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Abstract

The subject of this thesis is monopoles – solutions to the Bogomolny equations – on

the Euclidean 3-space R3, with arbitrary gauge group, mass and charge, and hence

symmetry breaking. We start by providing an overview of monopoles themselves

and discussing their asymptotics in relation to mass and charge. These are used

to define a framing, using an asymptotic model for each such choice. With this we

set up an analytic framework appropriate for the construction of moduli spaces of

framed monopoles. The construction is then carried out as a quotient of infinite-

dimensional spaces, which requires a careful analysis of the differential operators

involved and their Fredholmness and other mapping properties. More specifically, a

combination of the b and scattering calculuses is used to define appropriate Sobolev

spaces and analyse the partial differential equations. The resulting framed moduli

spaces are constructed as smooth manifolds and we see that they also carry hyper-

Kähler metrics, obtained through a hyper-Kähler quotient construction. Lastly we

consider how our results fit into some of the pre-existing knowledge in this area.

In particular, we discuss the relationship between the mass and the charge and

the symmetry breaking, and expand upon these concepts in the cases of special

unitary and orthogonal groups.
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Impact Statement

In this thesis, a construction of the framed moduli spaces of monopoles with ar-

bitrary symmetry breaking is carried out. Aside from the resulting smooth hyper-

Kähler structure, it provides an analytical framework which can be used to con-

tinue studying these spaces, and hence it can be of interest to researchers who are

investigating these moduli spaces and their properties. The approach differs from

many other lines of research in the area in that it is done from the perspective of

monopoles themselves, without relying on the correspondence with other mathem-

atical objects like Nahm’s equations, rational maps or spectral data. Therefore, it

can provide a complementary outlook to better understand the subject.
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Chapter 1

Background and overview

Monopoles are defined on an oriented Riemannian 3-manifold as pairs (A,Φ),

where A is a connection on a principal G-bundle and Φ, the Higgs field, is a

section of its adjoint bundle, which satisfy the Bogomolny equations

(1.0.1) ?FA = dAΦ ,

as well as a finite energy condition.

There are several perspectives which motivate their definition and study. Per-

haps the first motivation comes from physics, whose language pervades the topic

of monopoles, as well as the more general area of gauge theory. However, our in-

terest in this thesis lies in the mathematical aspects of monopoles and their moduli

spaces, so we will centre our attention on this.

From a geometric perspective, monopoles make a compelling subject of study.

They are related to other objects in gauge theory, like anti-self-dual Yang–Mills

connections, and similarly form interesting moduli spaces, which have interesting

properties like a hyper-Kähler metric, and they furthermore have correspondences

with a variety of other mathematical objects: Nahm’s equations, rational maps

and spectral data.

Monopoles on R3 for the simplest non-Abelian gauge group, G = SU(2), have

been studied extensively. In this case, we have a significant knowledge of their

asymptotic behaviour [JT80; Gro84]. Firstly, it is known that the size of the

Higgs field must tend to a constant called the mass, which, if not 0 – which doesn’t
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produce non-trivial monopoles–, can be assumed through rescaling to be 1. This

means that, near infinity, the Higgs field defines a map between the 2-sphere of

directions in R3 and the unit 2-sphere in the Lie algebra su(2). The degree of this

map is called the charge, and it rules the asymptotic behaviour of the monopole.

More specifically, it determines the behaviour of the monopole to order 1
r

near

infinity, with more precise behaviour of the lower order terms following from the

differential equations.

Another established result in this case is that SU(2)-monopoles form mod-

uli spaces [AH88]. Since the charge provides a topological quantity, we restrict

ourselves to monopoles of a fixed charge. It is furthermore convenient to consider

framed moduli spaces, which means that a specific asymptotic behaviour is fixed

near infinity and only gauge transformations which are the identity at infinity are

considered. This yields a complete hyper-Kähler manifold for any non-negative

charge, whose dimension is four times the value of this charge. This construction

can yield interesting spaces, like the Atiyah–Hitchin manifold. Additionally, its

metric has been interpreted as providing the evolution of low-energy monopoles

[Man82; Stu94].

These moduli spaces and their metrics have been studied, and their asymptotic

regions have been interpreted as parametrising monopoles of a the given charge

separating into several monopoles of lower charge [Wei79; Bie95; Bie98a; FKS18].

For other gauge groups we don’t have such a detailed picture. Firstly, it is

important to note that the asymptotic conditions are no longer so straightforward:

The mass – the limit of the Higgs field at infinity – is no longer determined only

by its size. Rather, it is given by an adjoint orbit inside the Lie algebra of the

gauge group. Therefore, it plays a more prominent role, and, in particular, its

symmetries determine a property of the monopoles called symmetry breaking.

The case in which the mass is a regular element, like for SU(2), is known as

maximal symmetry breaking, and exhibits a number of properties which make its

study simpler. For example, the behaviour of order 1
r

is once again ruled by a

topological (or magnetic) charge: the homotopy class of the map given by the

Higgs field at infinity from the 2-sphere of directions in R3 to the adjoint orbit of

the mass, which is given by a number of integers.

If, however, the symmetry breaking is non-maximal, we have some additional
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features. An important observation is that in this case the topological charge

does no longer truly determine the behaviour of order 1
r
, so we must furthermore

consider holomorphic charges. Then, if we hope to build hyper-Kähler moduli

spaces, we must fix all of the charge components.

For an arbitrary gauge group, there has been work to interpret monopoles as

superpositions of SU(2) monopoles [Wei80; Wei82; LWY96], which has been used

to study their moduli spaces and their metrics [GRG97; Bie98b].

A remarkable feature of monopoles, as pointed out above, is the multitude of

correspondences with other mathematical objects, which have been used to study

their properties employing the advantages of each correspondence.

A fruitful correspondence, known as the Nahm transform, exists between mono-

poles and solutions to Nahm’s equations. If the Bogomolny equations can be

viewed as the dimensional reduction of the anti-self-dual Yang–Mills equation on

R4 to 3 dimensions, Nahm’s equations are the dimensional reduction to 1 dimen-

sion. This can be viewed as an instance of a family of such correspondences

between different gauge theory problems related to these instantons [Jar04], which

includes the ADHM construction relating instantons with algebraic data. In the

case of the Nahm transform for monopoles, the other side of the correspondence

is not purely algebraic, but it is a set of ordinary differential equations.

Another equivalence links monopoles with rational maps from CP1 into another

complex space, which depends on the gauge group and the symmetries of the mass

and charge. An interesting feature of this approach is that one can build moduli

spaces in which only the topological component of the charge is fixed.

Lastly, we note that one can also establish a correspondence with spectral data,

which consists of algebraic-geometric data on the minitwistor space TCP1.

These correspondences have been investigated in many different cases, often

relating them to one another, and have facilitated the study of many aspects of

monopoles and their moduli spaces. The correspondences for SU(2) have been

studied in great detail [Hit82; Hit83; Don84; Hur85; Nak93], and they have also

been extended to monopoles with arbitrary gauge groups [Mur83; Mur84; Hur89;

HM89; Mur89; HM90; Jar98a; Jar98b; Jar00; CN22]. They have then been used

to study the parameters of general monopoles [Bow85], specific cases of SU(3)-

monopoles [Dan92; DL93; Dan93; Dan94; DL97; Irw97], and to produce some
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examples with non-maximal symmetry breaking [CDLNY22].

Although the equivalences outlined above provide powerful tools in the study

of monopoles, it is also possible to take a more direct approach. The advantage of

this is that the properties of monopoles become more apparent, and that certain

elements, like the hyper-Kähler metric on the moduli space, appear more explicitly.

Our main aim is therefore to carry out the construction of the moduli space

of monopoles without relying on these correspondences. In particular, we define a

configuration space of pairs whose asymptotic conditions are adapted to a choice of

mass and charge, and we define the moduli space as the quotient of the monopoles

inside that configuration space modulo a group of gauge transformations. Our

main result can be summarised in the following way:

Theorem (Theorem 5.1.12). The moduli spaceMµ,κ of framed monopoles of mass

µ and charge κ is either empty or a smooth hyper-Kähler manifold whose dimension

is four times the sum of the integer charges.

The approach we take to this construction is relatively straightforward, and in

many ways mirrors the construction of moduli spaces of anti-self-dual Yang–Mills

connections on 4-manifolds [DK90], as well as of SU(2)-monopoles [AH88], which

relies on an infinite-dimensional version of the hyper-Kähler quotient [HKLR87].

A crucial aspect is the utilisation of the analytical tools developed by Kottke

[Kot15a], which combined Melrose’s b and scattering calculuses [Mel93; Mel94]

in a way which is particularly well-suited for monopoles – in fact they were used

by the same author to study SU(2)-monopoles on other 3-manifolds [Kot15b],

carrying out an analysis of the linearised problem similar to the one here. Melrose’s

formulation provides powerful results and a convenient setting to combine these

formalisms, with the b calculus being analogous to the analysis on cylindrical ends

studied in other works [Can75; LM85] and the scattering calculus in this case

simply corresponding to the usual analysis on a Euclidean space, where Callias’s

index theorem can be applied [Cal78; Kot11].

Similar techniques were employed by Sánchez Galán in his PhD thesis [Sán19].

In it, a combination of the b and scattering calculuses is applied to the construc-

tion of the moduli spaces of SU(n)-monopoles with arbitrary symmetry breaking

and their smooth and hyper-Kähler structures, and an index theorem from Kot-
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tke’s work [Kot15a] is applied to the computation of the dimension for maximal

symmetry breaking.

Although many of the features are already present in the case of SU(n), our

setting is a more general class of gauge groups. We similarly apply a combination

of the b and scattering calculuses, mainly following Kottke’s work, but make use

of slightly different Sobolev spaces. In particular, we completely fix the decay

parameters and we allow the regularity parameters to be arbitrarily large integers.

We also make some different choices in the definition of the configuration space

and framing, as well as of the space of small gauge transformations. Furthermore,

we carry out a detailed analysis of the linearised operator and its indicial roots

for arbitrary symmetry breaking. This allows us to compute the dimension of

the moduli space directly, and is important in order to choose the initial decay

parameters as well as to deduce asymptotic properties of the monopoles.

Aside from obtaining the moduli space itself, this construction provides ana-

lytical tools which can be used to further study monopoles. In particular, we also

obtain a regularity and decay result in Theorem 4.2.12.

We also discuss some consequences of our framework and results and aim to

put them into a wider context.

Much of the work in this thesis is also contained in a previous work of the

candidate [Men24], as noted in the declaration above. In particular, the paper

contains the construction of the moduli spaces, although here we provide additional

details. On the other hand, it did not contain the most refined version of the decay

result, or most of the discussion of Chapters 5 and 6.

In Chapter 2 we begin by introducing monopoles relying on general geometric

concepts and we establish convenient notions of mass and charge to use throughout

the construction.

We then discuss the moduli space itself in Chapter 3. In particular, we set up

the formal construction from the analytical tools discussed in the appendices.

