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Abstract  29 

Alzheimer’s disease (AD) is a complex, progressive primary neurodegenerative disease. 30 

Since pivotal genetic studies in 1993, the epsilon 4 allele of Apolipoprotein E (APOE ε4) has 31 

remained the strongest single genome-wide associated risk variant in AD. Scientific advances in 32 

APOE biology, AD pathophysiology, and ApoE-targeted therapies have brought APOE to the 33 

forefront of research with potential translation into routine AD clinical care. This contemporary 34 

review will merge APOE research with the emerging AD clinical care pathway, and discuss APOE 35 

genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE’s influence 36 

in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as a significant 37 

modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and 38 

future of ApoE-targeted therapies in the next generation AD clinical-diagnostic pathway. With 39 

the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology 40 

will become critical for personalized AD patient care.   41 

 42 

 43 

 44 

 45 

 46 

  47 
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Introduction 48 

 As the most common cause of dementia in later life, Alzheimer’s disease (AD) is projected 49 

to affect 152.8 million people by 2050 worldwide1. Historically, AD has been diagnosed by clinical 50 

symptoms based on impaired memory, cognition, and function leading to loss of independence1. 51 

However, this symptom-based model does not incorporate the underlying pathophysiology of 52 

AD rooted in proteinopathy, characterized by the accumulation of soluble, bioreactive amyloid 53 

beta (Aβ) species aggregating into plaques and downstream hyperphosphorylated tau 54 

aggregation, gliosis, and subsequent regional neurodegeneration2. These converging 55 

pathophysiological processes precede clinical signs and symptoms by 20 to 30 years3, supporting 56 

the conceptual evolution of AD from a purely clinical diagnosis to a clinical-biological diagnostic 57 

construct. One that includes asymptomatic preclinical stages with progressive underlying 58 

biological mechanisms3. This revision is depicted in the hypothesis-independent ATX(N) 59 

biomarker classification framework of AD, which is driving the development of biomarker-guided, 60 

pathway-based targeted therapies for AD3. As other components of AD pathophysiology are 61 

discovered, the ATX(N) system will continue to be extended and updated.  62 

One key component of this framework is the genetic contribution to AD pathophysiology 63 

with the ε4 allele of the apolipoprotein E gene (APOE ε4) being the strongest single genomic risk 64 

variant in AD4. APOE ε4 increases the lifetime risk of AD5 and is associated with earlier disease 65 

onset in a dose-dependent manner6, while APOE ε2 is associated with decreased risk relative to 66 

APOE ε37. The magnitude of the APOE risk is influenced by ethnicity and sex7-9. APOE ε4 is also 67 

associated with increased risk of other proteinopathy-related neurodegenerative diseases, 68 
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including Dementia with Lewy Bodies (DLB), Parkinson’s disease dementia (PDD), and TAR DNA-69 

binding protein 43 (TDP-43) pathology in AD brains4.  70 

While the investigation of APOE in AD has previously been investigated mostly in parallel 71 

between basic science and clinical research, we propose these two lines will now converge with 72 

emerging therapeutics that target underlying AD pathophysiology. In this review, we begin with 73 

an overview of the biology of ApoE, then go onto illustrate this convergence by describing how 74 

APOE and its pathophysiology fit into the expanding ATX(N) biomarker framework of AD. We then 75 

discuss the role of APOE testing in the clinical care pathway and how potential APOE-targeted 76 

therapies may enhance the compendium of AD therapies in the future.  77 

 78 

 79 

Biology of ApoE 80 

Structure and function of ApoE 81 

Human ApoE is a glycoprotein of 299 amino acids occupying the surface of specific 82 

lipoprotein particles where it binds to cholesterol and phospholipids (Figure 1A). ApoE has two 83 

key domains: the N-terminal domain (NTD) which binds to low-density lipoprotein receptor (LDLR) 84 

and the C-terminal domain (CTD) which binds to the surface of lipoproteins10 (Figure 1A). In the 85 

lipid-free state, the NTD comprises of a 4-helix bundle connected to the CTD lipid-binding 86 

residues and helices via a hinge helix, with seven intermolecular salt bridges stabilizing the 87 

secondary structure10 (Figure 1B-C). There have been two proposed structural models of 88 

lipidated ApoE. One model suggests that upon ApoE lipidation, the NTD 4-helix structure 89 

stretches to expose its hydrophobic core while the CTD dissociates from its compact 90 



6 | P a g e  
 

conformation, with the CTD sitting on top of the exposed hydrophobic residues of the NTD 91 

forming a belt-like configuration and two ApoE belts dimerizing on the edge of lipid core to 92 

stabilize the lipid particle10. The second model suggests an open or compact hairpin structure 93 

formed by the helices, with ApoE dimers forming a lipid disc10. 94 

ApoE facilitates the cell-to-cell transport of lipoprotein particles and cellular uptake via 95 

interaction with LDLR and LDL-related protein 1 (LRP1)4 (Figure 1D). Peripheral APOE is expressed 96 

primarily in the liver, as well as adipose tissue, kidneys, and adrenal glands whereby hepatic ApoE 97 

is involved in cholesterol metabolism without crossing the blood-brain barrier (BBB)11 (Figure 1D). 98 

In the central nervous system (CNS), non-neuronal cells including astrocytes and reactive 99 

microglia produce ApoE4. Cholesterol and phospholipids are transferred to astrocyte-secreted 100 

APOE by the cell-surface ATP-binding cassette transporters ABCA1 and ABCG1, creating 101 

lipoprotein particles similar in size to HDL4 (Figure 1D). The size of the APOE lipoprotein complex 102 

differs based on isoform, with APOE ε2 being the largest and APOE ε4 being the smallest due to 103 

differential transfer of cholesterol 10. In addition to its role in lipid homeostasis, ApoE may also 104 

play a role in synaptic plasticity and cerebrovascular function, with potential crosstalk between 105 

peripheral and CNS ApoE in brain physiology4. 106 

APOE has two common polymorphisms, leading to three main ApoE proteoforms: APOE 107 

ε2, APOE ε3, and APOE ε4. These differ at two amino acid sites 112 (rs420358) and 158 (rs7412) 108 

whereby ApoE4 contains arginine on both positions, ApoE3 contains cysteine and arginine 109 

respectively, and ApoE2 has cysteine on both10 (Figure 1C). These amino acid changes 110 

substantially alter the structure and function of ApoE4. The isoforms differ in their binding to 111 

LDLR, with stronger affinity for ApoE3 and ApoE4 and weaker affinity for ApoE2 10 (Figure 1D) In 112 
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the periphery, decreased binding of ApoE2 to LDLR impairs clearance of lipoprotein particles, 113 

contributing to type III hyperlipoproteinemia12, whereas enhanced binding of ApoE4 to very low 114 

density lipoprotein (VLDL) particles impairs the lipolytic processing of VLDL, resulting in 115 

proatherogenic changes4 (Figure 1D). Recent studies showed ApoE4 exhibits conformational 116 

heterogeneity in both lipid-free and lipid-bound states13, which may further affect its function in 117 

receptor binding. Despite recent progress in elucidating the structure of APOE isoforms and their 118 

physiological functions, it is still unknown how structural changes in these isoforms affect ApoE’s 119 

role in lipid homeostasis and other physiological processes4.   120 

 121 

Genetics of APOE in AD 122 

 Alzheimer’s disease (AD) can be subdivided into early-onset (EOAD) and late-onset (LOAD) 123 

based on age of onset, with EOAD cases developing symptoms before the age of 654. A small 124 

percentage of EOAD cases are caused by familial autosomal dominant mutations (ADAD; 125 

autosomal dominant AD), while the more common LOAD is attributed to a combination of genetic 126 

susceptibility and environmental factors4. Pedigree-based genetic association studies identified 127 

three highly penetrant genes in APP, PSEN1, and PSEN2 in ADAD2. LOAD is more common and 128 

polygenic, with several genetic risk factors now identified through large-scale genome-wide 129 

association studies (GWAS)2.The APOE ε4 allele on chromosome 19q13.2 was the first and most 130 

significant LOAD risk locus identified in AD4.  131 

Unlike ADAD mutations, APOE is not deterministic for AD with a small percentage of ε4 132 

homozygotes never developing the disease14. These individuals exhibit cognitive resilience 133 

despite APOE ε4 status, with other genetic makeup, ethnicity, sex, general health, education, and 134 

other environmental factors possibly contributing to resilience15,16. Originally identified and 135 
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associated with a specific form of lipid disorder, APOE is also associated with 136 

dysbetaliproteinemia17. Of the three major allelic variants of APOE, ε3 is the most common and 137 

