
 
 

VISUAL CHARACTER ANALYSIS WITHIN ALGORITHMIC DESIGN  

Quantifying Aesthetics Relative to Structural and Geometric Design Criteria 

ROBERT STUART-SMITH1 and PATRICK DANAHY2 
1,2University of Pennsylvania, 1University College London  
1rssmith@design.upenn.edu, 0000-0003-3644-3906 
2pdanahy@design.upenn.edu, 0000-0003-3393-8102 

Abstract. Buildings are responsible for 40% of world C02 emissions 
and 40% of the world's raw material consumption. Designing buildings 
with a reduced material volume is essential to securing a post-carbon 
built environment and supports a more affordable, accessible 
architecture. Architecture’s material efficiency is correlated to 
structural efficiency however, buildings are seldom optimal structures.  
Architects must resolve several conflicting design criteria that can take 
precedence over structural concerns, while material-optimization is also 
impacted from limited means to quantitatively assess aesthetic 
decisions. Flexible design methods are required that can adapt to 
diverse constraints and generate filagree material arrangements, 
currently infeasible to explicitly model. A novel approach to generative 
topological design is proposed employing a custom multi-agent method 
that is adaptive to diverse structural conditions and incorporates 
quantitative analysis of visual formal character. Computer vision 
methods Gabor filtering, Canny Contouring and others are utilized to 
evaluate the visual appearance of designs and encode these within 
quantitative metrics. A matrix of design outcomes for a pavilion are 
developed to test adaptation to different spatial arrangements. Results 
are evaluated against visual character, structural, and geometric 
methods of analysis and demonstrate a limited set of aesthetic design 
criteria can be correlated with structural and geometric data in a 
quantitative metric. 

Keywords.  Generative/Algorithmic Design; Computer Vision; 
Environmental Performance; Multi-Agent Systems; Visual Character 
Analysis; SDG 10; SDG 11; SDG 9; SDG 12; SDG 13. 

1. Introduction 

Buildings are responsible for 40% of world C02 emissions and 40% of the world’s raw 
material consumption (Bergman, 2013, pp. 24–25). Reducing material volume in 
building designs is an essential step towards a post-carbon built environment that can 
support a more equitable, affordable and sustainable future. Recent developments in  
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large format Additive Manufacturing (AM) potentially enable the fabrication of more 
materially efficient buildings. AM methods encompass a wide range of material and 
manufacturing constraints, yet typically allow substantial formal and topological 
complexity. Although these can support greater material efficiency and design 
expression, design methods that can generate and evaluate both criteria concurrently 
are relatively nascent. Architecture’s material efficiency is correlated to structural 
efficiency; however, buildings are seldom optimal structures. Architects must resolve 
several conflicting design criteria that can take precedence over structural concerns. 
Examples include planning or site-related constraints, that might impose variations in 
column or wall spacings. Additionally, formal, or aesthetic criteria might undermine 
optimization of material volume. Flexible design methods are required that can adapt 
to diverse planning conditions while minimising material usage. The utility of such 
methods is contingent on their ability to provide materially quantitative feedback to the 
designer relative to their aesthetic design concerns. While optimisation methods can be 
integrated within generative architectural design processes (E.g., reinforcement-
learning or evolutionary solvers (Mitchell, 2019)), these require fitness data to be 
obtained from design iterations. To integrate visual aesthetic criteria is challenging, as 
it requires a quantitative means of assessing qualitative formal character. Material 
volume offers one means to assess environmental and cost impacts of an architect's 
spatial, formal, or ornamental design propositions. Large-scale design decisions (E.g., 
floor planning, 3D massing or structural grids) are often constrained by programmatic 
or structural parameters that require explicit design input. Fortunately, AM architecture 
can support these constraints while enabling design expression and material 
optimization at smaller scales, traditionally considered to be the preserve of ornament. 
However, explicitly modelling such high-definition designs is prohibitively laborious, 
necessitating algorithmic or software-automated approaches. 