Chapter 4 contains the construction of the moduli space. This involves studying

the setup from the previous chapter and applying the necessary analytical results.

In Chapter 5 we expand upon certain aspects of our construction and put them

in the context of previous work in the area.

Finally, in Chapter 6 we explain how our results translate into certain families
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of Lie groups and cases studied previously.

The appendices provide a few tools which have been separated from the main

body of this thesis to provide a more straightforward exposition.

Appendix A does not contain any particularly novel material, and is mainly

intended to fix the notation used regarding spinor bundles and Dirac operators.

Similarly, Appendix B is mostly a review of the analytical tools from the the

literature that we aim to apply in the moduli space construction, with the aim of

providing a self-contained account of the elements which will be utilised.

In Appendix C we provide a link between the analytical results of the previous

appendix and our setting by defining the function spaces which are used through-

out, additionally providing some technical properties necessary for the proofs.
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Chapter 2

Monopoles

We will start by establishing our setting and defining monopoles in Section 2.1.

Then, in Section 2.2 we explain how monopoles are related to anti-self-dual Yang–

Mills connections in 4 dimensions. Lastly, we establish a definition of mass and

charge and study the asymptotics of monopoles in Section 2.3, establishing an

asymptotic model on which we will base the moduli space construction.

2.1 Setting and definitions

In order to define monopoles we must start by choosing an underlying manifold

and a gauge group.

The underlying manifold must be an oriented Riemannian 3-manifold. Here,

we choose the simplest possibility: the Euclidean 3-space R3.

On the other hand, the choice of gauge group is much more general. For

simplicity, we start by allowing any real, compact, connected, simply connected,

semisimple Lie group G, which will be referred to as the gauge group. However, in

Section 5.4 we discuss how these results are applicable to any compact Lie group.

Note that any such group G admits an inner product 〈•, •〉g on its Lie algebra g

which is invariant under the adjoint action. We consider this inner product fixed

along with the group.

The monopoles will then be constructed on a principal G-bundle P over R3.

Since the Euclidean space is contractible all such bundles are isomorphic, so we
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are not making any additional choice. In particular, P must be trivial, but it will

not necessarily be convenient to always consider it as such. Indeed, in Section 2.3

we will build P in a way which exhibits its structure more clearly with respect to

the monopoles we will consider.

Let us recall that for a given principal G-bundle P we can construct associated

bundles through actions of G. Importantly, through the conjugation action of

G on itself we obtain the automorphism bundle Aut(P ), whose fibres are the

automorphism groups of the fibres of P . An automorphism of the bundle P ,

called a gauge transformation, can then be viewed as a section of Aut(P ). The

group of these gauge transformations is denoted by G , so we can write

(2.1.1) G = Γ(Aut(P )) .

Another relevant associated bundle is the adjoint bundle Ad(P ), obtained through

the adjoint action of G on g, which is denoted by Ad. Note that the Ad-invariant

inner product on g carries over fibrewise to a metric on this bundle. Furthermore,

the adjoint action Ad of G on g, and the adjoint action of g on itself, denoted by ad

or by the Lie bracket, carry over fibrewise to the automorphism and adjoint bundles

as well. Sections of this adjoint bundle can also be regarded as infinitesimal gauge

transformations. With the Lie bracket they form a Lie algebra

(2.1.2) G = Γ(Ad(P )) ,

which will be the Lie algebra of the group G of gauge transformations when the

appropriate conditions are added to make it into a Lie group.

Note that the metric on the underlying Euclidean space R3 induces metrics

on its exterior bundle, which we denote simply as
∧•

. We can combine this with

the metric on the adjoint bundle to obtain metrics on the bundles
∧j ⊗ Ad(P ),

and hence, using the Euclidean measure, to obtain Lp norms on the spaces of

Ad(P )-valued j-forms Ωj(Ad(P )).

On these bundles, we will denote the fibrewise inner product on the adjoint

bundle by 〈•, •〉g and its combination with the Riemannian metric on forms by

〈•, •〉R3,g. The L2 inner product of sections is denoted by 〈•, •〉L2 , where the fibrewise
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product is usually understood. Similarly, ‖•‖g, ‖•‖R3,g and ‖•‖L2 are used to denote

the corresponding (possibly fibrewise) norms, with ‖•‖Z used to denote the norm

with respect to any other normed vector space Z.

Remark 2.1.3. Here we are using Γ and Ω to denote spaces of sections and forms,1

which we can initially think of as being smooth. However, in Chapter 3 we will

see how, in fact, it will be necessary to consider sections (and forms) with other

regularity and asymptotic conditions.

Given such a principal bundle P , the basic objects which we consider are the

following.

Definition 2.1.4. We define the configuration space (of pairs) as

(2.1.5) C := A (P )⊕ Γ(Ad(P )) ,

where A (P ) is the space of principal connections on P . A pair M = (A,Φ) ∈ C

is called a configuration pair, and its constituent parts are referred to as the con-

nection and the Higgs field, respectively.

This configuration space is an infinite-dimensional affine space over the vector

space

(2.1.6) Ω1(Ad(P ))⊕ Ω0(Ad(P )) = Γ((
∧1 ⊕

∧0)⊗ Ad(P )) .

Furthermore, there is a natural action of the group G of gauge transformations on

this space: it acts on the connections in the usual manner, and through the adjoint

action Ad on the adjoint bundle. We denote the action of a gauge transformation

g ∈ G on a pair M = (A,Φ) as g ·M = (g · A, g · Φ).

On this configuration space we can define the following maps.

Definition 2.1.7. We define the Bogomolny map as

(2.1.8)
B : C → Ω1(Ad(P ))

(A,Φ) 7→ ?FA − dAΦ

1Along with
∧

, the notation omits the underlying manifold when it is understood – usually R3

or a subset of it. When it is necessary to specify the underlying space we write it as a subscript.
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and the energy map as

(2.1.9)
E : C → R≥0 ∪ {∞}

(A,Φ) 7→ 1

2
(‖FA‖2

L2 + ‖dAΦ‖2
L2) .

Naturally, the gauge group also acts on the codomain of B through the adjoint

action on its Ad(P ) component – as it does on any space Γ(E ⊗ Ad(P )) for any

vector bundle E. Considering this, we have the following properties.

Proposition 2.1.10. With respect to the group G of gauge transformations, the

Bogomolny map is equivariant and the energy map is invariant.

Proof. This follows from the facts that

(2.1.11) Fg·A = g · FA

and

(2.1.12) dg·A(g · Φ) = g · dAΦ ,

together with the Ad-invariance of the metric on Ad(P ).

We can now define monopoles in our setting.

Definition 2.1.13. A monopole is a configuration pair M ∈ C which satisfies the

Bogomolny equations

(2.1.14) B(M) = 0

and has finite energy, that is,

(2.1.15) E(M) <∞ .

From Proposition 2.1.10 we deduce that the action of G preserves the condition

of being a monopole.
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2.2 As dimensional reduction

There is a strong relationship between monopoles and anti-self-dual Yang–Mills

connections on the Euclidean 4-space R4 [Jar04].

Recall that a connection M on a principal G-bundle P over an oriented Rieman-

nian manifold is a Yang–Mills connection when

(2.2.1) d∗MFM = 0.

However, if the underlying manifold is 4-dimensional we have some additional

features. We start by noting that the Hodge star operator preserves 2-forms, and

squares to the identity. Considering its ±1 eigenspaces yields a decomposition

(2.2.2) Ω2
R4 = Ω+

R4 ⊕ Ω−R4

of 2-forms into self-dual and anti-self-dual components. We then say that a M is

an anti-self-dual Yang–Mills connection when

(2.2.3) F+
M = 0,

that is, the self-dual component of the curvature vanishes.

Taking the manifold to be R4, let us write R4 = R ⊕ R3, and assume that

the connection M is invariant under translations of the first summand. This

connection is then given by a connection on R3, representingM along the directions

of R3, together with a section of the adjoint bundle, again over R3, representing

the connection along the direction of R. Calling these components A and Φ,

respectively, we have precisely a monopole configuration pair.

More precisely, let us consider the coordinates x0 and x1, x2, x3 on the space

R ⊕ R3. With respect to a trivialisation of P , we can write a connection M on

this space as

(2.2.4) M = d +m0dx0 +m1dx1 +m2dx2 +m3dx3 ,
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where

(2.2.5) mj ∈ ΓR4(Ad(P )) .

If M is invariant with respect to translations in x0, then so are the sections mj,

which can hence be considered sections on R3. We can then rename

A = d +m1dx1 +m2dx2 +m3dx3 ,(2.2.6a)

Φ = m0 ,(2.2.6b)

which define a connection and a Higgs field on R3.

The crucial fact is that the self-dual part of the curvature of the original con-

nection now becomes precisely the Bogomolny map on (A,Φ), that is,

(2.2.7) B(A,Φ) = F+
M ,

where

(2.2.8)
Ω1

R3
∼= Ω+

R4

σ ↔ dx0 ∧ σ + ?R3σ .

Therefore anti-self-dual Yang-Mills connections invariant in one direction corres-

pond to solutions of the Bogomolny equations.

Throughout the study of monopoles, analogies can be drawn with this 4-

dimensional setting. For example, the bundle
∧1

R3 would be analogous to
∧+

R4 ,

as seen in (2.2.8), and the bundle
∧1

R3 ⊕
∧0

R3 encountered before would be analog-

ous to
∧1

R4 .

This indicates that the study of monopoles will involve some of the many

interesting properties found in the study of anti-self-dual Yang–Mills connections.

We will remark further on these analogies when relevant throughout the thesis.
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2.3 Asymptotic models

The finite energy condition (2.1.15) constitutes a constraint on the asymptotic

behaviour of monopoles. However, a more precise picture might be possible, or at

least hoped for.

The idea is that the behaviour up to a certain order should be determined by

two elements µ, κ ∈ g in the Lie algebra of the gauge group, which are called the

mass and the charge, respectively. Specifically, the monopoles (A,Φ) considered

satisfy that, along any ray from the origin, they can be written in some gauge such

that

Φ = µ− 1

2r
κ+ o(r−1) ,(2.3.1a)

?FA = dAΦ =
1

2r2
κ⊗ dr + o(r−2) ,(2.3.1b)

where r is the radial variable. The conditions imposed on the lower order terms

vary between different works.

For G = SU(2), the simplest non-Abelian gauge group, we know that all mono-

poles fall into this classification, with the lower order term in (2.3.1a) being of order

r−2 [JT80], but for a general gauge group we don’t have such a clear picture.

Our approach largely sidesteps the issue of proving such behaviour for all mono-

poles, opting instead for directly considering monopoles which satisfy the desired

conditions.

For a given choice of µ and κ, we will construct a “model” configuration pair

near infinity which satisfies the desired asymptotic conditions without lower order

terms. In other words, a pair (Aµ,κ,Φµ,κ) such that

Φµ,κ = µ− 1

2r
κ ,(2.3.2a)

?FAµ,κ = dAµ,κΦµ,κ =
1

2r2
κ⊗ dr ,(2.3.2b)

near infinity in some gauge along each ray.

