) Dry+Hang: participants were brought into the second booth equipped with pre-washed
laundry inside the washing machine. The washing cycle had ended between 30 and 45
minutes before the participant started this phase, with the aim of providing the same
experience to all the participants in terms of fragrance effects (e.g. the blooming effect
once opening the washing machine door) and other sensorial aspects (e.g. the level of
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dampness of the wet clothes or the temperature of the clothes after the washing cycle).
Participants were instructed to open the washing machine’s door, empty the content into a
basket, and hang the clothes onto a standard three-tier v-shaped airer one at a time. Upon
completion, they were now asked to move to the next booth.

3) Fold: participants were brought into the third booth equipped with an airer holding dried
clothes. These clothes (the standard set) were previously washed in the respective detergent
and line dried the night prior to the test. All the sets of items were washed 24 hours
before the use by each participant, therefore ensuring that all the participants had the same
experience while interacting with the dried load. In this phase, participants were asked to
remove the clothes from the rack and fold them into a basket and leave the basket on top of
the washing machine.

The dynamic phase was performed twice by each participant, once with a fragranced detergent
(Surf Tropical Lily & Ylang Ylang) and once with an unfragranced detergent (Surcare liquid
washing up). The order of the Fragranced / Unfragranced conditions was counterbalanced across
participants.

2.2.2. Static experiment

The static experiment was conducted in a different room, separate from the booths. Participants
were asked to smell the detergents in three different forms: on dry cloth after washing the cloth
with the detergent and air-drying it; on wet cloth, immediately after washing the cloth with the
detergent; or as the original liquid detergent. Detergents were either fragranced or unfragranced,
and participants completed a total of six smelling trials. The order of the detergent forms and
Fragranced / Unfragranced conditions was counterbalanced across participants. Immediately after
smelling each sample, participants completed a questionnaire, rating each item on 5 attributes:
liking (9-point scale from ‘I dislike it extremely’ to ‘I like it extremely’); intensity (9-point scale
from ‘extremely weak’ to ‘extremely strong’); invigorating (9-point scale from ‘not invigorated
at all’ to ‘extremely invigorated’); relaxing (9-point scale from ‘not relaxed at all’ to ‘extremely
relaxed) and just about right (5-point scale from ‘much too weak for me’ to ‘much too strong for
me’).

2.3. fNIRS data acquisition

Changes in oxygenated (HbO2) and deoxygenated (HbR) haemoglobin over the prefrontal cortex
was recorded using a mobile fNIRS system (NIRSPort2, NIRx Medical Technologies LLC, Berlin,
Germany) using a standard NIRx PFC optode configuration (Fig. 3). The fNIRS system covered
the prefrontal and frontal areas of the brain. The fNIRS device consisted of eight light sources
(λ1= 760 nm; λ2= 850 nm) and seven detectors were arranged at a relative distance of 3 cm,
creating 20 measurement channels. The anatomical locations for each channel can be viewed in
Table 1, found in the appendices . These were computed using the anatomical co-registration
method implemented in the NIRS-SPM software package; the percentage of overlap of each
channel onto anatomical regions was estimated calculating the overlap of a 10 mm radius sphere
centred around the cortically-projected coordinate of the channels [32].

2.4. fNIRS data analysis

Raw intensity signals’ quality was assessed both visually and with the QT-NIRS software package
(https://github.com/lpollonini/qt-nirs) [33] to identify signals with poor quality due to e.g., poor
optical coupling, saturation, or too many motion artifacts. The Scalp Contact Index (SCI) and
Peak Spectral Power (PSP) were computed in non-overlapping time windows of 5 seconds to
include at least 4-5 harmonics of the fundamental heart rate frequency (∼1 Hz); channels that had
an SCI< 0.6 and PSP< 0.1 in more than 50% of the time windows were marked as noisy and

https://github.com/lpollonini/qt-nirs
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Fig. 3. fNIRS channel configuration. The 10-10 EEG electrode placement systems
references are shown in green; light sources and detectors are represented by red and blue
dots respectively; measurement channels are shown in yellow.

excluded from further analyses. For participant number 22 (P22), channel 4 and 6 were further
excluded following visual inspection due to a large number of cap decoupling’s in the second
half of the experiment. Two participants were excluded completely as all their fNIRS signals
were marked as noisy.

Data from the included channels were pre-processed using the Homer2 software package
[34]. Raw intensity signals were first converted into changes in optical density (function:
hmrIntensity2OD); motion artifacts were then corrected using the wavelet-based method (function:
hmrMotionCorrectWavelet; iqr= 1.5; [35], and low and high frequency noise were reduced using
a 5th order Butterworth band-pass filter (function: hmrBandPassFilt; [0.01 0.3] Hz). Changes in
HbO2 and HbR were finally computed through the modified Beer Lambert law considering a
DPF of 6 (function: hmrOD2Conc; DPF= [6 6]).

Given the naturalistic structure of the task, fNIRS data were analysed using the Automatic
IDentification of functional Events (AIDE) method [26]. The pre-processed HbO2 and HbR
signals were first combined into the activation signals through the correlation-based signal
improvement algorithm (CBSI) [36], further helping in accounting for systemic interferences
[37]. The activation signals from the 20 channels were down-sampled to 1 Hz and entered into
AIDE. These were fitted with a canonical response function convolved with boxcar functions
reflecting all possible event onset and durations (up to 230 s long) to identify the occurrence
of functional events. For each participant and channel, each functional event output includes
information about the onset and duration of functional activation, and the t-value (representing
the goodness of fit of the General Linear Model and hence the strength of activation).

The detected functional events were assigned to each experimental condition (Dynamic:
Fragranced/Unfragranced wash, dry+ hang, fold; Static: Fragranced/Unfragranced liquid, wet,
dry) by finding the condition each identified onset was closest to. We then extracted the following
parameters that reflect various aspects of brain activity:



Research Article Vol. 15, No. 9 / 1 Sep 2024 / Biomedical Optics Express 5467

• The average number of detected events (MeanONSET), representing the average frequency
of brain activity (how many functional events occur);

• The average duration of the events (MeanDUR), representing the average duration of brain
activity;

• The average t-values (Meant−VALUE), representing the average strength of brain activity;

• The maximum t-values (Maxt−VALUE), representing the maximum strength of brain activity
(peak brain activity).