2. State of the Art 

Increases in a design's topological complexity can support greater material and 
structural efficiencies, as can be seen in the use of Topological Structural optimization 
(TSO) for the design of slabs, pavilion canopies, and large-span halls (Jipa et al., 2016; 
Sasaki et al., 2007). However, TSO operates primarily as a design-rationalization 
method with limited potential to directly inform aesthetic variability. Several 
algorithmic design approaches that encode a formal-aesthetic condition in addition to 
structural parameters have been developed for AM architectural elements such as 
columns and floor slabs (Anton et al., 2020). These have primarily focused on the 
design and manufacture of individual elements with limited demonstration of 
adaptation to variable spatial-structural conditions and no investigation into the 
relationship between their visual formal character and material volume. Multi-Agent 
design methods are particularly well suited to resolving spatial-formal problems and 
have already been utilized for architectural design (Snooks & Stuart-Smith, 2012). To 
date, multi-agent methods for AM architecture have not been developed that are 
adaptive to the varied structural conditions found in many buildings’ structural layouts. 
Algorithmic methods also encode a designer’s formal intentions to a large degree. 
Programmers/designers engage in subjective aesthetic decision-making when writing 
algorithms, and by assigning values to variables within code. During this process, a 
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designer has limited means to reflect or quantify visual character's impact on material 
efficiency. As algorithmic design and optimization methods operate on quantitative 
data, it is difficult to correlate qualitative concerns such as aesthetics. In the field of 
computer science, computer vision research has produced image processing methods 
that enable the quantification of visual features.  Methods for pixel filtering, contouring, 
or clustering are critical to several data collection and machine learning algorithms 
(Davies, 2017).  Recent research into the programming of aesthetics principles within 
deep learning approaches(Shaji, n.d.) suggests aesthetics can be engaged within 
algorithmic design. While architectural researchers recognise algorithmic processes 
may generate new aesthetics (Rehm, 2020), little research has been conducted into how 
evaluation of such aesthetics might inform optimisation processes, or impact a design's 
carbon footprint. Although clustering techniques have been used to classify 
architectural precedent buildings (Alymani et al., 2020), such methods have not been 
employed to evaluate visual formal character in algorithmically generated designs. 

3. Algorithmic Design with Visual Formal Character Analysis 

This research proposes a novel approach to topological design through a custom Multi-
Agent Design (MAD) method that is adaptive to spatial and structural inputs, and 
incorporates Visual Character Analysis (VCA) together with Structural Analysis (SA) 
and Geometric Analysis (GA).  GA also supports estimation of Embodied Carbon 
(ECO2). Computer vision methods such as Gabor filtering, Hough Line, and Canny 
Contouring (OpenCV, 2021) are utilised to evaluate and encode the visual appearance 
of designs within quantitative metrics in addition to SA deflection and principal stress, 
and GA metrics for volume and surface area. The term 'visual character' can be used to 
describe a wide range of visible attributes. Within this research, a narrow set of visual 
characteristics were selected that were deemed relatively easy to quantify and 
aesthetically related to the design method's ability to produce increased topological 
complexity, including heterogeneity, intricacy, continuity, and recesses. Proposed 
visual characteristics and corresponding analytical criteria offer an extremely limited 
form of aesthetic evaluation. As a first foray into the quantification of visual character, 
these categories are utilised to establish a proof of concept, sufficiently general to be of 
relevance to a broad number of manufacturing methods and design approaches. No 
optimisation routines are undertaken within the research, instead, novel research into 
design and analysis methods is presented that could be utilised in conjunction with 
optimisation methods. A matrix of design outcomes for a pavilion was developed to 
test the method's adaptability to different spatial and structural arrangements. 
Outcomes are tested against visual character, structural, and geometric methods of 
analysis, to evaluate whether a limited set of aesthetic design criteria can be correlated 
with structural and material volumetric efficiency as a quantitative metric.  

4. Methods 

A Multi-Agent Design method (MAD) (Figure 1) was developed that included 
quantitative analytical methods to provide SA, GA, and VCA metrics (Figure 2).  
Using the method, a matrix of design outcomes (Figure 3) was produced to evaluate 
the effectiveness of the approach, and its suitability to support optimisation processes. 
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4.1. MULTI-AGENT DESIGN METHOD (MAD) 

Figure 1. MAD Method: a)Agent rules b)Set-Out data and agent seeding. c) rule trajectories  

A custom multi-agent design algorithm was developed to enable geometrically 
integrated ceilings, slabs and column/wall designs to be developed from a flexible, 
user-specified spatial set out of vertical supports, adapting designs to different planning 
and structural constraints within the Rhino3D software environment (Figure 3). A 
ceiling/slab mesh model with user-specified column and wall support locations is first 
structurally analysed in Karamba3D™, with resulting principal stress and deflection 
data stored in Python lists. A custom Python agent class inspired by Craig Reynolds 
Boids algorithm (Reynolds, 1987) was written that governs the motion of particles over 
simulated time. The ceiling mesh surface is populated with instances of the agent class, 
that seek and align to high stress areas, and attempt to travel down support locations. 
Agent motion trajectory curves are interpolated as a single mesh topology.  