ε2 is the least common with ε4 allele frequency differing among Caucasians, Japanese, Hispanic, 138 

and African American individuals7,8 (Figure 2B-C and Table 1 top panel right box). The cumulative 139 

incidence of AD increases over age based on APOE ε4 allele dosage (Figure 2A)14, and there is a 140 

dose-dependent increase in the likelihood of AD development with each ε4 141 

allele7,8(Supplemental Figure 2D-E and Table 1 top panel). In contrast, APOE ε2 remains the 142 

strongest genetic protective factor against sporadic AD7,8, with very few APOE ε2/ε2 individuals 143 

developing AD up to age 9014,18.  144 

 The 4 allele appears to influence AD differently depending on the population, with 145 

Japanese having the greatest risk and Hispanics having the lowest7,8 (Figure 2D-E and Table 1 top 146 

panel). While AD dementia is more prevalent among African Americans compared to Caucasians, 147 

African American ε4 carriers paradoxically have lower AD neuropathological burden19. In a 148 

Chinese population, frequency of ε3 was lower in AD patients than healthy controls20, while 149 

cognitively unimpaired Japanese ε4 carriers had steeper cognitive decline during aging21. APOE 150 

alleles also present different effect sizes across populations:  a recent study with ~13,000 151 

individuals showed that APOE ε4 and ε2 have a higher effect on Aβ burden in Caucasians, 152 

followed by African Americans and Asians22. Another APOE variant (rs5117) was specifically 153 

associated with brain amyloidosis in Caucasians and Asians but not African Americans22. These 154 

ethnic differences may be due to local ancestry of APOE rather than global ancestry or 155 

environmental factors23.  156 
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APOE ε2 carriers have ~50% decreased risk for AD compared to APOE ε3/ε3 with ethnic 157 

variability, with the strongest protective effect in non-Hispanic Whites7,8 (Figure 2D-E and Table 158 

1 top panel). APOE ε2/ε2 individuals have a stronger protective effect for lifetime risk of AD when 159 

confirmed with neuropathology (though not stratified by ethnicity)14. APOE ε2/ε4 individuals 160 

have an increased disease risk relative to the APOE ε3/ε3 individuals, suggesting a dominant 161 

effect of ε4 allele over ε2 (Table 1 top panel)7,8. While there were no differences in AD risk 162 

between men and women with APOE ε3/ε4 at later ages, female APOE ε3/ε4 had decreased AD 163 

risk at younger ages (Table 1 middle panel)9. Women ε4 carriers are also more likely to develop 164 

mild cognitive impairment (MCI), likely due to AD, compared to men, again at younger ages9. In 165 

contrast, APOE ε2/ε3 has a greater protective effect in women compared to men9 (Table 1 166 

bottom panel).  167 

 The ε4 allele also increases the risk of EOAD, particularly in homozygous individuals 168 

without a family history, and in ε4 carriers with a positive family history24,25. Similar to LOAD, 169 

APOE ε4 decreases the age of disease onset for ADAD patients with APP, PSEN1, or PSEN2 170 

mutations, while APOE ε2 has a delaying effect in PSEN1 mutation carriers4. APOE ε4 carriers 171 

were also seen with later onset of EOAD, suggesting other unknown variants may influence 172 

disease onset beyond APOE26. APOE ε4 carriers in EOAD in general show faster decline in memory, 173 

executive, and processing speed domains27. Similarly, APOE ε4 affects the age of onset and rate 174 

of cognitive decline in ADAD4.  175 

 In addition to detrimental effects, there exist rare protective variants in the APOE gene, 176 

including the APOE3-Christchurch (p.R126S) mutation, the APOE3-Jacksonville (p.V236E) 177 

mutation, and the APOE4-p.R251G mutation28. Despite being a single case study of unknown 178 
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generalizability and mechanistic explanation, a previous study showed APOE3-Christchurch 179 

mutation in homozygous state to be associated with a 30-year delay in cognitive decline in one 180 

individual carrier with the PSEN1 E280A mutation29, with evidence of Aβ deposition but 181 

attenuated tau pathology and inflammation30.Given this has occurred in a single individual, it 182 

remains to be ascertained if the protective effect is solely due to the Christchurch mutation or 183 

some other genetic change.    184 

Genetic mechanisms of APOE variants towards AD pathophysiology so far escape 185 

straightforward labelling of loss of normal function vs. gain of toxic function. Most studies, 186 

including those using animal models, support the idea that ApoE3 and ApoE4 increase AD 187 

pathology in a dose-dependent fashion31-33. It is yet unclear whether ApoE2’s protective effect is 188 

due to a loss of normal ApoE function or a gain of protective function.  One may posit APOE 189 

variants as naturally occurring polymorphisms with pleiotropic effects on human diseases, with 190 

resulting protein isoform’s effect on disease occurring independently of one another. This view 191 

would also account for background haplotype effects and ethnic differences and could begin to 192 

unravel possible epistasis and genetic interaction between rare variants.  193 

 Given APOE’s role in lipid metabolism and cardiovascular risk, several studies have 194 

investigated the relationship between multiple environmental factors that interact with APOE to 195 

modulate AD risk34, where healthy diet was associated with a greater reduction of dementia risk 196 

in APOE ε4 non-carriers than carriers34. Others gene-environment interaction analyses included 197 

pre-morbid education level, smoking, and physical activity and the increased risk of AD with the 198 

ε4 allele, but the direction of this effect has been mixed34.  199 

 200 
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AD and the ATX(N) Framework 201 

Historically, AD diagnosis was based on clinical features, with post-mortem confirmation 202 

of Aꞵ plaques and tau neurofibrillary tangles needed for definitive diagnosis35.  The discovery of 203 

in vivo biomarkers of the core pathophysiological alterations  have better characterized the 204 

preclinical and prodromal phases of AD35. This led to an evolution of AD from a clinical to 205 

biological concept, creating a comprehensive biological research framework based on amyloid, 206 

tau, and neurodegeneration, known as the AT(N) Research Framework3 (Figure 3). The AT(N) 207 

system has since been extended to define and stage AD across its entire spectrum35, describing 208 

the temporal sequence of underlying pathological changes prior to the clinically symptomatic 209 

stages. This process begins with the early accumulation of soluble  Aꞵ and subsequent 210 

aggregation into fibrillar plaques, followed by the hyperphosphorylation, fibrillization, and 211 

spreading of tau protein in neurofibrillary tangles, which is strongly associated with synaptic loss, 212 

gliosis, vascular abnormalities, and eventually neurodegeneration2,3 (Figure 3A).  213 

These pathological changes can be detected by core feasible biomarkers of each 214 

component of the AT(N) framework3: CSF Aβ42/40, Aβ PET, and some CSF phosphorylated tau 215 

species (p-tau181 or p-tau217) that are better correlated with Aβ pathology (“A”)36,37 ; tau PET 216 

scans for tau aggregates (“T”) as they spread into the neocortex3;   217 

CSF total tau (t-tau), CSF/plasma neurofilament light chain (NfL), or plasma brain-derived tau (BD-218 

tau) for neurodegeneration (“N”)3,38.  This framework allows incorporation of new biomarkers 219 

“X”, including neuroimmune system dysfunction (GFAP, YKL-40, TREM2), synaptic dysfunction 220 