These were computed across all the events identified for each channel and condition of
each participant. The abovementioned parameters (MeanONSET, MeanDUR, Meant−VALUE,
Maxt−VALUE) were entered into channel-wise paired sample t-tests to test if there are any
significant differences (p< 0.05) in the patterns of brain activity when actions are performed in
the presence of fragranced and unfragranced detergents. In particular, we tested the hypothesis
that the fragranced detergent led to significantly more frequent, longer and stronger brain
activations than the unfragranced detergent, comparing the following conditions:

1) Dynamic Fragranced wash>Dynamic Unfragranced wash

2) Dynamic Fragranced dry+ hang>Dynamic Unfragranced dry+ hang

3) Dynamic Fragranced fold>Dynamic Unfragranced fold

4) Static Fragranced dry> Static Unfragranced dry

5) Static Fragranced liquid> Static Unfragranced liquid

6) Static Fragranced wet> Static Unfragranced wet

In order to take into account the varying durations of the experimental conditions across
participants, the same comparisons (1-6) were also carried out on MeanONSET, MeanDUR,
Meant−VALUE, Maxt−VALUE normalized by each participant’s duration of the corresponding
condition (Fragranced/Unfragranced wash, dry+ hang, fold). The normality of the distributions
was assessed using the Kolmogorov-Smirnov test at 0.05 significance. Results were corrected for
multiple comparisons using the False Discovery Rate (FDR) at q< 0.05 [38].

2.4.1. Correlation between fNIRS data and fragrance questionnaire

In order to assess the presence of correlations between the brain activation patterns and behavioural
responses to fragrances, the Person’s correlation coefficients r between MeanONSET, MeanDUR,
Meant−VALUE, Maxt−VALUE and the questionnaire scores for each attribute (liking, intensity,
invigorating, relaxing, just about right) were computed for each channel and condition of the
dynamic phase. In particular, MeanONSET, MeanDUR, Meant−VALUE, Maxt−VALUE from the
dynamic wash condition were correlated with the questionnaire scores for the liquid detergent;
MeanONSET, MeanDUR, Meant−VALUE, Maxt−VALUE from the dynamic hang & dry condition
were correlated with the questionnaire scores for the wet detergent; MeanONSET, MeanDUR,
Meant−VALUE, Maxt−VALUE from the dynamic dry condition were correlated with the questionnaire
scores for the dry detergent.

3. Results

The AIDE analysis identified when functional activation occurred within each condition,
determining the onset and duration as well as the strength of activation for each channel. This
was based on the best fit obtained through the convolution of the canonical HRF and a boxcar
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Fig. 4. Example activation model determined by AIDE (magenta line) corresponding to
the best fit between the activation signal (black line) and the convolution of the canonical
HRF and the boxcar function with the optimal onset and duration. Shaded coloured areas
represent the various experimental conditions. The example refers to channel 2 of P24.

 

Fig. 5. Example of timeline of the onsets of functional events detected by AIDE for two
representative channels for the Dynamic Wash, Dry+Hang, Fold conditions. Onsets for
each participant are shown with a different colour.

function with the onsets and durations. An example of the resulting activation model is shown
in Fig. 4 for one channel of one participant (Channel 2, P24). Shaded coloured areas represent
the various conditions; the CBSI activation signal for channel 2 is represented in black and the
activation model (i.e. the best fit) is shown in magenta.

An example of the output is presented in Fig. 5. For this example, we selected two channels, 1
and 13. The figure shows the timeline of the onsets of all functional events for all participants in
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these two channels, for both the Fragranced and Unfragranced dynamic phase conditions. Each
vertical line represents the identified onset of the functional activity, while the various colours
correspond to the different participants. See appendices for the remaining channel information.

Highly detailed results of the statistical analyses are reported in the Appendix.

3.1. Initial results

For the Dynamic phase, channel-wise paired sample t-tests were applied to MeanONSET, MeanDUR,
Meant−VALUE, Maxt−VALUE to test whether the use of fragranced detergents led to significant
differences (p< 0.05) in the patterns of brain activity at the group level compared to unfragranced
detergents when people were washing, hanging or folding clothes.

For the dynamic wash condition, the Maxt−VALUE was significantly higher in the Unfragranced
condition compared to the Fragranced condition in Channel 15 (t(5)=-3.80, p< 0.05; not
surviving FDR correction) corresponding to higher peak activity. No significant differences
(p> 0.05) were found in terms of MeanONSET, MeanDUR, Meant−VALUE. In Fig. 6, it is shown
the group-averaged Maxt−VALUE for each channel of the Fragranced wash condition (top) and
Unfragranced wash condition (bottom). The colour bar represents the Maxt−VALUE while the
radius of the circle represents the number of participants that presented a functional event of
each channel and condition across the full sample of 16 individuals. The channels circled in
magenta represent those with a significant difference between the Fragranced and Unfragranced
conditions (p< 0.05).

Fig. 6. Group-level results for the paired sample t-test comparing the Maxt−VALUE of the
Fragranced condition to the Unfragranced condition for the dynamic wash phase. Circles
represent individual channels and the colour bar indicates the average group Maxt−VALUE.
The channels circled in magenta represents those with a significant difference between
Fragranced and Unfragranced conditions (p< 0.05).

For the dynamic dry+ hang condition, the Meant−VALUE was significantly higher in the
Fragranced condition compared to the Unfragranced condition in Channel 5 (t(12)= 2.31,
p< 0.05; not surviving FDR correction) corresponding to a higher average level of brain activity
(Fig. 7(A)). There was more frequent brain activity in the Unfragranced condition in Channel 15
compared to the Fragranced condition (Fig. 7(B)) as revealed by a significantly higher MeanONSET
(t(10)=-2.63, p< 0.05; not surviving FDR correction). No significant differences (p> 0.05) were
found in terms of MeanDUR and Maxt−VALUE.

