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Abstract—Recent years have seen a rapid surge in the applica-
tion of artificial neural networks in diverse cognitive settings. The
augmented computational demands of these structures have led to
an interest in new technologies and paradigms. Of all the artificial
neural networks, the spiking neural network (SNN) is notable
for its capability to imitate the energy-efficient signalling system
in the brain. The memristor presents a promising potential
for the integration of SNN into hardware, despite certain non-
ideal device properties posing a challenge to its implementation.
This study involves the simulation of a SNN model utilizing
experimental data on silicon oxide. Particularly, it examines the
impact of a non-linear weight update on SNN performance. SNNs
were shown to possess tolerance for device non-linearity, while the
network can simultaneously maintain a high degree of accuracy.
These results provide valuable prior information for future imple-
mentation of silicon oxide device-based neuromorphic hardware.

Index Terms—neuromorphic, spiking neural networks, mem-
ristive devices, non-linearity

I. INTRODUCTION

Deep Learning (DL) systems have demonstrated exceptional
performance in numerous challenging engineering applications
[1},12]. With the rise in system complexity, there is an increased
demand for processing capabilities, which are not easily met
by resource-constrained processors such as those found in
Internet of Things (IoT) edge devices [3]. Memristive In-
Memory Computing systems for DL, which conduct compu-
tation and storage of recurring operations in the same physical
location using advanced memory devices, have the potential to
enhance the performance of conventional DL architectures [4].
However, fabricating memristive devices in large quantities
is challenging and prohibitively expensive. They are also
susceptible to a variety of device non-idealities that must be
addressed. Thus, the use of simulation frameworks to model
memristive deep learning systems before implementing them
at the circuit level is becoming increasingly popular.

Spiking Neural Networks (SNNs) are artificial neural net-
works (ANNGs) that draw on observations from biology, where
neurons communicate with each other using spikes transmitted
via synapses, with neurons linked by adjustable weight values
[6]]. It is believed that the energy efficiency of computation
in the brain results from the sparsity of low-frequency neuron
spikes and the localized approach. However, conventional von
Neumann systems are unable to realize the full potential

of SNNs’ inherent parallelism and asynchrony operations
[7]l. Neuromorphic hardware, such as memristors or resistive
switching memory, is emerging as an efficient synapse block in
the construction of future neuromorphic systems. Memristors
possess a tunable conductance that directly represents a synap-
tic weight in biology [8]], and a spike signal received from the
presynaptic neuron is transferred to the postsynaptic neuron as
an electric current or charge proportional to the conductance
of the memristor.

In a straightforward crossbar array configuration, the current
flowing through all the interconnected synapses is combined
in a parallel manner at the post-neuron with remarkable
efficiency. Additionally, the memristor has replicated multiple
biological phenomena associated with human learning [9].
Despite the advantages of using memristors, some non-ideal
effects make implementation in neuromorphic hardware diffi-
cult. For instance, variations in device conductance and oper-
ation voltage, limited reliability, and non-linear conductance
updates can significantly diminish network performance [10].
Additional operation protocols or circuits may be necessary to
compensate for these non-idealities [11]. Previous publications
have focused on the effects of non-ideal device properties in
deep neural networks (DNNs), with fewer studies on SNNs.
Some networks were simulated to examine how variations in
device properties affect network performance, demonstrating
good immunity to device variations in weight updates [12].
This work involves a high-level SNN simulation including a
device model to examine the impact of nonlinear conductance
updates on SNN performance [13].
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Fig. 1. The device analysed in this article features a metal-insulator-metal
structure. The two electrical contacts consist of a molybdenum bottom contact
and a gold top contact. To improve the adhesion of the top contact, a 3 nm
titanium buffer layer is deposited before the gold deposition [5].
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Fig. 2. Experimental data used for this work. I-V sweeps of a SiOx device are presented for two regions: a) low-resistance region with average resistance
ranging from 284.6 Q to 1003 €2, and b) high-resistance region with average resistance ranging from 366.2 k2 to 1.295 M. Only the voltage range from
0.0 V to 0.5 V was considered for all curves. The nonlinearity parameter was calculated by dividing the current at 0.5 V by the current at 0.25 V [14].

