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Abstract—In this study, we explore integrated sensing and
communication (ISAC) networks to strike a more effective
balance between sensing and communication (S&C) performance
at the network scale. We leverage stochastic geometry to analyze
the S&C performance, shedding light on critical cooperative
dependencies of ISAC networks. According to the derived expres-
sions of network performance, we optimize the user/target loads
and the cooperative base station cluster sizes for S&C to achieve
a flexible trade-off between network-scale S&C performance. It is
observed that the optimal strategy emphasizes the full utilization
of spatial resources to enhance multiplexing and diversity gain
when maximizing communication ASE. In contrast, for sensing
objectives, parts of spatial resources are allocated to cancel inter-
cell sensing interference to maximize sensing ASE. Simulation
results validate that the proposed ISAC scheme realizes a
remarkable enhancement in overall S&C network performance.

Index Terms—Integrated sensing and communication, multi-
cell networks, stochastic geometry, interference nulling.

I. INTRODUCTION

Driven by the challenges of spectrum scarcity and the
intricate interference between separate wireless sensing and
wireless communication systems [1], integrated sensing and
communication (ISAC) technique has emerged as a promising
solution to provide both sensing and communication (S&C)
services in a more spectrum/cost/energy efficient way [2].
However, the existing ISAC works mainly study the perfor-
mance analysis and optimization methods at the link or system
levels, such as waveform optimization and resource allocation
for one or a limited number of base stations (BSs) [3].

For large-scale dense ISAC networks, inter-cell interfer-
ence stands out as a pivotal bottleneck, imposing substantial
constraints on the network’s overall performance. Fortunately,
cooperative ISAC strategies present promising solutions for
reducing inter-cell interference, such as coordinated beam-
forming and collaborative resource allocation design [4].
Furthermore, the network-level ISAC also introduces a new
degrees of freedom (DoF) for balancing S&C performance,
e.g., the optimization of cooperative BS cluster sizes and the
management of average user/target load. However, achieving
a comprehensive quantitative analysis and optimization of
the cooperative ISAC network performance for remains a
formidable challenge.

Stochastic geometry (SG) is a powerful mathematical tool
widely used to analyze multi-cell wireless communication

networks [5]. Beyond its utility in communication networks,
SG can also be applied in performance analysis for target
sensing within vehicular radar networks and wireless sensor
networks [6]. More recently, SG techniques have been used to
analyze the ISAC network’s performance. For instance, in [7],
a mathematical framework is developed to characterize S&C
coverage probability and ergodic capacity in a mmWave ISAC
network. However, it is important to note that these ISAC
studies typically provide services for only one target and one
user per cell within a single frame, failing to fully exploit
the multiplexing potential of spatial resources. Additionally,
these studies seldom consider BS cooperation in mitigating
inter-cell interference to enhance ISAC network performance.

Building upon the above discussions, we propose a co-
operative ISAC scheme and derive a tractable expression
for area spectral efficiency (ASE), thereby unveiling critical
cooperative dependencies on ISAC networks. Then, we maxi-
mize the S&C performance boundary by jointly optimizing
cooperative BS cluster sizes for S&C and the user/target
loads. Remarkably, when striving for communication ASE
maximization, the optimal trade-off leans toward maximiz-
ing spatial resource utilization for multiplexing and diversity
gains, without employing interference nulling. In contrast, for
sensing objectives, spatial resources are partially allocated
for interference elimination to maximize sensing ASE. The
primary contributions of this paper are summarized as follows:

• First, we propose a collaborative ISAC network that lever-
ages interference nulling through coordinated beamforming
techniques. We verify that interference nulling significantly
enhances both average S&C communication performance.

• Second, we demonstrate that the distribution of sensing
interference distances exhibits a hole region. To handle this
issue, we propose a geometry-based approach to accurately
derive a tractable expression for radar information rate.

• Finally, the performance boundary of the proposed ISAC
networks is compared with an inner bound to verify that
coordinated beamforming can achieve larger cooperation
gain and a more flexible tradeoff between S&C compared
to the benchmark scheme.

Notation: B(a, b, c) =
∫ a

0
t(b − 1)(1 − t)c−1dt is the

incomplete Beta function. O(0, r) denotes the circle region
with center at the origin and radius r.



