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Abstract—We study constructive interference based block-level
beamforming (CI-BLB) in the downlink of multi-user multiple-
input single-output (MU-MISO) systems. CI-BLB achieves im-
proved performance over the traditional CI-based symbol-level
beamforming (CI-SLB) method, because of its more intelligent
power allocation scheme over the considered block of symbol
slots. In this paper, we design a low-complexity algorithm based
on the alternating direction method of multipliers (ADMM)
framework, which can efficiently solve QP problems. We analyze
the convergence and complexity of the proposed algorithm. Nu-
merical results validate the optimality of the proposed algorithm,
and further show that the proposed algorithm offers a flexible
performance-complexity tradeoff by limiting the maximum num-
ber of iterations, which motivates the use of CI-BLB in practical
wireless systems.

Index Terms—MIMO, constructive interference (CI), block-
level beamforming (BLB), quadratic programming (QP) opti-
mization, alternating direction method of multipliers (ADMM).

I. INTRODUCTION

Beamforming has been widely studied in multiple-input
multiple-output (MIMO) communication systems, which is
able to support data transmission to multiple users simulta-
neously [1]. In the downlink, if the channel state informa-
tion (CSI) is fully known to the base station, dirty paper
coding (DPC) is proved to be capacity-achieving by pre-
subtracting interference before transmission [2], but its pro-
hibitive computational costs make it difficult to implement
in practical systems. Therefore, low-complexity closed-form
linear beamforming schemes, represented by zero-forcing (ZF)
[3] and regularized ZF (RZF) [4], are proposed to reduce the
computational complexity in signal processing. At the same
time, optimization-based beamforming schemes are gaining
more and more attention because they allow beamforming
to better meet various communication constraints and re-
quirements in different scenarios. One popular example is
the downlink signal-to-interference-plus-noise ratio (SINR)
balancing approach, which aims to achieve a desired SINR
for each user under transmit power constraints [5]. Another
popular form is to minimize the transmit power under the
SINR constraint of each user [6]. [7] proves that the SINR
balancing and the power minimization are dual problems to
each other, where an effective iterative algorithm has been
proposed by exploiting such duality to efficiently solve these
two problems.

More recent research has shown that multi-user interference
need not be completely eliminated in beamforming design.
This is because interference can be utilized by interference
exploitation beamforming techniques to benefit symbol de-
tection, thus improving the error-rate performance of MIMO
communication systems. In [8], the concept of ‘constructive
interference’ (CI) is introduced, and CI-based beamforming
has received increasing research attention. The concept of
‘constructive region’ is introduced in [9], which shows that
as long as the interfered signals lie in the constructive region,
the effect of interference is typo. In [10], the exploitation
of CI was extended for the first time from PSK modulation
to QAM modulation, where the CI effect can be exploited
by the outer constellation points of a QAM constellation by
employing the ‘symbol-scaling’ CI metric. Because of the
significant advantages of CI, CI-based symbol-level beam-
forming (CI-SLB) has been applied to intelligent reflecting
surface (IRS)-assisted communication [11], 1-bit precoding
[12], radar-communication coexistence [13] and many other
wireless communication scenarios.

It has to be mentioned that the utilization of CI in the above
schemes is based on symbol-level beamforming, which brings
significant computational burden to the signal processing unit
and requires demanding real-time processing capability. To
alleviate the computational costs, several studies attempt to
reduce the complexity of the CI-SLB optimization problems,
including derivations of the optimal beamforming structure
of CI-SLB with efficient iterative algorithms [14], [15], sub-
optimal solutions [16], [17], and deep learning-based methods
[18], [19]. Despite the above attempts to reduce the computa-
tional costs of solving the CI-SLB optimization problem for
each symbol slot, these approaches still require solving an
optimization problem at the symbol level. In order to further
motivate the realization of CI-based beamforming techniques
in practical communication wireless systems, [20] proposed
CI-based block-level beamforming (CI-BLB) for multi-user
multiple-input single-output (MU-MISO) communication sys-
tem for the first time. Based on Lagrange function and Karush-
Kuhn-Tucker (KKT) condition, the closed-form expression of
CI-BLB optimal beamforming matrix is derived. By further
studying the corresponding duality problem, the original opti-
mization problem is transformed into a quadratic programming
(QP) optimization on simplex.