Similarly, for the dynamic fold condition, the Meant−VALUE was significantly higher in the
Fragranced condition compared to the Unfragranced condition in Channel 5 (t(4)= 3.63, p< 0.05;
not surviving FDR correction) corresponding to a higher average level of brain activity (Fig. 8);
no significant differences (p> 0.05) were found in terms of MeanONSET, MeanDUR, Meant−VALUE.

For the static experiment, channel-wise paired sample t-tests were applied to MeanONSET,
MeanDUR, Meant−VALUE, Maxt−VALUE to test whether smelling dry, wet or liquid fragranced
detergents led to differences in the patterns of brain activity at the group level respect to smelling
dry, wet or liquid unfragranced detergents.
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Fig. 7. Group-level results for the paired sample t-test comparing the Meant−VALUE (A)
and MeanONSET (B) of the Fragranced condition to the Unfragranced condition for the
dry+ hang phase. Circles represent individual channels and the colour bar indicate the
average group Meant−VALUE/MeanONSET. The channels circled in magenta represent those
with a significant difference between Fragranced and Unfragranced conditions (p< 0.05).

 

Fig. 8. Group-level results for the paired sample t-test comparing the Meant−VALUE of the
Fragranced condition to the Unfragranced condition for the dynamic fold phase. Circles
represent individual channels and the colour bar indicate the average group Meant−VALUE.
The channels circled in magenta represent those with a significant difference between
Fragranced and Unfragranced conditions (p< 0.05).

For the static dry condition, smelling unfragranced dry detergent led to longer functional
activation events (Fig. 9) as revealed by significantly higher MeanDUR in the Unfragranced
condition compared to the Fragranced condition in Channel 16 (t(5)=-3.80, p< 0.05; not
surviving FDR correction). No other significant differences (p> 0.05) were found.

No significant differences were found for the static wet and liquid conditions.

3.2. Results on normalised data

To account for the different duration of the dynamic phasal conditions (Fragranced/Unfragranced
wash, dry+ hang, fold) across participants, channel-wise paired sample t-tests were applied to
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Fig. 9. Group-level results for the paired sample t-test comparing the MeanDUR of the
Fragranced condition to the Unfragranced condition for the Static dry condition. Circles
represent individual channels and the colour bar indicate the average group MeanDUR. The
channels circled in magenta represent those with a significant difference between Fragranced
and Unfragranced conditions (p< 0.05).

Fig. 10. Group-level results for the paired sample t-test comparing the Maxt−VALUE (A)
and Meant−VALUE (B) of the Fragranced condition to the Unfragranced condition for the
wash phase. Circles represent individual channels and the colour bar indicate the average
group Maxt−VALUE/ Meant−VALUE. The channels circled in magenta represent those with a
significant difference between Fragranced and Unfragranced conditions (p< 0.05).

MeanONSET, MeanDUR, Meant−VALUE, Maxt−VALUE normalised by the duration of the correspond-
ing condition of each participant.

In this case, in the washing condition the normalised Maxt−VALUE was significantly higher in
the Unfragranced condition compared to the Fragranced condition in Channel 15 (t(5)=-3.75,
p< 0.05; not surviving FDR correction) corresponding to higher peak activity. Moreover, the
normalised Meant−VALUE was significantly higher in the Unfragranced condition compared to
the Fragranced condition in Channel 15 (t(5)=-2.66, p< 0.05; not surviving FDR correction)
corresponding to a higher average level of brain activity (Fig. 10); no significant differences
(p> 0.05) were found in terms of normalized MeanONSET and MeanDUR.

For the dynamic dry+ hang condition, there was more frequent brain activity in the Unfra-
granced condition in Channel 15 compared to the Fragranced condition (Fig. 11) as revealed
by a significantly higher normalised MeanONSET (t(10)=-2.33, p< 0.05; not surviving FDR



Research Article Vol. 15, No. 9 / 1 Sep 2024 / Biomedical Optics Express 5472

Fig. 11. Group-level results for the paired sample t-test comparing the MeanONSET
of the Fragranced condition to the Unfragranced condition for the dynamic dry+ hang
condition. Circles represent individual channels and the colour bar indicate the average
group MeanONSET. The channels circled in magenta represent those with a significant
difference between Fragranced and Unfragranced conditions (p< 0.05).

correction), and more frequent brain activity in the Fragranced condition respect to the Un-
fragranced condition in Channel 5 (t(12)= 2.49, p< 0.05; not surviving FDR correction). No
significant differences (p> 0.05) were found in terms of normalised MeanDUR, Meant−VALUE, and
Maxt−VALUE.

3.3. Correlation results between fNIRS data and questionnaire

The significant results for the correlation analysis are summarised in Table 1.

Table 1. Summary of the significant correlations between the AIDE-derived parameters and the
scores from the questionnaires. Pearson’s correlation coefficients r are reported as well as the

channels where the correlation was significant. Red cells indicate positive correlations; blue cells
indicate negative correlations.

 

 

The significant results for the correlation analysis are summarised in Table 1.  

             Questionnaire scores 

  Liking Intensity Invigorating Relaxing Just about 

right 

Dynamic 

wash/ 

Liquid 

detergent 

Meant-VALUE r=0.61 (Ch 7) r=0.75 (Ch 18) r=-0.75 (Ch 9)   

r=-0.69 (Ch 17) 

Maxt-VALUE  r=0.85 (Ch 18)  r=-0.75 (Ch 9)  

MeanDUR r=0.68 (Ch 15) r=0.86 (Ch 11) r=0.81 (Ch 18)  r=-0.74 (Ch 9) 

r=0.64 (Ch 17)  

MeanONSET  r=0.78 (Ch 18) r=-0.77 (Ch 10)   

Dynamic 

hang& 

dry/ 

Wet 

detergent 

Meant-VALUE  r=0.56 (Ch 5) r=-0.91 (Ch 2)  r=-0.84 (Ch 2) 

Maxt-VALUE  r=0.55 (Ch 5) r=-0.93 (Ch 2) r=0.81 (Ch 20) r=0.67 (Ch 20) 

r=-0.89 (Ch 2) 