To ensure each simulation's initial set-out is consistent across diverse permutations 
of user-specified structural support conditions, a method was developed that provides 
a variable density distribution of agents relative to structural stress and surface area. A 
contour field is generated by uniformly offsetting curves that radiate out from each 
support position and Boolean-Unioned where they overlap. Seed points are randomly 
distributed between each contour curve relative to surface area between the contours at 
a probability of 0. 0.0157/𝑀𝑀2, and further culled relative to local principal stress values 
at a rate of: 0.700. This results in a variable density of agents relative to surface area 
and structural stress distributions, seeding more agents in high deflection areas.  

Each instance of the agent class contains an (x,y,z) coordinate for current position, 
(x,y,z) vectors for velocity and acceleration, and an integer for its current ‘state’. Each 
timeframe an agent sums an acceleration vector with its current velocity and adds this 
vector to its current position to move in space-time. Position and velocity vectors are 
constrained to the ceiling mesh by finding their closest points on the mesh. The 
acceleration vector is calculated each frame by summing results from a series of 
behavioural methods (Figure 1) that includes: agent-to-agent methods (seek, avoid, 
align), agent-to-agent trail methods (seek trail, align to trail), agent-to-structural data 
methods (seek local highest stress values, align to local stress vectors), and agent-to-
vertical supports methods (seek top of support, align to support). Each method 
calculates the distance to neighbours of a specified type (agent, trail, structural data or 

134



VISUAL CHARACTER ANALYSIS WITHIN 
ALGORITHMIC DESIGN 

 

vertical support) within a specified radius (R) and field of view (FOV). For each 
method, vectors are calculated only relative to neighbours located inside of the agent’s 
R and FOV. Seek methods calculate a vector pointing towards the average position of 
neighbours while avoid methods calculate an inverse vector. Align methods average 
the orientation of neighbours.  All methods determine a steering vector that is the 
difference between their calculated vector and the agent’s velocity vector, resulting in 
a vector that causes the agent to turn towards or away from each influence. All methods 
return a single vector which is then unitized to ensure they can be proportionally scaled 
relative to one another to influence an agent’s behaviour. Agents operate under two 
states which utilise different weightings of the above method calculations, 
commencing as state “1”, and changing to state '2" when in range of a vertical support 
to prioritize seeking and aligning to vertical supports (Figure 1). 

Each agent's motion trajectory over 100 timeframes is translated to a Nurbs curve. 
As agents were constrained to the ceiling mesh, a method was created to adjust the z-
height of each agent trajectory curve knot below the ceiling, relative to adjacent agent 
curves and structural stress.  The displacement vector is calculated as the difference in 
position (pos) to neighbouring agents (a.pos) scaled by the closest principal stress value 
divided by the number of agents in range (n) and weighted by a constant (C): 

pos. z = pos. z − (∑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎.𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝))∗ stress 
𝑛𝑛

 * C) 

A continuous mesh geometry is generated around the adjusted curves by first 
creating polysurfaces from a single rail sweep from cross-section curve profiles arrayed 
along each curve. Polysurfaces are then converted to a mesh and imported into 
Zbrush™ and merged into a single mesh using Zbrush’s dynamesh and smooth 
commands. This method was selected over more accessible methods in Rhino3D™ 
such as isosurfacing due to its benefits in enabling greater control over cross-sectional 
geometry.  

4.2. STRUCTURAL, GEOMETRIC & EMBODIED CARBON ANALYSIS  

Design outcomes were geometrically analysed (GA) for surface area and volume, and 
structurally analysed (SA) for deflection and principal stress. GA metrics were 
obtained using built-in Rhino3D™ methods for mesh analysis. Although SA can be 
performed on meshes using a shell analysis, it would be computationally prohibitive if 
integrated within high-iteration optimization routines. As such, a frame analysis was 
performed using Karamba3D™ that was computable in a fraction of time. To prepare 
a structural model for frame analysis, each agent trajectory curve was converted to a 
polyline and exploded into several line elements. A series of  connective lines between 
trajectories was generated between nodes in proximity to one another at a range 
equivalent to mesh cross-section profiles, producing a network with connectivity 
comparable to the mesh result. This was then used for SA. To estimate embodied 
carbon, a high-strength steel re-enforced concrete  (RC40/50) with 100kg/m3 steel 
reinforcement and 30% fly ash was specified with an embodied carbon (ECO2) value 
of 330 kgCO2/m3 (MPA The Concrete Centre, 2020). By utilising volumetric data 
obtained in GA, an embodied carbon value is estimated for design outcomes.  
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Figure 2. VCA. a) quantitative methods b) image processing methods applied to three camera views  