In this paper, we design a low-complexity solution for the



above CI-BLB based on the alternating direction method of
multipliers (ADMM) framework, which can efficiently solve
large-scale QP problems, thus appealing for application in
solving CI-BLB problems. We analyze the convergence and
complexity of the proposed algorithm. The proposed ADMM
algorithm is able to offer satisfactory results within only
dozens of iterations, while it is much faster than the traditional
interior-point method (IPM) [21]. More importantly, the pro-
posed ADMM algorithm is more time-efficient than quadprog,
which motivates the use of the block-level CI beamforming in
practice.

Notations: Herein, Lowercase, boldface lowercase and bold-
face uppercase letters denote scalars, vectors and matrices,
respectively. R and C denote the set of real numbers and the set
of complex numbers, respectively. Superscripts T denotes the
transpose. The operator ∥ · ∥2 denotes the 2-norm of a vector.
R {·} and I {·} extract the real and imaginary parts of the
argument, respectively. We use ΠΩ to represent the projection
of the argument onto the set Ω. We define j as

√
−1 and IN

as the N ×N identity matrix. Finally, 1 and 0 denote all-one
vector and all-zero vector, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider the generic multi-user multiple-input single-
output (MU-MISO) downlink system, where a base station
(BS) equipped with Nt antennas serves K single-antenna users
simultaneously. For the transmission of a block of symbol
slots, the data symbol vector in the n-th slot is denoted by
sn = [sn1 , s

n
2 , · · · , snK ]

T ∈ CK , which is assumed to be
drawn from a unit-norm M-PSK constellation1. Accordingly,
the received signal for user k in the n-th symbol slot can be
expressed as

ynk = hT
kWsn + znk , (1)

where hk ∈ CNt is the channel between BS and user k,
which is constant within the considered block, and znk ∈ C
is the additive noise of user k in the n-th symbol slot.
W ∈ CNt×K is the beamforming matrix that applies to all
sn in the considered block. n ∈ {n|n ≤ N}, where N is the
length of the considered transmission block.

B. Symbol-Scaling CI Metric

CI can increase the useful signal power and greatly improve
the performance of multi-user transmission. To illustrate the
symbol-scaling CI meric introduced in [22], below we depict
one quarter of an 8PSK constellation in Fig. 1 as an example.
Without loss of generality, we assume that

−→
OA is the nominal

constellation point for user k in the n-th slot, i.e.,
−→
OA = snk . (2)

−−→
OB represents the noiseless received signal with interference,
where based on the geometry we obtain

−−→
OB =

−→
OA+

−−→
AB = hn

kWsn, (3)

1For the extension to QAM modulation, see [20].

where
−−→
AB can be regarded as the interference from other user

streams.

Fig. 1. Geometric diagram of the symbol-scaling CI metric for 8PSK.

Different from the common phase-rotation CI metric which
uses phase relations, the symbol-scaling CI metric decomposes
the signal along the decision boundaries and imposes scaling
constraints on the decomposed components. In Fig. 1,

−→
OA

is decomposed along the two decision boundaries for 8PSK
modulation to obtain

−−→
OD and

−−→
OE:

−→
OA =

−−→
OD +

−−→
OE = snk,right + snk,left. (4)

Following a similar procedure, the received signal
−−→
OB can

also be decomposed along the two decision boundaries into
−−→
OB =

−−→
OF +

−−→
OG = αn

k,rights
n
k,right + αn

k,lefts
n
k,left. (5)

By following the transformation in Section IV-A of [23], which
we omit in this paper due to the limited space and also for
brevity, we can construct a coefficient matrix Mn ∈ R2K×2Nt

and obtain:

αn
E = MnWEs

n
E, (6)

where αn
E ∈ R2K , WE ∈ R2Nt×2K and snE ∈ R2K are defined

as

αn
E =

[
αn
1,right, · · · , αn

K,right, α
n
1,left, · · · , αn

K,left

]T
, (7)

WE =

[
R (W) −I (W)
I (W) R (W)

]
, snE =

[
R (sn)

T
, I (sn)

T
]T

.

