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Abstract 7 
Concepts and evolution of multi-scale modelling from the perspective of wave-structure 8 
interaction have been discussed. In this regard, both domain and functional decomposition 9 
approaches have come into being. In domain decomposition, the computational domain is 10 
spatially segregated to handle the far-field using potential flow models and the near field 11 
using Navier-Stokes equations. In functional decomposition, the velocity field is separated 12 
into irrotational and rotational parts to facilitate identification of the free surface. These two 13 
approaches have been implemented alongside partitioned or monolithic schemes for 14 
modelling the structure. The applicability of multi-scale modelling approaches has been 15 
established using both mesh-based and meshless schemes. Owing to said diversity in 16 
numerical techniques, massively collaborative research has emerged wherein comparative 17 
numerical studies are being carried out to identify shortcomings of developed codes and 18 
establish best-practices in numerical modelling. Machine learning is also being applied to 19 
handle large-scale ocean engineering problems. This paper reports on the past, present and 20 
future research consolidating the contributions made over the past 20 years. Some of these 21 
past as well as future research contributions have and shall be actualized through funding 22 
from the Newton International Fellowship as the next generation of researchers inherits the 23 
present-day expertise in multi-scale modelling.   24 

1 Introduction 25 
In this paper, modelling tools and approximations that are in practice for wave-structure 26 
interactions (WSI) are discussed. Emphasis is provided for ocean engineering which 27 
encompasses offshore and coastal engineering, naval architecture as well as ocean sciences. 28 
Thus large time/spatial scale and local time/spatial scales are important. Different modelling 29 
aspects based on their level of approximation or theoretical understandings are discussed. 30 
This leads to understanding the limitations of the numerical tool, subsequently emphasising 31 
how and what to interpret from the results. In recent years, coupling of these standalone tools 32 
is being extensively implemented to resolve various levels of the physical process. This is 33 
discussed in detail after the brief explanation of the individual tools and how the development 34 
took place in each of these modelling efforts. 35 
At present, these numerical models are available as open-source as well as commercial tools 36 
using different numerical methods. Thus, said models have varying degrees of 37 
approximations in spatio-temporal resolution, stability, accuracy and computational 38 
efficiency. Hence, one of the recent efforts in the numerical modelling community is the 39 
comparative and benchmarking exercises; this shall also be discussed in the present paper. So 40 
the readers can test their own development/existing tools using any of these benchmark tests, 41 
available theory and open-source experimental data.  42 
In this paper, apart from providing an overview of the existing tools, a proper classification of 43 
the models, their applicability range, computation and physical processes, a thorough 44 
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literature review on the history of developments are provided. It should be noted that the 45 
details of each of the presented models is beyond the scope of this paper and the reader may 46 
refer the corresponding literature cited. Through the course of this review, several numerical 47 
techniques pertaining to multi-scale modelling shall be covered. However, we refrain from 48 
making any best practices recommendations as these strongly depend on the problem at hand 49 
and, thus, could be highly subjective. Rather, the aim of this review is to provide the reader 50 
with a comprehensive listing of the available methods. This listing has been developed based 51 
on the authors’ prior experience with multi-scale modelling as well as through a 52 
comprehensive review of the state-of-the-art. In the following sections, these mathematical 53 
models are discussed with their governing equations to handle physical problems, 54 
assumptions, implementation strategies and adopted numerical methods along with their 55 
applications. The existing numerical efforts carried out worldwide are provided along with a 56 
detailed discussion on numerical model development actualized by the authors’ research 57 
group that has been supported in-part by the Newton International Fellowship. The remainder 58 
of the paper is structured as follows: the spatio-temporal scales associated with various 59 
physical processes in ocean engineering along with application-specific levels of 60 
approximation necessary in a given model are discussed in §2, the depth-resolving Navier-61 
Stokes models along with numerical strategies for solution, wave/current generation and 62 
absorption, free-surface tracking as well as turbulence modelling have been discussed in 63 
detail in §3; potential flow models are introduced in §3.2, the depth-averaged Boussinesq-64 
type models are discussed in §4, the state-of-the-art in global and regional-scale ocean 65 
science multi-scale modelling is presented in detail in §5, multi-scale modelling achieved 66 
through coupling of different models is discussed in detail from the standpoint of both 67 
domain as well as functional decomposition strategies in §6, the past and present effort of 68 
benchmarking numerical models through comparative studies is reviewed in §7 and finally 69 
the future of multi-scale modelling in WSI is discussed from the standpoint of AI/ML 70 
techniques as well as the development of hybrid models for floating renewables in §8. The 71 
reader will appreciate that significant effort has been made to cover a broad range of 72 
modelling techniques in ocean engineering in general and WSI in particular. However, this 73 
review is not all-inclusive and hence some fields of research such as hydroelasticity, 74 
metocean analysis, wind-wave interaction and phase-averaged wave action modelling could 75 
not be included.     76 
 77 
2 Different Levels of Approximations 78 
A single numerical tool to address all class of problems in ocean engineering is ideal. 79 
However such a model is not possible due to the following reasons: (a) a large sea area, 80 
having a large range of spatial and time scales, (b) highly nonlinear wave-structure 81 
interaction process (here not only fluid, sometimes the structure can also behave nonlinearly 82 
such as vegetation or fenders or hydro-elasticity), (c) waves co-exist with nonlinear currents 83 
of various levels, sediment transport and others, (d) viscosity, surface tension and turbulence, 84 
(e) two phase (air-sea) or multiphase processes (air-sea-oil or air-sea-sediment), (f) violent 85 
wave impacts (during cyclonic storm surges, flooding) and aeration on rubble mound 86 
structures, green water shipping and slamming. For these above phenomena, one needs to 87 
model large spatial/time scale to capture wave propagation phenomenon as well as resolve 88 
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small spatial/time scale to understand the wave-structure(-soil) interactions processes. A 89 
single mathematical model may not always be a solution for this complex problem. Hence, 90 
the researchers have developed various levels of approximations in the mathematical 91 
modelling.  92 

The level of approximations in the mathematical modelling are decided based on two guiding 93 
principles: (a) which physical process is governing the problem at hand and (b) strive to 94 
minimize the computational effort in the resulting numerical algorithm for industrial/practical 95 
application by balancing computational efficiency and fidelity. In context to the first 96 
principle, the requirement of modelling a physical process is mapped with respect to various 97 
applications in Table 1. Table 1 lists various applications that require either large domain or 98 
local/small domain modelling.  99 

Table 1. A summarization of the various physical processes and the requirement for them to 100 
be modelled for various large and small-scale ocean engineering applications (the 101 
information is based on the authors’ experience with multi-scale modelling). 102 

   PHYSICAL PROCESSES 

   Surface 
tension 

Viscous effects and/or 
turbulence modelling 

Nonlinearity 
in fluid 

Nonlinearity 
in structure 

Modelling the 
air-phase 

A
P

P
L

IC
A

T
IO

N
S

 

L
A

R
G

E
-S

C
A

L
E

 

Current/flow-structure 
interaction 

No It depends Yes No No 

Wave propagation and 
interaction 

No It depends It depends No No 

Seakeeping/motion of 
marine structures 

No It depends Yes It depends No 

Geophysical flows No It depends It depends No It depends 

Sediment transport No Yes Yes No No 
Wave-breaking  No Yes Yes Yes It depends 

Aeration dynamics It depends Yes Yes Yes Yes 

Wind-wave interaction It depends Yes Yes No Yes 

Steep wave and rigid 
structure 

Yes It depends Yes No No 

L
O

C
A

L
-/

SM
A

L
L

-S
C

A
L

E
 Extreme waves and 

rigid structure 
It depends It depends Yes No Yes 

Wave-structure-soil 
interaction 

It depends It depends Yes No No 

Wave-deformable 
structure-interaction 

It depends It depends Yes Yes Yes 

Current/flow-structure 
interaction 

No Yes Yes It depends No 

Sediment transport No Yes Yes No No 
Wave-breaking  It depends Yes Yes It depends Yes 

Aeration dynamics Yes Yes Yes It depends Yes 
Wind-wave interaction It depends Yes Yes No Yes 

 103 
A typical example for large domain modelling in coastal engineering is wave propagation 104 
from offshore to near shore and its interactions with a harbour structure to understand its 105 
tranquillity, run-up or inundations. Similar examples from naval architecture and offshore 106 
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engineering would be ship maneuvering under the action of waves and an offshore wind 107 
turbine farm interacting with waves or offshore platform interactions with waves, 108 
respectively. For these applications, the physical processes such as surface tension and 109 
nonlinearities in structural response are not important. Further, complete physics in modelling 110 
the air-sea process is also not required; some empirical treatment would be deemed sufficient. 111 
Thus, the full continuity and momentum equations can be simplified based on these 112 
approximations.    113 

Similarly, consider an application of small domain modelling, wherein one is interested in 114 
quantifying the forces experienced by structures (such as ships, semi-submersible platforms, 115 
seawalls, scour around monopiles and jackets etc.) against operating or extreme sea state 116 
conditions. In this scenario, normally researchers would carry out the physical model studies 117 
in an experimental wave tank. A similar study can be done using numerical modelling based 118 
on so-called numerical wave tanks. A numerical wave tank is a numerical tool that could 119 
reproduce the experimental facility with a high degree of fidelity. Thus, a detailed physical 120 
flow process is realized by solving the continuity and momentum equations, only slightly 121 
reducing the physical approximations, nonetheless reproducing the dominating forces as 122 
close to reality as possible. For instance, in coastal engineering, surface tension, nonlinearity 123 
in structure, sediment to sediment interactions or rigid body interactions (say in a rubble-124 
mound breakwater) can be relaxed without greatly compromising the fidelity of the numerical 125 
approximation. Thus, for large scale problems, one can employ various levels of 126 
approximations based on the wave characteristics and its applications thus leading to savings 127 
in the computational cost. This aspect of modelling is further emphasised by means of a 128 
bubble plot in Figure 1 wherein the various environmental aspects in spatial and time scale 129 
for mathematical modelling of wave-structure interaction as well as wave-propagation are 130 
illustrated.    131 

 132 
Figure 1. Bubble plot variation to represent the spatio-temporal scales of various physical 133 
processes in ocean engineering. 134 
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Figure 1 showcase various processes ranging from climate change, sea-level rise, 135 
morphodynamics, tides, tsunami/storm surges, wave propagation over varying bathymetry 136 
from offshore to their interactions with structures. Each of these cases has a different 137 
horizontal spatial scale from 1mm to more than 10,000 km and time scale from less than 1s to 138 
100 years. Further, which type of modelling is dominant and ought to be carried out is also 139 
represented (in brackets) in Figure 1, along with global scale or regional scale modelling. The 140 
mathematical modelling approximations based on depth averaging can be seen as 141 
predominant for increasing large scale problems. This is based on the assumptions of the 142 
vertical flow structure. When the vertical flow motion is considered weak or insignificant, 143 
then depth averaged horizontal velocities can be adopted. Such classifications of 144 
mathematical models are called as depth averaged models and depending upon the 145 
approximations adopted in the horizontal velocities different models are available. This will 146 
be discussed in the later part of this paper. When the time scale and horizontal spatial scale 147 
are small, then the wave-structure interaction becomes dominant; in such cases depth 148 
resolving models are normally adopted. This is solved based on Navier-Stokes equations 149 
(NSE) with various simplified approximations. Depending upon the application (such as 150 
porous-structure, vegetation interactions, hydroelasticity or sediment transport) either 151 
microscopic or macroscopic modelling can be adopted within the NS framework to model the 152 
structure interaction process. On the other hand, the physical process involved in the ship 153 
manoeuvring is of the order of kilometers and minutes at the prototype-scale, however for 154 
numerical modelling the same would normally be carried out at a reduced scale using depth 155 
resolving models. Hence, for some applications, although the physical process is at a large 156 
scale, the numerical simulations are normally carried out at a smaller scale due to 157 
computational limitations.  158 
In the past decades, one of the major reasons for resorting to the different physical 159 
approximations to model the different scales of the problem was to reduce the computational 160 
time. However, this leads to a compromise on the physics of the problem. Figure 2 shows 161 
three different broader classifications namely depth averaging, depth resolving and hybrid 162 
models. In this broader classification, different governing equations for modelling based on 163 
approximations are available, which are currently in practise within the numerical modelling 164 
community. The basic modelling task in each case is to solve the continuity and momentum 165 
equations for the fluid dynamics problem. However, the modelling complexity increases 166 
based on the physical problem being addressed, type of structure (coastal, offshore or marine) 167 
and type of sea-state under consideration.   168 
In coastal engineering, the majority of the structures (e.g. breakwaters, sea-walls and pile 169 
structures) are fixed or stationary. Then the physical problem to represent is the wave 170 
transformation process (i.e., wave shoaling, diffraction, refraction, reflection, wave-171 
overtopping and wave-breaking) and its interaction with the structures. In case of offshore 172 
engineering, the structures may be fixed (e.g. offshore wind turbine foundations in < 50 m 173 
deep water) or floating (e.g. oil production platforms, floating offshore wind turbines and 174 
floating solar arrays). In the latter case, the modelling complexity increases because the fluid 175 
flow and structure motion(s) are coupled and thus need to be solved in conjunction; failure to 176 
do so would over-predict the hydrodynamic loads. Nonetheless, the overall excursion of an 177 
offshore structure is small when compared to marine structures such as a ship or submarine. 178 
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For a marine structure, the numerical modelling needs to account for large displacements 179 
(e.g. ship maneuvering in waves) thus necessitating large domains and, if the sea-state is 180 
violent, also hydroelasticity plays a role (e.g. hull-slamming in violent sea-states). 181 
Nonetheless, these scenarios may not always necessitate the NS equations; potential-flow 182 
models are a viable alternative as long as the hydrodynamic loads and resulting body motions 183 
are properly accounted for. For instance, models based on the Boussinesq equations are quite 184 
popular for modelling wave tranquillity and recently, for ship-generated waves.    185 