II. MATERIALS AND METHOD

A. Device Fabrication

The device features a metal-insulator-metal structure, ini-
tially designed for binary resistance switching applications,
with a bottom metal contact consisting of a 280 nm thick
molybdenum film deposited via magnetron sputtering. The
insulator layer is a slightly sub-stoichiometric and amorphous
silicon oxide, 35 nm thick, deposited via RF magnetron
sputtering. The top metal contact is a 115 nm thick gold
film deposited via e-beam evaporation through a contact mask,
defining the device’s active area with a square shape measuring
200 x 200 pm. To enhance adhesion, a 3 nm layer of titanium
was deposited before the gold, serving also as a gettering layer
to seed the oxide with oxygen vacancies. Electrical charac-
terization, performed using a Keithley 4200A-SCS, involved
applying signals to the top electrode (Au) while the bottom
electrode (Mo) was grounded. Before stable resistive switching
was achieved, the device underwent an initial electroforming
step involving a negative voltage sweep, stopped at a current
limit of 3 mA. Eighteen voltage sweeps were conducted,
ramping from 0.0 V to £2.5 V and back to 0.0 V using a 3 mA
current compliance. Incremental positive sweeps, starting from
0.5 V and increasing by 0.05 V in each run, were applied to
achieve a wide range of resistances, repeated until no further
resistance change was observed. Experimental data were then
used to explore various effects of SiOx technology on SNN.

B. Conventional Framework

Traditionally, spiking neuron models describe neuron prop-
erties that generate electrical potentials across their cell mem-
brane. The Leaky Integrate-and-Fire (LIF) model is a widely
used spiking neuron model due to its simplicity and com-
putational efficiency [15]. In this model, a neuron emits a
spike when its membrane potential reaches a threshold value,
then enters a phase of hyperpolarization, preventing a second
spike due to a refractory period. Despite the existence of more
biologically realistic models, the LIF model remains popular
for its balance of simplicity and efficiency.
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This study conducted a high-level simulation [16]. Input
neurons are fully connected to the output neuron via synapses
with varying connection strengths. Pre-synaptic spikes gener-
ate post-synaptic current based on conductivity and weights,
which accumulates at the output neuron nodes, increasing
the membrane potential U(¢). The LIF model assumes that
the potential decays spontaneously with a time constant 7
[17]. When input spikes generate a postsynaptic current, U (¢)
increases, decaying with time constant 7. If U(t) exceeds the
threshold, it triggers a post-synaptic spike, resetting U (t) to
the resting state for a refractory period.

In conventional ANNs for multi-class classification, the
neuron with the highest activation predicts the class. For
SNNs, different methods interpret output spikes, such as
rate coding and latency coding [18]]. This study utilized rate
coding, where input is converted into a spike frequency. The
goal is for the correct neuron class to emit the most spikes
during the simulation run. Training involves weight updates
from backpropagation through time (BPTT), resembling spike-
timing dependent plasticity (STDP) learning curves [19].
STDP adjusts synaptic weights based on the timing of pre-
and postsynaptic spikes [20]. Memristors can implement this
learning rule [21], with weight changes modulated by the time
difference between spikes [21]]. The largest weight changes
occur when one neuron reaches the threshold while the other is
at the reset voltage, creating a learning window that increases
rapidly and then decays slowly[/19].