(neurogranin (Ng), SNAP-25, synaptotagmin), and vascular abnormalities (sPDGFRꞵ)3. Blood-221 
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based biomarkers (BBBM) will offer a low-cost, more accessible and scalable approach compared 222 

to PET or CSF for some of these biomarkers, particularly Aꞵ and tau39.   223 

 224 

APOE and the ATX(N) Framework 225 

While the risk relationship between APOE and AD is clear, more recent work has 226 

illustrated the relationship between APOE and AD biomarkers, suggesting a role for APOE for 227 

modulating different components of the ATX(N) system40. Based on evidence to date, we 228 

describe APOE’s role in the clinical-biological continuum of AD whereby APOE genotype shifts the 229 

clinical-biological trajectories within the ATX(N) construct (Figure 3A-D). In the following sections, 230 

we consider how APOE might contribute to each component of the ATX(N) framework3, including 231 

APOE’s effect on biomarkers and underlying pathophysiology of Aβ (“A”), tau (“T”), 232 

neurodegeneration (“N”), vascular (“X”), and glia (“X”). 233 

 234 

APOE in the AD clinical continuum 235 

APOE genotype affects the age of onset of LOAD symptoms with one ε4 allele decreasing 236 

AD onset by ~3 years and two ε4 alleles decreasing onset by ~9 years, and the ε2 allele increasing 237 

onset6,18 (Figure 3D). APOE ε4 carriers have an increased risk of progression in cognitively 238 

unimpaired and MCI individuals to the next stage of AD continuum while APOE2 carriers have a 239 

lower risk of progression41,42, likely due to the earlier onset of Aβ pathology43 .  240 

The effect of APOE on rate of cognitive decline in AD is more complex and influenced by 241 

Aβ and tau pathology. Earlier studies with mixed results on  APOE’s modulation of rate of decline 242 

did not normalize for Aβ deposition27,43-47 with newer studies showing the effect of APOE on rate 243 
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of decline is mediated by Aβ status47,48 and downstream tau pathology49. Studies also show 244 

variability of on the type of cognitive test used, where APOE had no effect on rate of decline on 245 

mini-mental state examination (MMSE) when adjusting for Aβ status47, while amyloid-positive 246 

APOE ε4 carriers progressed faster when examined with the Clinical Dementia Rating Sum-of-247 

Boxes (CDR-SB) scale48. These differential findings could be due to sensitivity of cognitive testing 248 

according to the disease stage and Aβ measurements.  Further work in this area is required to 249 

dissect the contribution of Aβ vs other AD pathologies.  250 

APOE’s effect on disease development  is influenced by sex where cognitively unimpaired 251 

APOE ε4 women are more likely to progress to MCI and AD compared to men with the same 252 

genotype and conditions, particularly at earlier ages9. Female APOE ε4 carriers undergo age-253 

related cognitive decline faster than men across the AD continuum, likely due to underlying Aβ 254 

pathology46,. Only EOAD females with ε4 allele showed accelerated cognitive decline compared 255 

to men27.  256 

 257 

APOE and AD biomarkers in the ATX(N) Framework 258 

Amyloid Beta (“A”) 259 

Initial studies differentiating APOE status in AD demonstrated that onset of Aꞵ plaque 260 

formation is influenced by APOE genotype2,4. When visualized by PET, cognitively normal ε4 261 

carriers start to accumulate plaques much earlier than non-carriers50-52, reaching high Aβ plaque 262 

density ~17-18 years earlier51,52, while APOE ε2 homozygotes develop plaques much later (Figure 263 

3B). APOE ε4 does not affect the rate of Aβ accumulation once plaques reach abnormally high 264 

levels53, and ε4 non-carriers eventually reach the same level of Aβ plaques as ε4 carriers at later 265 
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ages based on Aβ imaging data51 (Figure 3B). ε2 remains protective against longitudinal Aβ 266 

accumulation, particularly in those without the ε4 allele52,53, confirmed by neuropathological 267 

studies33,54. CSF biomarker showed similar shifts where APOE ε4 is associated with lower levels 268 

of CSF Aβ4250, indicating earlier Aβ deposition in brain parenchyma55. Consistent with plasma 269 

Aβ42/40 and PET/CSF Aβ concordance39, the predictive value for brain amyloid by plasma 270 

Aβ42/40 is increased when accounting for APOE status with age56. One of the BBBM assays 271 

includes an ApoE proteoform assay to detect ApoE peptides corresponding to APOE genotype56, 272 

suggesting APOE testing could become a part of the BBBM battery.  273 

Three potential mechanisms could explain how APOE genotype shifts the amyloid beta 274 

“A” curve in AD (Figure 3B): Aβ aggregation, Aβ clearance, and Aβ production/secretion. On 275 

aggregation of Aβ2 (Figure 4A), there is an APOE ε4>ε2>Ε3 effect on the onset and extent of Aβ 276 

deposition in animal models31,32,57. The ε4 allele accelerates the initial seeding and formation of 277 

Aβ plaques but with little effect on amyloid accumulation after plaque deposition begins58. In 278 

humans, APOE ε4 carriers have greater amounts of soluble Aβ oligomers59,60 with APOE ε4 in vitro 279 

increasing Aβ oligomerization60, while APOE ε2 and ε3 inhibit the conversion of protofibrils into 280 

fibrils61. Co-injection of ApoE3 (but not ApoE4) with Aβ protofibrils to rodent brain in vivo 281 

attenuated the deposition of Aβ plaques61. ApoE’s direct binding to Aβ in vitro is dependent on 282 

isoform, cellular source, lipidation status, and Aβ species62, though in vivo physiological relevance 283 

remains unclear. 284 

 APOE affects both the degradation and clearance of Aβ that normally occurs through 285 

cellular and enzymatic degradation, BBB clearance, interstitial fluid (ISF) bulk flow clearance, and 286 

CSF absorption into the circulatory and lymphatic systems4. APOE ε4 is less efficient at soluble Aβ 287 
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clearance from the ISF and cellular uptake and subsequent degradation in astrocytes, microglia, 288 

and neurons are all attenuated in ApoE4 57 (Figure 4B-C).  Aβ clearance via the BBB also occurs in 289 

an ApoE isoform-dependent manner. ApoE2 and E3 mediate Aβ clearance through both the LRP1 290 

and VLDLR receptors at the BBB, whereas ApoE4 only utilizes VLDLR, leading to slower Aβ 291 

removal63 (Figure 4C inset). LDLR also mediates BBB Aβ clearance, likely through indirect 292 

mechanisms such as uptake into astrocytes and neurons64 (Figure 4C inset). ApoE4 is also less 293 

efficient at transporting Aβ across BBB-associated pericytes via LRP14,65.  294 

APOE isoforms may affect the production and secretion of Aβ from proteolytic cleavage 295 

of the amyloid precursor protein (APP)2. ApoE stimulated APP transcription and Aβ production in 296 

an isoform-specific manner in vitro, with greater production with ε466. While human iPSC neurons 297 

with ε4/ ε4  increased Aβ secretion more than  ε3/ε367, ApoE had no effect on transcriptional 298 

regulation of APP in mouse models68 or on APP or APP C-terminal fragments in vivo57. APOE does 299 

inhibit ϒ-secretase cleavage of APP in an isoform dependent manner69.  300 

 301 

Tau (“T”) 302 

 While initial PET studies found no evidence of a direct effect of APOE ε4  on tau deposition, 303 

there was an Aꞵ-dependent effect on tau pathology50,70 (Figure 3C). APOE ε4 carriers have 304 

increased levels of CSF p-tau and plasma p-tau217/p-tau181, likely related to the earlier brain 305 

deposition of Aβ50,55,71. APOE ε4 carriers have more tau tangles post-mortem but only in the 306 

presence of Aβ33,72 while APOE ε2 was associated with lower burden of Aβ-mediated tau 307 

pathology72,73 (Figure 3C). APOE ε4 also mediates amyloid-related tau spreading in individuals 308 

with lower Aβ levels49. More recent studies show APOE ε4 may have an Aβ-independent effect 309 
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on tau deposition in the medial temporal lobe74-76, an effect potentially mediated by sex74-76 and 310 

microglial response to tau pathology77.  APOE also influences tau biomarkers in CSF and plasma37 311 

independently of CSF Aβ4271,  312 

While human studies have shown APOE has primarily an Aβ-dependent effect on tau, 313 

non-clinical studies have demonstrated Aβ-independent effects of APOE on tau aggregation. In 314 

vitro and mouse model studies have shown ε4 increases tau hyperphosphorylation and 315 

aggregation48,78,79, causing neurodegeneration in the absence of Aβ as mediated by microglial 316 

activation48,78,79 (Figure 4B). Gut microbiota may mediate gliosis in tauopathy mice, as a potential 317 

link between dietary factors and APOE-mediated neurodegeneration80. Both astrocyte- and 318 

neuronal-derived APOE ε4 may play an active role in tau-mediated gliosis and neurodegeneration 319 