II. SYSTEM MODEL

A. Cooperative ISAC Networks

In this work, we present a coordinated beamforming strat-
egy to achieve interference nullification within ISAC net-
works. Each BS is equipped with Mt transmit antennas
and Mr received antennas, and the BS locations adhere to
a homogeneous Poisson point process (PPP), denoted by
Φb = {xi ∈ R2,∀i ∈ N+}, where xi is the position of BS
i. Similarly, Φu and Φt are the point processes for the two-
dimensional (2D) locations of single-antenna communication
users and targets within ISAC networks. We assume that Φb,
Φu, and Φt are mutually independent PPPs characterized by
intensities λb, λu, and λs, where λu, λs ≫ λb [8].

By considering one time-frequency resource block, each
BS sends independent data to K users while simultaneously
sensing J targets with unified ISAC signals [2]. As shown
in Fig. 1, to independently mitigate S&C interference, we
employ a dynamic clustering approach to group L BSs for
communication interference nulling and Q BSs for sensing
interference nulling. To fully leverage the integration benefits
at the network level, we further jointly optimize the number
of users and targets to be served, as well as the size of
cooperative BS cluster sizes for S&C according to our derived
tractable expressions for S&C performance metrics.

B. Communication model

Following a general and widely accepted framework in
stochastic geometry, we assume the typical user as user k
located at the origin. We analyze the performance of this
typical user to represent the average performance of all users
[9]. This typical user is served by its closest BS (referred to as
the serving BS), identified as index 1. The large-scale pathloss
fading from the user to the serving BS is modeled as ∥x1∥−α,
where x1 represents the location of the serving BS and α ≥ 2
denotes the pathloss exponent. As a result, the received signal
at the typical user k can be given by

yc,k = ∥x1∥−
α
2 hH

k,1F1s1︸ ︷︷ ︸
intended signal

+
∑L

i=2
∥xi∥−

α
2 hH

k,iFisi︸ ︷︷ ︸
intra-cluster interference

+
∑∞

i=L+1
∥xi∥−

α
2 hH

k,iFisi︸ ︷︷ ︸
inter-cluster interference

+ nk,c︸︷︷︸
noise

,
(1)

where hH
k,i ∼ CN (0, IMt

) is the channel vector from BS at xi

to user k, Fi =
[
f i1, . . . , f

i
K

]
∈ CMt×K denotes the precoding

matrix of the corresponding BS, and si =
[
si1, . . . , s

i
K

]T
is the

information symbol vector transmitted by this BS. We assume
E
[
sis

H
i

]
= Pt

K IK due to equal power allocation across the
BSs, where Pt is the transmission power of BSs.

Considering the substantial interference in dense cell sce-
narios, this work focuses on an interference-limited network
by ignoring the noise [10]. We employ zero-forcing (ZF)
beamforming to nullify interference within the cooperative
S&C clusters and optimize the desired signal strength for all

Target
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Sensing interference Communication interference
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Serving BS

Sensing interference nulling Communication interference nulling

Cooperative sensing cluster Cooperative communication cluster

Fig. 1. Illustration of cooperative ISAC networks with separate interference
nulling for S&C.

K users in the cluster. Then, the signal-to-interference ratio
(SIR) is given as follows:

SIRc =
gkk,1∥x1∥−α∑∞

i=L+1 gk,i∥xi∥−α , (2)

where gkk,1 =
∣∣∣hH

k,1f
1
k

∣∣∣2 represents the effective channel gain

of desired signals,
∑∞

i=L+1 gk,i ∥xi∥−α denotes the remaining

inter-cluster interference, and gk,i =
∑K

j=1

∣∣∣hH
k,if

i
j

∣∣∣2. In this
study, we employ ASE as the metric to evaluate network-level
communication performance. The mathematical expression for
communication ASE is then provided as follows:

TASE
c = λbKRc, (3)

where Rc = E[log(1+SIRc)] is the average data rate of users.