(8)

C. Problem Formulation for CI-BLB

Recalling Fig. 1, we can observe that the value of αn
k,right

or αn
k,left represents the effect of inter-user interference, and

a larger value of αn
k,right or αn

k,left means that the symbol
is pushed further away from one of its decision boundary.
Accordingly, we can then construct the CI-BLB optimization
problem that maximizes the minimum value of the entry in



αn
E for all the considered symbol slots within the block, given

by

P0 : max
WE

min
k,n

αn
k

s.t. αn
E = MnWEs

n
E, ∀n ≤ N,

N∑
n=1

∥WEs
n
E∥22 ≤ Np0, (9)

where αn
k represents the k-th entry in αn

E, and p0 represents
the transmit power budget per symbol slot.

Lemma 1: By formulating the dual problem, the original
CI-BLB optimization problem P0 can be transformed into the
following QP optimization:

P1 : min
δE

δTEUδE

s.t. 1TδE − 1 = 0,

δmE ≥ 0, ∀m ∈ {1, 2, · · · , 2NK} , (10)

where the coefficient matrix U can be calculated in advance.
By obtaining the optimal δE through P1, the optimal beam-
forming matrix W can be calculated.

Proof: See Section III of [20].
The analysis in [20] is conducted for the case of N ≥ K,

while the conclusions of the above lemma is also applicable for
the case of N < K, which has been shown in [24]. Therefore,
an efficient algorithm for P1 is the key to CI-BLB.

III. THE PROPOSED ADMM ALGORITHM

A. The Proposed Algorithm

Proposition 1: P1 is equivalent to the following optimiza-
tion problem:

P2 : min
δE

δTEUδE

s.t. 1TδE − 1 ≥ 0,

δmE ≥ 0, ∀m ∈ {1, 2, · · · , 2NK} . (11)

Proof: Assume that δ∗E is an optimal solution to P2, we
have

1Tδ∗E − 1 > 0, (δ∗E)
m ≥ 0, ∀m ∈ {1, 2, · · · , 2NK} . (12)

Accordingly δ∗∗E = κδ∗E, such that

1Tδ∗∗E − 1 = 0, (δ∗∗E )
m ≥ 0, ∀m ∈ {1, 2, · · · , 2NK} ,

(13)

where κ = 1
1Tδ∗

E
∈ (0, 1). We then have

(δ∗∗E )
T
Uδ∗∗E = κ2 (δ∗E)

T
Uδ∗E < (δ∗E)

T
Uδ∗E, (14)

which contradicts the assumption that δ∗E is an optimal solu-
tion to P2. Therefore, the optimal solution to P2 must satisfy
1TδE − 1 = 0, which means that the optimal solution to P2

is the optimal solution to P1, i.e., P2 is equivalent to P1.
Based on the above proposition, to apply the ADMM

framework, we introduce a new variable ω̂ and define a

set Ω̂ = {ω̂|ω̂i ≥ 0, ∀i ∈ {1, 2, . . . , 2NK + 1}}. P2 is then
equivalent to:

P3 : min
δE

δTEUδE

s.t.
[

1T

I2NK×2NK

]
δE =

[
1
0

]
+ ω̂,

ω̂ ∈ Ω̂. (15)

By defining an indicator function for ω̂:

IΩ̂ (ω̂) =

{
0, if ω̂ ∈ Ω̂,

∞, otherwise,
(16)

and

Γ =

[
1T

I2NK

]
∈ C(2NK+1)×(2NK), c =

[
1
0

]
∈ C(2NK+1)×1,

(17)