 186 
Figure 2. Different modelling strategies characterized by the level of physics approximation 187 
and the resulting computational cost. 188 

Various numerical methods are currently in practice to solve a given mathematical model. 189 
The numerical methods are broadly classified into strong and weak forms. The traditional 190 
methods such as the Finite Difference Method (FDM), the Finite Element Method (FEM), the 191 
Boundary Element Method (BEM) and the Finite Volume Method (FVM) as well as modern 192 
techniques such as particle/mesh-free methods are being employed in the ocean engineering 193 
problems. Mostly, the choice of the numerical methods depends upon the developers and one 194 
is not superior to the others as one might expect. Each of these numerical methods has their 195 
own advantages and disadvantages, and the overall goal is to reduce or minimize the 196 
disadvantages using numerical treatments/algorithms/schemes.  197 

3 Depth Resolving Mathematical Models 198 

In the present section,  we review the depth-resolving models. These models are mostly used 199 
for the wave-structure interaction problems to estimate the wave loads, wave damping 200 
characteristics and motion/structural responses. The problems that are based on small spatial 201 
and time scale are normally handled by the depth-resolving approach which models the 202 
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physical process using a high (spatio-temporal) resolution thus leading to high computational 203 
costs. 204 

205 
The Navier-Stokes equations include the equations governing the conservation of mass 206 
(termed “equation of continuity” (EOC) for incompressible flows which is in turn a 207 
reasonable assumption for WSI) and conservation of momentum. The term “full” indicates 208 
the absence of simplifying assumptions such as irrotationality, depth-averaging, Reynolds-209 
averaging, two-dimensionality, axisymmetry, single-phase nature of the flow (density is 210 
spatio-temporally constant) etc.    211 

3.1.1 Governing Equations 212 
The full Navier-Stokes equations (NSE) governing fluid motion are written here in 213 
differential form for the instantaneous velocity field 𝑉ሬ⃗ : 214 
𝜕𝜌

𝜕𝑡
+ ൫𝑉ሬ⃗ ⋅ ∇ሬሬ⃗ ൯𝜌 = 0

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
ୡ୭୬ୱୣ୰୴ୟ୲୧୭୬ ୭ ୫ୟୱୱ

 

(1) 
𝜕𝜌𝑉ሬ⃗

𝜕𝑡ถ
୲୧୫ୣ

+ ∇ሬሬ⃗ ⋅ ൫𝜌𝑉ሬ⃗ ⨂𝑉ሬ⃗ ൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
ୟୢ୴ୣୡ୲୧୭୬

= −∇ሬሬ⃗ 𝑝ถ
୮୰ୣୱୱ୳୰ୣ

+ ∇ሬሬ⃗ ⋅ ൬𝜇 ൜∇ሬሬ⃗ 𝑉ሬ⃗ + ൫∇ሬሬ⃗ 𝑉ሬ⃗ ൯


−
2

3
൫∇ሬሬ⃗ ⋅ Vሬሬ⃗ ൯�̿�ൠ൰

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ୢ୧୳ୱ୧୭୬

+ 𝜌�⃗�ด
୰ୟ୴୧୲୷

 

where, 𝑝 is the total pressure, 𝜌 and 𝜇 are the density and viscosity respectively, �̿� is the 215 
identity tensor and �⃗� is the gravitational acceleration vector. Equation (1) represents the 216 
compressible Navier-Stokes equations, however, the compressibility of the fluid may only be 217 
important during violent wave-structure interaction at large-scale. For the remainder of the 218 
applications, the conservation of mass simplifies to the equation of continuity (EOC): ∇ሬሬ⃗ ⋅ Vሬሬ⃗ =219 
0 which holds for incompressible flow. It is also worth noting that Equation (1) is written for 220 
the “instantaneous” velocity-field (Anghan et al., 2019) indicating that 𝑉ሬ⃗  is neither time-221 
averaged (RANS) nor spatially-filtered (LES). The fluid properties 𝜌 and 𝜇 can be replaced 222 
with the mixture properties 𝜌∗ and 𝜇∗ to account for the presence of multiple contiguous 223 
phases in the domain. Here, advantage is derived from the fact that the phases can be 224 
considered as being “individually incompressible” (Saincher and Banerjee, 2018) for most 225 
applications which precludes the necessity of solving (say) 𝑁 sets of the NSE for 𝑁 phases. 226 
This results in the so-called “single-fluid formulation” wherein the entire computational 227 
domain is assumed to be filled with a single, albeit, variable-property fluid (Saincher and 228 
Sriram, 2022a). It should also be noted that within the single-fluid framework, equation (1) is 229 
“conservative” (Saincher and Sriram, 2023) meaning 𝜌 is on the left-hand-side with the time 230 
and advection terms. On the other hand, the formulation would be termed “non-conservative” 231 
if 𝜌 were on the right-hand-side with the pressure and diffusion terms. The positioning of 𝜌 in 232 
the governing equations is immaterial for a single-phase treatment of the NSE (for instance 233 
cf. Sriram et al., 2014). The same, however, would have far-reaching consequences for a 234 
multiphase framework especially for violent flows involving wave-breaking and/or slamming 235 
loads; a conservative formulation is recommended in these cases (Saincher and Sriram, 236 
2023). However, an important limitation of the conservative formulation is that it may lead to 237 
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the formation of unrealistically large velocities at the interface (Tryggvason et al., 2007) and 238 
thus is deemed unnecessary for more benign wave propagation and WSI scenarios. In context 239 
to equation (1), it is also worth mentioning that the total pressure 𝑝 is comprised of static, 240 
hydrostatic as well as dynamic contributions; 𝑝 is not the true pressure but rather a pseudo 241 
pressure which satisfies the EOC. The advantage with WSI and ocean engineering problems 242 
in general is that the simulation begins from quiescent/calm water conditions which allows 243 
for a very accurate “guess” of the initial pressure field using the hydrostatic law. This results 244 
in a dynamic pressure field that is very close to the true (say experimentally measured) 245 
dynamic pressure, once the hydrostatic contribution has been removed (Saincher and Sriram, 246 
2022a ; 2022b).   247 

3.1.2 Solving the Navier-Stokes Equations 248 
For a given flow problem, the solution variables of interest include the velocity 𝑉ሬ⃗  and 249 
pressure 𝑝. It is characteristic of the incompressible Navier-Stokes equations to not have a 250 
separate equation for pressure. Owing to this, a majority of incompressible NSE flow solvers 251 
are based on a predictor-corrector approach which was pioneered by Chorin (1967); the same 252 
is illustrated in Figure 3.     253 

 254 
Figure 3. A typical predictor-corrector loop characteristic of projection methods pioneered 255 
by Alexandre Chorin in 1967.  256 

At the beginning of the solution, both 𝑉ሬ⃗ ାଵ and 𝑝ାଵ at the current time-level are unknown 257 
and the momentum equations are solved for a predicted velocity field 𝑉ሬ⃗ ∗ wherein either:  258 

 the pressure term ቀ−
ଵ

ఘ∗ ∇ሬሬ⃗ 𝑝ቁ


 from the previous time-level is considered (Saincher and 259 

Banerjee, 2015) or, 260 
 the pressure term is not considered at all which was the case with Chorin’s original 261 

method (normally adopted in Meshfree methods ; cf. Sriram and Ma, 2021). 262 
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At this point, the incompressibility condition ∇ሬሬ⃗ ⋅ 𝑉ሬ⃗ ାଵ = 0 is invoked at the current time-263 
level and the same is split into a mass defect ∇ሬሬ⃗ ⋅ 𝑉ሬ⃗ ∗ and divergence correction ∇ሬሬ⃗ ⋅ 𝑉ሬ⃗ ᇱ 264 
contributions. This marks the end of the “predictor-step” (highlighted in red in Figure 3).  265 

Following this, the property 𝑉ሬ⃗ = −
∆௧

ఘ
∇ሬሬ⃗ 𝑝 is invoked to establish a relationship between either 266 

∇ሬሬ⃗ ⋅ 𝑉ሬ⃗ ∗ and 𝑝ାଵ (Sriram and Ma, 2021) or between ∇ሬሬ⃗ ⋅ 𝑉ሬ⃗ ∗ and the pressure correction 𝑝ᇱ 267 
(Saincher and Banerjee, 2015). In either case, one ends up with a Pressure Poisson Equation 268 
(PPE) which needs to be iteratively solved for 𝑝ାଵ (or an Equation Of Pressure Correction 269 
(EOPC) which needs to be iteratively solved for 𝑝ᇱ). This is oftentimes the most 270 
computationally-intensive step in a flow solver. Following solution of the Poisson equation, 271 

𝑉ሬ⃗ ାଵ can be obtained using 𝑉ሬ⃗ = −
∆௧

ఘ
∇ሬሬ⃗ 𝑝 which marks the end of the “corrector-step” 272 

(highlighted in green in Figure 3). The splitting of the solution into predictor and corrector 273 
steps is also known as the “projection method” since the pressure is used to project 𝑉ሬ⃗ ∗ onto a 274 
space of divergence-free velocity-field which is essentially the Helmholtz decomposition.  275 

Various flow solvers (or so-called “pressure-velocity coupling” schemes) such as SIMPLE, 276 
PISO, PIMPLE essentially have the same predictor-corrector constitution but differ with 277 
regards to how 𝑉ሬ⃗ ∗ is calculated as well as the number of predictor-corrector cycles per time-278 
step. In fact, regardless of whether 𝑉ሬ⃗ ∗ is computed fully-explicitly or semi-implicitly 279 
(because a fully-implicit treatment of the advection term is not possible), the solver still 280 
belongs to the SIMPLE class of algorithms (Ferziger et al., 2020). However, some authors 281 
also call the fully-explicit category of algorithms “semi-explicit” (Dave et al., 2018 ; Sharma, 282 
2022) owing to the implicit nature of solution of the PPE. It is important to note that, for a 283 
given order of time-discretization, the solutions obtained from a fully-explicit or semi-284 
implicit predictor step should be identical. Nonetheless, the semi-implicit treatment would 285 
accord further stability to the solution.  286 

In context to WSI, a forward Euler time-discretization and fully-explicit evaluation of 𝑉ሬ⃗ ∗ has 287 
been extensively used by the authors (Saincher and Sriram, 2022a ; 2022b ; 2023). From the 288 
authors’ experience, explicit (forward Euler) time discretization is recommended for waves 289 
owing to the hyperbolic nature of solution propagation and a fully-explicit evaluation of 𝑉ሬ⃗ ∗ 290 
was found to be sufficient for relatively benign WSI scenarios especially ones that did not 291 
involve slamming loads. In fact, it is demonstrated in Saincher et al. (2023a ; 2023b) that a 292 
fully-explicit evaluation of 𝑉ሬ⃗ ∗ works even in slamming conditions for modest mesh 293 
resolutions. Thus, the CFD user ought to make an informed decision whilst selecting the 294 
pressure-velocity coupling scheme keeping in mind the trade-off between numerical stability 295 
(better for semi-implicit treatment) and computational efficiency (better for fully-explicit 296 
treatment). Unfortunately, users of commercial CFD solvers seldom have fully-explicit 297 
pressure-velocity coupling available to them and thus alternatively opt for (say) the PISO 298 
solver with a Non-Iterative Time Advancement (NITA) option available in ANSYS® 299 
FLUENT.  300 
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When the predictor and corrector steps are considered in conjunction, say for a 3D flow 301 
problem, a single time-step would have one iterative solution loop (for 𝑝) in case of a fully-302 
explicit solver and four (for 𝑈, 𝑉, 𝑊, 𝑝) in case of a semi-implicit solver. However, our 303 
experience suggests that the computational effort required for solving 𝑝 may sometimes be 304 
greater than the three velocity components 𝑈, 𝑉, 𝑊 combined. This is primarily because of 305 
differences in the rate of convergence which is in turn dependent on the type of boundary 306 
conditions involved. The boundary conditions are predominantly Dirichlet in case of 307 
velocities which results in predominantly Neumann conditions for the pressure thus leading 308 
to an increase in the computational effort for solving the PPE.       309 

3.1.3 Boundary conditions – Wave/Current Generation and Absorption 310 
A prerequisite to accurate WSI simulations in ocean engineering applications is high fidelity 311 
wave generation as well as reflection-free absorption of waves/currents in the computational 312 
domain. The task of absorption is generally more challenging for WSI simulations involving 313 
regular and irregular waves when compared to focusing waves primarily due to the larger 314 
number of wave cycles/periods involved in the former case. The task of absorption also 315 
becomes complex if currents co-exist with waves. The various methods of wave/current 316 
generation and absorption in NSE-based NWTs are mapped against their numerical 317 
characteristics in Table 2.       318 

Table 2. Type of wave/current generation and absorption strategies in NSE-based NWTs. 319 
Wavemaker 𝑼 𝑽 𝑾 𝒑 𝜼 
Inflow-boundary Dirichlet Dirichlet Dirichlet Dirichlet Dirichlet 

Mass-source function -- -- -- -- 
Source-term 

in EOC 
Momentum-source function Source-term in momentum equation -- -- 
Internal inlet -- -- Dirichlet -- -- 

Relaxation zone Dirichlet Dirichlet Dirichlet Dirichlet Dirichlet 

Moving wall 
Flap / Piston type Prescribed 

motion 
-- 

Prescribed 
motion 

-- -- 
Segmented type 

Wave-absorber 𝑼 𝑽 𝑾 𝒑 𝜼 

Outflow boundary Orlanski / Continuity / Sommerfeld radiation boundary condition 
Sponge-layer Sink terms in momentum equation -- -- 