We will then consider monopoles of mass µ and charge κ to be those which are

sufficiently close to the model pair near infinity. To be more accurate, this will
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result in framed monopoles, since monopoles gauge equivalent to these ones will

also be considered to have the same mass and charge. In Chapter 3 we provide a

more precise definition.

Alongside this model pair we will establish, near infinity, a decomposition of

the adjoint bundle Ad(P ). The behaviour of the model pair will be very simple

with respect to this decomposition, and it will be used to understand the behaviour

of the monopoles we consider.

We start the construction by observing that the mass µ and charge κ must

commute for such a model pair to exist. To see this, let us take a gauge locally

around a ray near infinity with respect to which we have the form (2.3.2). Then,

taking the covariant derivative of the Bogomolny map yields

(2.3.3)

0 = dAµ,κ(B(Aµ,κ,Φµ,κ))

= dAµ,κ(?FAµ,κ)− d2
Aµ,κΦµ,κ

= dAµ,κ(?FAµ,κ)− [FAµ,κ ,Φµ,κ]

= dAµ,κ

( 1

2r2
κ⊗ dr

)
− 1

2r2
[κ, µ]⊗ (?dr)

=
(

dAµ,κ

( 1

2r2
κ
))
∧ dr − 1

2r2
[κ, µ]⊗ (?dr) .

By observing the 1-form components of the two resulting summands we can see

that they must be linearly independent if they are non-zero, and hence they must

both be zero, implying that [µ, κ] = 0 as desired.

Therefore, to simplify the construction, we take a maximal torus subgroup T in

G whose Lie algebra t contains µ and κ, and we will build the pair on a principal T -

bundle before taking it to the principal G-bundle P through an associated bundle

construction.

Note that, since T is Abelian, the adjoint bundle of any principal T -bundle is

canonically identified with the trivial bundle with fibre t. In particular, µ and κ

can now be used as sections without needing to choose a local gauge.

We first construct the connection. Restricted to the unit sphere S2, the

curvature of this connection must be equal to 1
2
κ ⊗ dvolS2 – note that on other

spheres we would have the same expression once we rescale. To have such a con-

nection we in fact need an additional integrality condition on the charge.
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Proposition 2.3.4. There exists a principal T -bundle Q on the unit sphere with

a connection AQ with curvature FAQ = 1
2
κ⊗ dvolS2 if and only if exp(2πκ) = 1T .

Proof. On S2, let us write θ1 for the polar coordinate and θ2 for the azimuthal

coordinate (so the north pole corresponds to θ1 = 0 and the south pole to θ1 = π).

In these coordinates, the curvature expression becomes FAQ = 1
2
κ⊗sin(θ1)dθ1∧dθ2.

Now suppose we had such a bundle Q and connection AQ. Over the unit sphere

with the south pole removed we trivialise the connection along meridians from the

north to the south pole. Since the group is Abelian, the connection 1-form can be

obtained by integrating the curvature. We get

(2.3.5) aN =
1− cos(θ1)

2
κ⊗ dθ2 .

Trivialising from the south pole along meridians (excluding the north pole), we

likewise get

(2.3.6) aS =
−1− cos(θ1)

2
κ⊗ dθ2 .

Using the commutativity once again we deduce that the transition function g

between the two charts (which takes values in T ) must satisfy

(2.3.7) (dg)g−1 = aN − aS = κ⊗ dθ2 .

and hence must be of the form

(2.3.8) g = exp(θ2κ)

(up to a multiplicative constant). But in order for this to be well defined, we must

have exp(2πκ) = 1T .

Conversely, if we have this condition, the construction described provides the

desired bundle and connection.

Of course, since T is a subgroup of G, the integrality condition on the charge

can also be written as exp(2πκ) = 1G.

Now, this bundle and connection can be extended to the punctured space
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R3 \{0} radially, where we denote them still as Q and AQ. Note that now we have

(2.3.9) FQ =
1

2r2
κ⊗ ?dr ,

as desired. Furthermore, the adjoint bundle Ad(Q) is the trivial bundle with fibre

t, so we can simply define

(2.3.10) ΦQ := µ− 1

2r
κ

as a section.

Now we can simply define the bundle P outside of the origin as the principal

G-bundle associated to Q, since T is a subgroup of G. Given that G is simply

connected, this can be completed to a bundle over the entire R3.2 Note that, given

that the base manifold R3 is contractible, the bundle P must be trivial in any

case, so this construction does not constitute a choice in this respect. However,

the relationship

(2.3.11) P |R3\{0} = Q×T G

will provide a convenient link with the mass and the charge.

Recall that, for a maximal torus such as T , we have a root space decomposition

of the complexification gC of the Lie algebra of G. If R ⊂ (tC)∗ denotes the set of

roots, we can write this as

(2.3.12) gC = tC ⊕
⊕
α∈R

gα ,

where gα is the root space corresponding to α. But the adjoint action of T preserves

this decomposition, and outside the origin the bundle Ad(P ) can also be viewed

as an associated bundle

(2.3.13) Ad(P )|R3\{0} = Q×T g

2For a general compact group this will require a stronger integrality condition on the charge,
as discussed in Section 5.4.
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through the adjoint action. Hence, the root space decomposition can be carried

over to this adjoint bundle.

Note that this will include the bundle Ad(Q) as the trivial subbundle associated

to t ⊂ tC.

Definition 2.3.14. Near infinity, we define the root subbundle decomposition as

the decomposition

(2.3.15) Ad(P )C = tC ⊕
⊕
α∈R

gα
::

of Ad(P )C associated to the root space decomposition (2.3.12) through (2.3.13).

The subbundles gα
::

associated to each root space gα are referred to as a root

subbundles.

Note that, as is reflected in the notation, although tC is trivial, the other sub-

bundles gα
::

might not be. We can also observe that this complex bundle has a

natural real structure inherited from gC.3 Furthermore, this real structure pre-

serves tC, but not necessarily the root subbundles gα
::

. However, it does preserve

the subbundles gα
::
⊕ g−α

:::
. This means that Ad(P ) can be thought of as being

decomposed into t and the real parts of the spaces gα
::
⊕ g−α

:::
.

Remark 2.3.16. In (2.3.12), we could substitute tC with (g0)rank(G), where g0
∼= C

and 0 is interpreted as an element of (tC)∗, analogous to a “root equal to zero”.

Analogously, in (2.3.15) we could substitute tC with (g0
::

)(rank(G), where g0
::

is the

(trivial) line bundle corresponding to g0 through (2.3.13).

This will be notationally convenient, since many properties of the root sub-

bundles gα
::

will be true of tC when changing α to 0 ∈ (tC)∗ and taking the multi-

plicity into account.

Hence, unless specified otherwise, we will understand all the properties deduced

for the subbundles gα
::

to extend to tC in this manner (like in Proposition 2.3.21).

Naturally, the adjoint action behaves as expected in this decomposition. That

3This can be formalised as a fibrewise conjugate-linear involution whose fixed points make up
the real part.
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is, if X ∈ Γ(tC) and Y ∈ Γ(gα
::

), then

(2.3.17) adX(Y ) = α(X)Y .

Now, through this associated bundle construction we can also carry over AQ

and ΦQ, making them smooth over the origin with a cutoff function.

Definition 2.3.18. We define Aµ,κ as the connection on P associated to AQ

through (2.3.11) and smoothed over the origin. Likewise, we define Φµ,κ as the

section of Ad(P ) given by the inclusion of Ad(Q) in Ad(P ), similarly smoothed

over the origin. We refer to

(2.3.19) Mµ,κ := (Aµ,κ,Φµ,κ)

as the model pair.

This definition provides a pair (Aµ,κ,Φµ,κ) which, near infinity, satisfies the

desired asymptotic conditions. Furthermore, its behaviour with respect to the root

subbundle decomposition will provide the basis for much of the analysis throughout

the rest of this thesis.

To begin understanding this, let us start by fixing more precise notation.

Definition 2.3.20. We write µ and κ for the sections of t inside Ad(P ) near

infinity which are constant of values µ and κ, respectively.

We can now write out the behaviour of the model pair near infinity along the

decomposition.

Proposition 2.3.21. Near infinity, we have

Φµ,κ = µ− 1

2r
κ ,(2.3.22a)

?FAµ,κ = dAµ,κΦµ,κ =
1

2r2
κ⊗ dr ,(2.3.22b)

as well as

(2.3.23) B(Aµ,κ,Φµ,κ) = 0 .
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Furthermore, the connection Aµ,κ and the adjoint action of Φµ,κ decompose

along the root subbundle decomposition (2.3.15). Restricted to each root subbundle

we have

adΦµ,κ |gα
:

= α(µ)− α(κ)

2r
,(2.3.24a)

?FAµ,κ|gα: =
α(κ)

2r2
dr .(2.3.24b)

Proof. The form (2.3.22) follows from the construction, and (2.3.23) follows from

the fact that the connection Aµ,κ is trivial on tC, so its sections µ, κ ∈ Γ(tC) are

covariantly constant.

The second part of the proposition follows from the general properties of asso-

ciated bundles, together with the properties of the root subbundle decomposition,

such as (2.3.17).

This, in turn, provides a better understanding of the subbundles in the decom-

position in terms of the complex line bundles described in Section A.4.

Corollary 2.3.25. Near infinity, each complex line subbundle gα
::

has degree iα(κ)

over each sphere centred at the origin. Furthermore, the restriction of Aµ,κ to each

of these subbundles is homogeneous on these spheres. In other words, considered

with the connection Aµ,κ|gα
:

, we have

(2.3.26) gα
::

∼= L iα(κ) .

Proof. This follows from (2.3.24b) and the construction of Aµ,κ. This is because

the connection is radially constant and satisfied the desired curvature condition,

which in the case of unitary line bundles on a simply connected manifold like the

2-sphere determines the connection up to gauge equivalence.

Note that, although not all of the notation built up in this section makes

explicit reference to the choice of mass µ and charge κ they are still used to carry

out the constructions. Therefore in Chapters 3 and 4 we will assume that, along

with the connected, simply connected, semisimple compact group G, we have fixed
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such two elements µ, κ ∈ g satisfying that

[µ, κ] = 0 ,(2.3.27a)

exp(2πκ) = 1G ,(2.3.27b)

as well as the model pair Mµ,κ. We will then study the moduli space of monopoles

framed by using this construction.

Remark 2.3.28. Let us lastly remark upon some of the choices made here.

Firstly, we know that the mass µ and charge κ are only relevant up to a joint

transformation under the adjoint action of the gauge group G, since that same

action applied to the entire construction would yield an equivalent setting.

However, for a given pair of mass and charge, the specific construction carried

out is a priori not unique, although it is not difficult to see that some of the

choices, like the use of different cutoff functions, will not ultimately affect the

results. Regardless, since we fix these choices here for the rest of the thesis, we

will continue referring to the resulting constructions as the model pair, the root

subbundle decomposition, and so on.
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Chapter 3

The framed moduli space

One of the interesting features of monopoles is that they can be assembled into

moduli spaces.