C. Non-idealities

Memristor crossbars are typically modelled as structures
that compute linear dot products, with only activation func-
tions introducing nonlinearities [22]]. From previous works,
the output operation of the synaptic layers is modified to
reflect the nonidealities [[14]. The proposed method is achieved
by calculating the outputs, y; € y € RN ysing the
inputs z; € x € R>M weights w;; € w € RMXN 4
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Fig. 3. Training results for standard and memristive schemes when exposed to I-V nonlinearities. a) The loss curves are noisy due to the tracking of losses
at every iteration, rather than averaging across multiple iterations. b) Comparison of different spiking neural network performance when implemented with
I-V nonlinearities from a single training run. The networks successfully learned MNIST features during training in both models.

nonlinear activation function f, the memristor’s non-ohmic I'V'
behaviour function g, as shown in equation (2).

M
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During inference, the variables z, w, and y are mapped onto
voltages, conductances, and currents, respectively @), using
the scaling factors k, and kj, where kg is the conductance
scaling factor and ky is determined before training.
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To represent both positive and negative weights, pairs of
conductances G+ and G— are respectively added to the
"positive’ and “negative’ bit lines of crossbar arrays (6), which
can be advantageous for mitigating the effects of stuck devices
[23]. The output currents of the negative bit lines are then
subtracted from the output currents of the positive bit lines,
which is known as the differential pair architecture [24].

k
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In the context of memristive applications, it is commonly
accepted that perfectly ohmic devices are those for which the
ratio of current (I) to voltage (V) remains constant. Deviations
from this behavior in memristors are typically characterized by
considering a pair of points on the I-V curve [25]]. For instance,
it may be possible to define a nonlinearity parameter  [26]
that were extracted from experimental data of a SiOx RRAM
device “Fig. [J]” as expressed in equation (8), where V,..f is
introduced at 0.25V and G is the conductance parameter.
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Silicon oxide devices are capable of resistance switching, as
previously studied [5]]. To analyze I-V nonlinearity and achieve
a wide range of resistance states, incremental positive sweeps
were used to gradually reset the device from the low-resistance
state (LRS) to the high-resistance state (HRS).

Furthermore, the potential for variability in device-to-device
(D2D) communication due to programming inaccuracies was
also considered. During the mapping of conductances, it is
possible that the values may differ from those intended. In
some memristors, these resistive deviations are modelled using
a lognormal distribution. This can be incorporated into the
training process by introducing random variations in the values
in each iteration. In this case, the values are drawn from a
random lognormal distribution. For the purposes of lognormal
modelling, the standard deviation of the natural logarithm
of resistances was linearly interpolated from a set of values
of 0.25R,¢¢ and 0.25R,,, representing uniform behaviours
across different device.

III. RESULTS AND DISCUSSION
A. Training Setup

A two-layer memrisitive SNN (MSNN) was designed to
examine the impact of non-linear device properties on the
MNIST handwritten dataset converted to a spike train. The
network was fed from the 28x28 image and trained on 60,000
samples with 10,000 samples used for testing. The network
learns representative features in the input samples through
updating the synaptic weights. The weight conductance values
were initially generated using a uniform random distribution.
To evaluate the performance of non-ideality-aware training
on complex tasks, memrisitive convolutional spiking neural
networks (MCSNN) were trained with the assumption that
their convolutional layers would be implemented digitally.
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Fig. 4. Description of structure and operation of memristive SNN. a) Abstract SNN representation for MNIST pattern recognition with input, hidden memristive
layers, and output layer. b) Impact of memrisitve nonidealities on performance of standard and spiking CNN models under the same training scheme.

Their fully connected layers were trained using memristive
crossbar arrays that suffer from high I-V nonlinearity.

The MSNN model in “Fig. Bp” is fully connected and
consists of a layer with 100 hidden neurons and LIF activation
function, followed by another layer before the output layer
with 10 neurons. The MSCNN architecture includes a convo-
lutional layer with 12 output filters, a 5 x 5 kernel size, and
an LIF activation function. This is followed by a pooling layer
with a 2 x 2 pool size. The architecture then includes another
convolutional layer with 64 output filters, a 5 x 5 kernel size,
and an LIF activation function, followed by another pooling
layer with a 2 x 2 pool size. Finally, the architecture includes a
memristive fully connected layer with 10 output neurons and
an LIF activation function. The cross entropy loss function
from Torch [16] automatically generates a loss at the output
and handles the softmax of the output layer.