Relaxation zone Solution gradually ramped from/to wave theory to/from numerical model 

Moving wall (active absorption) 
Prescribed 

motion 
-- 

Prescribed 
motion 

-- -- 

Adaptive passive absorption 
Adaptively predicted using 

on-board elevation 
Neumann Neumann -- 

With reference to Table 2, the development of “numerical wavemakers” for NSE models was 320 
pioneered by Lin and Liu (1998; 1999) wherein the inflow-boundary and mass-source 321 
function techniques were proposed. As seen from Table 2, the inflow technique involves a 322 
Dirichlet prescription of the wave-induced orbital velocities (predicted from a suitable wave 323 
theory) as well as the free-surface elevation at the domain boundary. The present research 324 
group has proposed a modified inflow technique to improve the volume-conservation 325 
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properties of inflow-boundaries, particularly for scenarios involving strong Stokes drift such 326 
as steep wave generation in near-shallow water (Saincher and Banerjee, 2017a).  327 

In conjunction with inflow boundaries, the mass-source function technique was also 328 
developed which involved the modification of the EOC through the inclusion of a time-329 
varying source term that is in turn proportional to the wave elevation. Wave generation is 330 
achieved through periodic ejection/ingestion of water-volume from/into the source region and 331 
this offers some advantages over inflow-boundaries. For instance, the only wave 332 
characteristic to be input is the time-varying free-surface elevation 𝜂(𝑡) and thus wave-333 
records from the field could be reproduced. Also, waves reflected from the domain 334 
boundaries would not interfere with the wave generation. Nonetheless, the source region 335 
itself has several design variables requiring parameterization and, in this context, the authors 336 
have proposed guidelines to decide the geometry, placement and strength of the source region 337 
based on the relative depth and wave-steepness (Saincher and Banerjee, 2017b). As listed in 338 
Table 2, other similar methods have also been proposed such as the internal inlet (Hafsia et 339 
al., 2009) and momentum-source function (Choi and Yoon, 2009) techniques. Some 340 
researchers have also attempted to directly model piston/flap-type wave-paddle motions into 341 
their NWTs using embedded boundary treatment for the solid (cf. fast-fictitious-domain 342 
(FFD) based modelling of wave-paddles in Anbarsooz et al. (2013)).    343 

However, currently, the most popular technique of numerical wave generation is the so-called 344 
“relaxation zones” developed by Jacobsen et al. (2012) for OpenFoam®. Here, the solution is 345 
spatio-temporally “ramped-up” from wave-theory to NSE before the structure/region of 346 
interest and again “ramped-down” from NSE to calm-water conditions after the 347 
structure/region of interest. Thus, relaxation zones not only prevent upstream reflection of 348 
waves from the far-end of the NWT but also downstream re-reflection of waves reflected off 349 
the structure. It is also worth mentioning that relaxation zones in and of itself is a more 350 
general concept that has been implemented in hybrid potential theory-NSE models (Agarwal 351 
et al., 2022b) as well as in hybrid spectral theory-NSE models (Aliyar et al., 2022).  352 

Apart from relaxation zones, other methods of wave absorption have also been implemented 353 
for NSE-based NWTs. For instance, Lin and Liu (1999) employed a radiation/outflow 354 
boundary condition for wave absorption at the far-end of the NWT. Outflow boundaries 355 

generally implement the Sommerfeld condition (Dave et al., 2018): 
డథ

డ௧
+ 𝐶

డథ

డ
= 0 where 𝜙 356 

is the property to be effluxed from the boundary, 𝑡 is time, 𝐶 is the phase velocity and 𝑛 357 
points normal to the boundary. The prescription of 𝐶 is relatively straightforward for “flow 358 
problems” making outflow boundaries suitable for tsunamis, tidal flows, scour etc. which 359 
involve a dominant current component. Sommerfeld conditions are also suitable for 360 
absorbing small-amplitude waves. However, these pose a challenge for absorbing steep 361 
waves particularly because 𝐶 is spatio-temporally variable along the boundary. It has been 362 
shown in Dave et al. (2018) that improper prescription of 𝐶 leads to severe (inward) 363 
reflections even for free-shear flows.     364 
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Self-adaptive wavemaker theory has also been used popularly in both the physical and 365 
numerical wave tanks. This method utilizes wavemaker (moving wall) whose motion is 366 
specified to generate both the incident waves and an additional wave to cancel the 367 
undesirable wave (e.g. the reflected wave from somewhere within the tank).  More details can 368 
be found in Yan et al. (2016).  In addition, the same concept of “adaptive absorber” was also 369 
used in our recent work on developing a passive wave absorber (Yan et al., 2020). This 370 
boundary behaves similarly to the inflow boundary, however the fluid velocity condition is 371 
specified by considering its relation with the wave elevation recorded at the boundary.  This 372 
method does not require the use of the relaxation zone for wave absorption and thus results in 373 
a considerable improvement of the computational efficiency. A recent application of the same 374 
can be found in Xiao et al. (2024).  375 

3.1.4 Free surface capturing/tracking 376 
A majority of ocean engineering problems involve waves and/or other flows such as bores, 377 
hydraulic jumps, etc. which necessitates computing the topology of the free-surface. In 378 
reality, the free-surface marks a discontinuity between two media (say air and water) and thus 379 
acts as an interface. The numerical algorithms for computing the interfacial topology can be 380 
broadly classified into interface-tracking and interface-capturing techniques. In the former 381 
category of algorithms, the free-surface is modelled as a boundary and is tracked by updating 382 
the mesh as the solution progresses. In the latter category, the free-surface evolves spatio-383 
temporally within a fixed domain wherein the interface is identified by an indicator function. 384 
Interface-capturing algorithms are obviously more advantageous (especially for violent flows 385 
involving complex interfacial deformation such as overturning and aeration) and thus have 386 
been extensively employed in NSE-based flow solvers; the same have been listed in Table 3.  387 

As evidenced from Table 3, the interface-capturing algorithms can be further classified based 388 
on the technique used for interface identification (“reconstruction”) and advection. The 389 
interface identification techniques differ based on the type of indicator function used (volume 390 
fraction or level-set function) as well as whether the identification itself is geometric in nature 391 
or not. The level-set method and high-resolution schemes such as the Compressive Interface 392 
Capturing Scheme for Arbitrary Meshes (CICSAM) are algebraic in nature in that they do not 393 
involve explicit geometrical computations of the placement (or advection) of the interface 394 
within the domain. In comparison, geometric methods such as the Piecewise Linear Interface 395 
Calculation-Volume Of Fluid (PLIC-VOF) and Moment Of Fluid (MOF) are higher fidelity 396 
in that the interfacial coordinates are geometrically computed subject to conservation of the 397 
primary phase volume in each cell.  398 

Volume conservation is intrinsic for geometric VOF methods and also for single-phase 399 
meshfree methods such as the Improved Meshless Local Petrov-Galerkin method with 400 
Rankine source function (IMLPG_R). This is not the case for algebraic VOF schemes or the 401 
level-set method where additional numerical treatment is necessary to achieve volume 402 
conservation. This has been comprehensively demonstrated by the present authors (Saincher 403 
and Sriram, 2022a) and others (Anghan et al., 2021 ; Arote et al., 2021) wherein a material 404 
redistribution algorithm originally developed for geometric VOF (Saincher and Banerjee, 405 
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2015) has been shown to dramatically improve the volume conservation properties of 406 
algebraic VOF schemes.  407 

Similarly, interfacial diffusion is intrinsic for algebraic VOF as well as level-set methods. 408 
This could be mitigated to some extent using operator-split/direction-split advection as doing 409 
so would eliminate multi-fluxing errors (Saincher and Sriram, 2022a). Whilst algebraic VOF 410 
techniques are indeed capable of capturing large-scale interfacial segregation in WSI 411 
problems (Saincher et al., 2023a), small-scale droplets and bubbles would still diffuse upon 412 
separation from the parent phase. This diffusion seldom contributes to the hydrodynamics in 413 
a WSI simulation and, in fact, provides numerical stability to the solution. Conversely, 414 
droplets/bubbles separating from the parent phase would never dissipate in geometric VOF 415 
and thus excessive interfacial fragmentation might, in fact, lead to solver instability.   416 

Table 3. Various interface-capturing algorithms developed for NSE-solvers; cf. nomenclature 417 
for the abbreviations.   418 

O’Shea et al. (2014) NFA 
Geometric 

VOF 
Unsplit 
Eulerian 

Zero Intrinsic Cartesian 

Sriram et al. (2014) IMLPG_R MPNDAF Lagrangian Zero Intrinsic -- 

Saincher and 
Banerjee (2015) 

Redistribution-
based PLIC-

VOF 

Geometric 
PLIC-VOF 

Operator-
split 

Eulerian 
Zero Intrinsic Cartesian 

Bihs et al. (2016) REEF3D Level-set 
Unsplit 
Eulerian 

Intrinsic Extrinsic Cartesian 

Zinjala and Banerjee 
(2016) 

LEAS-MOF 
Geometric 

MOF 
Lagrangian-

Eulerian 
Zero Intrinsic 

General 
Polygonal 

Zinjala and Banerjee 
(2017) 

RMOF 
Geometric 

MOF 
Lagrangian-

Eulerian 
Zero Intrinsic 

General 
Polygonal 

Anghan et al. (2021) MSTACS 
Algebraic 

VOF 
Unsplit 
Eulerian 

Intrinsic Extrinsic Cartesian 

Arote et al. (2021) SAISH 
Algebraic 

VOF 
Unsplit 
Eulerian 

Intrinsic Extrinsic Cartesian 

Saincher and Sriram 
(2022a) 

OS-CICSAM 
Algebraic 

VOF 

Operator-
split 

Eulerian 
Intrinsic Extrinsic Cartesian 

 419 
3.1.5 Turbulence Modelling 420 
Ocean engineering problems involve flow of sea-water which has a kinematic viscosity of 421 
𝜈~1𝑒 − 06 mଶ s⁄ . The corresponding Reynolds number Re = 𝒱 ⋅ ℒ 𝜈⁄  would typically be 422 
𝑂(10) even if the characteristic velocity (𝒱) and length (ℒ) are 𝑂(1), that is, at model-423 
scale. This is generally the case since the Froude-law is invoked for scaling based on the fact 424 
that gravity is the dominant restoring force in ocean engineering applications. As a 425 
consequence, most scenarios being simulated are not laminar and some form of modelling 426 
may be required to account for the additional viscous effects near the structure. Some of the 427 
typical applications necessitating turbulence modelling include: 428 
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 Wave/tsunami interactions with vegetation: turbulence-induced viscous effects 429 
arising from flow separation need to be accounted for to correctly estimate energy 430 
attenuation.  431 

 Response of floating bodies: failing to account for viscous effects within the 432 
boundary layer may result in over-prediction of the motion response.  433 

 Resistance of marine vessels in waves/calm water: failing to account for viscous 434 
effects within the boundary layer may result in under-prediction of resistance.  435 

 436 
Figure 4. An illustration of the different means to categorize various strategies to model 437 
turbulence in depth-resolving models; cf. nomenclature for the abbreviations.  438 

Several popular methods have been developed for modelling turbulence in NSE-based 439 
solvers; some have been integrated with self-developed codes by the present research group. 440 
There exist different means of classifying turbulence modelling strategies for depth-resolving 441 
methods; the same are depicted in Figure 4. In conjunction with Figure 4, the momentum 442 
equation (1) is also re-written to account for turbulence modelling:  443 

𝜕𝑽ሬሬ⃗

𝜕𝑡ด
୲୧୫ୣ

+ ൫𝑽ሬሬ⃗ ⋅ ∇ሬሬ⃗ ൯𝑽ሬሬ⃗ᇣᇧᇤᇧᇥ
ୟୢ୴ୣୡ୲୧୭୬

= −
1

𝜌∗
∇ሬሬ⃗ 𝒑′

ᇣᇧᇤᇧᇥ
୮୰ୣୱୱ୳୰ୣ

+
1

𝜌∗
∇ሬሬ⃗ ⋅ ቀ(𝜇∗ + 𝝁𝒕)∇ሬሬ⃗ 𝑽ሬሬ⃗ ቁ

ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
ୢ୧୳ୱ୧୭୬

+ �⃗�⏟
୰ୟ୴୧୲୷

 (2) 

where, 𝑝′ is the modified pressure which includes the normal components of the Reynolds or 444 
Sub-Grid-Scale (SGS) stress tensor and 𝜇௧ is the turbulent viscosity; the terms 445 
modified/introduced by turbulence modelling have been highlighted in bold. In context to 446 
equation (2) and Figure 4, 𝑉ሬ⃗  can be unfiltered, spatio-temporally filtered or time-averaged. 447 
The filtering and time-averaging operations are essentially decompositions of the unfiltered 448 
velocity and thus, once performed, information about the instantaneous velocity field is 449 
invariably lost. For instance, the 𝑉ሬ⃗  field obtained following solution to the RANS equations is 450 
time-averaged and thus, (temporal) fluctuations in 𝑉ሬ⃗  do not represent fluctuations in the 451 
instantaneous field. Only the effect of the true fluctuating field on 𝑉ሬ⃗  is modelled through the 452 
eddy viscosity 𝜇௧.  453 

 454 

 455 
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𝑼𝐜𝐲𝐥 = 𝟎. 𝟑𝟒 𝐦/𝐬 (case A25002) 

Solved 𝑉ሬ⃗  is unfiltered (“laminar” or ILES) Solved 𝑉ሬ⃗  is time-averaged (standard 𝑘 − 𝜀) 

 

𝑼𝐜𝐲𝐥 = 𝟎. 𝟕𝟖 𝐦/𝐬 (case A75002) 