MeanDUR  r=0.65 (Ch 15) r=0.58 (Ch 7) r=-0.92 (Ch 2) r=0.69 (Ch 5) 

r=0.70 (Ch 7) r=0.64 (Ch 7) 

r=0.63 (Ch 18) 

MeanONSET  r=0.92 (Ch 12)  r=0.55 (Ch 5) r=-0.80 (Ch 3) 

Dynamic 

fold/ 

Dry 

detergent 

Meant-VALUE      

Maxt-VALUE      

MeanDUR  r=0.81 (Ch 9)    

MeanONSET      

Table 1. Summary of the significant correlations between the AIDE-derived parameters and the scores from the 

questionnaires. Pearson’s correlation coefficients r are reported as well as the channels where the correlation was 

significant. Red cells indicate positive correlations; blue cells indicate negative correlations. 

Overall, the first two stages of the dynamic phase showed the highest number of correlations 

between AIDE parameters and questionnaires scores. In the final stage, the fold, there was only 

one significant correlation between the MeanDUR scores in channel 9 and the intensity scores.  

Intensity scores positively correlated with most of the AIDE parameters in the first two stages. 

During the wash part, with Maxt-VALUE, MeanONSET and Meant-VALUE in channel 18, with 

MeanDUR in channels 11 and 17; during the wash part with Maxt-VALUE and Meant-VALUE in 

channel 5, with MeanDUR channels 7, 15 and 18 and with MeanONSET in channel 12. In this 

second part, the only negative correlation was with Maxt-VALUE in channel 2.  

Liking scores correlated with AIDE parameters only in the wash stage: we observed positive 

correlations with Meant-VALUE (channel 7) and MeanDUR (channel 15), and negative correlations 

with Meant-VALUE (channel 17).  

Invigorating scores positively correlated with MeanDUR in both the wash stage (channel 18) and 

the hang stage (channel 7), while negative correlations were observed in the wash stage with 

Meant-VALUE (channel 9) and MeanONSET (channel 10), and in the hang stage with Meant-VALUE 

and Maxt-VALUE (both in channel 2).  

In the wash stage, we observed negative correlations between Maxt-VALUE and relaxing scores, 

and between MeanDUR and “just about right” scores (both in channel 9), while in the hang stage, 

we observed positive correlations between Maxt-VALUE and both relaxing and “just about right” 

scores (channel 20), other than positive correlations between the “just about right” scores and 

MeanDUR (channels 5 and 7), and between relaxing scores and MeanONSET in channel 5. Finally, 

there was a negative correlation between MeanDUR and relaxing scores (channel 2) and between 
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Overall, the first two stages of the dynamic phase showed the highest number of correlations
between AIDE parameters and questionnaires scores. In the final stage, the fold, there was only
one significant correlation between the MeanDUR scores in channel 9 and the intensity scores.

Intensity scores positively correlated with most of the AIDE parameters in the first two stages.
During the wash part, with Maxt−VALUE, MeanONSET and Meant−VALUE in channel 18, with
MeanDUR in channels 11 and 17; during the wash part with Maxt−VALUE and Meant−VALUE in
channel 5, with MeanDUR channels 7, 15 and 18 and with MeanONSET in channel 12. In this
second part, the only negative correlation was with Maxt−VALUE in channel 2.

Liking scores correlated with AIDE parameters only in the wash stage: we observed positive
correlations with Meant−VALUE (channel 7) and MeanDUR (channel 15), and negative correlations
with Meant−VALUE (channel 17).

Invigorating scores positively correlated with MeanDUR in both the wash stage (channel 18)
and the hang stage (channel 7), while negative correlations were observed in the wash stage with
Meant−VALUE (channel 9) and MeanONSET (channel 10), and in the hang stage with Meant−VALUE
and Maxt−VALUE (both in channel 2).

In the wash stage, we observed negative correlations between Maxt−VALUE and relaxing scores,
and between MeanDUR and “just about right” scores (both in channel 9), while in the hang stage,
we observed positive correlations between Maxt−VALUE and both relaxing and “just about right”
scores (channel 20), other than positive correlations between the “just about right” scores and
MeanDUR (channels 5 and 7), and between relaxing scores and MeanONSET in channel 5. Finally,
there was a negative correlation between MeanDUR and relaxing scores (channel 2) and between
“just about right” scores and both Meant−VALUE (channel 2) and. MeanONSET (channel 3) again
in the hang stage.

4. Discussion

The constant improvement of mobile brain imaging technologies has allowed the parallel
development of many out-of-the-lab protocols in brain imaging research to investigate brain
patterns when participants are immersed in more naturalistic environments. However, to date,
no such approach has been considered in the olfactory research world. This study aimed to
investigate whether neuroimaging techniques -specifically fNIRS- can be employed in naturalistic
scenarios to study the effects of olfactive stimuli on brain activation patterns in the PFC.

We employed a protocol reproducing the main three steps of a laundry cycle: putting the clothes
in the washing machine and starting the washing cycle; emptying the washing machine and
putting the wet clothes on an airer; taking the dry clothes from the airer and folding them. Using
real consumer products, we collected fNIRS data from our participants while they completed the
cycle twice, with a fragranced and an unfragranced fabric detergent (dynamic phase of the study).
After, participants explicitly rated the liquid detergents, the wet cloths and the dry cloths on a
series of 9-points attribute scales (static phase). Our results suggest that wearable fNIRS can be
a valuable tool in olfactory research and that different patterns of activity can be observed in the
PFC in response to olfactive stimuli and during different phases of a realistic washing cycle.