Our aim here is to construct the moduli space of framed monopoles with a fixed

mass and charge. This means that we fix a mass µ and a charge κ and we consider

monopoles which, near infinity, approach the model pair (Aµ,κ,Φµ,κ) constructed

in Section 2.3. Then, we quotient by a group of gauge transformations which fixes

the asymptotic behaviour.

We start by giving an outline of the construction in Section 3.1. In Section 3.2

we take a closer look at the linearised operator, whose kernel models the moduli

space to linear order, and serves to motivate the formal analytic setup. This is

then established in Section 3.3, based on Appendices B and C.

3.1 Construction outline

Here we give an outline of the moduli space construction. Figure 3.1.1, which we

will reference throughout, gives a qualitative picture of this construction, although

many of the spaces involved are in fact infinite-dimensional. Furthermore, we don’t

define these spaces formally now, postponing the precise definitions to Section 3.3.

The starting point of our construction is a configuration space of pairs which

includes not only monopoles but all those pairs which satisfy the desired asymp-

totic behaviour (but not necessarily the Bogomolny equations). In particular, we
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C

B −1(0)

ker(dB)M

M

a: Within the configuration space C , the

monopole M is inside the space of mono-

poles B−1(0). Its tangent space is given by

ker(dB)M , the kernel of the derivative of

the Bogomolny map.

C

ker d∗M
M

G -orbits

b: The group G acts on C , resulting in

G -orbits through every point. The space

of pairs in Coulomb gauge with respect to

M is given by ker d∗M , and intersects each

nearby orbit locally at a single point.

C

B −1(0)

G -orbits

Mker(dB)M

ker d∗M

TMMM

c: The intersection of the space of monopoles and the space of pairs in Coulomb gauge

represents the moduli spaceM near the monopole, since it intersects each nearby G -or-

bit locally exactly once. Its tangent space TMM, given by intersecting ker(dB)M and

ker d∗M , will provide a chart for the moduli space through the implicit function theorem.

Figure 3.1.1: Qualitative representation of the moduli space construction
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define the configuration space as the space of all pairs which differ from the model

pair by a decaying element of the space

(3.1.2) Ω1(Ad(P ))⊕ Ω0(Ad(P )) .

The specific decay condition will be given by requiring these elements to be in a

specific subspace of such forms. This provides the configuration space with the

structure of an affine space of infinite dimension.

Within this space we can now consider the subspace of monopoles, that is,

those pairs which satisfy the Bogomolny equations. This space, represented in

Figure 3.1.1a, can be written as B−1(0). Hence, under appropriate conditions, it

will be a smooth submanifold (still of infinite dimension), and its tangent space

at a given monopole M = (A,Φ) ∈ C will be the kernel of the derivative of the

Bogomolny map at that monopole. This derivative is given by

(3.1.3)
(dB)(A,Φ) : Ω1(Ad(P ))⊕ Ω0(Ad(P ))→ Ω1(Ad(P ))

(a, ϕ) 7→ ?dAa+ adΦ(a)− dAϕ .

We then consider the quotient of this space under the action of the group of

gauge transformations. Locally around a monopole, this quotient will be modelled

on a slice of the action of the group of gauge transformations. This slice will be

given by a gauge fixing condition which, at least locally, must guarantee that every

gauge orbit is represented by a single monopole.

In order to find such a condition, let us begin by observing that the infinitesimal

action of the group of gauge transformations on the configuration space is given,

for a pair (A,Φ) ∈ C and an infinitesimal gauge transformation X ∈ G, by

(3.1.4) (X#)(A,Φ) = −(dAX, adΦ X) ∈ T(A,Φ)C .

For notational convenience, and inspired by the analogy with instantons on R4,

let us define

(3.1.5)
d(A,Φ) : Ω0(Ad(P ))→ Ω1(Ad(P ))⊕ Ω0(Ad(P ))

X 7→ (dAX, adΦ(X)) ,
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so that for a pair M ∈ C we can simply write

(3.1.6) (X#)M = −dMX .

This implies that the tangent space to the orbit of M will be given by the image

of dM .

We can similarly define

(3.1.7)
d∗(A,Φ) : Ω1(Ad(P ))⊕ Ω0(Ad(P ))→ Ω0(Ad(P ))

(a, ϕ) 7→ d∗Aa− adΦ(ϕ) ,

the formal adjoint of dM . Then, once again under the appropriate conditions,

the kernel of d∗M will be L2-orthogonal to the image of dM inside the tangent

space TMC , and hence, considered as a subspace of the affine space C , it will be

transverse to the orbit through M . In this way, the kernel of d∗M could define a

slice which, locally, intersects nearby orbits only once. Pairs in this space are said

to be in Coulomb gauge with respect to M . Figure 3.1.1b represents this gauge

fixing condition.

Putting both steps together, as seen in Figure 3.1.1c, the moduli spaceM near

a given monopole M ∈ C is given by intersecting the space of monopoles with the

space ker d∗M (as a subspace of C , that is, with its origin on M). This intersects

orbits of monopoles near M locally exactly once. The tangent space TMM to the

moduli space will be analogously given by intersecting the tangent space to the

space of monopoles with the same linear space ker d∗M .

To describe this more concisely, let us define, for a pair M ∈ C , the function

(3.1.8) fM(•) := (−B(•), d∗M(• −M)) : C → Ω1(Ad(P ))⊕ Ω0(Ad(P )) .

Then, the moduli space is given locally around a monopole M by f−1
M (0). In order

to prove that this is a smooth manifold we will apply the implicit function theorem,

so it is important to understand its derivative

(3.1.9) (dfM)M = (−(dB)M , d
∗
M)
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at the monopole, which we will refer to as the linearised operator. As we will see

in the next section, it will be mainly written as /DM .

Remark 3.1.10. These maps fit into the complex

(3.1.11) Ω0(Ad(P ))
dM
�
d∗M

Ω1(Ad(P ))⊕ Ω0(Ad(P ))
−(dB)M→ Ω1(Ad(P )) .

which, following the analogies of Section 2.2, would correspond to the complex

(3.1.12) Ω0
R4(Ad(P ))

dM
�
d∗M

Ω1
R4(Ad(P ))

−d+
M→ Ω+

R4(Ad(P ))

of forms on R4.

3.2 The linearised operator

The analysis of the linearised operator is crucial for our construction, and hence

it plays an important role in motivating the analytic setup that we will use. We

begin by recasting the operator as a Dirac operator.

Definition 3.2.1. Let (A,Φ) ∈ C . We define its linearised operator as the oper-

ator

(3.2.2) /D(A,Φ) : Ω1(Ad(P ))⊕ Ω0(Ad(P ))→ Ω1(Ad(P ))⊕ Ω0(Ad(P ))

given by

(3.2.3) /D(A,Φ) :=

(
−(dB)(A,Φ)

d∗(A,Φ)

)
=

(
−?dA dA

d∗A 0

)
− adΦ .

We denote the first summand by /DA.

As indicated, this is simply the derivative (3.1.9) of the function ΨM defined

above (the change of notation between row and column vectors notwithstanding).

Remark 3.2.4. Although the setup involves mainly real spaces, it will be con-

venient to complexify some of them. This will allow us to make use of the theory
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of complex spinor bundles laid out in Appendix A, as well as the Fredholm theory

for elliptic operators laid out in Appendix B.

It is relevant to note, therefore, that the complexified spaces carry a real struc-

ture, and that (most of) the operators involved preserve it. Hence, if a complexified

operator is Fredholm, the real operator between the real parts is also Fredholm,

and its kernel will have the same real dimension as the complex dimension of the

kernel of the complexification.

We will specify complexified spaces with a superscript C, but we will denote

the operators in the same way regardless of whether they act between the real or

the complexified spaces.

Now, as pointed out, (the complexification of) the operator (3.2.3) can also be

viewed as a Dirac operator, which will facilitate much of the analysis. This is laid

out in the following proposition, which is explained in more detail in Appendix A.

Proposition 3.2.5. The bundle

(3.2.6) ((
∧1 ⊗ Ad(P ))⊕ (

∧0 ⊗ Ad(P )))C

is isomorphic to

(3.2.7) /S ⊗ C2 ⊗ Ad(P )C.

Under this isomorphism, /DA, the first summand of (3.2.3), is the Dirac oper-

ator twisted by the bundle C2 ⊗Ad(P )C, with the connection on the second factor

being induced by A.

Proof. This is a consequence of Proposition A.3.4, considering that on R3 the

bundle /S
∗

is trivial of rank 2.

In (3.2.7), we write C2 for the bundle /S
∗

to simplify notation. This factor will

in fact not have much relevance beyond duplicating the bundle and the operator.

We will see later that, for example, this also duplicates its index. Note that the

notation for /S is preserved to emphasise that it carries the Clifford representation,

as explained in the appendix.
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This characterisation will provide a simple picture for these operators. This

picture is even simpler for the model pair, since its connection splits along the root

subbundles. Near infinity, let us write

(3.2.8) /Dα := /DMµ,κ
|/S⊗gα

:

.

We can completely understand the linearised operator near infinity in the following

way.

Lemma 3.2.9. Near infinity, the operator /DMµ,κ
splits as

(3.2.10) /DMµ,κ
= /D

⊕2 rank(G)
0 ⊕

⊕
α∈R

/D
⊕2
α ,

following the decomposition (2.3.15). On each root subbundle, we have

(3.2.11) /Dα = /Diα(κ)−α(µ) +
α(κ)

2r
.

Proof. This follows from the properties of the model pair and the root subbundle

decomposition explained in Proposition 2.3.21 and Corollary 2.3.25 and the nota-

tion of Appendix A. Note that the operators are duplicated due to the factor

C2.

For any other configuration pair, we can write the linearised operator in relation

to the model.

Lemma 3.2.12. Let M,M ′ ∈ C . Then,

(3.2.13) /DM ′ − /DM = (cl⊗ ad)M ′−M .

In particular, this is an algebraic term proportional to

(3.2.14) M ′ −M ∈ Ω1(Ad(P ))⊕ Ω0(Ad(P )) .

Here, cl⊗ ad denotes the combination of the Clifford action of 1-forms in the

sense of Proposition 3.2.5 with the adjoint action of sections of Ad(P )C (with a

sign change where necessary).
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Proof. This follows from the properties of Dirac operators.

Corollary 3.2.15. If M = Mµ,κ+m for some m ∈ Ω1(Ad(P ))⊕Ω0(Ad(P )), then

(3.2.16) /DM = /DMµ,κ
+(cl⊗ ad)m .

Lastly, we show the following property, which will be useful later on. It is stated

in Nakajima’s work [Nak93] in a similar setting but we prove it here for complete-

ness, following from the exposition in Appendix A. It concerns the composition of

the linearised operator with its formal adjoint /D
∗
(A,Φ) = /D(A,−Φ).