Solved 𝑉ሬ⃗  is unfiltered (“laminar” or ILES) Solved 𝑉ሬ⃗  is time-averaged (standard 𝑘 − 𝜀) 

Figure 5. The vorticity field ൫𝛻ሬ⃗ × 𝑉ሬ⃗ ൯ generated by a moving cylinder interacting with a 456 
focusing wave (Saincher and Sriram, 2022b); note the change in the nature of the solution 457 
based on the definition of 𝑉ሬ⃗ . The cylinder moves from bottom-right to top-left.   458 

This important aspect is illustrated in Figure 5 wherein vortices shed by a moving cylinder 459 
interacting with focusing waves are shown (adapted from Saincher and Sriram (2022b)). The 460 
same problem has been simulated first using unfiltered NSE (a “laminar” solver) and then 461 
using time-averaged NSE (a RANS solver based on standard 𝑘 − 𝜀 (SKE)). The 462 
aforementioned loss of information regarding the true fluctuating velocity field is readily  463 
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𝑼𝐜𝐲𝐥 = 𝟎. 𝟑𝟒 𝐦/𝐬 (case A25002) 𝑼𝐜𝐲𝐥 = 𝟎. 𝟕𝟖 𝐦/𝐬 (case A75002) 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6. Time-histories of free-surface elevation (𝜂(𝑡)) and pressure (𝑝(𝑡)) corresponding 464 
to a moving cylinder interacting with focusing waves (Saincher and Sriram (2022b)): (a,b) 465 
𝜂(𝑡) variation in-line with the center of the moving cylinder and 𝑝(𝑡) variation just below the 466 
SWL at the (c,d) forward and (e,f) rear stagnation points.     467 



17 | P a g e  
 

apparent from Figure 5; the vorticity field is “instantaneous” in both cases. It should also be 468 
noted that the so-called “laminar” solver is a misnomer as it simply refers to solving the NSE 469 
without any turbulence modelling. In this regard, the laminar approach is not a Direct 470 
Numerical Simulation or DNS (since no attempt is made to resolve the Kolmogorov scales) 471 
but rather a form of Implicit Large Eddy Simulation or ILES (wherein the discretization 472 
errors would mimic SGS modelling (Rodi et al., 2013)). Having said that, figure 5 indicates 473 
that the laminar solver captures more “turbulence” than the actual turbulence model!  474 
In addition to the above qualitative assessment, it is also important to quantify the impact of 475 
turbulence modelling (or lack thereof) on quantities of engineering importance. In order to do 476 
this, the time-variation of the free-surface elevation measured in the vicinity as well as 477 
pressure measured on the surface of the moving cylinder is reported in Figure 6 for both ILES 478 
and SKE simulations. It can be seen that ILES and SKE results are practically identical for 479 
the lower towing speed. This is corroborated by the vorticity fields (for 𝑈ୡ୷୪ = 0.34 m/s) 480 
reported in Figure 5. For the higher towing speed, the SKE results show a closer agreement 481 
with experiments in terms of both 𝜂(𝑡) variation as well as pressure at the rear stagnation 482 
point. However, the improvement gained from turbulence modelling in this case is not 483 
dramatic (even though the computed vorticity fields are dramatically different). The findings 484 
are in line with conclusions drawn from the ISOPE 2020 comparative study which was based 485 
on the same experimental dataset (Agarwal et al., 2021a). 486 

The necessity and nature of turbulence modelling depends on the nature of the problem itself 487 
and oftentimes the fidelity of the solution/simulation (against experiments) depends on the 488 
expertise of the CFD practitioner (this is later discussed at length in §7 on comparative 489 
numerical studies). One is not only required to assess the need of a turbulence model but also 490 
the impact of a particular model on the solution. Considering a wave-floating structure 491 
interaction problem as an example, a need for turbulence modelling may arise due to an over-492 
prediction of the angular acceleration of the body by a laminar model. If RANS-based 493 
turbulence modelling is introduced to supplement the viscous damping in the near-field of the 494 
body, the same may also negatively impact the simulation through unwanted damping of the 495 
incident waves. In such a case, the unwanted damping could be mitigated by: 496 

 Stabilizing the unbounded growth of 𝜇௧ using limiters (Larsen and Fuhrman, 2018). 497 
 Increasing advection using higher-order upwind schemes (Saincher and Sriram, 498 

2022b). 499 
 Increasing advection using conservative NSE formulations (Saincher and Sriram, 500 

2023). 501 
 Switching to a less empirical model such as WALE (zero-equation model with a 502 

single model constant) for computing 𝜇௧ (Rodi et al., 2013). 503 

The above discussion indicates that there exist multiple solutions to a given problem and 504 
there is a general consensus that the simplest models also prove to be the most robust. Taking 505 
into account the strongly empirical nature of turbulence modelling in general (RANS in 506 
particular), a modestly accurate albeit robust model applicable to several problems should be 507 
preferred over a heavily calibrated model that works perfectly albeit only for a single 508 
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problem.  Further, turbulence model should only be employed for the practical problems in 509 
need and not for all scenarios. 510 
 511 
3.1.6 Numerical Methods 512 
In addition to the algorithms used for pressure-velocity coupling, interface capturing and 513 
turbulence modelling, the flow solver is also comprised of spatio-temporal discretization 514 
schemes as well as linear equation systems solvers. Both categories of algorithms directly 515 
impact the accuracy and stability of the flow solver.  516 

Some of the popular discretization schemes that have been widely implemented for ocean 517 
engineering problems are now discussed in context to the momentum equation (1) and Table 518 
4. Discretization of the time-term can be carried out either using Linear Multi-step Methods 519 
(LMMs) or Runge-Kutta (RK) methods. These two categories of methods can be further 520 
classified into explicit and implicit schemes. Explicit LMMs are also known as the Adams-521 
Bashforth Methods (ABMs) whilst implicit LMMs are known as Adams-Moulton Methods 522 
(AMMs). As the name suggests, LMMs build accuracy by storing the flow solution across 523 
multiple time-levels such that a first-order LMM would require an existing flow-field 524 
solution from one time-level, a second-order LMM would necessitate solutions from two 525 
time-levels and so on. Owing to the requirement of an existing flow-field solution, LMMs >526 
𝒪(1) are not “self-starting” and some complexities exist in implementing these methods for 527 
variable time-steps. Moreover, the region of stability of LMMs shrinks with increasing order 528 
of accuracy (Drikakis and Rider, 2005). Nonetheless, a key advantage of LMMs is that the 529 
per-time-step computation effort does not increase with increasing order of accuracy; only the 530 
storage requirements increase.  531 

On the other hand, RK methods divide a single time-step into a number of intermediate steps 532 
with all intermediate velocity fields made divergence-free; only the most recently known 533 
velocity field is necessary for a given intermediate step. Given this characteristic, RK 534 
methods are self-starting and automatically account for variable time-steps. However, the fact 535 
that the predictor-corrector loop (cf. Figure 3) is executed multiple times within a time-step 536 
introduces a unique set of merits and shortcomings. The chief merit is the numerical stability 537 
which, unlike LMMs, increases with increasing order of the method. Another merit over 538 
LMMs is that storage requirements do not increase with increasing order. The chief 539 
shortcoming associated with RK methods is that each intermediate step entails a 540 
computationally expensive solution of the elliptic PPE or EOPC; per-time-step computation 541 
effort thus increases with increasing order. Referring to Table 4, it is seen that a number of 542 
NSE algorithms implement explicit time-integration (ABM or Total Variation Diminishing-543 
RK (TVD-RK)) which is suitable given the hyperbolic nature of wave propagation. In cases 544 
where a greater amount of numerical stability is desired, say conservative NSE formulations 545 
for violent WSI (Benoit et al., 2023) authors opt for AMM rather than TVD-RK. This is 546 
probably because the additional linear equation systems encountered for AMM (one system 547 
for each component of 𝑉ሬ⃗ ) is parabolic and less expensive to solve than the elliptic PPE/EOPC 548 
encountered multiple times within a time-step in the case of TVD-RK. It is also possible that 549 
very high-order AMMs might lead to dispersive (phase) errors in wave-propagation. 550 



19 | P a g e  
 

Table 4. A summary of the various discretization methods and linear equation system solvers 551 
implemented for NSE algorithms applied to ocean engineering problems reported in the 552 
literature; cf. nomenclature for abbreviations. (✘: data unavailable)  553 

Sriram et al. (2014) ABM1 Lagrangian -- SFDI SFDI GMRES 
Bihs et al. (2016) TVD-

RK3 
WENO Non-

conservative 
✘ ✘ BiCGStab 

Xie and Stoesser 
(2020) 

AMM1 Second-order 
TVD 

Conservative CD2 CD2 ADI / 
BiCGStab 

Agarwal et al. (2021b) ABM1 Lagrangian -- SFDI SFDI BiCGStab 

Anghan et al. (2022) ABM2 Blended FOU-
FiOU 

Non-
conservative 

CD2 CD4 GSSOR 

Saincher and Sriram 
(2022b) 

ABM1 Blended FOU-
FiOU 

Non-
conservative 

CD2 CD2 GSSOR 

Benoit et al. (2023) AMM1 Slope-limited 
SOU 

Conservative CD2 with third-order 
numerical smoothing 

GMRES 

Saincher and Sriram 
(2023) 

ABM1 Blended FOU-
FiOU 

Conservative CD2 CD2 GSSOR 

 554 
In addition to time-integration, the numerical schemes chosen for momentum advection, 555 
pressure and diffusion terms as well as the linear systems solver chosen for solving the 556 
pressure field also play a key role in deciding the robustness and accuracy of NSE solvers. In 557 
context to the discretization of the pressure and diffusion terms, second-order central 558 
differencing (CD2) suffices for most scenarios and is thus the most widely used (cf. Table 4). 559 
However, recent studies involving DNS of marine outfalls have instead implemented fourth-560 
order central differencing (CD4) for higher resolution treatment of the diffusion term (cf. 561 
Anghan et al., 2022). It should also be noted that CD4 treatment of the pressure gradient does 562 
not dramatically improve the accuracy of a solver and should rather be avoided to save 563 
computational effort (Tafti, 1996).  564 

Numerical formulations of the NSE inherently contain some form of numerical diffusion. In 565 
context to ocean engineering applications, this diffusion gets manifested as a gradual 566 
reduction in wave-height (Saincher and Banerjee, 2017). Whilst the numerical diffusion can 567 
be arrested through mesh refinement, a more computationally efficient way to do this 568 
(especially for mesh-based Eulerian solvers) is by increasing the order of advection 569 
discretization. However, computational efficiency does not translate to a straightforward 570 
implementation, especially for multiphase solvers. Implementation of a high order advection 571 
scheme in its “pure form” leads to severe dispersion errors in regions of sharp velocity 572 
gradients which, in case of waves, prevail at the air-water interface; the consequence is 573 
unphysical deformation of the generated waves. This can be corrected by either using 574 
inherently bounded schemes such as WENO (Bihs et al., 2016) or blended schemes where 575 
(say) only 50% of the advected momentum is estimated using the high-order scheme, the rest 576 
being  estimated using FOU (Saincher and Sriram, 2022b). For more violent scenarios 577 
involving wave-breaking and/or wave-slamming, a higher order treatment of advection may 578 
not be sufficient and rather the correct amount of advection being attributed to each fluid-579 
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phase needs to be ensured. This is where conservative NSE formulations come into picture 580 
wherein 𝜌∗ is shifted to the left-hand-side of equation (1) with the time and advection terms. 581 
It has been recently demonstrated by the authors that conservative NSE solvers are necessary 582 
for correctly capturing the topology of waves overturning over a long distance; such as 583 
solitary waves breaking over a beach/shallow water (Saincher and Sriram, 2023). It is worth 584 
mentioning that conservative NSE formulations strongly and consistently couple mass and 585 
momentum transport (cf. the discussion on mass inconsistency in Saincher and Sriram 586 
(2023)) and thus momentum advection is more strongly governed by material transport 587 
(owing to the 1: 800 density ratio between air and water) rather than the momentum 588 
advection scheme itself (Bussmann et al., 2002). This makes conservative NSE a suitable 589 
alternative to high-order advection schemes for arresting wave-damping in non-590 
violent/moderately violent WSI scenarios.          591 

For rigid structures, one can incorporate this in the computational domain and solve the 592 
interaction problems as shown in Figure 5. For elastic and floating structures, a separate 593 
equation of motion will be solved to understand the fluid-structure interaction process, see, 594 
Sriram and Ma (2012), Rijas et al. (2019) and Vineesh and Sriram (2022). In the case of 595 
modelling porous/vegetation structure interactions with waves, one can adopt microscopic or 596 
macroscopic approaches. The macroscopic approach is commonly adopted due to the 597 
computational advantages as well as in terms of requirement for physical process (see, Divya 598 
and Sriram (2020)). For modelling the porous/vegetation structure interaction with waves, 599 
additional resistance terms such as the: (a) linear drag coefficient representing the laminar 600 
flow, (b) non-linear drag coefficient representing the turbulent flow, (c) coefficient for the 601 
transitional flow and (d) virtual mass coefficient for inertia terms were incorporated in the 602 
governing equations. The numerical studies on the wave porous structure can be carried out 603 
in two different ways:  604 

(i) Coupling of pure fluid and porous flow equations, in which the fluid flow is solved using 605 
the NSE and porous flow with different porous flow model, following which the interface 606 
was coupled by matching the flow properties. Such coupling  can be explicit, implicit or 607 
iterative in nature.  608 

(ii) Based on unified or single governing equations to model both porous structure and fluid 609 
flow. In the microscopic approach, the aim is to capture detailed flow physics, directly 610 
resolved by the NSE (see Xie and Stoesser (2023)). 611 