B. Learning and Classification

The training results are presented to explore the effect of
high I-V nonlinearity. Training curves for MSNNs with the
MNIST dataset and exposed to I-V nonlinearities are shown in
“Fig.[3p”. The blue training curve, which assumes the presence
of memristive non-ideal effects, closely follows the orange test
curve, with both reaching loss values of approximately 20.
This plot provides SNN and MSNN curves to aid in compre-
hending the distinctions between ideal and non-ideality-aware
training. It is observed that the ideal curves (red/green) are
distinct from the memristive curves (blue/orange) with lower
loss values of around 10. Moreover, the global minimum of the
ideal curves is reached early in the training, at 100 iterations,
compared to the memristive training, which reaches it at 400
iterations. “Fig. Bb” presents accuracy comparisons between
SNN and CSNN models for a single run. The ideal SNN
(red) and CSNN (green) models both quickly converged with
accuracies above 90%. The non-ideality-aware models, MC-
SNN (blue) and MSNN (orange), achieved accuracies above
85%, with MSNN taking longer to learn the convolutional
variant after 10 epochs. To address the high variability of non-
idealities, which were nondeterministic, five networks were

TABLE I
MODEL ACCURACY FOR DIFFERENT SNN CONFIGURATIONS

Memristive non-idealities
79.54 + 3.86%
81.21 £ 3.19%

Model Accuracy
Fully-Connected
Convolutional

Ideal implementations
91.73 £ 2.97%
93.42 £ 1.63%

trained for each configuration. The results are summarised
in Table Under the previous training setup, additional
architectural comparison between standard and spiking CNN’s
are provided in “Fig. @b”, showing non-ideality effects from
memristors have degraded the performance of both implemen-
tations. In summary, when the SNNs are configured with non-
ideality-aware training, their performance degrades to reflect
the physical implementation with memristive silicon oxide.
However, these networks still retain a high degree of accuracy.

C. Limitations and Future Works

Accurately modeling non-idealities for ex-situ training of
memristors is a significant challenge due to the variability
among devices. For example, the device-to-device variabil-
ity of silicon oxide memristors means that the behavior of
any individual device may not be perfectly representative of
others. In real-world scenarios, various non-idealities may be
encountered, and if training only accounts for I-V nonlin-
earities, memristive spiking neural networks (MSNNs) may
still encounter stuck devices when deployed. To improve the
performance of SNNs trained with silicon oxide non-ideality,
it is necessary to include the memristor current transient by
implementing homeostasis properties within artificial synapses
to regulate excessive firing, similar to biological systems.
This empirical model, influenced by the physical model of
the device, requires assessment of the reliability of MSNNs
employing non-ideality-aware training. Additional research
is needed to validate the physical implementations of these
configurations and construct more comprehensive models.

IV. CONCLUSION

The aim of this work is to develop a new training scheme
that accounts for memristive non-ideality in order to accurately



reflect the performance of SNNs. The networks consist of
silicon oxide memristive layer with LIF, and able to achieve
accuracy over 85% for MNIST dataset. The study emphasizes
the importance of accounting for non-ideal device behav-
ior during training, which was previously not explored for
memrisitive silicon oxide devices. Neglecting to do so may
lead to unreliable training performance as an indicator of
network performance during inference. The study shows how
experimental data and training techniques can address I-V non-
linearity, which has not been previously addressed during ex-
situ SNN training. The method presented here highlights the
important first step of better modelling and accounting for
silicon oxide nonidealities. This work therefore provides the
foundation for nonidealities-aware implementations of SNN,
especially using emerging silicon oxide devices.
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