Lemma 3.2.17. Let (A,Φ) ∈ C satisfy the Bogomolny equations. Then

(3.2.18) /D(A,Φ) /D(A,−Φ) = ∇∗∇− ad2
Φ ,

where ∇ denotes the covariant derivative with respect to A and the Levi-Civita

connection.

Proof. Writing out /D(A,Φ) and /D(A,−Φ), we see that the claim is equivalent to

(3.2.19) /DA /DA−∇∗∇ = adΦ /DA− /DA adΦ .

To prove this, let u/S ∈ Γ(/S) and uAd ∈ Γ(C2⊗Ad(P )C), and let {e1, e2, e3} be

an orthonormal basis of the tangent space of R3 at a point. Then we can apply

the Lichnerowicz–Weitzenböck formula [LM89, Thm. 8.17] to obtain

(3.2.20)

( /DA /DA−∇∗∇)(u/S ⊗ uAd) =
∑

(clej1 clej2 u/S)⊗ (adFA(ej1 ,ej2 ) uAd)

=
∑

(cl?ej3 u/S)⊗ (ad∇ej3 Φ uAd)

= −
∑

(clej3 u/S)⊗ (ad∇ej3 Φ uAd)

= −
∑

(clej3 u/S)⊗ (∇ej3
(adΦ uAd))

+ adΦ

∑
(clej3 u/S)⊗ (∇ej3

uAd)

= − /DA(adΦ(u/S ⊗ uAd))

+ adΦ( /DA(u/S ⊗ uAd)) ,

as desired.
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3.3 Analytic setup

A crucial observation about the behaviour of the linearised operator is the different

asymptotics exhibited along different subbundles of Ad(P )C. In particular, we are

interested in separating the cases in which the adjoint action of the mass does and

does not degenerate. Near infinity, we write

Ad(P )C := ker(adµ) ,(3.3.1a)

Ad(P )C⊥ := ker(adµ)⊥ ,(3.3.1b)

which we refer to as the C and C⊥ parts of the adjoint bundle, respectively, since

the former corresponds to the centraliser of µ in the Lie algebra g, whereas the

latter corresponds to its orthogonal complement.

Note that if we complexify this decomposition we have

Ad(P )CC = tC ⊕
⊕
α∈R
α(µ)=0

gα
::
,(3.3.2a)

Ad(P )CC⊥ =
⊕
α∈R
α(µ) 6=0

gα
::
.(3.3.2b)

The properties of the operator along the C and C⊥ parts require different

tools to study. These are the b and scattering calculuses, respectively, whose

main concepts are summarised in Appendix B. These two approaches are then

combined, and in Appendix C we consider spaces of functions which are adapted

to our specific setting. We are particularly interested in the spaces

H s,2
0 = H−1,1,s,2(

∧0 ⊗ Ad(P )) ,(3.3.3)

H s,1 = H0,1,s,1((
∧0 ⊕

∧1)⊗ Ad(P )) ,(3.3.4)

H s,0
1 = H1,1,s,0(

∧1 ⊗ Ad(P )) ,(3.3.5)

defined in said appendices.

Here, s ∈ Z≥1 is a regularity parameter which we will assume fixed for now.

The constructions will a priori depend on this parameter, but in Proposition 4.3.16
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we show that the resulting moduli space is independent.

This allows us to finally define the necessary elements to construct the moduli

space. Let us begin with the configuration space, which must be restricted to pairs

which approach the model Mµ,κ at infinity.

Definition 3.3.6. We define the configuration space of framed pairs of mass µ

and charge κ as the affine space

(3.3.7) C s
µ,κ := Mµ,κ + H s,1 .

Note that the decay conditions of sections in H s,1 guarantee that these config-

uration spaces are disjoint for different masses and charges. Furthermore, the L2

norm is finite by Lemma C.2.3. The regularity will also play a role as we consider

different maps built from these configuration pairs.

Let us prove now some important properties of such maps.

Lemma 3.3.8. For any (A,Φ) ∈ C s
µ,κ, the maps

(3.3.9) dA : H s,k
j →H s,k−1

j+1

and

(3.3.10) adΦ : H s,k
j →H s,k−1

j

are continuous for k ∈ {1, 2} and any (appropriate) j.

Proof. The continuity of the two maps for the pair (Aµ,κ,Φµ,κ) follows from

Lemma C.2.4. For any (A,Φ) + (a, ϕ), where (a, ϕ) ∈ H s,1, we only have to add

the continuity of the maps (C.2.12) and (C.2.14).

Corollary 3.3.11. For any (A,Φ) ∈ C s
µ,κ, the linearised operator

(3.3.12) /D(A,Φ) : H s,1 →H s,0

is continuous.

Proof. This follows from Lemma 3.3.8 for k = 1 and j ∈ {0, 1, 2}.

46



Lemma 3.3.13. Let (A,Φ) ∈ C s
µ,κ. Then we can perform integration by parts

between H s,2
0 and H s,1

0 using the covariant derivative of A.

Proof. If∇ ∂
∂xj

denotes the covariant derivative of A in the direction of a coordinate

xj of R3, then from Lemmas 3.3.8 and C.2.3 we deduce that

(3.3.14)
H s,2

0 ×H s,1
0 → R

(u, u′) 7→ 〈∇ ∂
∂xj

u, u′〉L2 + 〈u,∇ ∂
∂xj

u′〉L2

is continuous. Furthermore, it is 0 for smooth compactly supported functions.

Since these are dense due to Lemma B.2.16, the map must be identically 0.

We can now consider the Bogomolny map on this configuration space.

Definition 3.3.15. We write

(3.3.16) Bsµ,κ := B|C sµ,κ

for the restriction of the Bogomolny map to our configuration space.

Proposition 3.3.17. The Bogomolny map is smooth as a map

(3.3.18) Bsµ,κ : C s
µ,κ →H s,0

1 ,

and the energy map is finite on C s
µ,κ.

Proof. Firstly, we observe that B(Aµ,κ,Φµ,κ) is smooth and compactly supported,

and hence in H s,0
1 . Secondly, if (A,Φ) = (Aµ,κ,Φµ,κ) + (a, ϕ), then

(3.3.19) B(A,Φ)−B(Aµ,κ,Φµ,κ) = ?dAµ,κa+adΦµ,κ a−dAµ,κϕ+
1

2
?[a∧a]− [a, ϕ] .

But this is also in H s,0
1 due to the continuity of (3.3.9), (3.3.10) and (C.2.14).

Similarly, it is clear that the energy map is finite on the model pair, and the

same argument as above shows that this is also the case for any other configuration

pair.
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Lastly, we will define the group of gauge transformations which approach the

identity in the appropriate manner. We aim to make this group a Lie group, with

the structure of a Banach manifold. In order to simplify the definition, let us

consider the Lie group G as a compact subgroup inside an algebra of matrices,

and let us denote by EMat the vector bundle (in fact, bundle of algebras) over R3

associated to P with fibres modelled on this space of matrices.

The bundles Aut(P ) and Ad(P ) can then be regarded as subbundles of EMat,

with matrix operations providing the fibrewise group and Lie algebra structures.

Furthermore, this bundle can be split near infinity into C and C⊥ parts similarly

to the adjoint bundle: EMat
C is the subbundle which commutes with µ and EMat

C⊥ its

fibrewise orthogonal complement (with respect to any metric which extends the

metric on Ad(P )). Considering the splitting EMat = EMat
C ⊕ EMat

C⊥ , we can make

the definition of the group of gauge transformations.

Definition 3.3.20. We define the group of small gauge transformations as

(3.3.21) G s
µ,κ := {g ∈ 1G + H s,2(EMat) | g takes values in Aut(P )} .

Here it is crucial to choose a space with enough regularity obtain a Lie group.

In particular, note that from Remark B.2.27 we deduce that these sections are

continuous.

Proposition 3.3.22. The set G s
µ,κ is a Lie group of gauge transformations and its

Lie algebra is given by

(3.3.23) Gs
µ,κ := Lie(G s

µ,κ) = H s,2
0 .

Proof. Since the group G is an embedded submanifold of the space of matrices,

it can be locally defined as the zero locus of a smooth function. Similarly, locally

around a section in G s
µ,κ we can define a fibrewise smooth function which takes

values in a transverse bundle, whose zero locus defines G s
µ,κ locally. The Sobolev

structures on the spaces provide the manifold structure.

The multiplication, which is smooth, is an internal operation due to the con-

tinuity of the map (C.2.15).
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All of these spaces have been chosen so that we can carry out a moduli space

construction.

Proposition 3.3.24. The group G s
µ,κ acts on the space C s

µ,κ smoothly.

Proof. This is a consequence of the continuity of the maps (3.3.9) and (C.2.12).

Therefore we can now define the moduli space of framed monopoles.

Definition 3.3.25. We define the moduli space of framed monopoles of mass µ

and charge κ as

(3.3.26) Ms
µ,κ := (Bsµ,κ)−1(0)/G s

µ,κ .

Thanks to the above setup this is well defined as a set – although a priori

depending on the regularity parameter s – but our aim in the next chapter is

to prove that this is in fact a smooth hyper-Kähler manifold and to compute its

dimension. In order to do this, we will follow the outline described in Section 3.1

applying the analytical results in Appendices B and C within this setup. As

pointed out, we will furthermore prove that this structure is independent of s.
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Chapter 4

Moduli space construction

We are now ready to carry out the construction of the framed moduli space. We

start by studying the linearised problem in Section 4.1, which will provide a local

model for the moduli space. In fact, this study will only be valid for monopoles

with a certain regularity, but we see that any monopole in our configuration space

is gauge equivalent to one with such regularity in Section 4.2, where we also obtain

some asymptotic properties for our framed monopoles.

In Section 4.3 we complete the proof of the smoothness of the moduli spaces,

and we finish by explaining how our construction can be viewed as an infinite-

dimensional hyper-Kähler quotient, yielding a hyper-Kähler metric, in Section 4.4.

This chapter draws from the analytic results and function spaces laid out in

Appendices B and C.

4.1 The linearised problem

Using the setup established in the previous chapter, we can now study the linear-

ised operator /DM for a given monopole M = (A,Φ) ∈ C s
µ,κ.

As we saw, /DM − /DMµ,κ
is an algebraic term proportional to M−Mµ,κ ∈H s,1.

If we furthermore require this term to be bounded polyhomogeneous, in the sense

of Section B.1, we will be able to deduce very strong mapping properties for /DM .

The index will be computed using the results explained in Appendix B and

relying on the root subbundle decomposition (2.3.15), as well as on the decom-
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position into the C and C⊥ parts (3.3.2). Along the former part, the linearised

operator will behave like a weighted elliptic b operator, while along the latter it

will behave like a fully elliptic scattering operator, which means that we will be

able to apply properties similar to those described in Section B.3 and Section B.4,

respectively. Of course, it will also have off-diagonal terms, which are taken into

account when unifying both approaches in Section B.5.