Apart from mesh based approach in solving the NS, mesh-free or particle methods are quite 612 
popular and further developments are actively being carried out. These developments have 613 
been the topic of many recent review papers such as Luo et al. (2021), Sriram and Ma (2021), 614 
Lind et al. (2020) and references therein. However, the acceptability of the mesh-free 615 
methods or particle methods for industry and practical applications in the projects are not 616 
matured compared to mesh-based methods. The consolidation of the work carried out by the 617 
authors with regards to the mesh-free method based on Meshless Local Petrov Galerkin 618 
Method (MLPG) has been reviewed in detail in Sriram and Ma (2021) and shall not be 619 
repeated here for the sake of brevity. Further, an important relation between the widely 620 
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popular Smoothed Particle Hydrodynamics (SPH), Moving Particle Semi-Implicit Method 621 
(MPS) and MLPG was established. However, as this special issue concerns the Newton 622 
fellowships, a flow chart of development has been reproduced for completeness as shown in 623 
Figure 7. 624 

 625 
Figure 7. Summary of the history of the development of the Meshless Local Petrov Galerkin 626 
method (MLPG) and its application in Ocean Engineering (revised and updated from Sriram 627 
and Ma, 2021). Grey shaded boxes are development with partial or full support from the 628 
Newton fellowship.629 
 630 
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631 
The fully nonlinear potential flow theory (FNPT) has significantly matured in today’s context 632 
and is being extensively used by both researchers as well as industry. The methodology was 633 
pioneered by Longuet-Higgins and Cokelet (1976) using a mixed Eulerian and Lagrangian 634 
approach. The simulation of nonlinear waves using FNPT can be carried out either by fully 635 
discretising the domain and then solving the Laplace equation using numerical approaches 636 
(like FEM, BEM and so on) or by obtaining the solution of the Laplace equations using 637 
spectral, Eigen function or Fourier methods. In the former case, the computational effort 638 
would be quite significant when one extends the method to 3D, however, the advantage is 639 
that one can simulate waves interacting with any arbitrarily complex structure. In the latter 640 
approach, the computational effort is lesser in comparison and such methods are largely 641 
employed for simulating the fully nonlinear waves. Dommermuth and Yue (1987) and West 642 
et al. (1987) proposed an attractive fast convergence, high accuracy and fast resolution 643 
properties-based higher order spectral (HOS) method. These fast methods of computation are 644 
very useful for calculating the long-time evolution of nonlinear waves and can be used as an 645 
input for the numerical models based on the NS equations. A detailed review of these models 646 
can be found in Kim et al. (1999) and in Ma (2008) and references therein. Normally, the 647 
FNPT-based models are quite effective in reproducing the extreme steep non-breaking waves, 648 
however, once the wave begins to overturn (the crest becomes vertical), the simulation 649 
crashes (Mohanlal, 2023). For some models, the crash may be delayed up to the point when 650 
the overturning crest hits the free-surface (Grilli et al., 2001). Naturally, the conventional 651 
FNPT models cannot handle wave-trains in which multiple breaking events occur in 652 
succession (over a period of time). In order to overcome these effects and carry out the 653 
simulations of overturning waves for a longer duration, researchers employ empirical 654 
treatment such as eddy viscosity models to incorporate breaking effects (Tian et al. (2010), 655 
Barthelemy et al. (2018), Sieffert and Ducrozet (2018), Hasan et al. (2019)). Very recently, 656 
Mohanlal (2023) has developed a FNPT model to handle multiple depth-limited two-657 
dimensional breaking events in irregular sea-states, steepness-limited breaking of two-658 
dimensional focusing waves as well as depth-limited breaking of regular waves over three-659 
dimensional bathymetry. In their model, incipient breaking is detected based on whether the 660 
ratio of the orbital velocity to the wave-celerity exceeds a given threshold. Following 661 
detection, the energy of the over-turning wave is dissipated through an absorbing/damping 662 
surface pressure term introduced into the dynamic free-surface boundary condition (Grilli and 663 
Horrillo, 1997). It is worth mentioning that the wave generation techniques discussed in 664 
Table 2 in context to the NS models can also been incorporated in the FNPT models, mostly 665 
using moving wall, relaxation zone and/or prescribing inlet wave characteristics.  666 
 667 
4 Depth-averaged Mathematical Models 668 
The depth-averaged models are governed by the Boussinesq Equations (BSNQE), the Green-669 
Naghdi equations, the Korteweg-De Vries (KdV) equation or the Shallow-Water Equations 670 
(SWE). These models are based on an assumption that the horizontal velocities (in the 671 
shoreward and longshore directions) are uniform or varying over the water column. A 672 
summary of the depth-averaged mathematical models is provided in Table 5; it can be 673 
appreciated that the models are being actively developed since the 1960s. In some of the 674 
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models, the approach is based on the notion of a uniform horizontal velocity, which is a 675 
characteristic of long-wave-induced orbital kinematics, the baseline models are limited to 676 
shallow-water. It is evidenced from Table 5 that the research effort has been driven by the 677 
need to expand the applicability of these models to deep-water (𝑘𝑑 ≥ 𝜋). This was achieved 678 
through various means such as: 679 

 replacing the depth-averaged velocity by velocity defined at an arbitrary depth to act 680 
as the velocity variable (Nwogu, 1993), 681 

 improving the dispersion characteristics through modification of the governing 682 
equations (Beji and Nadaoka, 1996) and 683 

 piecewise integration of the momentum equations over multiple layers yielding 684 
separate velocity profiles within each layer (Lynett and Liu, 2004a).  685 

Table 5. A summary of various depth-averaged mathematical models developed for wave-686 
propagation reported in the literature; cf. nomenclature for abbreviations.   687 

Peregrine (1967) 
Nonlinear BSNQE for 

varying depth 
FDM Solitary No No 

Green and Naghdi 
(1976) 

Wave propagation in 
variable depth 

(rotational) 
Analytical -- No No 

Madsen et al. 
(1991) 

Linear dispersive 
BSNQE for deep water 

FDM 
Regular, Bichromatic 
(1.95 ≤ 𝑘𝑑 ≤ 2.72) 

No No 

Nwogu (1993) 
Nonlinear BSNQE with 

velocity at arbitrary 
depth 

FDM 
Regular, Irregular  

(0.44 ≤ 𝑘𝑑 ≤ 3.13) 
No No 

Wei et al. (1995) 
Fully nonlinear BSNQE 

for varying depth 
FDM Solitary, Undular bore No No 

Beji and Nadaoka 
(1996) 

Improved BSNQE for 
varying depth 

FDM 
Regular  

(0.47 ≤ 𝑘𝑑 ≤ 1.91) 
No No 

Lynett et al. 
(2002) 

Fully nonlinear BSNQE FDM 
Regular, Solitary 

(𝑘𝑑 = 0.14) 
Yes No 

Madsen et al. 
(2002) 

Fully nonlinear BSNQE FDM 
Solitary, Regular 

(0.65 ≤ 𝑘𝑑 ≤ 2𝜋) 
No No 

Lynett and Liu 
(2004a) 

Multi-layer BSNQE Analytical 
Regular 

(𝜋 ≤ 𝑘𝑑 ≤ 8𝜋) 
No Yes 

Lynett and Liu 
(2004b) 

Multi-layer BSNQE FDM 
Regular, Solitary, 

Landslide 
(0.70 ≤ 𝑘𝑑 ≤ 9.00) 

No Yes 

Sitanggang and 
Lynett (2005) 

Fully nonlinear BSNQE FDM 
Gaussian hump, 
Solitary, Regular 

(𝑘𝑑 = 1.27) 
No No 

Shi et al. (2012) Fully nonlinear BSNQE 
FDM + 
FVM 

Regular, Irregular, 
Solitary 

(0.36 ≤ 𝑘𝑑 ≤ 0.78) 
Yes No 

Yang and Liu 
(2020) 

Wave-current model for 
varying depth based on 

Euler equations 

Galerkin, 
Subdomain 

methods 

Regular, Focusing + 
sheared current 

(1.00 ≤ 𝑘𝑑 ≤ 22.0) 
No No 

Agarwal et al. 
(2022a) 

Fully nonlinear BSNQE FEM 
Regular, Solitary, Ship-

generated 
(0.73 ≤ 𝑘𝑑 ≤ 1.92) 

No No 
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These models have been employed to address larger-scale spatial (~km) and temporal 688 
(~min) processes in ocean engineering such as ship-generated waves in bays and inland 689 
waterways (cf. Agarwal et al., 2022a). The depth-averaged models are widely used in the 690 
industry for waves and current hydrodynamics with models capable of handling interactions 691 
between waves and sheared currents being recently proposed by Yang and Liu (2020). Whilst 692 
the BSNQE-based models are based on irrotational and inviscid assumptions, turbulence and 693 
wave breaking have also been treated using the empirical approaches (Lynett et al., 2002 ; 694 
Shi et al., 2012). The BSNQE-based models have also been used for coupling with NS 695 
equations-based models to minimize the computational time (cf. Agarwal et al., 2022b and 696 
references therein). It is worth mentioning that the different approaches of wave-697 
generation/absorption discussed in Table 2 in context to the NS models are also applicable to 698 
depth-averaged models except the moving wall approach. It is also worth noting that the 699 
present review only aims at providing a brief overview of the development of BSNQE-type 700 
models for the sake of completeness in context to multi-scale modelling and is by no means 701 
all-inclusive. The reader is referred to Brocchini (2013) for a detailed review.  702 
 703 
5 Regional and global-scale modelling in Ocean Sciences 704 
If one refers back to the spatio-temporal scale classification of physical processes and models 705 
in Figure 1, it is seen that the BSNQE-type depth-averaged models belong in the ~1 km 1 h⁄  706 
category. Whilst this is considerably “large-scale” compared to the depth-resolved models 707 
(~1 m 1 min⁄ ), the depth-averaged models are also considerably “small-scale” to regional 708 
and global-scale models (~10ଷ km 1 ka⁄ ) that are typically applied in ocean sciences. Both 709 
regional and global-scale simulations in ocean sciences have been traditionally and 710 
fundamentally based on the concept of multi-scale modelling. Having said that, popular 711 
ocean-science models are generally based on RANS-type momentum equations; multi-scale 712 
modelling is seldom achieved through the inclusion of potential theory or Laplace equations. 713 
This is primarily because such models belong to the class of Ocean General Circulation 714 
Models (OGCMs) wherein the assumptions of zero viscosity and vorticity need to be relaxed. 715 
A summarization of the state of the art in the development of regional and global-scale ocean 716 
models is provided in Table 6.  717 
 718 
 Table 6. A summary of various regional and global ocean models developed for various 719 
ocean science applications reported in the literature; cf. nomenclature for abbreviations.   720 

Bryan (1968) -- 
NSE in geodetic coordinates 

(Hydrostatic, Boussinesq 
approximation, turbulent viscosity)  

Indian Ocean 30 years 
Circulation of the 

World Ocean 

Bleck and 
Boudra 
(1981) 

-- 

Euler equations in hybrid 
coordinates (isopycnic + non-

isopycnic) 
(thermodynamic coupling of density 

and pressure, Coriolis and wind-
forcing) 

2400 km

× 1200 km 
5 years 

Formation and 
evolution of ocean 

gyres 
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Blumberg and 
Mellor (1987) 

POM 

RANS in 𝜎-coordinates 
(hydrostatic, Coriolis forcing, 

Boussinesq approximation, equation 
of state, MY turbulence closure) 

65 km

× 700 km 
2.5 days 

Coastal trapped 
waves, upwelling, 
Ekman transport 

Chen et al. 
(2003) 

FVCOM 

3D RANS equations in 𝜎-
coordinates  

(MY level 2.5 and Smagorinsky 
schemes for vertical and horizontal 
turbulence closures respectively)   

Bohai sea 
(450 km ×

500 km ×

20 m) 

10 days 

Tidal amplitudes, 
residual currents 
and temperature 

variation 

Satilla river 
(40 km ×

30 km ×

4 m) 

-- 
Tidal amplitudes, 

currents and 
residual currents  

Shchepetkin 
and 
McWilliams 
(2005) 

ROMS 

Coupled barotropic (depth-
averaged) and baroclinic (residual) 
momentum equations in hybrid 𝑧 −

𝜎 topography-following coordinates 

-- -- -- 

Barron et al. 
(2006) 

NCOM 

RANS in surface-topography-
following hybrid 𝜎 − 𝑧 coordinates 
(hydrostatic, Coriolis, Boussinesq, 
equation of state, MY turbulence 
closure, curvilinear surface mesh) 

Global ~6 years 

Sea-surface and 
depthward 

temperature 
variations  

Chassignet et 
al. (2007) 

HYCOM 

Euler equations in hybrid 
coordinates (isopycnal + hydrostatic 

+ 𝜎) 
Open ocean to mixed-layer to 

coastal regions 

Denmark 
Strait 

-- Undersea overflow 

Gulf of Cadiz -- Undersea overflow 

Gulf of 
Mexico 

-- 
Sea surface height 
in the Gulf Stream 

-- 
Chlorophyll 

concentration in 
the Gulf Stream 

North 
Atlantic 

-- 
Sea-surface 
temperature 

-- 
Salinity and 
temperature 

gradients 

Barth et al. 
(2008) 

ROMS + 
HYCOM 

RANS equations in topography-
following coordinates + Euler 
equation in hybrid coordinates  

(ROMS fully nested in HYCOM) 

West Florida 
Shelf 

~1 year 
Effect of deep-

ocean currents on 
shelf circulation 

Haidvogel et 
al. (2008) 