C. Sensing Model

Similarly, we identify the typical target as target j located
at the origin, which is sensed by its nearest BS, denoted by
x1. For ease notation, we use the same BS index notation to
represent the serving BS’s location of S&C. The large-scale
pathloss fading from the target to the serving BS is modeled as
|x1|−2β , where β is the pathloss exponent. In this work, we
employ the maximum-ratio combining (MRC) receive filter
because it strikes a practical balance between performance
and tractability.

To achieve interference nullification in a resource-efficient
manner, the transmit beamforming at BS q within the coopera-
tive cluster is designed by considering the interference channel
from BS q to the serving BS (referred to as GH

q,1) together
with the receive filter vH

j (θj) = [1, · · · , e−jπ(Mr−1) cos(θj)]T ,
where θj denotes the direction of target j. This involves the
equivalent channel vH

j (θj)G
H
q,1. To streamline the notation,

let hH
q,1(θj) = vH

j (θj)G
H
q,1. Following the receive filtering

process for target j, the resulting received signal at the serving



BS is expressed as

ys,j =vH
j (θj) ∥x1∥−β

b(θj)a
H(θj)︸ ︷︷ ︸

target round-trip channel

F1s1(t− 2τj,1)

+
∑Q

q=2
∥xq − x1∥−

α
2 hH

q,1Fqsq(t− τq,1)︸ ︷︷ ︸
intra-cluster interference

+
∑∞

q=Q+1
∥xq − x1∥−

α
2 hH

q,1Fqsq(t− τq,1)︸ ︷︷ ︸
inter-cluster interference

+ vH
j H1F1s1(t− τ0)︸ ︷︷ ︸

self-interference

+vH
j ns︸ ︷︷ ︸
noise

, (4)

where aH(θj) = [1, · · · , ejπ(Mt−1) cos(θj)]T , b(θj) =
[1, · · · , ejπ(Mr−1) cos(θj)], ∥xq − x1∥ represents the distance
from the interfering BSs at xq to the serving BS, and H1

denotes the self-interference channel at the serving BS, which
is assumed to be cancelled. In (4), τj,1, τq,1, and τ0 represent
the transmission delay of target-serving BS link, BS q-serving
BS link, and serving interference link, respectively.

To null the interference to the serving BS for sensing target
j, the design of transmit beamforming at BS q necessitates
the avoidance of interference towards the equivalent channel
hH
q,1(θj). It is assumed that the receive filtering achieves a

performance enhancement of Mr through perfect alignment
with the target channel. Consequently, with a matched filter
applied over the symbol domain, the signal-to-interference
ratio (SIR) of echo signals reflected from target j can be
expressed as

SIRs = ξ∆TMr

ht
j,1∥x1∥−2β∑∞

q=Q+1 hq,1∥xq − x1∥−α , (5)

where ht
j,1 =

∑K
k=1

∣∣aH(θj)f
1
k

∣∣2 represents the effective
signal channel gain from the serving BS towards the target’s
direction,

∑∞
q=Q+1 hq,1∥xq − x1∥−α denotes the inter-cluster

interference, and hq,1 =
∑K

k=1

∣∣hH
q,1(θj)f

q
k

∣∣2. In (5), ∆T
signifies the gain achieved by the matching filter, while ξ
corresponds to the radar cross-section (RCS) of the target,
typically estimated based on prior information. For conven-
tional measurement algorithms such as MUSIC and Capon
[11], the maximum number of distinguishable targets, denoted
as Jmax, is constrained by the number of receive antennas and
the processing time demands.

In the literature, there is an implicit understanding that a
higher information rate between the target impulse response
and the measurement corresponds to improved radar capability
for accurately estimating target parameters [12]. Hence, the
radar information rate serves as a useful metric for evaluating
the accuracy of system parameter estimation. As a result, we
introduce the concept of sensing ASE to comprehensively
characterize the network-level performance of ISAC. The
mathematical expression for sensing ASE is given by

TASE
s = λbJRs, (6)

where Rs = E[log(1 + SIRs)] is the target’ average radar
information rate.

III. COMMUNICATION PERFORMANCE ANALYSIS

In this section, our objective is to analytically describe the
communication rate using SG tools. As outlined in Lemma 1
of [13], it is established that for uncorrelated variables X and
Y , the following equation holds

E

[
log

(
1 +

X

Y

)]
=

∫ ∞

0

1

z

(
1− E

[
e−z[X]

])
E
[
e−z[Y ]

]
dz.