P3 can be written as

P4 : min
δE

δTEUδE + IΩ̂ (ω̂)

s.t. ΓδE = c+ ω̂. (18)

The corresponding augmented Lagrangian function for P4 is
expressed as

L̂ρ

(
δE, ω̂, λ̂

)
= δTEUδE + IΩ̂ (ω̂) + λ̂

T
(−ΓδE + c+ ω̂)

+
ρ

2
∥−ΓδE + c+ ω̂∥22

=δTEUδE + IΩ̂ (ω̂) +
ρ

2

∥∥∥∥∥−ΓδE + c+ ω̂ +
λ̂

ρ

∥∥∥∥∥
2

2

−

∥∥∥λ̂∥∥∥2
2

2ρ
,

(19)

where λ ∈ C(2NK+1)×1 is the dual vector and ρ > 0 is the
penalty parameter. The ADMM framework for the update of
δE, ω̂, and λ̂ can be written as

δk+1
E = arg min

δE

L̂ρ

(
δE, ω̂

k, λ̂
k
)
, (20)

ω̂k+1 = arg min
ω

L̂ρ

(
δk+1
E , ω̂, λ̂

k
)
, (21)

λ̂
k+1

= λ̂
k
+ ρ

(
−Γδk+1

E + c+ ω̂k+1
)
. (22)

In the δE-update, the optimization problem for δE can be
written as

min
δE

δTEUδE +
ρ

2

∥∥∥∥∥−ΓδE + c+ ω̂k +
λ̂
k

ρ

∥∥∥∥∥
2

2

. (23)

For this unconstrained convex optimization problem, the opti-
mal point δt+1

E should satisfy the condition that the gradient
is zero, which leads to(

2U+ ρΓTΓ
)
δE = ρΓT

(
c+ ŵk +

λ̂
k

ρ

)
. (24)



Then we can get a closed-form solution for δk+1
E

δk+1
E =

(
2U+ ρΓTΓ

)−1

ρΓT

(
c+ ŵk +

λ̂
k

ρ

)
. (25)

In the ω-update, the optimization problem for ω can be
written as

min
ω

IΩ (ω) +
ρ

2

∥∥∥∥∥−Γδk+1
E + c+ ω̂ +

λ̂
k

ρ

∥∥∥∥∥
2

2

. (26)

Then ω needs to satisfy

−ρ

(
−Γδk+1

E + c+ ω̂ +
λ̂
k

ρ

)
∈ ∂IΩ (ω) , (27)

and we can obtain

ω̂k+1 = max

{
0,Γδk+1

E − c− λ̂
k

ρ

}
. (28)

The corresponding algorithm is summarized in Algorithm 1.

Algorithm 1 The proposed ADMM algorithm
1: Input: s, H
2: Output: δE
3: Initial: δ1E = ω̂1 = λ̂

1
= 0, U, c, Γ, ρ, maximum

number of iterations Kmax.
4: for k = 1, · · ·Kmax do
5: Compute δk+1

E by (25);
6: Compute ω̂k+1 by (28);
7: Update λ̂

k+1
by (22);

8: end for
9: Output: δE = δKmax+1

E .

B. Convergence Analysis
First, the minimizer ω̂k+1 satisfies

L̂ρ

(
δkE, ω̂

k+1, λ̂
k
)
≤ L̂ρ

(
δkE, ω̂

k, λ̂
k
)
. (29)

It is easy to see that L̂ρ

(
δE, ω̂

k+1, λ̂
k
)

is strongly convex
with respect to δE. Because of the property of strongly convex
function:(

∂δE,1L̂ρ

(
δE,1, ω̂

k+1, λ̂
k
)
− ∂δE,2L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
))T

·
(
δE,1 − δ̂E,2

)
≥ m

∥∥∥δE,1 − δ̂E,2

∥∥∥2
2
, (30)

where m is the strongly convex parameter of
L̂ρ

(
δE, ω̂

k+1, λ̂
k
)