ROMS 

RANS equations in topography-
following coordinates  

(Hydrostatic, Boussinesq 
approximation, 𝑘 − 𝜖 and 𝑘 − 𝜔 

turbulence closures, Ecological sub-
routines, Rheology and 

Thermodynamics for sea-ice) 

Hudson river 
estuary 

50 days 
Tidal dynamics, 

salt transport  

NENA 
continental 

shelf 
3 years Nitrogen cycling 

North Pacific 
Basin 

6 years 
Basin-scale 

climate modelling 

Barents Sea 12 years 
Sea-ice 

distribution and 
dynamics 

Bomminayuni 
et al. (2012) 

FVCOM 
3D RANS equations in 𝜎-

coordinates  
(MY level 2.5 and Smagorinsky 

Rose Dhu 
Island 

(40 km ×

32 days 
Identification of 

hydrokinetic 
energy hotspots 



26 | P a g e  
 

schemes for vertical and horizontal 
turbulence closures respectively)   

40 km) from tidal streams 

Delandmeter 
et al. (2018) 

SLIM 
3D 

3D Hydrostatic Boussinesq 
equations in ALE formulation 
(Equation of state to correlate 

density, temperature and salinity, 
Coriolis forcing, Smagorinsky and 
𝑘 − 𝜖 closures for horizontal and 
vertical turbulence respectively) 

Lake 
Tanganyika 
(650 km ×

50 km ×

0.57 km) 

~3 years 

Dynamics of 
thermocline 

oscillations in a 
lake 

Adcroft et al. 
(2019) 

MOM6 
+ OM4 

3D Hydrostatic Boussinesq 
equations in generalized orthogonal 
curvilinear coordinates with vertical 

Lagrangian remap 
(Equation of state to correlate 

density, temperature and salinity; 
Coriolis forcing; EPBL for planetary 
boundary layer; MLE for baroclinic 
eddies; parameterizations for shear 

instabilities, internal breaking 
waves, BBL, lateral friction and 

mesoscale eddies; SIS2.0 model for 
sea-ice and icebergs) 

World Ocean 300 years 

Ocean-surface 
climate in terms of 

sea-surface 
temperature 

Seasonal cycling 
of mixed layer 
depths (MLDs) 

Ocean ventilation 

Temperature and 
currents in the 
upper ocean  
Arctic and 

Antarctic sea-ice 

Hanert et al. 
(2023) 

SLIM 
2D 

Nonlinear SWE  
(Horizontal baroclinity, surface 
wind-stress, turbulent diffusion, 

bottom-drag) 

Persian / 
Arabian Gulf 
(gulf-scale to 

coastal-
structures-

scale) 

~1 month 
Multi-scale 

regional 
circulation patterns  

 721 
Referring to Table 6, the popular ocean models include POM, FVCOM, ROMS, HYCOM 722 
and MOM6. The horizontal variable arrangement in these models is based on various classes 723 
of the finite-difference Arakawa grids, namely:  724 

 A-grid in which scalars (eg. temperature and salinity) and vectors (eg. velocity) are 725 
defined at the same point, 726 

 B-grid in which scalars are staggered from the velocity by half a grid dimension, 727 
however both velocity components are defined at the same point and 728 

 C-grid in which both velocity components as well as scalars are staggered by half a 729 
grid dimension from one another. 730 

In the vertical direction, the following coordinate system(s) are implemented: 731 
 𝑧-coordinates which follow the vertical direction and are suitable for resolving free-732 

surface flow features, 733 
 𝜎-coordinates which follow the bottom topography/bathymetry and are suitable for 734 

resolving the bottom boundary layer and 735 
 isopycnal or isopycnic coordinates which follow the density contours and are suitable 736 

for resolving tracer (temperature, salinity etc.) transport in the open ocean.  737 
As evidenced from Table 6, most ocean models employ some combination of the above 738 
coordinates which accords the capability for multi-scale simulations. A hybridization of 739 
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coordinates is necessary because free-surface features, topographical features and density 740 
stratification all occur at different vertical scales and moreover the individual scales vary as 741 
one move from the open ocean to coastal regions (Chassignet et al., 2007). Another important 742 
aspect which differentiates OGCMs from FNPT and BSNQE approached is the need for 743 
modelling the feedback from the subgrid-scales to the inertial-scales in terms of both 744 
momentum as well as scalar transport (turbulent diffusion). Referring to Table 6, this is 745 
achieved through various turbulence closure models. It is also interesting to note that, 746 
because the horizontal scale in such problems is significantly greater than the vertical scale 747 
(cf. select domain sizes in Table 6), the horizontal and vertical directions employ different 748 
turbulence closures. Typically, the Smagorinsky model (zero-equation turbulence model 749 
wherein the evaluation of 𝜇௧ is conceptually similar to Prandtl’s mixing length model (Rodi 750 
et al., 2013)) can be applied in the horizontal direction whilst a more comprehensive two-751 
equation model (the MY-2.5 model is a popular choice; cf. Mellor and Yamada (1982) and 752 
Chen et al., (2003) for details) can be applied in the vertical direction. This unique numerical 753 
constitution makes ocean models ideally suited for multi-scale modelling across a wide range 754 
of applications which is evidenced from Table 6. It is worth mentioning that the present 755 
review only aims at providing a brief overview of the development of OGCMs for the sake of 756 
completeness in context to multi-scale modelling and is by no means comprehensive. The 757 
reader should refer to the literature listed in Table 6 for further details.    758 
  759 
6 Coupled models 760 
In the previous sections, we presented several different models that are available to treat the 761 
problem at hand. However, rather than different models, it would be ideal to have one 762 
particular model to handle a wide range of problems spanning various spatio-temporal scales. 763 
One way of achieving this, as discussed in context to ocean sciences in §5, is to employ 764 
hybrid coordinate systems. Another way of achieving this is coupling different modelling 765 
tools that are developed over the period of years leading to multi-scale modelling in ocean 766 
engineering. Such coupled models are discussed in the following subsections.   767 
 768 

769 
With regards to coupling models, there are two approaches; one is domain decomposition and 770 
the other functional decomposition. The domain decomposition (DD) strategy divides the 771 
computational domain into parts and applies different mathematical models in each part. This 772 
is ideally done to avoid computationally expensive (and energy dissipative) NS simulations in 773 
the entire domain. Thus, multi-scale modelling is achieved by gaining the ability to model 774 
larger computational domains than would normally be allowed for a pure NS model. The 775 
functional decomposition (FD) strategy was pioneered by Dommermuth (1993) who 776 
simulated the formation of striations and scars on a free-surface due to impingement by a pair 777 
of vortex tubes shed from the tips of a submerged delta wing. In the case of FD, rather than 778 
physically decomposing the domain, the instantaneous velocity and pressure fields are 779 
decomposed into irrotational and vortical components. Another key characteristic of FD is 780 
the prescription of a constraint that the normal component of the vortical velocity is zero at 781 
the free-surface. This yields a transport equation for the free-surface elevation 𝜂 in terms 𝜂 782 
and the velocity potential 𝜙 which accords an FNPT-like framework for the solution of 783 
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𝜂(𝑥, 𝑦, 𝑡). Such a numerical treatment means that FD yields “natural and exact transition” 784 
from viscous vortical flow to inviscid vortical flow to potential flow (Dommermuth, 1993); 785 
this is not possible in a conventional primitive-variable formulation of the NSE.          786 
 787 

788 
In most DD-based problems, the computational domain is decomposed into a viscous inner 789 
sub-domain and a potential outer sub-domain. The information (velocity, pressure and 790 
surface elevation) will be transferred through either relaxation zones or a sharp interface. 791 
Also, based on how the information between the solvers is being transferred, it can be either 792 
one-way coupling (weak coupling) or two-way coupling (strong coupling). In one way 793 
coupling, information is transferred only from the potential solver into the viscous solver, but 794 
in two-way coupling, the information is transferred in both ways, from depth-averaged or 795 
depth-resolving irrotational models to full NS and vice-versa. The two-way coupling is 796 
advantageous since it allows for a significantly smaller computational region for the viscous 797 
solver. However, it necessitates an iterative process or an implicit approach between the two 798 
models on a shared interface, which might increase the computational costs (Sriram et al., 799 
2014). The advantage of one-way coupling is that no such iterations are needed, but it needs a 800 
longer viscous domain to avoid the reflection from outer boundaries. This method is suitable, 801 
wherein, one needs to analyse the kinematics of the breaking waves in deep water or depth-802 
induced breaking in the shallow water region (Saincher and Sriram, 2023).  803 
An early implementation of the concept of weakly-coupled hybrid modelling can be seen in 804 
the work of Fujima et al. (2002). They spatially nested a three-dimensional Navier-Stokes 805 
model within a two-dimensional nonlinear long-wave model to simulate tsunami-breakwater 806 
interaction at 1: 200 scale. An obvious shortcoming of the model was that spanwise vortices 807 
generated in the depth-resolving model that could not be transferred back to the depth-808 
averaged model due to the latter’s reduced dimensionality. Grilli and co-workers (1999, 809 
2003, 2004) coupled the 2D HOBEM-FNPT with NS model based on SL-VOF. Extension of 810 
the FEM code with the NS model has also been carried out by Clauss and co-workers (2004, 811 
2005). For the NS model they have tested with the commercial softwares such as FLUENT, 812 
CFX and COMET. They tested their coupling approach by studying the deep water wave 813 
breaking (breaking of freak waves) and comparing with experimental measurements. Yan and 814 
Ma (2009) coupled the QALE-FEM with the commercial software STAR-CD to study the 815 
wind effects on breaking waves. Hildebrandt et al. (2013) coupled the FEM with the 816 
commercial software ANSYS to model the wave impacts with tripod structure. 817 
Narayanaswamy et al. (2010) and Kassiotis et al. (2011) used one way coupling of the 818 
Boussinesq model with the SPH method for solitary wave simulations. Without feedback 819 
from the SPH to the Boussinesq model, a fixed overlapping zone was considered to transfer 820 
the information. Recently, this was improved by Agarwal et al., (2022b) by coupling a 821 
Boussinesq model with the MLPG (Meshless Local Petrov Galerkin) method.  822 
However, if one needs to analyse the wave structure interactions in the presence of floating 823 
bodies or fixed structure, then strong coupling of the two models is required, wherein the 824 
radiated waves will propagate from NS model to depth-averaged or depth-resolved 825 
irrotational models. In strong coupling, the computational domain is divided into two parts, in 826 
one part the generation and propagation of waves is being considered and in the other part 827 
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structure/breaking region will be present. The modelling of first part of the domain will be 828 
carried out using depth-averaged or depth-resolved irrotational models and then the boundary 829 
conditions (velocity and pressure) are fed into the NS model at the same time steps, to study 830 
the remaining part of the domain. Then the velocity from NS model is again feed back to the 831 
depth-averaged or depth-resolved irrotational model domain for the next time step. Thus, in 832 
general, the strong coupling needs to couple the models both in space and time domains. For 833 
the coupling in space domain, the following four methods have been found to be employed, 834 
as pointed out by Sriram et al. (2014): (a) fixed boundary interface, (b) moving boundary 835 
interface, (c) fixed overlapping zone and (d) moving overlapping zone. 836 

 837 

 
Plane-sloping beach Center of the sloping ridge 

Figure 8. Simulation of solitary wave-breaking over a 1: 15 plane-sloping beach and sloping 838 
ridge using weakly coupled IITM-FNPT2D and IITM-RANS3D: (top) topology of the over-839 
turning wave visualized using iso-volumes of VOF and coloured using streamwise velocity, 840 
(bottom) validation of the breaking topology against literature (Saincher and Sriram, 2023).   841 
 842 
One of the pioneering works in this regard was carried out by Grilli and co-workers (2005, 843 
2010) wherein, they extended the model from weak coupling to strong coupling for studying 844 
the 3D breaking waves by coupling 3D HOBEM-VOF. Later, Grilli and co-workers (2007, 845 
2008, 2009) coupled the NWT and NS based on Large Eddy Simulation (LES) to study the 846 
forced sediment transport simulations. Later studies from Greco (2001), Colicchio et al. 847 
(2006), Greco et al. (2007) and Sitanggang and Lynett (2010)  further established the 848 
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feasibility of the DD strategy. Following these studies, a ground-breaking  contribution was 849 
made by Sriram et al., (2014) wherein the full capability of coupled DD modelling was 850 
explored in detail.  851 
 852 

 853 
Figure 9. Simulation of directional regular waves (aligned at 30° to the 𝑥-axis) interacting 854 
with a fixed cylinder using weakly coupled FEBOUSS and MLPG_R using 3D cylindrical 855 
coupling interfaces (Agarwal et al., 2022b).   856 
 857 

 858 
Figure 10. Simulation of regular waves interacting with a moored floating spar using a 859 
coupled model employing HOS-NWT, foamStar and MoorDyn (Aliyar et al., 2022).  860 

However, until now mostly these strong coupling are realised only in the 2D problems, and, 861 
to the best of the authors’ knowledge, the strong coupling in 3D is yet to be attempted. 862 
Typical examples of simulations performed based on one-way coupling using the codes 863 
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developed by the authors and their co-workers: IITM-RANS3D, HOS-NWT-foamstar (using 864 
depth-resolved potential and viscous models) and FEBOUSS-MLPG (using depth-averaged 865 
potential and viscous models) are reported in Figures 8-10.  866 