(7)

Then, with a given distance r from the typical user to the
serving BS, the conditional expectation can be expressed as

E
[
log (1 + SIRc)

∣∣r] = ∫ ∞

0

1− E
[
e−zgk

k,1

]
z

E
[
e−zIC

]
dz,

(8)
where IC =

∑∞
i=L+1 gk,i∥xi∥−α

rα. As define in (2),
gkk,1 is the effective desired signal channel gain, gkk,1 ∼
Γ (Mt −KL− J(Q− 1) + 1, 1) [14], and gk,i ∼ Γ (K, 1).
Based on the above discussion, the useful signal power can
be expressed as

E
[
e−zgk

k,1

]
≃
∫ ∞

0

e−zxxMt−KL−J(Q−1)ex

Γ (Mt −KL− J(Q− 1) + 1)
dx

= (1 + z)
−(Mt−KL−J(Q−1)+1)

.

(9)

Then, the original expression for Rc is derived in Theorem 1.
Theorem 1: The communication performance can be given

by

Rc =

∫ ∞

0

1− (1 + z)
−(Mt−LK−J(Q−1)+1)

z∫ 1

0

2 (L− 1) ηL
(
1− η2L

)L−2

H(z,K, α, ηL) + 1
dηLdz,

(10)

where H(z,K, α, ηL) = Kz
2
αB

(
z

z+η−α
L

, 1− 2
α ,K + 2

α

)
+

1
η2
L

(
1

(1+zηα
L)

K − 1

)
.

Proof: Please refer to Appendix A in [15]. ■
Based on (10), it’s evident that the average data rate remains

unaffected by the BS density λb, i.e., the communication ASE
(TASE

c ) increases linearly with the BS density. Furthermore,
the communication performance decreases monotonically as
the value of J(Q− 1) increases.

IV. SENSING PERFORMANCE ANALYSIS

First, it can be readily proved that the effective signal
channel gain at the target’s direction and sensing interference
channel gain between BSs can be approximated as gamma
random variables, i.e., ht

j,1 and hi,1 ∼ Γ(K, 1). Then, under a
given distance R from the serving BS to the typical target, we
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Fig. 2. Illustration of sensing interference hole.

can derive the conditional radar information rate expectation
as follows:

Rs=E

[
log

(
1 +

ξ∆TMrh
t
j,1∑∞

q=Q+1 hq,1∥xq − x1∥−α
R2β

)∣∣∣∣ ∥x1∥=R

]

=

∫ ∞

0

1− E
[
e−zξ∆TMrh

t
j,1

]
z

E
[
e−zIS

]
dz,

(11)
where IS =

∑∞
q=Q+1 hq,1∥xq − x1∥−α

R2β . According to the
analysis of the distribution of effective signals and interference
signals, we have E

[
e−zξ∆TMrh

t
j,1

]
= (1 + ξ∆TMrz)

−K .
Obtaining the radar information rate expression is challenging
because of the unique probability density function (PDF) that
characterizes the distance between interfering BSs and the
serving BS. Specifically, when considering that the typical
target is sensed by its closest BS, i.e., the serving BS, it be-
comes impossible to find another BS within the circular region
defined by the target as its center and a radius equivalent to the
distance to the serving BS. This phenomenon is illustrated by
the gray area in Fig. 2, which is referred to as the interference
hole in the following discussion.

To address the aforementioned challenge, we model the
precise PDF related to the distance of interfering BSs from a
geometric perspective as follows.

Proposition 1: When Q = 1, the average radar information
rate Rs can be expressed as

Rs =

∫ ∞

0

1− (1 + ξ∆TMrz)
−K

z

∫ ∞

0

LIS(z)f(R)dRdz,

(12)
where f(R) = 2πλbRe−πλbR

2

and LIS(z) =

exp

(
− R

(
Kz

2
β

(
R

πλb

) 2α
β −1

B
(
1, 1− 2

β ,K + 2
β

)
+ 1 −

∫ 2

0
2
π arccos t

2

(
1−

(
1+z

(
R

πλb

)α−β/2

t−β

)−K)
tdt

))
.