(Figure 4B)74,81. A recent human study supported the role of microglial activation in APOE ε4 320 

carriers having Aβ-independent effects on tau accumulation77.  321 

 322 

Other Biomarkers (“X”) – Glial dysfunction 323 

APOE plays a critical role in modulating the neuroimmune system, particularly microglia 324 

and astrocytes, in AD82,83. Disease-associated microglia (DAM) or microglia of neurodegenerative 325 

phenotypes (MGnD) increase APOE expression82 (Figure 4B). Lack of APOE expression attenuates 326 

the DAM signature in AD mouse models48,84, while APOE ε4 expression increases microglial DAM 327 

signature67,85. APOE deletion leads to decreased plaque-associated microgliosis84, while APOE ε4 328 

reduces plaque coverage and compaction by microglia (Figure 4B)86,87. Several studies have also 329 

demonstrated a link between APOE and triggering receptor expressed on myeloid cells 2 (TREM2, 330 

another genetic risk factor in AD) in regulating microglial response to Aβ pathology83. Microglia 331 



17 | P a g e  
 

may contribute to co-deposition of ApoE in amyloid plaques as part of a TREM2-dependent 332 

response88,89. APOE ε4 also impairs the ability of microglia to phagocytose and degrade 333 

extracellular Aβ (Figure 4B)90,91.  334 

APOE ε4 exacerbates tau-mediated neurodegeneration by increasing microglial activation, 335 

infiltration of activated CD4 and CD8 T cells, and expression of DAM-associated genes48,79,92, while 336 

reduction of ApoE decreases microgliosis and tau-mediated neurodegeneration93,94 (Figure 4B). 337 

APOE ε4 expression can induce a reactive astrocyte signature in vitro and in vivo48, promoting 338 

neuronal death in vitro and brain atrophy in vivo48. Indeed, removal of astrocytic ApoE4 reduced 339 

tau-mediated neurodegeneration, with decreased disease-associated gene signatures in 340 

microglia, neurons, and oligodendrocytes79.  341 

ApoE may further modulate glial cell dysfunction in AD through glial lipid metabolism 342 

(Figure 4B). Deletion of APOE or the APOE ε4 isoform promotes an accumulation of lipids in 343 

astrocytes and microglia95-97. APOE ε4 impairs cholesterol transport out of microglia and 344 

increases cholesterol synthesis in astrocytes95,97, leading to pro-inflammatory signaling96,97, 345 

impaired astrocytic and microglial function, and glia-mediated neurodegeneration96,98 (Figure 346 

4B). APOE ε4 expression caused aberrant cholesterol accumulation in oligodendrocytes, resulting 347 

in reduced myelination99, and microglia-mediated infiltrating T cells also affect tau-mediated 348 

neurodegeneration in ε4-expressing mice92 (Figure 4B).  349 

Based on these non-clinical data, human studies also investigated the link between APOE 350 

and neuroimmune biomarkers in AD, showing an association between plasma GFAP and ε4 351 

carrier status in individuals diagnosed with AD100,101. One study also found a link between soluble 352 

TREM2 in CSF and APOE ε4 carriers102.  353 
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 354 

Other Biomarkers (“X”) – Vascular Dysfunction 355 

APOE affects the cerebrovasculature, being a known risk factor for ischemic stroke, 356 

vascular dementia, and cerebral amyloid angiopathy (CAA) that results from Aβ deposition in 357 

blood vessel walls leading to rupture and intracerebral hemorrhage4,103. CAA frequently co-358 

occurs with AD104, with moderate-to-severe CAA pathology observed in almost 50% of AD 359 

cases104. ε4 carriers have the highest risk of CAA due to higher Aβ deposition in vessels leading 360 

to microbleeds, while ε2 carriers have a higher risk of hemorrhage from CAA if present, given 361 

vessels are more prone to rupture103 (Figure 3C). APOE ε4 carriers show changes in multiple 362 

vascular biomarkers, including decreased cerebral blood flow (CBF), increased BBB breakdown, 363 

more white matter intensities, evidence of CAA, and increased CSF sPDGFRβ (soluble platelet-364 

derived growth factor receptor beta)105,106.  365 

APOE has Aβ-independent effects on the BBB and cerebral vasculature, including direct 366 

effects on the neurovascular unit (NVU: neurons, astrocytes, brain endothelial cells (BECs), mural 367 

cells (vascular smooth muscle cells and pericytes), and endothelium)105. Independent of Aβ or 368 

tau biomarker levels, APOE ε4 carriers have BBB breakdown seen by MRI in the hippocampus and 369 

medial temporal lobe, with increased severity in those with cognitive impairment compared to 370 

cognitively unimpaired106. APOE ε4 transgenic mice showed similar increase in cerebrovascular 371 

permeability, with structural and cellular alterations leading to basement membrane degradation 372 

and impaired BEC function (Figure 4C)105. APOE ε4 in mice leads to early disruption in the BBB 373 

transcriptome, resulting in progressive BBB breakdown and loss of pericytes107, likely due to 374 
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peripheral APOE where liver-expressed APOE ε4 impairs the cerebrovasculature, leading to 375 

synaptic dysfunction and worsened cognition108.  376 

APOE’s effect on neuroimmune signaling in the CNS may also have a direct effect on the 377 

NVU, particularly through signaling between astrocytes, BECs, perivascular macrophages, and 378 

pericytes affecting BBB function105. The Aβ-mediated effect of APOE on vascular dysfunction may 379 

be linked to Aβ clearance across the BBB in APOE ε4, with perivascular accumulation of Aβ57,63,65 380 

leading to CAA with vessel wall breakdown and hemorrhage (Figure 4C)103. Inactivating APOE in 381 

Aβ-transgenic mice prevented the formation of CAA and associated microhemorrhages109, while 382 

expression of human APOE ε4 resulted in redistribution of Aβ from plaques to the vessels forming 383 

CAA110, and removing astrocytic APOE ε4 shifted Aβ deposition from plaques to CAA111. APOE ε4 384 

plays a role in CAA-related inflammation (CAA-ri), which occurs due to infiltration of 385 

neuroimmune cells around CAA-positive vessels (Figure 4C). This effect is likely due to a 386 

spontaneous immune response to Aβ103, resulting in anti-Aβ antibodies detected in the CSF that 387 

bind to the CAA112, inducing an inflammatory response via microglia, perivascular macrophages, 388 

and astrocytes105.  389 

The effect of APOE ε4 on CAA may explain the mechanism of increased risk of amyloid-390 

related imaging abnormalities (ARIA) in APOE ε4 carriers113. ARIA is a treatment-emergent 391 

imaging abnormality that occurs with the use of anti-Aβ monoclonal antibodies that bind to 392 

aggregated forms of Aβ, characterized by parenchymal edema and sulcal effusions (ARIA-E) or 393 

microhemorrhages and hemosiderin deposition (ARIA-H)103,114. While the mechanism causing 394 

ARIA is not fully known, it is thought to be due to binding of anti-Aβ antibodies to CAA, resulting 395 

in perivascular inflammation from microglia or perivascular macrophages, followed by increased 396 
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vascular permeability with disruption of vascular integrity103. APOE ε4 carriers have a clear 397 

increase in the risk of ARIA as shown in recent trials of anti-Aβ monoclonal antibodies113, which 398 

may be due to the increased CAA in ε4 carriers, resulting in increased CAA-related inflammation 399 

and hemorrhage103,114.  400 

Neurodegeneration (“N”) 401 

 APOE likely has an upstream effect on neurodegeneration via the amyloid cascade and 402 

brain’s innate immune response83. 18F-FDG-PET measures showed APOE ε4 carriers had lower 403 

cerebral glucose metabolism, correlating with Aβ pathology, brain atrophy, and cognitive 404 

measures across multiple stages of AD115. Recent studies have also shown a correlation between 405 