, we can obtain that

∂δE,1
L̂ρ

(
δE,1, ω̂

k+1, λ̂
k
)
− ∂δE,2

L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
)

=
(
2U+ ρΓTΓ

)
(δE,1 − δE,2) . (31)

Since

ρΓTΓ = ρ
[
1 I2NK×2NK

] [ 1T

I2NK×2NK

]
= ρ1 · 1T + ρI, (32)

where ρ1 ·1T is a semi-positive definite matrix and U is also
a semi-positive definite matrix, we can obtain(

∂δE,1
L̂ρ

(
δE,1, ω̂

k+1, λ̂
k
)
− ∂δE,2

L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
))T

· (δE,1 − δE,2)

= (δE,1 − δE,2)
T
(
2U+ ρΓTΓ

)
(δE,1 − δE,2)

= (δE,1 − δE,2)
T (

2U+ ρ1 · 1T + ρI
)
(δE,1 − δE,2)

≥ ρ ∥δE,1 − δE,2∥22 . (33)

Thus, m = ρ and L̂ρ

(
δE, ω̂

k+1, λ̂
k
)

is ρ-strongly convex
with respect to δE.

Similarly, by definition of strongly convex function:

L̂ρ

(
δE,1, ω̂

k+1, λ̂
k
)
≥ L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
)

+
(
∂δE,2

L̂ρ

(
δE,2, ω̂

k+1, λ̂
k
))T

(δE,1 − δE,2)

+
ρ

2
∥δE,1 − δE,2∥22 . (34)

The minimizer δk+1
E satisfies

∂δk+1
E

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k
)
= 0. (35)

Thus, for any δkE, the minimizer δk+1
E also satisfies

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k
)

≤ L̂ρ

(
δkE, ω̂

k+1, λ̂
k
)
− ρ

2

∥∥∥δk+1
E − δkE

∥∥∥2
2
. (36)

Moreover, from the definition of L̂ρ and with the use of
(22), we have

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k+1
)
− L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k
)

=
1

ρ

∥∥∥λ̂k+1
− λ̂

k
∥∥∥2
2
. (37)

Then, summing (29), (36) and (37) yields

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k+1
)
− L̂ρ

(
δkE, ω̂

k, λ̂
k
)

≤ 1

ρ

∥∥∥λ̂k+1
− λ̂

k
∥∥∥2
2
− ρ

2

∥∥∥δk+1
E − δkE

∥∥∥2
2
. (38)

From (24), the minimizer δk+1
E satisfies(

2U+ ρΓTΓ
)
δk+1
E − ρΓT

(
c+ ŵk+1 +

λ̂
k

ρ

)
= 0. (39)

Substituting (22) into (39) we have

2Uδk+1
E − ΓTλ̂

k+1
= 0, (40)

which means ∥∥∥λ̂k+1
− λ̂

k
∥∥∥2
2

=
∥∥∥2U(δk+1

E − δkE

)∥∥∥2
2

≤ 4φ2
∥∥∥δk+1

E − δkE

∥∥∥2
2
, (41)



where φ = eigmax (U).
Substituting (41) into (38) further results in

L̂ρ

(
δk+1
E , ω̂k+1, λ̂

k+1
)

≤ L̂ρ

(
δkE, ω̂

k, λ̂
k
)
−
(
ρ

2
− 4φ2

ρ

)∥∥∥δk+1
E − δkE

∥∥∥2
2
, (42)

which means if the condition

ρ > 2
√
2φ (43)

holds, L̂ρ is monotonously decreasing in the iteration proce-
dure. This completes the proof for convergence.

C. Complexity Analysis

We analyze the computational complexity of the proposed
algorithm in terms of the number of real multiplication oper-
ations.