Overall, results indicate that the unfragranced detergents lead to more frequent and stronger
brain activity than conditions with fragranced detergents, both in the dynamic and static phases
(with the exception of a few instances where Fragranced>Unfragranced). Most of the time,
this was localised in Channel 15 (right frontopolar PFC) and sometimes in Channel 5 (left
dorsolateral PFC). The mere presence of differences across two very similar conditions is inherent
evidence of the ability of fNIRS to highlight changes in brain activity exclusively due to the
olfactive properties of the stimuli. We chose to benchmark our fragranced condition against
an odourless benchmark rather than a malodour, in which case the differences might have been
more evident [39]. This difference can be interpreted in terms of “higher cost” to perform the
actions in the environment in the absence of a fragrance, compared to when a pleasant fragrance
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is present [40]. Therefore, participants appear to find the same actions less effortful if a pleasant
fragrance is present, possibly due to a sense of relaxation given by the fragrance itself [41,42].
This hypothesis is corroborated by a significantly different level of activity in the frontopolar
PFC, located in Brodmann’s area 10. Previous research has highlighted how less pleasant
experimental conditions activate this to a greater extent than more pleasant conditions, even when
the stimulation involves the chemical senses [43]. With regards to the dorsolateral PFC, located
in Brodmann’s area 9, it has often been found active in studies investigating olfactive stimuli,
particularly in the left hemisphere [44], but also in protocols involving moderate physical activity,
as in our study, where possibly the Unfragranced condition proves to be more challenging for
the participants [45]. The activation of this area has also been associated with less pleasant
stimulation compared to a more pleasant one, as the absence vs. presence of a fragrance in our
study suggests [46] and, more generally, to emotional regulation, as could be the case when
processing hedonic features of a fragranced (or unfragranced) product [47]. It is also worth noting
how several regions of the prefrontal cortex are both anatomically and functionally connected to
both emotional-relevant centres in the limbic system and to olfaction-related areas [48]. Thus,
the aforementioned activations can simply be the result of the processing of olfactive stimuli, or
the difficulty associated with the processing, in the case of the unfragranced detergent.

In terms of correlation between explicit ratings and brain activity in the static phase of our
study, it seems that olfactive stimuli that were rated as more intense were associated with stronger,
more frequent, and longer brain activity. This is consistent with previous research showing how
brain activity in response to fragrances increases with the increase of the strength of the odour
[49,50]. It is worth mentioning that this is the first time such a measurement has been carried out
using fNIRS, since previous research only employed EEG or fMRI. Moreover, previous studies
using EEG never employed out-of-the-lab protocols to explore this brain-behavioural link.

The fragrances perceived and rated as “invigorating” seem to lead to lower but longer brain
activations. It also seems that the detergent on wet cloth is associated more to patterns of
brain activity as shown by more correlations between the wet detergent scores and the AIDE
parameters. Several associations are also found between the fragrance in the liquid detergent
and the brain activation parameters, and almost none are found when the detergent is applied on
dry cloth. The idea that fragrances perceived as energising can drive stronger brain activity is
in line with other studies [51]. For the cloth assessment, it is worth noting how there is, to the
best of our knowledge, no previous example in the literature of studies analysing brain activity
in response to sensorial evaluation of different fabric materials at different levels of dampness.
Previous research analysed the interaction of tactile and olfactive stimuli but focusing on different
features like smoothness/roughness of the tactile sensation [52,53], hedonic experience during
multisensory stimulation [1] or brain activity in the evaluation of positive vs. negative tactile and
olfactive stimuli [54]. Our interpretation is that the wet feature of the cloth could generate a more
complex cross-stimulation of the participant, therefore creating stronger brain responses when
evaluating them compared to a dry cloth or the liquid detergent on its own.

5. Conclusion

This study provides a novel approach of fNIRS within the context of applied consumer research,
with the results suggesting a reduction of cognitive load on repetitive household tasks (i.e.
washing and folding laundry) following the introduction of fragrance.

The results of this study highlight two important points with regards to the efficacy of using
fNIRS. Firstly, fNIRS seems to be a suitable tool to study brain activity in response to fragrances
in naturalistic settings; and secondly, fNIRS is able to highlight subtle differences between
Fragranced and Unfragranced conditions in naturalistic settings.
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Limitations & future work

Despite the novelty of the method and the uniqueness of this protocol in the fragrance industry,
there are some limitations that should be considered when looking at the overall results of the
study.

Naturalistic neuroimaging experiments pose unique challenges that can significantly undermine
statistical power. These challenges mainly arise from the complex, dynamic nature of ecological
experimental designs, which often introduce increased signal variability—including both the
effects of interest and noise. For example, ambiguity in timing when an event occurs may prevent
fully capturing neural and hemodynamic responses. Furthermore, the prolonged duration of
events typical in realistic settings can cause increased interference from physiological noises that
evolve slowly, such as respiration and infra-slow oscillations.

fNIRS signals can be strongly affected by changes in physiological responses. Motion artefacts
and systemic cardiovascular adjustments were notably problematic in our study as participants
moved freely around the space, leading to posture related changes in blood pressure and other
physiological processes such as heart rate. This was also evident in the static phase of the
experiment where participants are asked to smell fragrances repeatedly. When conducting similar
experiments, it is recommended to measure physiological signals alongside fNIRS (i.e. systemic
physiology augmented fNIRS) as additional biometric markers of outcome as well as to modulate
the quality of the signal from fNIRS [55], and/or include short-separation in the array to minimise
the impact of scalp and systemic interferences [56,25].

It is also important to note the challenges associated with olfactory experiments using fNIRS,
as the main brain structures involved in olfaction are located in deep brain regions.

Variability introduced by individual differences in task engagement and brain responses to
stimuli further compounded these issues, likely resulting in statistical analyses that did not
withstand correction for multiple comparisons, especially with a modest sample size of 16
participants. To enhance statistical power in future research, increasing the number of subjects
can help mitigate the additional variability in neural and behavioural responses.

Other hardware-based solutions can also be highly beneficial to account for systemic interfer-
ences, especially in naturalistic experiments. For instance, time domain NIRS (TD-NIRS) is more
powerful than the classical continuous wave NIRS (CW) as it is able to separate the superficial
contribution from the underlying deeper brain signals, giving a more accurate recovery of the
brain hemodynamic responses [57]. High density diffuse optical tomography (HD-DOT) systems
are also superior to typical sparse CW devices as, even if also based on the CW technology, they
provide measurements at several depths and a larger availability of short separation channels,
hence improving the reduction of superficial contamination [20].