Now, to compute the index of the b part of the operator we will need to rely

on both relative index formulas explained in Theorem B.3.6. However, the b part

of /DM is not, in general, self-adjoint. This means that we will need to consider a

family of operators connecting /DM to one which is self-adjoint in the appropriate

sense. This will be achieved by considering a continuous family of modifications

to the Higgs field.

Definition 4.1.1. Let (A,Φ) = (Aµ,κ,Φµ,κ) + (a, ϕ). For t ∈ R, define

(4.1.2) Φ(t) = µ− t

2r
κ+ tϕ .

Furthermore, we define the operators

D(t) := /D(A,− t
2r
κ+tϕ) ,(4.1.3a)

Ψ := − adµ ,(4.1.3b)

which make up the operator

(4.1.4) /D(A,Φ(t)) = D(t) + Ψ ,

Remark 4.1.5. Recall that, near infinity, we have Φµ,κ = µ − 1
2r
κ, but these

constant sections are not well defined at the origin, where the term 1
r

is also not

defined. However, we can interpret both summands as having been smoothed out

near the origin as in the construction of Φµ,κ itself, since their behaviour will only

be important near infinity.

The most relevant cases are t = 1, which represents the operator /D(A,Φ) we

want to study, and t = 0, which represents an operator whose b part satisfies the

necessary self-adjointness property. However, all the operators in between will also
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be Fredholm for the right spaces.

The analytical framework we want to apply is the one described in Section B.5.

Therefore, near infinity, we write

(4.1.6) D(t) =

(
D

(t)
00 D

(t)
01

D
(t)
10 D

(t)
11

)

along the decomposition

(4.1.7) (
∧1⊕

∧0)⊗Ad(P )C = ((
∧1⊕

∧0)⊗Ad(P )CC)⊕ ((
∧1⊕

∧0)⊗Ad(P )CC⊥) ,

as well as D̃
(t)

00 = x−2D
(t)
00 x. Furthermore, we consider the space specb(D̃

(t)

00 ), along

with the definition of order for its elements, and the operators I(D̃
(t)

00 , λ) and /∂
+
+, as

defined in Sections B.3 and B.4. Note that x is now used for the boundary defining

function of the radial compactification R3, which is equal to 1
r

near infinity, as

described in Section C.1.

We can now formulate the main Fredholmness and index result for our setting.

Lemma 4.1.8. Let (A,Φ) ∈ C s
µ,κ be bounded polyhomogeneous4 and t ∈ R, and

assume that the elements in specb(D̃
(t)

00 ) are real and of order 1. Then, for any

δ ∈ R \ specb(D̃
(t)

00 ) the operator

(4.1.9) /D(A,Φ(t)) : (Hδ− 1
2
,δ+ 1

2
,s,1)C → (Hδ+ 1

2
,δ+ 1

2
,s,0)C

is Fredholm.

Furthermore, its index is given by

(4.1.10) ind( /D(A,Φ(t)), δ) = ind(/∂
+
+) + def( /D(A,Φ(t)), δ) .

Here, the defect def( /D(A,Φ(t)), δ) remains constant if t or δ is varied continuously

(as long as the condition δ /∈ specb(D̃
(t)

00 ) is preserved throughout the variation).

Furthermore, if [λ0 − ε, λ0 + ε] ∩ specb(D̃
(t)

00 ) = {λ0}, then

(4.1.11) def( /D(A,Φ(t)), λ0 − ε) = def( /D(A,Φ(t)), λ0 + ε) + dim Null(I(D̃
(t)

00 , λ0)) .

4By this we mean that (A,Φ)− (Aµ,κ,Φµ,κ) is bounded polyhomogeneous.
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Additionally,

(4.1.12) def( /D(A,Φ(0)), δ) = def( /D(A,Φ(0)),−δ) .

Lastly, the elements in the kernel of this operator are in (Bλ1+1,λ1+2)C, where

λ1 is the smallest indicial root in specb(D̃
(t)

00 ) larger than δ, provided that λ1 ≥ 0.

Proof. This is a consequence of Theorem B.5.7, where we are taking E = E0⊕E1

to be (4.1.7) with the connection Aµ,κ.

Then, D(t) is a Dirac operator twisted by this connection plus an algebraic

term. This term consists of ad t
2r
κ plus a part proportional to the bounded poly-

homogeneous pair (a, ϕ), which is in H s,1 and hence must be of order x
3
2 .

The endomorphism is simply − adµ, and we can check that the remaining

conditions are satisfied – considering that the condition that the elements of the

b spectrum be real and of order one is incorporated into the statement as an

assumption.

Lastly, to justify (4.1.12) we only need to observe that for t = 0 the operator

D(t) is self-adjoint, since it is simply a Dirac operator.

This allows us to prove that the linearised operator is Fredholm between the

appropriate spaces and to compute its index. We start by computing the contri-

bution to the index from the scattering part of the operator, which is independent

of the weight.

Lemma 4.1.13. The term ind(/∂
+
+) in (4.1.10) in Lemma 4.1.8 is given by

(4.1.14) ind(/∂
+
+) = 2

∑
α∈R

iα(µ)>0

iα(κ) .

Proof. The operator /∂
+
+ is the operator induced at infinity by the scattering part of

the linearised operator, D
(t)
11 , which is simply the Dirac operator associated to the

connection A restricted to the bundles /S ⊗ gα
::

for α(µ) 6= 0 – with two copies for

each such root. Furthermore, we must restrict ourselves to the positive imaginary

eigenspaces of Ψ = − adµ, which leaves the bundles for which iα(µ) > 0.
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Since the operator decomposes at infinity, we can treat each of these subbundles

independently, where the induced operator /∂
+
+ simply becomes the Dirac operator

/D
+
iα(κ) on each corresponding line bundle over the sphere at infinity. As seen

in Proposition A.4.4, the index of this operator is iα(κ), so putting all of them

together we get precisely (4.1.14).

The b part is somewhat more involved. Recall that we are interested in the

linearised operator, which arises when t = 1. Furthermore, we will be interested

in the spaces which result from taking δ = 1
2
, but in fact the operator will be

Fredholm for a certain interval of weights around this value.

Lemma 4.1.15. If (A,Φ) ∈ C s
µ,κ is bounded polyhomogeneous, all the elements in

specb(D̃
(t)

00 ) are real and of order 1, and

(4.1.16)
(
−1

2
, 1
)
∩ specb(D̃

(1)

00 ) = ∅ .

Furthermore, if δ ∈ (−1
2
, 1), then

(4.1.17) def( /D(A,Φ(1)), δ) = −2
∑
α∈R
α(µ)=0
iα(κ)≥0

iα(κ) .

Proof. We actually compute the b spectrum specb(D̃
(t)

00 ) for any t ∈ R, and, once

more, we look at each root subbundle individually. In this case, we must consider

/S ⊗ gα
::

for α(µ) = 0 – again considering two copies for each such root α, and

additionally 2 rank(G) copies for α = 0 to account for tC.

Now we consider, for each subbundle, the decomposition

(4.1.18) /S ⊗ gα
::

= (/S
+ ⊗ gα

::
)⊕ (/S

− ⊗ gα
::

) ,

as described in Section A.4. With respect to this decomposition, the operator can

be written as

(4.1.19) D̃
(t)

00 |gα
:

=

−i
(
x
∂

∂x
+
itα(κ)

2

)
/D
−
iα(κ)

/D
+
iα(κ) i

(
x
∂

∂x
− itα(κ)

2

)
+ ψ ,
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where the first summand combines (A.4.13) with the action of the charge compon-

ent of the Higgs field and ψ is an algebraic term proportional to tx−1(a, ϕ).

Given that the lower order term ψ vanishes at infinity, we obtain the operators

(4.1.20) I(D̃
(t)

00 |gα
:
, λ) =

−i
(
λ+

itα(κ)

2

)
/D
−
iα(κ)

/D
+
iα(κ) i

(
λ− itα(κ)

2

)


on each bundle

(4.1.21) (/S
+ ⊗L iα(κ))⊕ (/S

− ⊗L iα(κ))

over the sphere at infinity.

We must therefore determine the values of λ for which this operator has a

kernel. To do so, let us suppose that u+ ∈ Γ(/S
+⊗L iα(κ)) and u− ∈ Γ(/S

−⊗L iα(κ))

are such that

/D
−
iα(κ) u

− = i
(
λ+

itα(κ)

2

)
u+ ,(4.1.22a)

/D
+
iα(κ) u

+ = −i
(
λ− itα(κ)

2

)
u− ,(4.1.22b)

that is, (u+, u−) is in this kernel.

Applying /D
−
iα(κ) to (4.1.22b) and using (4.1.22a) to substitute we deduce that

(4.1.23) /D
−
iα(κ)

/D
+
iα(κ) u

+ =
(
λ2 −

(itα(κ)

2

)2)
u+ .

If u+ is not identically 0, from Proposition A.4.4, we have

(4.1.24)
(
λ2 −

(itα(κ)

2

)2)
= j(j + |iα(κ)|)

for some j ∈ Z≥1, or j = 0 if iα(κ) > 0. For j > 0, λ will take real values outside

of the interval (−1, 1), which leaves the case j = 0, and hence λ = ± itα(κ)
2

, for

iα(κ) > 0.

In an analogous way we can deduce that, if u− is not identically zero, then,

excluding the cases λ /∈ (−1, 1), we must have λ = ± itα(κ)
2

and iα(κ) < 0.
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Although not relevant for the current computation, we note that for t = 1 the

indicial roots outside (−1, 1) must be of the form λ = ±(j + |iα(κ)|
2

) for j ∈ Z≥1.

Let us now investigate the case of λ = ± itα(κ)
2

more carefully, using once more

the results from Appendix A.

Let us first assume that λ = itα(κ)
2

. Then, the equations (4.1.22) become

/D
−
iα(κ) u

− = −tα(κ)u+ ,(4.1.25a)

/D
+
iα(κ) u

+ = 0 .(4.1.25b)

We once again make use of Proposition A.4.4. If iα(κ) < 0, the second equation

implies that u+ = 0. The first equation then has a space of solutions of dimension

−iα(κ). On the other hand, if iα(κ) ≥ 0, then u− = 0, as we saw above. The first

equation then implies that u+ = 0, unless t = 0, in which case we have a space of

solutions of dimension iα(κ) from the second equation.

If we now assume that λ = − itα(κ)
2

, the equations (4.1.22) become

/D
−
iα(κ) u

− = 0 ,(4.1.26a)

/D
+
iα(κ) u

+ = −tα(κ)u− .(4.1.26b)

Analogously to above we deduce that if iα(κ) > 0 we have a space of solutions of

dimension iα(κ), and that otherwise can only have non-trivial solutions in a space

of dimension −iα(κ) when t = 0.

Putting both cases together, we deduce that if λ ∈ (−1, 1), we only have non-

trivial solutions, in a space of dimension |iα(κ)|, when λ = − t|iα(κ)|
2

. In other

words, the only indicial root in specb(D̃
(t)

00 |gα
:

) ∩ (−1, 1) can be − t|iα(κ)|
2

, and with

a nullspace of dimension |iα(κ)|. Note that when α(κ) = 0 this is not really an

indicial root, but treating it as one doesn’t change our results, since the nullspace

is 0-dimensional.