Proof: Please refer to Appendix B in [15]. ■
Based on Proposition 1, BS density generally affects the

average sensing performance, primarily stemming from vari-
ations in pathloss coefficients between effective signals and

interference. When α = 2β, we have

TASE
s = λbJ

∫ ∞

0

1− (1 + ξ∆TMrz)
−K

zI(z,K, α)
dz, (13)

where I(z,K, α) = Kz
1
αB

(
1, 1− 1

α ,K + 1
α

)
−∫ 2

0
2
π arccos

(
t
2

) (
1− 1

(1+zt−2α)K

)
tdt + 1. In this case,

the sensing ASE TASE
s increases linearly with the BS

density.
Nonetheless, when Q ≥ 2, deriving a tractable expression

for the radar information rate is challenging due to the
complicated form of the distance PDF of interfering BSs. To
tackle this issue, we opt for an approximation approach to
obtain a more tractable expression, as presented in Theorem
2.

Theorem 2: When Q ≥ 2, the sensing ASE can be given
by

TASE
s =

∫ ∞

0

1− (1 + ξ∆TMrz)
−K

z
ĨSdz, (14)

where ĨS=
∫∞
0

∫∞
0

exp

(
−πλb

(
r2Q

((
1+zR2αr−β

Q

)−K

−1

)
+Kz

2
β R

4α
β B

(
zR2αr−β

Q

zR2αr−β
Q +1

, 1− 2
β ,K+ 2

β

)))
frq (r) fR(r)dRdrq .

Proof: Please refer to Appendix C in [15]. ■

V. ISAC NETWORK PERFORMANCE OPTIMIZATION

In this section, our focus is on optimizing cooperative ISAC
networks to strike an effective balance between S&C. Building
upon the results presented in Sections III and IV, it is evident
that the ASE for both S&C depends on the numbers of served
targets J and users K, as well as the sizes of the cooperative
BS clusters for S&C, i.e., Q and J . Without loss of generality,
we define the performance region for C-S networks as follows:

Cc−s(K,L, J,Q) ≜
{
(r̂c, r̂s) : r̂c ≤ TASE

c , r̂s ≤ TASE
s ,

KL+ J(Q− 1) + 1 ≤ Mt, J ≤ Jmax

}
,

(15)
where (r̂c, r̂s) represents a achievable S&C performance pair.
Additionally, an inner boundary for the Communication-
Sensing (C-S) performance region depicted in Fig. 7 can be
achieved by employing a simple time-sharing strategy based
on the two corner points, namely, (r̂c, rmax

s ) and (rmax
c , r̂s).

To achieve optimal communication performance at corner
point (rmax

c , r̂s), it is essential to set Q to 1. For realizing
optimal sensing ASE at another corner point (r̂c, rmax

s ), the
optimal values for J∗ and Q∗ can be determined through a
2D search while keeping L fixed at 1. Exploiting the observed
monotonic trends in sensing and communication performance
with respect to J(Q − 1), we can establish the boundary of
the C-S region using a binary search over J(Q−1). For each
specified J(Q − 1), the optimal values for TASE

c and TASE
s

can be respectively determined through a 2D search.

VI. SIMULATIONS AND RESULTS

Using numerical simulations, the fundamental insights of
ISAC networks and the accuracy of the derived tractable



Mt = 20

Mt = 10

Network ASE improvement

Fig. 3. Communication ASE TASE
c and S&C ASE TASE

sum with respect to
K.

Fig. 4. Optimal cooperative cluster size L of the maximized communication
ASE.

expressions are analyzed by comparing them with Monte
Carlo simulation results. The system parameters are as fol-
lows: Transmit antenna number Mt = 20, receive antenna
number Mr = 10, transmit power Pt = 1W at each BS,
the RCS ξ = 0.1, matching filter gain ∆T = 1, BS density
λb = 1/km2, Jmax = 10, pathloss coefficients α = 4, and
β = 2.