In this experiment, the timings of the events of interest were manually annotated by the
experimenter; eye-tracking or video cameras were not recorded during the current study for
logistical reasons. Future research should consider incorporating behavioural tracking tools such
as eye-tracking, video cameras and motion-tracking to precisely identify events of interest. This
would be beneficial in making the identification of salient events less time consuming and more
automatic [58], and in conjunction with machine learning and AI approaches [6]. Supplementing
these with physiological measurements (e.g., heart rate, respiration) not only aids in accounting
for physiological noise contaminating the fNIRS signals but also provides additional data for
investigating experimental effects.

Adopting a Bayesian statistical framework could be particularly beneficial in this context.
Through the specification of priors, researchers can readily incorporate existing knowledge to
constrain the identification of events of interest and more effectively distinguish signal from
noise [58]. Bayesian approaches enable formal model comparison that is well-suited to handle
the trade-off between model complexity and accuracy, helping to identify the best model that
explains the data while avoiding overfitting or overgeneralization [59]. Furthermore, Bayesian
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model comparison can be used to formally test for evidence of an effect and compare it to the
evidence for the null hypothesis, eliminating the need for corrections for multiple comparisons,
which are often at risk of being overly conservative [60].

Future research should also consider whether the findings of this research transcend to other
consumer relevant tasks where fragrance would be an appropriate test stimulus and whether there
are sex differences in fragrance perception both in the context of household activities and more
broadly. Likewise, when considering alternative applications from these findings, additional
research into the use of fNIRS in naturalistic settings could help promote the use of fNIRS
capabilities where alternative techniques may be unsuitable.
Funding. Givaudan UK Ltd.

Acknowledgements. The authors would like to acknowledge former employee of Givaudan UK Ltd, Edward
Millgate for his support and comments.

Disclosures. GG, EK, EP: Givaudan UK Ltd.(E), IT, PP, AL: Metabolight Ltd. (C, E). Author Giuliano Gaeta was
employed by Givaudan UK. Authors Emily Kontaris and Emilia Parkkinen are currently employed by Givaudan UK. Ilias
Tachtsidis is a professor at University College London and Founder/CEO of Metabolight Ltd. Author Paola Pinti acted
as a consultant for Metabolight Ltd during the completion of this publication. Author Andrew Levy is employed by
Metabolight Ltd. Natalie Gunasekara is currently a PhD student at UCL and is a former employee of Givaudan UK. The
authors declare that the research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Data Availability. Data underlying the results presented in this paper are available in the supplementary materials.

Supplemental document. See Supplement 1 for supporting content.

References
1. R. Sijben, S. M. Hensel, R. Rodriguez-Raecke, et al., “Gender-dependent crossmodal interactions between olfactory

and tactile stimulation revealed using the unimodal tactile stimulation device (UniTaSD),” Chem. Senses 46(1), 1
(2021).

2. D.R. Roalf and R.C. Gur, “Functional Brain Imaging in neuropsychology over the past 25 years,” Neuropsychology
31(8), 954–971 (2017).

3. C. He, Y.-Y. Chen, C. R. Phang, et al., “Diversity and Suitability of the State-of-the-Art Wearable and Wireless EEG
Systems Review,” IEEE J. Biomed. Health Inform. 27(8), 3830–3843 (2023).

4. C.-T. Lin, Y. Wang, S. F. Chen, et al., “Design and verification of a wearable wireless 64-channel high-resolution
EEG acquisition system with wi-fi transmission,” Med Biol Eng Comput 61(11), 3003–3019 (2023).

5. I. A Fouad, “A robust and reliable online P300-based BCI system using Emotiv EPOC + headset,” J. Med. Eng.
Technol. 45(2), 94–114 (2021).

6. M. Tariq, P. M. Trivailo, and M. Simic, “EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots,” Front.
Hum. Neurosci. 12, 312 (2018).

7. J.-M. Batail, S. Bioulac, F. Cabestaing, et al., “EEG neurofeedback research: A fertile ground for psychiatry?”
L’Encephale 45(3), 245–255 (2019).

8. N. Omejc, B. Rojc, P. Battaglini, et al., “Review of the therapeutic neurofeedback method using electroencephalography:
EEG Neurofeedback,” Bosnian J. Basic Med. Sci. 19(3), 213–220 (2018).

9. G. Viviani and A Vallesi, “EEG-neurofeedback and executive function enhancement in healthy adults: A systematic
review,” Psychophysiology 58(9), e13874 (2021).

10. E. Boto, N. Holmes, M. J Leggett, et al., “Moving magnetoencephalography towards real-world applications with a
wearable system,” Nature 555(7698), 657–661 (2018).

11. M. J. Brookes, J. Leggett, M. Rea, et al., “Magnetoencephalography with optically pumped magnetometers
(OPM-MEG): the next generation of functional neuroimaging,” Trends Neurosci. 45(8), 621–634 (2022).

12. S. L. Kappel, D. Looney, D. Mandic, et al., “Physiological artifacts in scalp EEG and ear-EEG,” BioMed Eng OnLine
16(1), 103 (2017).

13. S. D Muthukumaraswamy, “High-frequency brain activity and muscle artifacts in MEG/EEG: a review and
recommendations,” Front. Hum. Neurosci. 7, 1 (2013).

14. R. J. Sugden, P. K. Nghiem-Phu, I. Campbell, et al., “Remote collection of electrophysiological data with brain
wearables: opportunities and challenges,” Bioelectron Med 9(1), 12 (2023).

15. N. Holmes, M. Rea, R. M. Hill, et al., “Naturalistic hyperscanning with wearable magnetoencephalography,” Sensors
23(12), 1 (2023).

16. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS)
development and fields of application,” NeuroImage 63(2), 921–935 (2012).