By computing the formal nullspaces of the indicial operator we can additionally

see that all the indicial roots have order 1.

We can now deduce from (4.1.11) that

(4.1.27) def(D̃
(0)

00 |gα
:
,−ε) = def(D̃

(0)

00 |gα
:
, ε) + |iα(κ)|
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and from (4.1.12) that

(4.1.28) def(D̃
(0)

00 |gα
:
, ε) = − def(D̃

(0)

00 |gα
:
,−ε) ,

so we have

(4.1.29) def(D̃
(0)

00 |gα
:
, ε) = −|iα(κ)|

2
.

Furthermore,

(4.1.30) (0, 1) ∩ specb(D̃
(t)

00 |gα
:

) = ∅ ,

so

(4.1.31) def(D̃
(t)

00 |gα
:
, ε) = −|iα(κ)|

2

for any t ≥ 0. Since

(4.1.32)
(
−1

2
, 1
)
∩ specb(D̃

(1)

00 |gα
:

) = ∅ ,

we deduce that

(4.1.33) def(D̃
(1)

00 |gα
:
, δ) = −|iα(κ)|

2

for any δ ∈ (−1
2
, 1).

Putting this together for all the relevant subbundles we obtain the formula

(4.1.17).

The indicial roots and the computation of the defect are represented in Fig-

ure 4.1.34.

Putting these lemmas together we can deduce the desired properties for the

linearised operator. Since the index will provide the dimension of the moduli
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a: Here we see the lines depicting the indicial roots for a specific root subbundle gα
::

, in

this case drawn for |iα(κ)| = 1. As discussed above, the relative index formula (4.1.11)

implies that crossing the smallest indicial root λ = − t|iα(κ)|
2 from right to left adds |iα(κ)|

to the defect, and (4.1.12) implies that for t = 0 the defect changes sign when reflected

around the origin. This implies that in the dark grey region the defect must be − |iα(κ)|
2 .
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|iα(κ)|

2

b: In this diagram we include indicial roots corresponding to several line bundles, in

particular those for which |iα(κ)| is equal to 0 (where there is no indicial root in (−1, 1)),

1, 2 and 3. We then add all the contributions to the defect in the dark grey region, which

will always include the interval δ ∈ (−1
2 , 1) for t = 1.

Figure 4.1.34: We represent the indicial roots of the operator D̃
(t)

00 as lines as the

parameter t varies. Outside of these lines the operator is Fredholm, and its defect

is constant on each of the resulting regions. We then compute the defect of the

relevant region by using the relative index formula across the smallest indicial roots

and the self-adjointness of the operator for t = 0. Note that all the indicial roots

in the range are depicted, but only the smallest one for each subbundle is relevant.

We then obtain our result for the relevant interval in t = 1, and particularly for

δ = 1
2
, which will represent our actual linearised operator.
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space, let us write

(4.1.35) dimµ,κ := 2
∑
α∈R

iα(µ)>0

iα(κ)− 2
∑
α∈R
α(µ)=0
iα(κ)≥0

iα(κ) ,

which is simply the sum of (4.1.14) and (4.1.17).

Proposition 4.1.36. Let (A,Φ) ∈ C s
µ,κ be bounded polyhomogeneous. Then the

operator

(4.1.37) /D(A,Φ) : H s,1 →H s,0

is Fredholm, and its index is given by

(4.1.38) ind /D(A,Φ) = dimµ,κ .

Proof. Once complexified, the operator (4.1.37) is simply the operator (4.1.9) for

t = 1 and δ = 1
2
, so we can apply Lemma 4.1.8. For these values of t and

δ, Lemma 4.1.15 implies that the operator is Fredholm and provides the defect.

Putting it together with the index of the scattering part computed in Lemma 4.1.13

completes the proof.

Another important property of the linearised operator is its surjectivity, since

it will also be necessary to apply the implicit function theorem. Together with the

above results, this provides a significantly detailed picture of its kernel.

Theorem 4.1.39. If (A,Φ) ∈ C s
µ,κ is bounded polyhomogeneous and satisfies the

Bogomolny equations, the linearised operator (4.1.37) is surjective. Hence, its

kernel has dimension dimµ,κ. Furthermore, the elements in this kernel are polyho-

mogeneous sections in B2,3.

Proof. In order to prove that /D(A,Φ) is surjective we will prove that its formal

L2-adjoint /D(A,−Φ) is injective between the L2-dual spaces, that is, as an operator

(4.1.40) /D(A,−Φ) : (H s,0)∗ → (H s,1)∗ .
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Similarly to the operator /D(A,Φ) we can deduce from Kottke’s parametrix con-

struction [Kot15a] that if u ∈ (H s,0)∗ is in the kernel of /D(A,−Φ), then it must be

polyhomogeneous of order x1+λ1 , where λ1 is the smallest indicial root larger than

a certain weight, which we can compute to be −1
2

by comparing it to the weight

of H s,0 (since we are following a notation analogous to the one in Lemma 4.1.8,

where our spaces correspond to δ = 1
2
). Since the indicial roots of /D(A,−Φ) are the

opposite of the ones for /D(A,Φ), we deduce that λ1 ≥ 1
2
, so u must be polyhomo-

geneous of order x
3
2 .

Now, for such u we can apply Lemma 3.2.17 to obtain

(4.1.41) 0 = /D(A,Φ) /D(A,−Φ) u = ∇∗∇u− ad2
Φ u .

From the polyhomogeneity of u we can deduce that∇u and∇∗∇u are also bounded

polyhomogeneous, of orders x
5
2 and x

7
2 respectively. Hence, ad2

Φ u is also polyho-

mogeneous of order x
7
2 .

We can then write

(4.1.42)

0 = 〈 /D(A,Φ) /D(A,−Φ) u, u〉L2 = 〈∇∗∇u, u〉L2 − 〈ad2
Φ u, u〉L2 = ‖∇u‖2

L2 + ‖adΦ‖2
L2 ,

we were have used the decay conditions to apply integration by parts in the first

summand and the pointwise anti-symmetry of adΦ on the second. This implies

that ‖∇u‖L2 = 0, so u must be identically 0.

Therefore, /D(A,−Φ) is injective and hence /D(A,Φ) is surjective, as desired.

The dimension of the kernel follows from Proposition 4.1.36. The polyhomo-

geneity of its elements follows from the final statement in Lemma 4.1.8, since the

smallest element in specb(D̃
(1)

00 ) larger than 1
2

must be at least equal to 1, as a

consequence of (4.1.16).

4.2 Regularity

In the previous section we have seen that, for a given monopole (A,Φ) ∈ C s
µ,κ,

the linearised operator /D(A,Φ) satisfies the properties needed to apply the impli-

cit function theorem, but we had to add the regularity condition that (A,Φ) be
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bounded polyhomogeneous. As it turns out, this condition will not impose a sig-

nificant restriction, since any monopole will be gauge equivalent to another with

such regularity. This is essentially a consequence of the ellipticity of the Bogo-

molny equations together with the Coulomb gauge fixing condition. Let us recall

this condition from Section 3.1 and see some of its properties.

Definition 4.2.1. Let M0 ∈ C s
µ,κ. We say that another pair M ∈ C s

µ,κ is in

Coulomb gauge with respect to M0 if

(4.2.2) d∗M0
(M −M0) = 0 .

Lemma 4.2.3. The Coulomb gauge fixing condition is symmetric and gauge-

invariant.

Proof. Let M0 = (A0,Φ0), M = (A,Φ) and (a, ϕ) = (A,Φ)− (A0,Φ0). Then,

(4.2.4)

d∗M0
(M −M0) + d∗M(M0 −M) = d∗A0

a− adΦ0 ϕ+ d∗A(−a)− adΦ(−ϕ)

= −?(dA0 − dA)?a− (adΦ0 − adΦ)ϕ

= ? ada ?a+ adϕ ϕ

= ?[a ∧ ?a] + [ϕ, ϕ]

= 0 ,

proving that the condition is symmetric.

The gauge invariance is a consequence of the gauge invariance of d∗ (for con-

nections) and ad.

We start with an important property of this gauge fixing condition: that it

selects locally unique representatives.

Proposition 4.2.5. Let M0 ∈ C s
µ,κ. Then, if U is a sufficiently small neighbour-

hood of M0 inside C s
µ,κ, there exists another neighbourhood U ′ of M0 inside C s

µ,κ

with the following property: for any M ∈ U ′ there exists a gauge transformation

g ∈ G s
µ,κ such that g ·M is inside U and in Coulomb gauge with respect to M0, and

this gauge transformation is unique if required to be sufficiently small.
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Proof. Consider the map

(4.2.6)
f : C s

µ,κ × G s
µ,κ →H s,0

0

(M, g) 7→ d∗M0
(g ·M −M0) .

We have that f(M0,1Gµ,κ) = 0, and its derivative with respect to the second

argument is

(4.2.7) (df)(M0,1Gµ,κ )(0, •) = −d∗M0
dM0 : H s,2

0 →H s,0
0 .

Then, if this an isomorphism, we can apply the implicit function theorem to obtain

the result.

Hence, we must prove that d∗M0
dM0 an isomorphism for any pair M0 ∈ C s

µ,κ,

which will be achieved by showing that it is Fredholm, has index 0, and is injective.

To see that it is Fredholm of index 0 we start by considering the problem for a

pair Mc which splits along the decomposition of the adjoint bundle into C and C⊥

parts. In general, Ad(P )C and Ad(P )C⊥ can not be extended over R3. However,

their complexifications are trivial, so they can be extended. Then, we can take

a unitary connection Ac which differs from Aµ,κ smoothly in a compact set, and

a Higgs field Φc which is simply Φµ,κ cut off smoothly to be 0 in a compact set.

Note that this extension of Ad(P )CC and Ad(P )C
C⊥ does not necessarily preserve

the same properties with respect to the adjoint action in the region where it is

extended near the origin (for example, it might no longer be true that the Lie

bracket is internal in the extension of Ad(P )CC), but this will not be important,

since Φc can be taken to be 0 in that region.

Now, by construction, the operator d∗Mc
dMc decomposes along the two sub-

bundles over the entire R3. Since near infinity the pair Mc is identical to Mµ,κ, we

can see that the operator decomposes completely as a weighted elliptic b operator

on the C part and a fully elliptic scattering operator on the C⊥ part, and that it

is furthermore formally self-adjoint. The fully elliptic scattering part is therefore

Fredholm of order 0.

To see that the same applies to the weighted elliptic b part we carry out a

similar procedure as the one applied to the linearised operator: By taking the
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different weights into consideration once more, we conclude that the b part of the

operator is Fredholm between the spaces

(4.2.8) xδ−1H2
b (Ad(P )CC)→ xδ+1H2

b (Ad(P )CC)

when δ is not an indicial root of the elliptic b operator x−
5
2 d∗Mc

dMc x
1
2 . We can

compute its spectrum from the spectrum of the Laplacian on line bundles on the

unit sphere, and check that 0 is not an indicial root – all the indicial roots must

in fact be half-integers with absolute value greater than or equal to 1
2
. Given the

self-adjointness, this implies that the b part of d∗Mc
dMc is Fredholm of index 0

between (H s,2
0 )C and (H s,0

0 )C.

