UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

In silico gepotidacin target mining among 33 213 global Neisseria gonorrhoeae genomes from 1928 to 2023 combined with gepotidacin MIC testing of 22 gonococcal isolates with different GyrA and ParC substitutions

David, Alexandra; Golparian, Daniel; Jacobsson, Susanne; Stratton, Caleb; Lan, Pham Thi; Shimuta, Ken; Sonnenberg, Pam; ... Unemo, Magnus; + view all (2024) In silico gepotidacin target mining among 33 213 global Neisseria gonorrhoeae genomes from 1928 to 2023 combined with gepotidacin MIC testing of 22 gonococcal isolates with different GyrA and ParC substitutions. Journal of Antimicrobial Chemotherapy , 79 (9) pp. 2221-2226. 10.1093/jac/dkae217. Green open access

[thumbnail of David_In silico gepotidacin target mining among 33 213 global Neisseria gonorrhoeae genomes from 1928 to 2023 combined with gepotidacin MIC testing of 22 gonococcal isolates with different GyrA and ParC substitutions_VoR.pdf]
Preview
Text
David_In silico gepotidacin target mining among 33 213 global Neisseria gonorrhoeae genomes from 1928 to 2023 combined with gepotidacin MIC testing of 22 gonococcal isolates with different GyrA and ParC substitutions_VoR.pdf - Published Version

Download (303kB) | Preview

Abstract

Objectives: The novel dual-target triazaacenaphthylene, gepotidacin, recently showed promising results in its Phase III randomized controlled trial for the treatment of gonorrhoea. We investigated alterations in the gepotidacin GyrA and ParC targets in gonococci by in silico mining of publicly available global genomes (n = 33 213) and determined gepotidacin MICs in isolates with GyrA A92 alterations combined with other GyrA and/or ParC alterations. Methods: We examined gonococcal gyrA and parC alleles available at the European Nucleotide Archive. MICs were determined using the agar dilution method (gepotidacin) or Etest (four antimicrobials). Models of DNA gyrase and topoisomerase IV were obtained from AlphaFold and used to model gepotidacin in the binding site. Results: GyrA A92 alterations were identified in 0.24% of genomes: GyrA A92P/S/V + S91F + D95Y/A/N (0.208%), A92P + S91F (0.024%) and A92P (0.003%), but no A92T (previously associated with gepotidacin resistance) was found. ParC D86 alterations were found in 10.6% of genomes: ParC D86N/G (10.5%), D86N + S87I (0.051%), D86N + S88P (0.012%) and D86G + E91G (0.003%). One isolate had GyrA A92P + ParC D86N alterations, but remained susceptible to gepotidacin (MIC = 0.125 mg/L). No GyrA plus ParC alterations resulted in a gepotidacin MIC > 4 mg/L. Modelling of gepotidacin binding to GyrA A92/A92T/A92P suggested that gepotidacin resistance due to GyrA A92T might be linked to the formation of a new polar contact with DNA. Conclusions: In silico mining of 33 213 global gonococcal genomes (isolates from 1928 to 2023) showed that A92 is highly conserved in GyrA, while alterations in D86 of ParC are common. No GyrA plus ParC alterations caused gepotidacin resistance. MIC determination and genomic surveillance of potential antimicrobial resistance determinants are imperative.

Type: Article
Title: In silico gepotidacin target mining among 33 213 global Neisseria gonorrhoeae genomes from 1928 to 2023 combined with gepotidacin MIC testing of 22 gonococcal isolates with different GyrA and ParC substitutions
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/jac/dkae217
Publisher version: http://dx.doi.org/10.1093/jac/dkae217
Language: English
Additional information: © The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute for Global Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute for Global Health > Infection and Population Health
URI: https://discovery.ucl.ac.uk/id/eprint/10197162
Downloads since deposit
6Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item