17. P. Pinti, C. Aichelburg, S. Gilbert, et al., “A review on the use of wearable functional near-infrared spectroscopy in
naturalistic environments,” Jpn Psychol Res 60(4), 347–373 (2018).

https://doi.org/10.6084/m9.figshare.26381053
https://doi.org/10.1093/chemse/bjaa077
https://doi.org/10.1037/neu0000426
https://doi.org/10.1109/JBHI.2023.3239053
https://doi.org/10.1007/s11517-023-02879-y
https://doi.org/10.1080/03091902.2020.1853840
https://doi.org/10.1080/03091902.2020.1853840
https://doi.org/10.3389/fnhum.2018.00312
https://doi.org/10.3389/fnhum.2018.00312
https://doi.org/10.1016/j.encep.2019.02.001
https://doi.org/10.17305/bjbms.2018.3785
https://doi.org/10.1111/psyp.13874
https://doi.org/10.1038/nature26147
https://doi.org/10.1016/j.tins.2022.05.008
https://doi.org/10.1186/s12938-017-0391-2
https://doi.org/10.3389/fnhum.2013.00138
https://doi.org/10.1186/s42234-023-00114-5
https://doi.org/10.3390/s23125454
https://doi.org/10.1016/j.neuroimage.2012.03.049
https://doi.org/10.1111/jpr.12206


Research Article Vol. 15, No. 9 / 1 Sep 2024 / Biomedical Optics Express 5477

18. M. Abtahi, G. Cay, M. J. Saikia, et al., “Designing and testing a wearable, wireless fNIRS patch,” Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology
Society. Annual International Conference, 2016, 6298–6301 (2016).

19. X. Huang, J. Tang, W Luo, et al., “A Wearable Functional Near-Infrared Spectroscopy (fNIRS) System for Obstructive
Sleep Apnea Assessment,” IEEE Trans. Neural Syst. Rehabil. Eng. 31, 1837–1846 (2023).

20. E. E. Vidal-Rosas, A. von Lühmann, P. Pinti, et al., “Wearable, high-density fNIRS and diffuse optical tomography
technologies: a perspective,” Neurophotonics 10(02), 023513 (2023).

21. A. Kassab, J. Le Lan, J. Tremblay, et al., “Multichannel wearable fNIRS-EEG system for long-term clinical
monitoring,” Human Brain Mapping 39(1), 7–23 (2018).

22. J. Uchitel, E. E. Vidal-Rosas, R. J. Cooper, et al., “Wearable, Integrated EEG-fNIRS Technologies: A Review,”
Sensors 21(18), 1 (2021).

23. S. H. Kohl, D. M. A. Mehler, M. Lührs, et al., “The Potential of Functional Near-Infrared Spectroscopy-Based
Neurofeedback-A Systematic Review and Recommendations for Best Practice,” Front. Neurosci. 14, 594 (2020).

24. P. Pinti, I. Tachtsidis, A. Hamilton, et al., “The present and future use of functional near-infrared spectroscopy
(fNIRS) for cognitive neuroscience,” Ann. N. Y. Acad. Sci. 1464(1), 5–29 (2020).

25. M. A. Yücel, A. V Lühmann, F. Scholkmann, et al., “Best practices for fNIRS publications,” Neurophotonics 8(01),
012101 (2021).

26. P. Pinti, A. Merla, C. Aichelburg, et al., “A novel GLM-based method for the Automatic IDentification of functional
Events (AIDE) in fNIRS data recorded in naturalistic environments,” NeuroImage 155, 291–304 (2017).

27. P. Pinti, C. Aichelburg, F. Lind, et al., “Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world
Cognitive Tasks,” JoVE 106(106), 1 (2015).

28. N. Gunasekara, G. Gaeta, A. Levy, et al., “fNIRS neuroimaging in olfactory research: A systematic literature review,”
Front. Behav. Neurosci. 16, 1040719 (2022).

29. M. Schecklmann, M. Schaldecker, S. Aucktor, et al., “Effects of methylphenidate on olfaction and frontal and
temporal brain oxygenation in children with ADHD,” Journal of Psychiatric Research 45(11), 1463–1470 (2011).

30. M. Schecklmann, E. Schenk, A. Maisch, et al., “Altered frontal and temporal brain function during olfactory
stimulation in adult attention-deficit/hyperactivity disorder,” Neuropsychobiology 63(2), 66–76 (2011).

31. T. Onuma, H. Maruyama, and N. Sakai, “Enhancement of saltiness perception by monosodium glutamate taste and
soy sauce odor: a near-infrared spectroscopy study,” Chem. Senses 43(3), 151–167 (2018).

32. D. Tsuzuki and I. Dan, “Spatial registration for functional near-infrared spectroscopy: from channel position on the
scalp to cortical location in individual and group analyses,” Neuroimage 85, 92–103 (2014).

33. S. M. Hernandez and L. Pollonini , “NIRSplot: A Tool for Quality Assessment of fNIRS Scans,”Biophotonics
Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN) (2020), Paper BM2C.5, Part
F176-BRAIN-2020, BM2C.5.

34. T. J. Huppert, S. G. Diamond, M. A Franceschini, et al., “HomER: a review of time-series analysis methods for
near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).

35. B. Molavi and G. A. Dumont, “Wavelet based motion artifact removal for functional near infrared spectroscopy,”
2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 5–8
(2010).

36. X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on
negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” NeuroImage 49(4), 3039–3046
(2010).

37. I. Tachtsidis and F.. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues,
challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).

38. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple
testing,” Journal of the Royal Statistical Society 57(1), 289–300 (1995).

39. P. C. Castle, S. Van Toller, and G. J. Milligan, “The effect of odour priming on cortical EEG and visual ERP
responses,” International Journal of Psychophysiology 36(2), 123–131 (2000).

40. P. W. Burgess, J. Crum, P. Pinti, et al., “Prefrontal cortical activation associated with prospective memory while
walking around a real-world street environment,” NeuroImage 258, 119392 (2022).

41. A. Baccarani, S. Grondin, V. Laflamme, et al., “Relaxing and stimulating effects of odors on time perception and
their modulation by expectancy,” Attention, Perception & Psychophysics 83(1), 448–462 (2021).

42. E. Syrjänen, H. Fischer, and J. K. Olofsson, “Background odors affect behavior in a dot-probe task with emotionally
expressive faces,” Physiol. Behav. 210, 112540 (2019).