In Fig. 3, the tractable expression derived from Theorems
1 provides an exceptionally precise approximation that is
consistent with actual results across all user number cases,
with L = 1. The ASE of the ISAC networks, denoted as
TASE
sum = TASE

c + TASE
s , significantly surpasses the commu-

nication ASE TASE
c . The enhancement in spectrum efficiency

can be attributed to the integration of sensing data analysis
into traditional communication networks. Moreover, when
maximizing the communication ASE, it becomes apparent
that the optimal ratio between the number of users and the
number of BS antennas is approximately 60%. To elucidate the

Mt = 10

Mt = 40

Network ASE improvement

Fig. 5. Sensing ASE TASE
s and S&C ASE TASE

sum comparisons versus
cooperative cluster size Q.

optimal spatial resource allocation for communication ASE
maximization, we compare TASE

c across various values of L
and K in Fig. 4. Notably, it is observed that at the optimal
communication ASE, the ideal configuration is K = 12 and
L = 1. This implies that interference nulling is not nec-
essary for communication ASE maximization. The rationale
behind this is that dedicating more spatial DoF to interference
suppression unavoidably leads to a reduction in multiplexing
and diversity gains, ultimately resulting in an overall network
performance decline.

In Fig. 5, we validate the accuracy of the derived expression
for sensing ASE (TASE

s ) with K = 1 and L = 1. It is observed
that the sensing ASE initially exhibits an upward trend,
followed by a subsequent decline as Q increases. To maximize
the sensing ASE, it is essential to acknowledge that though the
sensed targets J may decrease, interference nulling for sensing
with a proper cooperative cluster size can effectively improve
the sensing ASE due to severe inter-cell sensing interference.
This enhancement is expected because interference does not
suffer from the round-trip pathloss as echo signals, and the
distance from interfering BSs to the target might be closer
than that from the target to the serving BS. Notably, when
Mr = 40, our proposed cooperative scheme can achieve up to
double the ASE compared to scenarios without interference
nulling (Q = 1). This increase is attributed to the greater
number of DoF available for interference nulling with a larger
transmit antenna number. It is important to emphasize that the
optimal total ASE performance does not necessarily increase
with an increasing value of Q especially when the number
of transmit antennas is relatively small. This is primarily
because as Q increases, the communication ASE (TASE

c )
experiences a substantial decline, which may not be offset by
the performance gains in TASE

s . Furthermore, as J(Q − 1)
must be an integer, increasing the cooperative cluster size
may necessitate an appropriate reduction in J to meet the
spatial resource’s DoF constraints, leading to the fluctuation



Mt = 5 Mt = 10 Mt = 20

Fig. 6. Average user/target’s spectral efficiency tradeoff between S&C.

of sensing ASE.
The tradeoff profile between the average data rate Rc

and the average radar information rate Rs is presented in
Fig. 6, with Jmax = 5. The performance boundaries for S&C
expand significantly with an increasing number of transmit
antennas. Notably, in Fig. 6, it becomes evident that the
(Rc, Rs) region for the optimal cooperative scheme surpasses
the corresponding region for the time-sharing scheme as the
number of transmit antennas increases. Expanding on this
comparison from individual rates to network ASE, Fig. 7
shows the effectiveness of the optimal cooperative strategy
in enhancing network ASE performance. More specifically,
the proposed cooperative scheme can enhance communication
performance by up to 48% and 33% when compared to the
time-sharing scheme for scenarios with Mt = 40 and Mt =
30, respectively. Additionally, similar to the average S&C
performance illustrated in Fig. 6, the C-S ASE region for the
proposed cooperative ISAC scheme undergoes a substantial
expansion compared to the time-sharing scheme as the number
of transmit antennas increases.

VII. CONCLUSIONS

In this paper, we introduced a novel cooperative scheme for
ISAC networks with the coordinated beamforming technique.
Leveraging SG tools, we derived a tractable expression of the
S&C ASE performance. Additionally, we tackle the profile
optimization problem to enhance the performance of ISAC
networks. By comparing its effectiveness against the time-
sharing scheme, it is verified that the optimal allocation of
spatial resources in ISAC networks significantly enhances
the cooperative gain at the network level. The simulation
results demonstrate the benefits of the proposed cooperative
ISAC scheme and provide insightful guidelines for designing
practical large-scale ISAC networks.
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