One more popular hybrid model is qaleFOAM, which has been developed based on the 867 
experience from QALE-FEM. This model adopts the domain decomposition approach, which 868 
combines a two-phase Navier–Stokes (NS) model with a model based on the fully nonlinear 869 
potential theory (FNPT). In a region around the structures and/or the breaking waves (NS 870 
domain), the open-source NS solver OpenFOAM/interDyMFoam is applied. In the rest of the 871 
computational domain (FNPT domain), the FNPT-based quasi arbitrary Lagrangian–Eulerian 872 
finite element method (QALE-FEM) is adopted. The qaleFOAM was originally developed 873 
for modelling the turbulent flow near offshore structures subjected to extreme waves (Li et 874 
al., 2018). It has now been extended and applied to model a wide range of wave-structure 875 
interaction problems, such as the wave resistance (e.g. Gong et al., 2020), violent wave 876 
impact on sea walls (Li et al., 2023), survivability and performance of floating wind turbines 877 
(Yu et al., 2023; Yuan et al., 2023) and wave energy converters (Yan et al., 2020) as well as 878 
wave-driven drift of floating objects (Xiao et al., 2024). Recently blind tests and numerical 879 
comparative studies have confirmed its superiority over single-model methods including the 880 
potential theory and the NS solvers. The details will be discussed below. However, one of the 881 
theoretical issues in these DD coupling is that the researchers coupled irrotational flow model 882 
with the rotational flow models. Particularly for strong coupling, there is a mathematical 883 
discontinuity in the velocity field and they overcome this with numerical approaches (Sriram 884 
and Ma, 2021). This needs to be overcome in the future modelling efforts, see Yang and Liu 885 
(2022) for the development of the multi-layer model based on rotational flow. 886 
 887 

888 
As described earlier in §6.1, the fundamental concept for the functional decomposition (FD) 889 
is to use the Helmholtz decomposition to separate the velocity field into the rotational and 890 
irrotational parts to investigate the free surface flow (Dommermuth, 1993). The FD approach 891 
has also been adopted to simulate ocean engineering scenarios. In context to WSI, there are 892 
two categories under this decomposition, based on whether the structure is considered in the 893 
potential solver or not.  894 
6.3.1 First category: structure handled by both potential and viscous solvers 895 
In the first category, the WSI problem is split into a potential component and a viscous part. 896 
The complete problem is initially solved by a potential solver, and then rectified by adding 897 
the viscous correction (Kim et al., 2005; Edmund et al., 2013; Rosemurgy et al., 2016; 898 
Robaux and Benoit, 2021). One drawback of this strategy is that the potential solver must 899 
first solve the entire problem before applying the viscosity correction. As a result, challenges 900 
such as higher-order waves, stability issues in the steep waves and breaking induced by 901 
presence of structure with complex interactions are still constraints in this classification. 902 
Recently, Robaux (2020) published a thorough description of nonlinear waves’ interactions 903 
with a horizontal cylinder with a rectangular cross section employing potential solver, CFD 904 
solver, and HPC-OpenFOAM coupled DD and FD based solvers. In comparison to the full 905 
CFD simulation, both coupling approaches, in particular the FD-based approach, need a 906 
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minimal amount of computational time while providing an accurate representation of the 907 
loads and associated hydrodynamic coefficients.  908 
6.3.2 Second category: structure only handled by the viscous solver 909 
In the second category, the total unknown is decomposed into the incident part and the 910 
complementary part. Only the incident flow is modelled in the incident part (wave only), 911 
leaving all the interaction with structure calculated by the viscous solver as the 912 
complementary part. The common name among researchers for this classification is 913 
SWENSE (Spectral Wave Explicit Navier Stokes Equations), proposed by (Ferrant et al., 914 
2002) and actively developed by (Gentaz, 2004; Li et al., 2018; Kim, 2021). The NS equation 915 
modified into the SWENSE is solved to yield the complementary fields. The advantage of 916 
this method is that the wave models directly provide incident wave solutions, minimising the 917 
problem’s complexity and cost. For a detailed derivation of single-phase and two-phase 918 
SWENSE, refer to Luquet et al. (2007) and Li et al. (2018) respectively. The applications in 919 
single-phase SWENSE over the years can be read in (Luquet et al., 2007; Monroy et al., 920 
2010). Recently, the two-phase SWENSE method (Li et al., 2021) has been implemented on 921 
top of foamStar and is called as foamStarSWENSE, and the only difference is that in this 922 
solver, the NS equations in foamStar are replaced by SWENSE. Recent developments of 923 
foamStarSWENSE such as efficient regular and irregular wave generation in the solver and 924 
higher-order forces estimation on a vertical cylinder, buoy and floating spar can be referred to 925 
in Choi (2019), Kim (2021), Li et al. (2018) as well as in Aliyar et al. (2022).  926 
 927 

928 
Recently, there has been a research effort to implement the domain decomposition (DD) 929 
strategy to (strongly) couple geophysical fluid dynamics (GFD) / ocean-sciences models with 930 
Navier-Stokes solvers. A couple of such hybrid GFD-CFD models have been listed in Table 931 
7 wherein FVCOM (cf. Table 6 for details) has been coupled to either the overset mesh-based 932 
single-phase NS solver SIFOM or the unstructured mesh-based two-phase NS solver SIFUM. 933 
It is worth mentioning that in addition to the NS solver being based on overset meshes 934 
(SIFOM), the overset grids have also been employed to nest the SIFOM/SIFUM domain 935 
within the FVCOM domain. Referring to the domain sizes in Table 7, it should be noted that 936 
in some cases, the SIFUM domain is not necessarily entirely nested within the FVCOM 937 
domain along the vertical (𝑧) direction. This is attributable to the ability to model the air-938 
phase within the SIFUM framework which is necessary for violent WSI scenarios.  939 

Such hybrid GFD-CFD modelling provides the ability to perform multi-scale environmental, 940 
geological as well as FSI/WSI simulations over domains spanning several hundred or even 941 
several thousands of square kilometres. However, it is worth mentioning that some of the 942 
problems listed in Table 7 are comparatively “small-scale” and can indeed be tackled by 943 
more conventional FNPT-RANS models. For instance, Saincher and Sriram (2022b) have 944 
applied IITM-RANS3D to a 0.045 × 0.0022 × 0.002 kmଷ domain to simulate the 945 
interaction between focusing waves and a moving cylinder. In another study Saincher et al. 946 
(2021) had applied IITM-RANS3D to a 0.3 × 0.005 × 0.007 kmଷ domain to study the run-947 
up characteristics of violently breaking long and high waves that could be generated by an 948 
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extreme coastal event. Thus, the lower-limit of applicability of the hybrid GFD-CFD models 949 
can also be tackled by hybrid FNPT-RANS models.    950 
   951 
Table 7. A brief overview of geophysical fluid dynamics / ocean science models recently 952 
hybridized with Navier-Stokes equations models reported in the literature; cf. nomenclature 953 
for abbreviations. (✘: data unavailable)  954 

Tang et 
al. 
(2014) 

FVCOM 
(weakly 

3D) 

SIFOM  
(fully 
3D, 

single-
phase) 

1.8 × 0.6 × 0.1 0.4 × 0.4 × 0.1 

DD 
(strong 

coupling) 

Flow over flat plate 

3.5 × 0.4 × 0.15 ~2.0 × 0.3 × 0.1 Transient sill flow 

3 × 0.3 × 0.009 ~0.05 × 0.02 × 0.009 Bridge pier (lab-scale) 

3 × 0.6 × ✘ ~0.8 × 0.4 × ✘ Thermal effluent 

~70 × 140 × 0.013 ✘ Bridge pier (river-scale) 

~170 × 170 × 0.05 ~0.7 × 0.7 × 0.05 Flow past seamount 

Qu et al. 
(2016) 

FVCOM 
(weakly 

3D) 

SIFOM  
(fully 
3D, 

single-
phase) 

3 × 0.6 × 0.012 0.075 × 0.03 × 0.012 

DD 
(strong 

coupling) 

Thermal effluent 

~20 × 15 × 0.004 ✘ 
Lagrangian tracking of 

estuary flows 

~250 × 1 × 0.01 ✘ 
Storm surge impact on 

river bridge pier 

Qu et al. 
(2019a) 

FVCOM 
(weakly 

3D) 

SIFUM 
(fully 
3D, 
two-

phase) 

14 × 0.1 × 0.2 ~2 × 0.1 × 0.05 
DD 

(strong 
coupling) 

Tsunami wave runup 

Tsunami wave 
impacting coastal 
highway bridge 

Qu et al. 
(2019b) 

FVCOM 
(weakly 

3D) 

SIFUM 
(fully 
3D, 
two-

phase) 

3.5 × 0.4 × 0.15 ~1 × 0.3 × 0.225 

DD 
(strong 

coupling) 

Transient sill flow 

0.2 × 0.2 × 0.01 ~0.1 × 0.12 × 0.01 3D dam-break flow 

0.04 × 0.001 × 0.0004 0.004 × 0.001 × 0.0005 
Long-wave 

impingement on a 
vertical cylinder 

0.04 × 0.03 × 0.002 0.015 × 0.03 × 0.002 Hydraulic jump 

~60 × 60 × 0.025 ~0.1 × 0.1 × ✘ 
Coastal flood impacting 

beachfront house 

 955 
7 Benchmarking the Numerical Models through Comparative Studies 956 
In the past researchers developed numerical models and validated with their own 957 
experimental simulations, the data sharing and comparison between different numerical 958 
models, its accuracy and performance in terms of computational efficiency are not attempted. 959 
In the field of ocean engineering, when the concept of numerical wave tank was developed 960 
inline with the numerical wind tunnels that are quite popular in those times, Clément (1999) 961 
and Tanizawa and Clément (2000) carried out such exercise for fully nonlinear potential flow 962 
theory. Recently, major initiatives were undertaken by Ransley et al. (2019, 2020), Sriram et 963 
al. (2021), Agarwal et al. (2021a) and Saincher et al. (2023a). These studies highlighted 964 
some of the commonly adopted guidelines by the researchers pertaining to WSI simulations: 965 

 The fidelity of regular/focusing wave generation deteriorates away from the 966 
wavemaker irrespective of the nature of the numerical model and no single wave-967 
generation method may be regarded as superior over others. Far from the wavemaker, 968 
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the models generally deviate by 5 − 10% in terms of primary energy content which 969 
is acceptable. However, the deviation across models may be as high as 50% in terms 970 
of the sub- and super-harmonic wave components.   971 

 The performance of a solver should be judged based on the peak values of the 972 
surface-elevation/hydrodynamic pressures/loads as well as the phase agreement 973 
captured by the model. Phase disagreement is acceptable for WSI scenarios involving 974 
regular waves (Saincher et al., 2023a) as long as the phase-shift remains constant 975 
over several wave cycles. However, for WSI scenarios involving transient waves 976 
such as focused and/or overturning waves, the phase agreement is critical as it 977 
determines the shape of the impacting wave as well as the time-varying load profile 978 
on the structure (Sriram et al., 2021 ; Agrawal et al., 2021a). 979 

 The inclusion of turbulence modeling does not necessarily improve the accuracy of a 980 
simulation. This rather depends on the problem at hand. Further, for the same 981 
problem, different turbulence models may lead to the same/similar results. The 982 
expertise of the user should also be factored-in whilst using turbulence models, 983 
especially RANS-based models which are strongly empirical. These statements are 984 
substantiated through Figure 11 wherein results from the ISOPE-2022 comparative 985 
study on WSI are reported. In this study, one of the participating institutions had 986 
employed STAR-CCM+ for the simulations and had assessed the effect of different 987 
turbulence modeling strategies (implicit LES (“laminar”), RANS and explicit LES) 988 
on the solution. It can be observed from Figure 11 that changing the modeling 989 
strategy hardly affects the pressure time-history or the value of maximum impact 990 
pressure across multiple loading cycles. This could be interpreted from two 991 
perspectives: (a) the physics of the problem under consideration is independent of 992 
turbulence modeling or (b) the employed numerical framework is independent of 993 
turbulence modeling. The first statement is (obviously) incorrect. The second 994 
interpretation, however, holds merit from the standpoint of the relation between LES 995 
and RANS (Rodi et al., 2013). It is worth mentioning that the STAR-CCM+ 996 
simulations were two-dimensional and a rather coarse resolution of 𝐿/300 and 𝐻/50 997 
(where 𝐿 is the wavelength and 𝐻 is the wave-height) was chosen for the horizontal 998 
and vertical directions respectively. This corresponds to a mesh-size of ∆𝑥~12 cm 999 
and ∆𝑧 = 1.4 cm respectively which is comparable to the ∆𝑥 = ∆𝑧 = 5 cm chosen 1000 
for the RANS model IITM-RANS3D in the same study (Saincher et al., 2023a). The 1001 
numerical framework exhibits “independence” from turbulence modeling because a 1002 
RANS resolution was applied to LES and ILES. Since the transport equations for the 1003 
mean-flow are the same between unsteady RANS and LES (Rodi et al., 2013), 1004 
STAR-CCM+ apparently resolved the same mean-flow in all three cases. The minor 1005 
differences in peak impact pressure observed in Figure 11 stem from the unresolved 1006 
scales that are modeled differently across RANS, ILES and LES (Rodi et al., 2013).  1007 
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Figure 11. Results from the ISOPE-2022 comparative study on breaking waves 1008 
impacting a seawall with a recurved parapet (Saincher et al., 2023a): (top) seaward 1009 
deflection of the breaking wave, (center) time-history of the hydrodynamic pressure 1010 
over the vertical wall (PP2) as well as the parapet (PP12) and (bottom) variation of 1011 
peak impact pressure over five loading cycles.   1012 
 1013 
It is also worth noting that had the opposite been done wherein an LES grid was 1014 
applied to RANS, dramatically different results would have been obtained. This is 1015 
because RANS would have become grid-independent on the scale of the LES grid 1016 
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whilst LES itself would only become grid-independent at the Kolmogorov scale 1017 
(Rodi et al., 2013). Thus, one might argue that this instance constitutes a case where 1018 
turbulence modeling was attempted but eventually proved to be unnecessary.     1019 