APOE genotype and CSF and plasma NfL levels40,116. Synapse loss associated with subsequent 406 

neuronal loss was also considered under neurodegeneration markers (“N”)2. APOE also indirectly 407 

influences synaptic loss and dysfunction prior to neuron loss2 where APOE ε4 carriers have 408 

increased CSF synaptic biomarker SNAP-25117, increased neurotoxic Aβ oligomers at synapses 409 

with synapse loss59, and loss of synaptic proteins leading to impaired synaptic transmission4 410 

(Figure 4D).  411 

 412 

APOE and the AD clinical care pathway 413 

 Preceding sections described APOE’s influence on AD pathophysiology through its effects 414 

on each component of the ATX(N) framework, thus priming APOE’s utility in the AD clinical care 415 

pathway. The emergence of new AD therapies will likely transform the field, with APOE playing a 416 

key role in this transformation. Here, we will outline how APOE can fit into the next-generation 417 

AD clinical care pathway through APOE testing and APOE-targeted therapies.  418 
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 419 

APOE testing in AD clinical care 420 

Contexts of use for APOE testing in AD care pathway 421 

Genetic testing is becoming more widely used in clinical medicine, particularly in oncology 422 

and now in neurology118. Current genetic testing can be used to determine an individual’s risk for 423 

a disease pathophysiology, improve accuracy of diagnosis or prognosis of disease, or for 424 

treatment selection and monitoring119,120. Thus far, APOE status has been considered in the 425 

context of AD risk. Since APOE is not deterministic in AD etiology, the predictive value of APOE 426 

testing has been limited118, with the American College of Medical Genetics and the National 427 

Society of Genetic Counselors recommending against APOE testing in routine clinical practice121.  428 

APOE testing has been available through direct-to-consumer (DTC) genetic testing118,122, 429 

with general public interest in obtaining testing122. DTC testing has raised ethical concerns given 430 

many companies do not provide genetic counseling to disclose risk of testing (ethical, legal, 431 

financial, and family) or educate consumers on the implications of test results118. DTC tests based 432 

on microarray have appreciable false positive/negative rates123, of which consumers may not be 433 

aware. APOE testing has also become common in AD clinical trials for AD therapies in early stages 434 

and prevention trials to enrich for participants who are more likely to develop AD118, with clear 435 

protocols on genetic counseling and disclosure119,122. Given APOE is not deterministic for AD and 436 

other variants may affect progression to AD14,23, clinicians should be cautious of interpreting of 437 

APOE ε4 status alone for AD risk determination. 438 
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With the recent emergence of biomarker-guided, pathway-based targeted therapies for 439 

AD, the clinical utility of APOE testing is now set to expand beyond just risk prediction for AD. As 440 

some of these therapies now suggest including APOE testing as part of treatment prescription 441 

(https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761269Orig1s001lbl.pdf)124, 442 

APOE testing will become more prevalent as these therapies become more widely available in 443 

the maturing AD clinical care pathway. There is no current consensus on how APOE testing should 444 

be used in AD clinical practice due to ethical considerations120. APOE testing may be used and 445 

qualified for multiple contexts-of-use (CoUs) in the next-generation AD care pathway35, including 446 

initial evaluation and diagnosis of AD, treatment selection and monitoring, and possibly screening 447 

during healthy aging in the future. How the insights gained from genetic research may affect 448 

biomarker development and context-of-use will largely depend on widespread application of 449 

novel high-throughput technologies125. 450 

  As biomarker-guided AD therapies are now becoming clinically available, APOE testing 451 

will first extend to treatment selection and monitoring. Growing evidence shows APOE genotype 452 

plays a role in the risks and benefits of new AD therapies126, with variable risks and benefits in 453 

APOE ε4 carriers126, which may influence clinical decisions on which therapy is appropriate for ε4 454 

carriers versus non-carriers. Other AD therapies in development are specifically being tested in 455 

APOE ε4 carriers, including ApoE-targeted therapies (see below)23,127. APOE ε4 carrier status may 456 

also affect the treatment monitoring protocol, particularly regarding risks of adverse effects. 457 

APOE testing is now suggested for monoclonal antibodies targeting Aβ for ARIA risk monitoring 458 

(https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761269Orig1s001lbl.pdf)124, 459 

which will likely increase the use of APOE testing in AD care. 460 

https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761269Orig1s001lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/761269Orig1s001lbl.pdf
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While initial APOE testing in the AD care pathway may begin in the context of therapeutic 461 

decision-making, APOE could also be used during initial evaluation of AD with an AD specialist, 462 

specifically if done in conjunction with other AD biomarkers. One BBBM test already combines 463 

an ApoE proteoform assay with age and plasma Aβ42/40 levels to increase prediction of brain 464 

Aβ56. As BBBM tests become more widely used in clinical practice, they may also provide APOE 465 

status results, possibly circumventing the need for separate APOE testing. Use of APOE testing 466 

during this AD evaluation stage can help risk stratify individuals prior to initiating treatment with 467 

AD therapies. If ongoing AD prevention trials using therapies that stratify based on APOE show 468 

benefit128, APOE testing may have clinical utility in this population. Furthermore, if studies 469 

investigating the effect of lifestyle modifications on cognition based on APOE genotype have 470 

success129, then identifying APOE status early to initiate lifestyle changes may prove beneficial. 471 

The combination of APOE with the polygenic risk score (PRS) may better predict AD risk and 472 

provide clinical validity for genetic testing in non-clinical AD130,131.  473 

Considerations for APOE testing in clinical practice 474 

The impending use of APOE testing in AD clinical care necessitates guidance for healthcare 475 

providers on how to use, interpret, and communicate APOE results in the context of the scientific 476 

evidence discussed in this review. APOE testing also comes with emotional, family, ethical, legal, 477 

and financial implications that should be considered prior to obtaining testing (Text Box 1).  478 

A series of randomized controlled trials called the Risk Evaluation and Education for 479 

Alzheimer’s disease (REVEAL) Study evaluated the impact of providing APOE testing to individuals 480 

with first-degree relatives with AD, particularly on stress, depression and anxiety, cognitive test 481 



24 | P a g e  
 

performance, and changes in health behavior118. The initial study showed no differences in 482 

depression or anxiety between those who received their APOE results and those who did not, 483 

although they found individuals who were APOE ε4 positive had slightly higher levels of short-484 

term distress compared to those who were APOE ε4 negative132. Other studies found learning 485 

one’s APOE results can affect perceived memory abilities and performance on cognitive tests, 486 

suggesting knowledge of APOE status may bias cognitive testing results133. APOE status disclosure 487 

led to changes in health behavior, including taking nutritional supplements and purchasing long-488 

term care (LTC) insurance, particularly in ε4 carriers119,134,135.  489 

 Disclosing APOE status may impact family members, given the increased likelihood of 490 

family members also carrying ε4 allele in those who test positive120. The potential risks for family 491 

members should be discussed with individuals before and after obtaining testing119 (Text Box 1), 492 

particularly given many individuals bring family members to clinical visits. Most individuals chose 493 

to share their APOE testing with family members, although not all family members pursued 494 

testing thereafter119. Individuals who learn their APOE status also expressed concerns about 495 

stigma and discrimination particularly in the workplace, although the Genetic Information 496 

Nondiscrimination Act (GINA) passed in the United States in 2008 prohibits employers and 497 

insurance companies from using genetic information to make decisions on hiring or insurance 498 

coverage and premiums118,119. However, GINA does not cover life, disability, or LTC insurance, so 499 

insurers could increase LTC premiums or deny coverage based on APOE genotype, an important 500 

concern if APOE testing becomes more widely used118. Given the guidelines recommending 501 

against routine APOE testing, insurance companies typically do not cover the cost of testing 502 