43. Y. Hasegawa, A. Sakuramoto, T. Suzuki, et al., “Emotional modulation of cortical activity during gum chewing: A
functional near-infrared spectroscopy study,” Front. Neurosci. 16, 964351 (2022).

44. M. E. Gluck, P. Viswanath, and E. J Stinson, “Obesity, appetite, and the prefrontal cortex,” Curr Obes Rep 6(4),
380–388 (2017).

45. K. Hyodo, I. Dan, Y. Kyutoku, et al., “The association between aerobic fitness and cognitive function in older men
mediated by frontal lateralization,” NeuroImage 125, 291–300 (2016).

46. Y. Ono, G. Kobayashi, R. Hayama, et al., “Prefrontal hemodynamic changes associated with subjective sense of
occlusal discomfort,” BioMed Res. Int. 2015, 1–10 (2015).

https://doi.org/10.1109/TNSRE.2023.3260303
https://doi.org/10.1117/1.NPh.10.2.023513
https://doi.org/10.1002/hbm.23849
https://doi.org/10.3390/s21186106
https://doi.org/10.3389/fnins.2020.00594
https://doi.org/10.1111/nyas.13948
https://doi.org/10.1117/1.NPh.8.1.012101
https://doi.org/10.1016/j.neuroimage.2017.05.001
https://doi.org/10.3791/53336
https://doi.org/10.3389/fnbeh.2022.1040719
https://doi.org/10.1016/j.jpsychires.2011.05.011
https://doi.org/10.1159/000323448
https://doi.org/10.1093/chemse/bjx084
https://doi.org/10.1016/j.neuroimage.2013.07.025
https://doi.org/10.1364/AO.48.00D280
https://doi.org/10.1016/j.neuroimage.2009.11.050
https://doi.org/10.1117/1.NPh.3.3.031405
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/S0167-8760(99)00106-3
https://doi.org/10.1016/j.neuroimage.2022.119392
https://doi.org/10.3758/s13414-020-02182-0
https://doi.org/10.1016/j.physbeh.2019.05.001
https://doi.org/10.3389/fnins.2022.964351
https://doi.org/10.1007/s13679-017-0289-0
https://doi.org/10.1016/j.neuroimage.2015.09.062
https://doi.org/10.1155/2015/395705


Research Article Vol. 15, No. 9 / 1 Sep 2024 / Biomedical Optics Express 5478

47. P.-E. Billot, P. Andrieu, A. Biondi, et al., “Cerebral bases of emotion regulation toward odours: A first approach,”
Behav. Brain Res. 317, 37–45 (2017).

48. G. Gaeta, R. M. Sullivan, and D. A. Wilson, “Neural mechanisms for odor-guided behavior,” In Oxford Research
Encyclopedia of Neuroscience (Oxford University Press, 2023).

49. P. Han, V. A. Schriever, P. Peters, et al., “Influence of airflow rate and stimulus concentration on olfactory event-related
potentials (OERP) in humans,” Chem. Senses 43(2), 89–96 (2018).

50. Y. Zang, P. Han, B. Chen, et al., “Brain response to odors presented inside the nose, directly in front of the nose or
with ambient air,” European Archives of Oto-Rhino-Laryngology 278(8), 2843–2850 (2021).

51. P. DeGuzman, A. Jain, M. H. Tabert, et al., “Olfaction modulates inter-subject correlation of neural responses,” Front.
Neurosci. 14, 702 (2020).

52. M. L. Demattè, D. Sanabria, R. Sugarman, et al., “Cross-modal interactions between olfaction and touch,” Chem.
Senses 31(4), 291–300 (2006).

53. L. A. Koijck, A. Toet, and J. B. F. Van Erp, “Tactile roughness perception in the presence of olfactory and trigeminal
stimulants,” PeerJ 3, e955 (2015).

54. I. Croy, E. Drechsler, P. Hamilton, et al., “Olfactory modulation of affective touch processing - A neurophysiological
investigation,” NeuroImage 135, 135–141 (2016).

55. M. D. Pfeifer, F. Scholkmann, and R. Labruyère, “Signal processing in functional near-infrared spectroscopy (fNIRS):
methodological differences lead to different statistical results,” Front. Hum. Neurosci. 11, 641 (2018).

56. F. Scholkmann, I. Tachtsidis, M. Wolf, et al., “Systemic physiology augmented functional near-infrared spectroscopy:
a powerful approach to study the embodied human brain,” Neurophotonics 9(03), 030801 (2022).

57. A. Ortega-Martinez, “How much do time-domain functional near-infrared spectroscopy (FNIRS) moments improve
estimation of brain activity over traditional fnirs?” Neurophotonics 10(01), 1 (2022).

58. K. J. Friston, D. E. Glaser, R. Henson, et al., “Classical and Bayesian inference in neuroimaging: applications,”
NeuroImage 16(2), 484–512 (2002).

59. K. E. Stephan, “Bayesian model selection for group studies,” NeuroImage 46(4), 1004–1017 (2009).
60. K. J. Friston and W. Penny, “Posterior probability maps and SPMs,” NeuroImage 19(3), 1240–1249 (2003).

https://doi.org/10.1016/j.bbr.2016.09.027
https://doi.org/10.1093/chemse/bjx072
https://doi.org/10.1007/s00405-020-06547-x
https://doi.org/10.3389/fnins.2020.00702
https://doi.org/10.3389/fnins.2020.00702
https://doi.org/10.1093/chemse/bjj031
https://doi.org/10.1093/chemse/bjj031
https://doi.org/10.7717/peerj.955
https://doi.org/10.1016/j.neuroimage.2016.04.046
https://doi.org/10.3389/fnhum.2017.00641
https://doi.org/10.1117/1.NPh.9.3.030801
https://doi.org/10.1117/1.NPh.10.1.013504
https://doi.org/10.1006/nimg.2002.1091
https://doi.org/10.1016/j.neuroimage.2009.03.025
https://doi.org/10.1016/S1053-8119(03)00144-7