 Hybrid modeling invariably improves the computational efficiency of the solver and 1020 
should be adopted for large-scale WSI problems (Agarwal et al., 2021a ; Saincher et 1021 
al., 2023a).    1022 

 The state of the art in modelling large domain problems for transient waves appeared 1023 
to be based on hybrid numerical modelling using weakly coupled algorithms (or one-1024 
way coupling); this strategy was adopted by most of the participants. 1025 

 In simulating the same WSI problem at different scales, no general correlation could 1026 
be obtained between computational effort and the scale of the problem. For instance, 1027 
amongst the ten models compared for breaking waves interacting with a recurved 1028 
seawall, the hybrid codes qaleFOAM and IITM-RANS3D were simultaneously the 1029 
fastest and slowest at two different scales of the problem (Saincher et al., 2023a).  1030 

In these studies it was also noted that the experimental error/uncertainty should be taken into 1031 
consideration during validation. The inclusion of the experimental uncertainty would make 1032 
the above guidelines less stringent. However, a conservative approach is beneficial in order to 1033 
maintain a reduced error margin when adopting the said guidelines in practice. 1034 

 1035 
8 The Future 1036 

1037 
The machine learning (ML) techniques is becoming popular in assisting the fluid simulation, 1038 
e.g. to reconstruct the fluid field from data (Raissi et al., 2020), to predict the turbulence 1039 
related parameters (Ling et al., 2016; Zhang et al., 2015; Kutz, 2017), and to approximate 1040 
time-independent flow filed governed by NS models, such as the projection-based Pressure 1041 
Possion Equation (PPE, e.g. Yang et al., 2016; Xiao et al., 2018; Tompson et al., 2017; Dong 1042 
et al., 2019; Ladicky et al., 2015; Wessels et al., 2020, Li et al., 2022). Recently, both the 1043 
convolution neural network (CNN, Zhang et al., 2023) and graphic neural network (GNN, 1044 
Zhang et al., 2024a, 2024b) have been coupled with the incompressible smoothed particle 1045 
hydrodynamics (ISPH) model to accelerate the numerical simulations. In these work, high-1046 
fidelity time-domain numerical results are produced using stand-alone ISPH simulation on 1047 
wave propagation and impact on fixed structure. The CNN or GNN are used to train a 1048 
machine learning algorithm to predict the pressure in the future step based on the numerical 1049 
results at the current time step including the velocity, velocity divergence and pressure. After 1050 
the algorithm is trained, it will be used to replace the PPE solver in the classic ISPH. Both the 1051 
CNN-supported and GNN-supported ISPH models have been applied to modelling wave 1052 
propagation, impact on seawall and interaction with other structures.  Figure 12 and Figure 13 1053 
illustrate some numerical results from the GNN-supported ISPH, which does not only show 1054 
the capacity of the ML-supported ISPH but also demonstrate its promising accuracy.  Further 1055 
evidence on numerical accuracy and CPU speeding-up can be demonstrated in Figure 14 for 1056 
the cases with solitary wave propagation. In this figure, the error is defined by the L2-norm of 1057 
the time history of the wave crest; ISPH and ISPH-CQ adopt the linear and 2nd-order PPE 1058 
solvers, respectively.   1059 
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Figure 12. Comparisons of the floater movement progress during green water impact 1060 
between laboratory photos (Zheng et al., 2016) (left) and ISPH_GNN simulations (right) at 1061 
different instants (duplicated from Zhang et al., 2024b). 1062 
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Figure 13. Time histories of the impact pressure on deck at P1 (duplicated from Zhang et al., 1065 
2024b). 1066 
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Figure 14. Averaged errors of numerical results corresponding to different particle spacing 1068 
in the solitary wave propagation (a) and the CPU speeding ratio (b) against solving PPE 1069 
directly (solitary wave height = 0.28*water depth ; duplicated from Zhang et al., 2024a).   1070 
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As shown in Figure 14(a), both the convergence and accuracy of the ISPH-GNN are bounded 1071 
by the corresponding values of the ISPH and ISPH-CQ, implying a promising computational 1072 
accuracy. Figure 14(b) illustrates excellent CPU time speeding-up ratios against directly 1073 
solving the PPE using the 2nd order solver. For the solitary wave propagation using 80k 1074 
particles, the GNN can speed up the simulation by 80 times.   1075 

The existing work related to AI and ML may be quantified as hybrid model combing a CFD 1076 
solver with the ML algorithms, e.g. Zhang et al. (2024a) combining ISPH with graph neural 1077 
network for simulating free surface flows. Data are needed to train the ML algorithms. 1078 
Recently, researchers started solving the fluid mechanics and fluid-structure interaction 1079 
problems using the AI library for discretising the required partial differential equation 1080 
(AI4PDE, see, e.g. Chen et al., 2024). This work does not need to train the neural network 1081 
but directly modifying the filters of the neural network.  Limited benchmarking rest has 1082 
demonstrated its promising computational accuracy and efficiency. The applications of the 1083 
AL/ML to existing hybrid model, such as the qaleFOAM, have yet found to the best of our 1084 
knowledge. Based on our preliminary work on CNN/GNN supported ISPH, its feasibility to 1085 
the hybrid modelling is confirmed. 1086 

The challenges in the hybrid modelling can be fully or partially solved by the AL/ML 1087 
technologies. These include: (1) replacing the NS solver by the ML-supported version; (2) 1088 
intelligently decomposing the computational domain in an adaptive way, i.e. to minimising 1089 
the NS domain in the run-time depends on the development of the viscosity/turbulence effect 1090 
and breaking wave occurrence; (3) intelligently choosing the appropriate models, such as 1091 
RANS or LES; (4) in the function-decomposition approach, using the ML algorithms for 1092 
solving the compromised equations instead of solving them directly; (5) dynamic load 1093 
balancing in the cases with parallel computing.  1094 
 1095 

1096 
Another important aspect in the blue economy theme is the renewable energy. The 1097 
development of offshore wind farms based on Floating Offshore Wind Turbine (FOWT) 1098 
arrays is one of the popular, potential and realizable area. In order to reduce the CAPEX and 1099 
installation costs, shared mooring systems have been proposed for FOWT arrays where 1100 
anchors and a part of the mooring line are shared between turbines. This introduces 1101 
challenges that manifest differently in shallow and deep water. The deep-water mooring 1102 
system is susceptible to motions of the FOWT platform being amplified leading to large 1103 
displacements in the mooring line and peak anchor loads. Chain catenary moorings in 1104 
shallow water experience snap loads due to their susceptibility to violent wave-current-1105 
structure interactions during extreme events and individual loads superimposing nonlinearly 1106 
with the structural response. In order to develop a comprehensive understanding of the 1107 
mechanisms leading to snap loads and peak anchor forces in shared mooring systems of a 1108 
FOWT farm, high fidelity multi-scale solver is required. To achieve this, the existing FNPT 1109 
(Fully Nonlinear Potential Theory), RANS (Reynolds Averaged Navier-Stokes) and Large 1110 
Eddy Simulation (LES) codes can be coupled via a zonal approach to yield a high-fidelity 1111 
multi-scale solver for wave-current-structure interaction. A FEM-based structural solver will 1112 
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be integrated to accurately predict the coupled fluid-structure interaction of several mooring 1113 
lines and to facilitate the modelling of elastic materials. A critical aspect of the model 1114 
development would be scaling-up the code for prototype-scale FOWT arrays whilst retaining 1115 
computational efficiency and accuracy. This could be achieved using AI and ML-based 1116 
prediction of turbulence-generation near the floating platforms, as this is expected to be the 1117 
most computationally intensive aspect of the modelling (traditionally handled using hybrid 1118 
RANS-LES). Thus, a continuous research efforts in the field of computational 1119 
hydrodynamics is required. This is in fact supported by the Newton Fellowship (recently 1120 
awarded to the second author from the authors research group in 2023) wherein the existing 1121 
understanding in hybrid modelling as well as AI/ML-based prediction of turbulence shall be 1122 
carried forward.  1123 
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NOMENCLATURE 1751 
Roman symbols 1752 
𝒈ሬሬ⃗  Gravitational acceleration vector 
𝑯  Wave-height 
𝒌 Turbulence kinetic energy 
𝒌𝒅  Relative depth 
𝑳  Wavelength 
𝓛 Characteristic length scale 
𝒑 Pressure in instantaneous NSE 
𝒑ᇱ  Modified pressure in time-averaged or filtered NSE  
𝐑𝐞 Reynolds number 
𝑼 ; 𝑽 ; 𝑾  Components of 𝑉ሬ⃗  along the 𝑥, 𝑦 and 𝑧 directions respectively 
𝑼𝐜𝐲𝐥 Speed of the moving cylinder 
𝓥 Characteristic velocity scale 

𝑽ሬሬ⃗  Instantaneous or Reynolds averaged velocity vector 

𝒕 Time 
𝒙 ; 𝒚 ; 𝒛 Cartesian coordinate directions 
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Greek symbols 1754 
∆𝒙 ; ∆𝒚 ; ∆𝒛 Cell-sizes along the 𝑥, 𝑦 and 𝑧 directions respectively 
𝜺 Turbulence dissipation rate 
𝜼 Free-surface elevation 
𝝁∗  Mixture dynamic viscosity 
𝝁𝒕 Turbulent or eddy viscosity 
𝝂  Kinematic viscosity 
𝝆∗  Mixture density 
𝝈  Topography-following vertical coordinate 
𝝓  Velocity potential 
𝝎  Specific dissipation rate 

Superscripts 1755 
𝓠∗  Predicted value of 𝒬 in a projection method 
𝓠ᇱ  Corrected value of 𝒬 in a projection method 
𝓠𝒏  Previous time-level value of 𝒬 
𝓠𝒏ା𝟏 Current time-level value of 𝒬 

Abbreviations 1756 
ABM Adams-Bashforth Method 
ADI Alternating Direction Implicit 
AMM Adams-Moulton Method 
BBL Bottom-Boundary Layer 
BEM Boundary Element Method 
BiCGStab Bi Conjugate Gradient Stabilized 
BSNQE Boussinesq Equations 
CD Central Difference 
CFD Computational Fluid Dynamics 
CICSAM Compressive Interface Capturing Scheme for Arbitrary Meshes 
CNN Convolution Neural Network 
DD Domain Decomposition 
DNS Direct Numerical Simulation 
EOC Equation Of Continuity 
EOPC Equation of Pressure Correction 
EPBL Energetically constrained Parameterization of the surface Boundary Layer 
FD Functional Decomposition 
FDM Finite Difference Method 
FEBOUSS Finite Element model for BOUSSinesq equations 
FEM Finite Element Method 
FFD Fast-Fictitious Domain 
FiOU Fifth Order Upwind 
FNPT Fully-Nonlinear Potential Theory 
FOU First Order Upwind 
FOWT Floating Offshore Wind Turbine 
FVCOM Finite Volume Coastal Ocean Model 
FVM Finite Volume Method 
GFD Geophysical Fluid Dynamics 
GMRES Generalized Minimal RESidual method 
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GNN Graph Neural Network 
GSSOR Gauss-Seidel Successive Over-Relaxation 
HOS High-Order Spectral 
HYCOM HYbrid Coordinate Ocean Model 
IITM-RANS3D IIT Madras-RANS3D 
IMLPG_R Improved MLPG with Rankine source function 
ILES Implicit LES 
ISPH Incompressible SPH 
KdV Korteweg-De Vries 
LBM Lattice-Boltzmann Method 
LES Large-Eddy Simulation 
LEAS-MOF Lagrangian-Eulerian Advection Scheme-MOF  
LMM Linear Multi-step Method 
MLD Mixed Layer Depth 
MLE Mixed Layer Eddies 
MLPG Meshless Local Petrov-Galerkin 
MOF Moment Of Fluid 
MOM Modular Ocean Model 
MPNDAF Mixed Particle Number Density and Auxiliary Function 
MPS Moving Particle Semi-implicit 
MSTACS Modified Switching Technique for Advection and Capturing of Surfaces 
NCOM Navy Coastal Ocean Model 
NITA Non-Iterative Time Advancement 
NFA Numerical Flow Analysis 
NS Navier-Stokes 
NSE NS Equations 
NWT Numerical Wave Tank 
OGCM Ocean General Circulation Model 
OS-CICSAM Operator-Split CICSAM 
PIMPLE PISO-SIMPLE 
PISO Pressure-Implicit with Splitting of Operators 
PLIC Piecewise Linear Interface Calculation 
POM Princeton Ocean Model 
PPE Pressure Poisson Equation 
QALE-FEM Quasi-Arbitrary Lagrangian–Eulerian Finite Element Method 
RANS Reynolds-Averaged Navier Stokes 
RANSE RANS Equations 
RK Runge-Kutta 
RMOF Refined MOF 
ROMS Regional Oceanic Modeling System 
RSM Reynolds Stress Model 
SAISH Smoothly Adapting Interfacial Scheme based on Hybridization 
SFDI Simplified Finite Difference Interpolation 
SGS Sub-Grid-Scale 
SIFOM Solver for Incompressible Flow on Overset Meshes 
SIFUM Solver for Incompressible Flow on Unstructured Mesh 
SIMPLE Semi-Implicit Method for Pressure Linked Equations 
SIS Sea-Ice Simulator 
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SLIM Second-generation Louvain-la-Neuve Ice-ocean Model 
SOU Second Order Upwind 
SPH Smoothed Particle Hydrodynamics 
SWE Shallow-Water Equations 
SWENSE Spectral Wave Explicit Navier Stokes Equations 
TVD-RK Total Variation Diminishing-RK 
VOF Volume Of Fluid 
WALE Wall-Adapting Local Eddy-viscosity 
WENO Weighted Essentially Non-Oscillatory 
WSI Wave-Structure Interaction 
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