(except for symptomatic individuals), affecting the accessibility of testing. 503 
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 Given the ethical, legal, and financial implications surrounding APOE testing, appropriate 504 

protocols will be necessary for APOE testing and disclosure prior to widespread clinical use. These 505 

protocols can be developed from those in clinical trials and based on national guidelines 506 

developed in other countries (Text Box 1)118,122. When assessing an individual’s APOE status in 507 

the clinical setting, clinicians can consider specific questions and how to discuss these issues with 508 

patients (Text Box 1). As APOE testing becomes more widely used, tools for discussing APOE 509 

results in the clinical setting can be developed as they have been for other diseases136.  510 

APOE and Precision Medicine (PM) in AD 511 

 APOE testing can be one of the first steps towards implementing PM in AD. The concept 512 

of PM has already become well-established in oncology, with genetic testing identifying risk for 513 

developing certain cancers, treatment selection, and monitoring137. PM in AD should embrace 514 

the P4 paradigm (predictive, preventive, personalized, and participatory), with APOE testing 515 

playing a role in predicting disease risk, early AD detection and intervention, tailoring treatments 516 

to individual patient characteristics, and providing patient-centered data collection and 517 

communication137.  518 

Whole-genome sequencing studies in AD have identified variants in other genes that 519 

modify APOE’s effect on AD risk or influence similar pathways as APOE23. These studies highlight 520 

the importance of considering the entire genetic landscape of an individual in determining AD 521 

risk. Since the first GWAS studies in AD, at least 75 risk loci in addition to APOE have been 522 

associated with AD138,139, which can be incorporated in the PRS to improve AD risk 523 

determination130,131. While the PRS alone performs worse than APOE in predicting AD risk, the 524 
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combination of PRS with APOE increases predictive value130. The PRS may offer an even more 525 

predictive and personalized approach to AD in the future130,131.  526 

 527 

ApoE-targeted therapies 528 

 Given APOE’s role in multiple aspects of AhaD pathogenesis, one attractive option is 529 

targeting ApoE itself for AD therapy. With the advent of AD treatments that target Aβ and tau, 530 

ApoE could be a good therapeutic target as an adjuvant to these other treatments, including 531 

using anti-ApoE antibodies to facilitate clearance of ApoE-Aβ complexes in plaques and CAA, 532 

decreasing ApoE levels or switching APOE isoforms using gene therapy, and increasing ApoE 533 

lipidation23 (Text Box 2). Given APOE’s primary influence on Aβ pathophysiology and tau-534 

mediated gliosis, ApoE-targeted therapies may be used prior to or in conjunction with anti-Aβ 535 

and anti-tau therapies. We will not review all of the potential ApoE-targeted therapies in 536 

development here given a recent comprehensive review23; instead, Text Box 2 and Figure 5 537 

highlight those ApoE-targeted therapies that may be used as an adjuvant to other emerging 538 

therapies.  539 

ApoE-targeted therapies may be used in combination with emerging anti-Aβ and anti-tau 540 

therapies for improved therapeutic efficacy (reduction of aggregated Aβ, tau, or 541 

neurodegeneration leading to improved cognition) and safety (reduction of CAA and associated 542 

neuroinflammation). ApoE-targeted treatments may be used prior to or in parallel with these 543 

other AD therapies to provide a synergistic effect (Figure 5). For example, anti-ApoE antibodies 544 

that bind specifically to amyloid plaques and CAA could be used in early-stage AD to reduce Aβ 545 

plaques and CAA to remove this pathology and reduce ARIA risk140. Similarly, APOE allele 546 
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switching from ε4 to ε2 prior to or in conjunction with Aβ-targeted treatments could mitigate the 547 

risk of ARIA in ε4 carriers113,114, although careful monitoring for intracerebral hemorrhage is 548 

needed given increased risk of CAA-related hemorrhage with APOE ε2103. APOE ASOs may be 549 

effective in preclinical AD prior to the onset of plaques141, but also later as they have been shown 550 

to decrease tau-mediated neurodegeneration94. In the future, a treatment targeting the APOE ε4 551 

allele may have the greatest utility for the prevention of AD by screening for and reducing the 552 

risk allele in the general population.  553 

There are challenges to translating ApoE-targeted therapies into humans, particularly 554 

given the complex role APOE plays in AD pathophysiology, the differential effects of peripheral 555 

versus CNS ApoE, and the methods used to target CNS-specific ApoE23 (Figure 5). Any ApoE-556 

targeted treatment will need to evaluate its peripheral and central effects (Figure 5). Certain anti-557 

ApoE antibodies have been shown to reduce serum cholesterol in APOE ε4 and ε2 transgenic 558 

mice, possibly providing beneficial peripheral as well as central effects142. However, switching 559 

from the ε4 to ε2 allele could have deleterious consequences in the periphery given the 560 

association with type III hyperlipoproteinemia12 (Figure 5). Changing the balance of ε4 and ε2 or 561 

decreasing ε4 levels in the periphery could also increase the risk of hyperlipidemia, 562 

atherosclerosis, and cardiovascular events, while expression of APOE ε2 in the CNS may have 563 

adverse consequences given the association of ε2 with CAA-related intracerebral hemorrhage103, 564 

primary tauopathy143, and possibly glaucoma144, necessitating monitoring for these events in 565 

future trials of these therapies. 566 

For ApoE-therapies to move from research investigation into clinical practice, these 567 

challenges must be addressed in forthcoming clinical trials. Most ApoE therapies are still in the 568 
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non-clinical stage23, so future human trials should be designed with consideration of the use of 569 

and timing with anti-Aβ monoclonal antibodies. These trials should also monitor for potential 570 

adverse events as described above, with attention to peripheral lipid metabolism, ARIA, and 571 

intracerebral hemorrhage. If these trials are successful, how ApoE treatments could be used for 572 

AD prevention at a population level will need to be evaluated.  Recent advances in our 573 

understanding of the protective effects of APOE ε2 and the role of rare APOE variants may pave 574 

the way for new therapeutic methods28, such as a recent ApoE antibody mimicking the APOE 575 

Christchurch mutation (Text Box 2)145. Advances in gene therapy use from clinical trials to clinical 576 

practice will accelerate the use of these therapies in AD clinical care.  577 

 578 

Conclusion 579 

 Thirty years of scientific and clinical research advances have demonstrated how APOE 580 

plays a central role in AD pathogenesis. With the transformation of AD into a clinical-biological 581 

construct via the ATX(N) biomarker framework, APOE can now be incorporated into this concept 582 

and moved from the research space into clinical practice. The APOE genotype has direct 583 

augmentative effects on biomarkers of core Aβ pathology, as well as indirect effects on tau and 584 

neurodegeneration biomarkers, with emerging evidence showing its role in vascular and glial 585 

biomarkers. More work is still needed to elucidate the mechanisms by which each of the isoforms 586 

contribute to each component of disease progression (Text Box 3). APOE testing is now being 587 

increasingly incorporated into multi-modal AD biomarker testing, including neuroimaging, CSF, 588 

and blood-based biomarkers, which can be used for earlier detection and AD diagnosis in the 589 

future.   590 
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The current ATX(N) framework does not account for the additional complexities of AD 591 

onset, particularly the interplay of genes, biological determinants, and environmental factors137. 592 

This complexity can best be explained by a systems theory approach, using a combination of 593 

systems biology, systems neurophysiology, and quantitative systems pharmacology to provide a 594 

thorough conceptual framework to understand AD processes137. Recent scientific progress in the 595 

“omics” of AD are beginning to provide the basis for future liquid biopsy capturing heterogeneity 596 

and individual variability in underlying biology and clinical manifestations, which can be used to 597 

expand the ATX(N) framework and move toward a PM model of AD137.  598 

APOE testing is primed to transition into the next-generation AD clinical care pathway, 599 

where it may be used for initial evaluation of AD with other biomarkers, treatment selection and 600 

monitoring of emerging AD therapies, and possible screening during healthy aging. As new AD 601 

therapeutics are brought to market, the role of APOE status on disease antecedents, detection, 602 

efficacy and safety responsivity will manifest under real world conditions where longitudinal data 603 

will become highly informative to ultimate treatment selection. More work needs to be done to 604 

determine how the APOE genotype affects the risks and benefits of emerging therapies prior to 605 

its clinical use, and more data from early intervention trials in AD are needed to determine the 606 

clinical utility and validity of early APOE screening during healthy aging. With the rapid progress 607 

in genomics and epigenomics in AD, the addition of other genetic and epigenetic risk factors with 608 