Considering the special structure of Γ shown in (17)
and ΓTΓ shown in (32), the computational complex-
ity can be greatly reduced. In line 5 of Algorithm 1,

the computation of
(
2U+ ΓTΓ

)−1

requires 1
3 (2NK)

3

real multiplications, which involve the cost of computing
the Cholesky factorization. The computation of the ma-

trix product of
(
2U+ ΓTΓ

)−1

ΓT
(
c+ ŵk + λ̂

k
)

requires
2NK (2NK + 1) real multiplications. The total cost of
δE-update is

(
1
3 (2NK)

3
+ 2NK (2NK + 1)

)
real multi-

plications. The cost of projection ω̂-update in line 6 is
negligible. And the λ̂-update in line 7 does not require
any real multiplication. Therefore, Algorithm 1 requires(

1
3 (2NK)

3
+ 2NK (2NK + 1)

)
real multiplications when

k = 1.
Given that

(
2U+ ΓTΓ

)−1

does not change in each it-
eration, we can cache the result to perform the subse-
quent iterations efficiently. Accordingly, Algorithm 1 requires
2NK (2NK + 1) real multiplications for each iteration when
k ≥ 2. The total number of real multiplications for Algorithm
1 is

[
1
3 (2NK)

3
+ T · 2NK (2NK + 1)

]
, where T denotes

the number of iterations.

IV. SIMULATION RESULTS

We assume standard Rayleigh fading channel, random com-
plex Gaussian distributed noise. The signal transmitting power
is p0 = 1, and the SNR is defined as 1

σ2 , where σ2 is the
noise power. The execution time results are obtained from a
Windows 11 Desktop with i9-10900 and 16GB RAM.

For clarity, the following abbreviations are used throughout
this section:

1) ZF: Traditional ZF beamforming with block-level power
normalization;

2) RZF: Traditional ZF beamforming with block-level
power normalization;

3) CI-SLB-QP: Traditional CI-SLB solved by quadprog in
matlab, P8 in [14];

4) CI-BLB-IPM: CI-BLB solved by IPM, P1;

5) CI-BLB-QP: CI-BLB solved by quadprog in matlab, P1;
6) CI-BLB-ADMM(Kmax): CI-BLB solved by the pro-

posed ADMM algorithm based on P2 with the maximum
number of iterations Kmax.
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Fig. 2. Convergence behavior of the proposed ADMM algorithm, Nt = K =
10, N = 8, 8PSK. (a) Objective value. (b) Primal residual and dual residual.

For general ADMM iterative convergence, it is necessary to
analyze the objective value, primal residual and dual residual
[25]. We take ρ = 1 and obtained Fig. 2. In Fig. 2, (a) and (b)
show the change of objective value and the change of residual
with the number of iterations, respectively.
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Fig. 3. SER performance of different schemes, Nt = K = 10, 8PSK.

Fig. 3 depicts the SER of the proposed CI-BLB scheme
when 8PSK modulation is employed in a 10× 10 MU-MISO
system, where the length of the block is N = 8. As can be
observed, both CI-based beamforming achieve an improved
performance over ZF beamforming. When the length of the
block is N = 8, we observe that CI-BLB offers noticeable
performance gains over traditional CI-SLB, owing to the
relaxed power constraint over the entire block. We observe



that a flexible trade-off between SER performance and com-
putational complexity can be achieved by selecting different
maximum iterations for the proposed ADMM algorithm.
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Fig. 4. SER performance of different schemes, Nt = K = 10, 8PSK, 30dB.

In Fig. 4 we compare the execution time required for each
scheme as an indication to show the potential complexity
benefits of the proposed ADMM algorithm. It is observed that
the proposed ADMM algorithm is much faster than traditional
IPM. More importantly, our proposed ADMM algorithm is
more time-efficient than quadprog, which motivates the use
of the block-level CI beamforming in practice.

V. CONCLUSION

In this paper, we propose a new ADMM algorithm for
CI-BLB in a MU-MISO system. All subproblems have sim-
ple closed-form solutions, and convergence of the iterative
ADMM algorithm has been proved. The proposed algo-
rithm is shown to achieve the optimal performance with re-
duced computational costs, leading to favourable performance-
complexity tradeoffs, which enables the use of block-level CI
beamforming in practical wireless systems.
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