4.3. DESIGN VISUAL CHARACTER ANALYSIS (VCA) 

To assess the visual character of design outcomes a methodology for image analysis 
was developed that involved viewport capture and image processing in Rhino3D™. 
For each design outcome, Images at 1920x1080 resolution were captured using three 
specified camera views and Rhino3D's ‘Arctic’ display style. The computer vision 
framework OpenCV™(OpenCV, 2021) was made accessible within Rhino3D by 
using GHPythonRemote™ to enable Python to be executable within Rhino3D's 
IronPython 2.7 GHPython components. A series of visual characteristics (including 
intricacy, heterogeneity, continuity, and surface recesses were established. To quantify 
these, specific OpenCV methods were selected that could generate new images that 
corresponded to each characteristic, and methods developed to extract and quantify 
data from each OpenCV image outcome. The specific methodologies are illustrated in 
Figure 2 and summarised below: 

● Intricacy: greater amounts of geometrical definition. A method was established to 
quantify edges in an image.  A linear filter used for texture analysis, Gabor Filtering 
was selected due to its ability to highlight edges by identifying areas of highest 
difference in pixel value which are representative of edge curvature (OpenCV, 
2021). In greyscale images, these are visualised as white pixels, whose quantity 
relative to total pixels in the image was quantified to describe a degree of intricacy. 

● Heterogeneity: greater degrees of difference between different regions within an 
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image.  The Canny edge detection method was utilised to first identify features in 
the geometry due to its ability to produce an image that depicts continuous edges in 
white on a black background through a multistep process that leverages spatial-
frequency filtering and hysteresis thresholding  (Davies, 2017, p. 136). A Structural 
Similarity Index  (SSIM) Image Difference Comparison is then performed on the 
Canny image to evaluate the similarity between different tiled regions within the 
image (OpenCV, 2021). This returns a float for the standard deviation of SSIM 
distance evaluation between the image tiles and used as a value of Heterogeneity. 

● Continuity: degree of alignment between edges in areas of high curvature. 
OpenCV's Probabilistic Hough Lines Transform method was utilised to create a 
series of line segments that approximate continuous edges within an image 
(OpenCV, 2021). As the Hough Transform is more effective if edge detection pre-
processing is performed beforehand, a Canny Edge image was created and used as 
the input image. An average angle between Hough Line segments within proximity 
of Height/6 pixels to each other was calculated and averaged for all lines within the 
image to provide a metric for continuity. 

● Surface Recesses: degree to which a surface geometry is separated into regions of 
varying depth.  In lieu of the artic render, a coloured image was produced through 
the development of a custom Rhino3D Python script that coloured mesh vertexes 
relative to local mesh curvature. Pockets are identified by segmenting the image into 
regions of different colour, thus segmenting by local minima/maxima of curvature 
in the surface. K Means Clustering of the image is used to categorise pixels of 
similar colour as a cluster (OpenCV, 2021). OpenCV contouring of pixel clusters 
enables the quantity of clusters to be identified as a metric for pockets.  

4.4. DESIGN MATRIX AND COMPARATIVE ANALYSIS  

A matrix of pavilion designs was developed for four different spatial set-outs 
(A,B,C,D) that varied the number and spacing of columns, walls, and slab dimensions 
including an 8x8m 4-column grid, a 30x12m rectangular grid with symmetrical and 
asymmetrical column supports, and an option combining walls and columns. The 
MAD method was tested with three variations in ruleset values (labelled 1,2,3), 
together with an additional base condition (0) for each set-out that was explicitly 
modelled to have regular rectangular columns similar to Le Corbusier's Maison 
Domino (Figure 3c). VCA, GA, and SA metrics were developed for each design 
outcome.  Metrics were re-mapped to a value between 0 and 1 and graphed (Figure 4) 
to support comparative analysis and to establish whether the method could be used to 
describe a multi-objective design fitness value.  