APOE will help identify biologically defined subgroups of the heterogeneous AD population to 609 

tailor biomarker-guided individual treatment plans. As larger and more comprehensive lifestyle 610 

modification studies in AD, such as the FINGER trial, are conducted129, we may find specific 611 

interventions benefit genetic subgroups, and lead to more personalized and participatory AD 612 
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care 137. Thus, APOE will be an important initiating element for the future healthcare practice of 613 

PM in AD, hopefully transforming practice in other prevalent neurodegenerative and neurological 614 

diseases.   615 

 616 

 617 

 618 

 619 

Table and Figure Legends 620 

Figure 1: Structure and function of ApoE in the periphery and CNS 621 

A) Linear structure of ApoE protein showing N-terminal domain (red; 1-167 amino acids), LDLR 622 

receptor binding domain (yellow; 136-150 amino acids), hinge region (black; 167-206 amino 623 

acids), and C-terminal domain (blue; 206-299 amino acids) reprinted from Chen et al with 624 

permission10 (Copyright @ 2020 Elsevier Inc.). ApoE isoforms are differentiated by positions 112 625 

and 158.  B) Full-length 3D structure of ApoE3 by NMR (PDB:217b) reprinted from Chen et al 626 

with permission10 (Copyright @ 2020 Elsevier Inc.) demonstrating folding and interaction 627 

between N-terminal, hinge, and C-terminal domains with color-coding as in part A. C) The 628 

amino acid substitutions between ApoE isoforms are shown in 3D structure. D) Diagram shows 629 

the varied functions of ApoE in the periphery and CNS. Left: ApoE is produced primarily by the 630 

liver in the periphery, where it is involved in cholesterol metabolism, with ApoE2 and E3 631 

binding HDL particles and ApoE4 binding VLDL particles. Decreased binding of ApoE2 to LDLR 632 

impairs clearance of lipoprotein particles while ApoE4 binding VLDL leads to downregulation of 633 

LDLR and increased plasma cholesterol. Right: ApoE does not cross the BBB, but is produced 634 
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primarily by astrocytes in the CNS, which transfer cholesterol to the ApoE protein via 635 

ABCA1/ABCG1 receptors. The size of ApoE lipoprotein decreases from E2 to E3 to E4 due to the 636 

differential transfer of cholesterol. ApoE is then taken up by neurons via the LDLR and LRP1 637 

receptors, with preferential uptake of ApoE2 and E3 by LRP1 and E4 by LDLR.  638 

 639 

Figure 2: APOE genotype and the risk of AD  640 

A) Lifetime risk of AD based on age and genotype adapted from Reiman et al14 (Creative 641 

Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) 642 

B) APOE allele frequencies in different populations8. C) APOE genotype frequencies in different 643 

populations7. D) Odds ratio (OR) for AD in different ethnic populations based on APOE allele7. E)  644 

Odds ratio (OR) for AD in different ethnic populations based on APOE genotype7. 645 

 646 

Figure 3: Effect of APOE on AD biomarkers in AT(N) Framework  647 

A) Hypothetical biomarker-based model of AD pathophysiology demonstrating the AT(N) 648 

framework, with initial changes in amyloid beta (A) leading to downstream effects on tau (T) 649 

and neurodegeneration and related synaptic changes (N) leading to cognitive decline and 650 

decrease in clinical function (adapted from Hampel et al2 and Jack et al146). Aβ can be detected 651 

by Aβ PET or CSF Aβ42/40, with many p-tau species correlating with plaque load as well. Tau 652 

can be detected by tau PET and neurodegeneration can be detected by MRI, CSF t-tau or 653 

CSF/plasma NfL.  B) Effect of APOE ε4 and APOE ε2 on amyloid beta (A) biomarkers compared 654 

to APOE ε3 as baseline. C) Effect of APOE ε4 and APOE ε2 on tau (T) biomarkers compared to 655 
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APOE ε3 as baseline. D) Downstream effect of APOE ε4 and APOE ε2 on cognition following 656 

changes in AD pathophysiology within AT(N) framework 657 

 658 

Figure 4: Relationship between ApoE and underlying AD pathophysiology 659 

A) APOE and Aβ: APOE, particularly APOE ε4, promotes aggregation of Aβ from monomer to 660 

intermediate oligomers/protofibrils to fibrils that compose Aβ plaques. Aβ aggregation leads to 661 

downstream effects on gliosis, vascular, and synaptic dysfunction. Inset: Differential clearance 662 

of Aβ aggregates at the blood-brain barrier (BBB), with decreased perivascular drainage in ε4 663 

compared to ε3 carriers. APOE ε2 and ε3 mediate Aβ clearance through both the LRP1 and 664 

VLDLR receptors, while APOE ε4 switches Aβ clearance from LRP1 to solely VLDLR. B) APOE and 665 

Gliosis: (1) Microglia interact with Aβ plaques near ApoE co-deposition and APOE ε4 impairs 666 

microglial phagocytosis and degradation of Aβ aggregates. APOE ε4 changes microglial 667 

transcriptomic signature to a pro-inflammatory state, which coupled with tau aggregation, 668 

leads to neurodegeneration in tau mouse models. Reactive microglia also interact with 669 

infiltrating T cells to facilitate tau-mediated neurodegeneration. (2) Both LRP1 and LDLR are 670 

involved in Aβ uptake into astrocytes. ApoE4 competes with Aβ for uptake into astrocytes via 671 

LRP1, resulting in decreased Aβ uptake. APOE ε4 astrocytes become more reactive, leading to 672 

increased tau aggregation and neurodegeneration. (3) APOE ε4 impairs cholesterol transport 673 

out of microglia, increases cholesterol synthesis in astrocytes, and increases cholesterol 674 

synthesis and intracellular storage in oligodendrocytes, leading to glia-mediated 675 

neurodegeneration and demyelination. APOE ε4 mediates the interaction between microglia, 676 

astrocytes, and glial cells in these pathways. C) APOE and Vascular Dysfunction: APOE ε4 677 
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carriers have increased CAA, leading to BBB leakiness that can cause hemorrhage and changes 678 

in the inflammatory milieu leading to CAA-ri. Changes in pericyte-astrocyte signaling may 679 

underlie these downstream effects. APOE ε4 independently affects many components of 680 

cerebrovascular function, including direct effects on the neurovascular unit (not shown). Inset: 681 

Aβ is less efficiently cleared at the BBB in ε4 carriers, with ApoE2 and E3 mediating Aβ 682 

clearance through both the LRP1 and VLDLR receptors, while ApoE4 only utilizes VLDLR. LDLR 683 

also mediates Aβ clearance at the BBB, likely through uptake into astrocytes, with ApoE3 and 684 

ApoE4 having much stronger binding affinity to LDLR compared to ApoE2.  There is impaired 685 

perivascular drainage of Aβ with ApoE4, resulting in Aβ accumulation in periarterial spaces, 686 

leading to CAA. D) APOE and synaptic dysfunction: APOE ε4 carriers have increased 687 

accumulation of neurotoxic Aβ oligomers that interact with ApoE at synapses, with increased 688 

synapse loss around plaques. APOE ε4 expression also resulted in decreased spine density and 689 

loss of synaptic proteins, leading to impaired LTP and synaptic transmission. 690 

 691 

Figure 5: Overview of ApoE-targeted therapies 692 

Schematic demonstrating three major ApoE-targeting therapies: anti-ApoE antibodies, ApoE 693 

ASOs, and APOE allele switching. The figure summarizes the mechanism of action, effect on AD 694 

pathology, treatment timing, effects of peripheral vs. central administration, and potential 695 

challenges of translating each of these therapies into the clinic.   696 

 697 

Table 1: APOE genotype/allele frequencies, odds ratio (OR), and lifetime risk for AD by 698 

ethnicity and sex 699 
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Top panel: Population-based studies demonstrating APOE genotype and allele frequencies in 700 

different ethnicities with associated odds ratio (OR) for AD7,8. Middle panel: Results using 701 

Alzheimer’s disease-normal cognition data set showing lifetime risk for AD based on genotype 702 

and sex5. Bottom panel: Results using Rochester incidence rates showing OR for AD based on 703 

genotype and sex9 704 

 705 

 706 

 707 

Text Boxes 708 

Text Box 1: Considerations and discussion points for clinicians and patients/caregivers prior to 709 

APOE testing 710 

(1) Patient characteristics to consider for APOE testing:  711 

a. Symptomatic individuals considering biomarker-guided targeted therapies118 712 

b. Given limited predictive value at this time, guidelines do not recommend testing 713 

asymptomatic individuals unless for enrollment in preventative clinical trial. In 714 

the future, if preventative trials show benefit in this population, they may be 715 

considered for testing118  716 

c. Particular attention to individuals who already exhibit cognitive symptoms for 717 

genetic counseling118,120 718 

(2) Genetic counseling pre- and post-testing  719 

a. Genetic counseling should be ideally conducted by trained healthcare providers 720 

or genetic counselors118 721 
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b. Testing not recommended for those with psychiatric disorders that may interfere 722 

with comprehension of potential benefits and harms of APOE testing, 723 

particularly those patients for whom APOE disclosure may trigger suicidal 724 

ideation118,122 725 

c. Genetic risk assessments should be patient-centered and consider sex and ethnic 726 

diversity given different risk estimates in different populations.  727 

d. Future research studies investigating the impact of genotyping results should be 728 

more ethnically, socioeconomically, and culturally diverse.  729 

e. Discussion of benefits/risks should be inclusive of all stakeholders, including 730 

family members who may be affected 731 

(3) Education of HCPs and patients/caregivers on APOE testing 732 

a. Use visual aids for education of individual risk during counseling, such as 733 

age/sex/ethnicity specific incidence curves for APOE118,120  734 

b. Develop take-home educational materials to reinforce the knowledge and 735 

provide strategies for coping with risk118 736 

c. Consider medical, ethnic, and socioeconomic factors that may impact 737 

understanding of genetic testing results118 738 

(4) Equitable accessibility to tests,  739 

a. Guidelines need to be updated for risk-assessment APOE testing prior to 740 

biomarker-guided, targeted therapy use 741 

b. Insurance companies should cover APOE testing prior to the administration of 742 

biomarker-guided targeted therapies118 743 
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c. Additional legal protections needed to prevent LTC insurance discrimination and 744 

other stigma associated with APOE genotype118 745 

(5) Questions for clinicians to consider prior to testing118 746 

a. Is the patient eligible for a biomarker-guided targeted therapy? Will APOE genotype 747 

affect treatment choice or monitoring? 748 

b. Is the patient experiencing symptoms of AD and can they comprehend the 749 

information to make an informed decision? 750 

c. Is the patient psychologically able to cope with test results? 751 

d. Does the patient have all eligible insurance coverage, including health, life, and LTC? 752 

e. Does the patient plan to discuss test results with family members who may have 753 

increased risk of carrying ε4 allele? 754 

(6) Talking points for clinicians to discussion APOE testing with patients and care-755 

partners136: 756 

a. Use plain language, provide only key information, keep discussion interactive, 757 

use visual aids 758 

b. AD is caused by multiple factors, both genetic and environmental, some of which 759 

are not known yet. Whether or not this gene variant is present, other factors can 760 

also influence the chance of developing the disease. 761 

c. This testing can look for one of the gene variants involved in AD, and can help 762 

make decisions for starting a particular treatment.  763 

Text Box 2: ApoE-targeted therapies 764 

Anti-ApoE antibodies 765 
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One therapeutic approach to APOE has focused on removing ApoE/Aβ complexes using anti-766 

ApoE antibodies. The anti-human ApoE antibody HAE-4 reduces insoluble Aβ and plaques by 767 

preferentially binding to non-lipidated ApoE present in Aβ plaques and CAA without affecting 768 

other physiological forms of ApoE140. This antibody decreased CAA in mice and rescued CAA-769 

induced cerebrovascular dysfunction, while anti-Aβ antibodies can exacerbate CAA and related 770 

microhemorrhages140. Using anti-ApoE antibodies alone or in conjunction with anti-Aβ antibodies 771 

may offer the possibility of removing Aβ from brain parenchyma and CAA with less risk of ARIA if 772 

similar effects are seen in humans. Removing ApoE/Aβ complexes may mitigate downstream Aβ-773 

mediated tau seeding and spreading as shown in one study, suggesting that targeting this 774 

interaction can have effects on other AD pathophysiology147. A recent anti-ApoE antibody 775 

mimicked the APOE-Christchurch mutation by reducing ApoE-HSPG interaction and ameliorating 776 

tau pathology in mice145, providing a novel approach combining genetics and antibodies for an 777 

ApoE-targeted therapy.   778 

 779 

APOE gene therapy 780 

Another therapeutic approach for ApoE has been using gene therapy to switch APOE isoforms 781 

from ε4 to the protective ε2 allele23. Viral gene delivery of APOE ε2 in AD mouse models reduced 782 

oligomeric Aβ and plaque formation23,148,149, and is now being tested in human clinical trials23. 783 

Switching ε4 carriers to ε2 could be used prior to the initiation of anti-Aβ or other therapies to 784 

allow for better efficacy and safety profiles of these treatments. Gene therapy using antisense 785 

oligonucleotides (ASOs) is also being used to lower the overall levels of APOE ε423. ASOs lowering 786 
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APOE ε4 levels reduce Aβ plaque deposition, but only if used prior to the onset of Aβ pathology141. 787 

APOE ε4 reduction using ASOs can also mitigate tau aggregation and tau-associated gliosis and 788 

neurodegeneration94.  789 

 790 

Text Box 3: Key outstanding questions regarding APOE in the field 791 

APOE and AD clinical progression 792 

1. What are the biological and environmental factors contributing to APOE’s sex and ethnic 793 

differences in AD? 794 

2. How does APOE modulate clinical progression based on sex and ethnicity? 795 

3. What are the mechanisms underlying the gene-environment interactions with APOE in 796 

AD? 797 

AD biomarkers and pathophysiology 798 

1. How does APOE contribute to Aβ aggregation and the role of APOE lipidation in this 799 

process? 800 

2. What are the mechanisms by which APOE contributes to tau aggregation and gliosis 801 

independent of Aβ? 802 

3. How does APOE influence Aβ-dependent and Aβ-independent mechanisms of tau 803 

aggregation? 804 

4. What are the exact mechanisms underlying APOE’s role in CAA and CAA-ri? How does 805 

the relationship between CAA and parenchymal Aβ in AD play a role in this process? 806 
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5. How does APOE ε2 confer a protective effect for AD but increases the risk of 807 

hemorrhage from CAA? 808 

6. What role does APOE ε2 play in tau aggregation and tau-related mechanisms of AD 809 

pathogenesis? 810 

7. How does the interplay of APOE, tau aggregation, and glial cells contribute to 811 

neurodegeneration in AD?  812 

8. How does APOE genotype influence new AD biomarkers (“X”)? 813 

9. How can APOE genotyping be used in combination with other AD biomarker testing to 814 

improve early AD diagnosis? 815 

APOE in clinical practice 816 

1. How can APOE be used in conjunction with other genetic factors (i.e., PRS) to better 817 

identify risk for AD? 818 

2. How does APOE influence the efficacy and safety of emerging biomarker-guided 819 

targeted therapies? 820 

3. What are the best practices to implementing APOE testing into the current AD clinical 821 

care pathway? 822 

4. Will early APOE screening during healthy aging lead to lifestyle interventions that 823 

possible provide clinical utility? 824 

5. How can emerging APOE-targeted therapies be used in combination with other 825 

biomarker-guided targeted therapies to provide better efficacy and safety for AD 826 

patients? 827 

 828 
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