5. Results and Discussion 

The MAD method demonstrated successful adaptation to diverse spatial and structural 
conditions (Figure 3a). Minor differences in the rulesets had significant impact on 
outcomes, illustrating an expansive design space with varying degrees of geometric 
alignment and density. SA and GA results for all three rulesets performed similarly 
well in symmetrical spatial set outs A and B yet evidenced greater variability in 
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asymmetrical set outs C and D, indicating potential improvements could be achieved 
by inclusion of an optimization routine. While MAD and SA/GA methods were  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Matrix of design outcomes relative to user-specified column/wall and slab spatial 
organizations. a) structural loading conditions, b) agent trajectories, c) explicit base condition 

 

 

 
 

 
 

Figure 4. Comparative analysis of design matrix results  

materially agnostic (with calibration to specific materials and performance 
requirements in future work), embodied CO2 (EC02) was estimated using a high-
strength reinforced concrete. ECO2 calculations derived from GA volumetric data 
demonstrated ruleset #1-3 MAD efficiency gains of 4-39% over base conditions. For 
set-out #A, a 23% reduction is equivalent to a saving of 4400 kgCO2. 

As anticipated, all MAD rulesets scored substantially higher in VCA than base 
conditions. Evaluating VCA methods, Heterogeneity was validated by high-value 
results in asymmetrical set outs C and D, and ruleset #1's high values reflected a greater 
organisational diversity in its design outcomes.  MAD results also demonstrated more 
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intricacy than base conditions yet remained relatively constant across all rulesets. This 
suggests that the quantification of Gabor filter images was not effective at describing 
intricacy of design outcomes, or, that all MAD rulesets generated similar levels of 
intricacy despite ruleset #3 consolidating detail in smaller clusters. Continuity was 
greatest in ruleset #1 and extremely low in base conditions as expected. K-Means 
Clustering was not as successful for evaluating recesses. Values were similar across all 
MAD rulesets, with the most heterogeneous results scoring lower than more 
homogenous outcomes. The number of clusters did not adequately describe the 
significance of features. As MAD Ruleset #1 outcomes have more distinguishable 
recesses at a range of scales compared to other rulesets, scale should be incorporated 
into the recesses evaluation method.  

While MAD rulesets #1 and #2 scored higher in SA,  ruleset #3 had superior GA 
results demonstrating the need for SA and GA feedback within an iterative 
optimisation process. The authors found MAD ruleset #1 exhibited preferable design 
outcomes that were formally continuous and heterogeneous (Figure 4). MAD ruleset 
#3 was least preferable due to a lack of heterogeneity resulting from dense clusters 
around supports. Results validate that selected visual character rules aligned to the 
author's aesthetic intentions yet highlight a conflict between author (or any user) 
preference, material, and structural optimisation. This demonstrates the importance of 
quantitative evaluation of visual characteristics to ensure that some aesthetic properties 
can be developed in relation to optimisation approaches.  In assessment of the matrix 
of results, a suitable fitness function for a design optimization process might enhance 
intricacy(I), heterogeneity(H) and continuity(C) while reducing material volume (V) 
and structural deflection (D) and stress (S).  This might be paraphrased as: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑤𝑤1I + 𝑤𝑤2H +  𝑤𝑤3C
𝑤𝑤4V +  𝑤𝑤5D + 𝑤𝑤6S 

Whereby 𝑤𝑤1  through 𝑤𝑤6  are constants assigned by any user/designer to weight the 
influence of each parameter and could be adjusted to any designer's preferences. 
 

 
 
 
 
 

 
 

Figure 5. a) MAD outcomes adapt to structural and spatial constraints, while producing visual 
character that is quantitively evaluated using b) VCA computer vision methods.  

6. Conclusion 

The research demonstrates a MAD method that integrates VCA methods together with 
SA, GA and, EC02 estimation. The MAD method demonstrated successful adaptation 
to diverse user-specified spatial and structural set-out conditions, while the use of 
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computer vision image processing techniques supported quantification of visual 
character alongside more readily quantifiable performance metrics for structural and 
material efficiency. Results illustrate the utility of the research but also highlight the 
necessity for inclusion of an optimization routine such as reinforcement learning to 
achieve results suited to material, and structural performance requirements. Given the 
challenges of establishing VCA methods and the limited criteria developed in this 
research, more work expanding VCA to encompass a broader set of generalisable 
aesthetic conditions would provide greater utility outside of this proof of concept. A 
survey paper of image-processing methods would be a good next step. Further 
development of the research will involve expansion of broader spatial/formal user 
design input, and incorporation of MEP and environmental performance 
considerations. AM architecture holds immense potential to reduce the material and 
environmental impact of building, while offering exciting opportunities for geometric 
design freedom. This research provides a means to develop topologically complex 
designs suited to AM methods together with feedback from structural, volumetric, and 
visual character metrics, providing a novel design approach that can be integrated with 
optimisation routines.  It is hoped the research fosters a more holistic approach to 
design, correlating aesthetics with the material and structural efficiency of buildings, 
and thereby facilitating a reduction in the carbon footprint of architectural designs. 
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