But, since Mµ,κ−Mc is smooth and compactly supported, d∗Mµ,κ
dMµ,κ−d∗Mc

dMc

is a compact operator, so d∗Mµ,κ
dMµ,κ is also Fredholm of index 0 between (H s,2

0 )C

and (H s,0
0 )C, and equivalently between their real parts.

For a general pair M0 = Mµ,κ + (a0, ϕ0), we have

(4.2.9)
(d∗M0

dM0 − d∗Mµ,κ
dMµ,κ)X

= −?[a0 ∧ ?dAµ,κX] + d∗A0
[a0 ∧X]− adϕ0 adΦµ,κ X − adΦ0 adϕ0 X.

From Lemmas 3.3.8 and C.2.11 we can therefore see that d∗M0
dM0 − d∗Mµ,κ

dMµ,κ is

also a compact operator from H s,2
0 to H s,0

0 , and hence d∗M0
dM0 must be Fredholm

and have index 0 as well.

Lastly, the operator d∗M0
dM0 is injective. To see this, suppose that u ∈ H s,2

0

satisfies d∗M0
dM0u = 0. Then, from Lemma 3.3.13 and the properties of the adjoint

action we deduce that

(4.2.10) 0 = 〈d∗M0
dM0u, u〉L2 = 〈dM0u, dM0u〉L2 ,

which implies that dM0u = 0. This means that the covariant derivative of u must

be 0, which implies that u is identically 0 due to the decay conditions on H s,2
0 .

We are particularly interested in having arbitrary monopoles in Coulomb gauge

with respect to pairs which are very regular.

Corollary 4.2.11. Let M ∈ C s
µ,κ. Then, there exists a configuration pair

64



Mc ∈ C s
µ,κ such that Mc −Mµ,κ is smooth and compactly supported, and a gauge

transformation g ∈ G s
µ,κ, which satisfy that g ·M is in Coulomb gauge with respect

to Mc.

Proof. From Lemma 4.2.3, we know that the Coulomb gauge fixing condition is

symmetric and gauge invariant, so our statement is equivalent to the existence of

Mc and g which satisfy that g−1 ·Mc is in Coulomb gauge with respect to M .

Now, from Lemma B.2.16 we can find such a pair Mc arbitrarily close to M .

Then, from Proposition 4.2.5 we can find a gauge transformation satisfying the

desired condition.

We can now combine the gauge fixing condition with the Bogomolny equations.

The regularity of the above Mc provides smooth coefficients for the differential

operator, which are in fact completely known near infinity. This can be used to

deduce strong regularity results through the usual “bootstrapping” techniques.

Theorem 4.2.12. Let M ∈ C s
µ,κ be a monopole. Then there exists a gauge trans-

formation g ∈ G s
µ,κ such that

(4.2.13) g ·M ∈Mµ,κ + B2,(κ),∞ .

Proof. We apply Corollary 4.2.11 to obtain a pair Mc = (Ac,Φc) which differs

from Mµ,κ by a smooth compactly supported element and a gauge transformation

which takes M to a monopole in Coulomb gauge with respect to Mc. For ease

of notation, we simply write M = (A,Φ) for the transformed monopole, so we

assume that it is in Coulomb gauge with respect to Mc, that is,

(4.2.14) d∗Mc
(M −Mc) = 0 ,

and aim to prove that

(4.2.15) M ∈Mµ,κ + B2,(κ),∞ .

We know that B(Mc) – the result of applying the Bogomolny map to Mc – is

compactly supported, since Mc, like Mµ,κ, satisfies the Bogomolny equations near

infinity. It must furthermore be smooth, since Mc is. Additionally, since M is

65



a monopole, we have B(M) = 0. Therefore B(M) − B(Mc) is also smooth and

compactly supported. If we write (a, ϕ) = (A,Φ)− (Ac,Φc), we have

(4.2.16)

B(M)− B(Mc) = ?FA − dAΦ− ?FAc + dAcΦc

= ?(FAc+a − FAc)− dAc+a(Φc + ϕ) + dAcΦc

= ?(dAca+
1

2
[a ∧ a])− dAcϕ+ adΦc a− [a, ϕ] .

Now, if m = (a, ϕ), we write

(4.2.17) {m,m} =
(1

2
?[a ∧ a]− [a, ϕ], 0

)
,

as well as

(4.2.18) v = (B(M)− B(Mc), 0) ,

which are pairs consisting of a 1-form and a 0-form (valued in Ad(P )). Putting

(4.2.16) together with (4.2.14) is equivalent to

(4.2.19) /DMc
m+ {m,m} = v .

We note that v is smooth and compactly supported, and that the bilinear product

{•, •} preserves the C part of the adjoint bundle, and hence satisfies the conditions

of Lemma C.2.11.

The idea is to now use (4.2.19) to carry out a bootstrapping argument on the

regularity of m, which we will do by induction with the induction hypothesis for

any j ∈ Z≥0 that

(4.2.20) m ∈ Hjη,1+jη,s,1+j + B2,(κ),∞ ,

where 0 < η < 1
4

is any fixed irrational number. We observe that due to the Sobolev

embeddings – including embeddings into Hölder spaces – the above property being

true for every j implies that m ∈ B2,(κ),∞, which will complete the proof.

The initial case, for j = 0, is implied by the fact that m ∈H s,1 = H0,1,s,1.

For the induction step, we combine two properties.
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Firstly, we observe the multiplication property

(4.2.21)

m ∈ Hjη,1+jη,s,1+j + B2,(κ),∞ =⇒ {m,m} ∈ H1+(j+1)η,1+(j+1)η,s,1+j + B4,(κ),∞ .

This relies on the continuity of the multiplication map (C.2.16), which implies the

continuity of

(4.2.22) {•, •} : Hjη,1+jη,s,1+j ×Hjn,1+jn,s,1+j → H1+(j+1)η,1+(j+1)η,s,1+j

by taking k = 1+j and adding jη to the weight of the spaces on the left and jη+(η−
1
4
) to the space on the right. Note that, since η < 1

4
, we are always adding more to

the weights on the left than to those on the right. From the more straightforward

multiplication properties of the spaces of bounded polyhomogeneous functions,

together with the product properties of the Lie bracket with respect to root spaces,

we have that

(4.2.23) {B2,(κ),∞,B2,(κ),∞} ⊆ B4,(κ),∞ ,

and we obtain (4.2.21).

Secondly, we need to apply the regularity property

(4.2.24) /DMc
m ∈ Hδ0,δ1,s,k + B4,(κ),∞ =⇒ m ∈ Hδ0−1,δ1,s,k+1 + B2,(κ),∞ ,

which holds when δ0 is not an indicial root of the operator /DMc
. This is an elliptic

regularity result adapted to the analytic framework we have laid out, and can be

deduced from Kottke’s work and the general theory of b and scatering calculuses.

Importantly, the operator DMc decomposes near infinity not only along the C and

C⊥ parts of the adjoint bundle, but also along the root subbundles. For each of

those, as we saw in the proof of Lemma 4.1.15, the smallest relevant indicial root

was 1 + |iα(κ)|
2

, explaining the specific weights of the space B2,(κ),∞.

Now, from the equation (4.2.19), the induction hypothesis (4.2.20) for j, and

the multiplication property (4.2.21) we deduce that

(4.2.25) /DMc
m = −{m,m}+ v ∈ H1+(j+1)η,1+(j+1)η,s,1+j + B4,(κ),∞ .
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Recalling that the indicial roots are always half-integers and that η is irrational,

we can take δ0 = δ1 = 1 + (j + 1)η and k = 1 + j in (4.2.24) to obtain

(4.2.26) m ∈ H(j+1)η,1+(j+1)η,s,1+j+1 + B2,(κ),∞ ,

which is the induction hypothesis for j + 1, finishing the proof.

This result does not only guarantee that every monopole is gauge equivalent

to a bounded polyhomogeneous one, which was the necessary step to be able to

apply Theorem 4.1.39, it also shows significantly stronger decay properties.

We recall that, although the space B2,(κ),∞ relies on the root subbundle de-

composition of the complexification Ad(P )C, the real subbundle Ad(P ) can also

be decomposed along the real parts of the subbundles gα
::
⊕g−α

:::
. Along such a sub-

bundle, elements in this space will be bounded polyhomogeneous of order x2+
|iα(κ)|

2

(or will banish to infinite order if α(µ) 6= 0). Of course, along t they will simply

be of order x2.

The asymptotic properties of monopoles are discussed further in Section 5.3.

4.3 The smooth structure

With the above regularity result we can make use of the properties deduced in

Section 4.1 in order to construct the moduli space near any specific monopole.

We begin with a technical lemma with several important consequences. An

analogous lemma can be found in Donaldson and Kronheimer’s book [DK90] over

a compact manifold, and here we provide a proof in our setting taking the decay

conditions into account.

Lemma 4.3.1. Let {Mj} and {M ′
j} be two sequences of pairs in C s

µ,κ, and {gj}
a sequence of gauge transformations in G s

µ,κ such that gj ·Mj = M ′
j for every j.

Assume that {Mj} and {M ′
j} have limits M∞ and M ′

∞, respectively, in C s
µ,κ. Then,

the sequence {gj} has a limit g∞ in G s
µ,κ such that g∞ ·M∞ = M ′

∞.

Proof. Let us write Mj = Mµ,κ + mj and M ′
j = Mµ,κ + m′j. Then, the condition
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gj ·Mj = M ′
j can then be rewritten as

(4.3.2) dMµ,κgj = gjmj −m′jgj ,

where we are viewing gj, mj and m′j as sections of the bundle EMat used in Defin-

ition 3.3.20 to define the group of gauge transformations.

The proof relies on a series of bootstrapping arguments using (4.3.2). In par-

ticular, we rely on two finite sequences of Sobolev spaces {Z(1)
k } and {Z(2)

k } defined

as

Z
(1)
−3 := L2 ,(4.3.3a)

Z
(1)
−2 := H0, 1

2
,0,0 ,(4.3.3b)

Z
(1)
−1 := H0,1,0,0 ,(4.3.3c)

Z
(1)
k := H k,1 for k = 0, 1, . . . , s ,(4.3.3d)

and

Z
(2)
−4 := L∞ ,(4.3.4a)

Z
(2)
−3 := L6 ,(4.3.4b)

Z
(2)
−2 :=W0, 1

2
,0,0,6 ,(4.3.4c)

Z
(2)
−1 := H−1,1,0,1 ,(4.3.4d)

Z
(2)
k := H k,2 for k = 0, 1, . . . , s .(4.3.4e)

The spaces involved in this proof are over the bundle EMat, but we omit this from

the notation for simplicity.

Now, these sequences are chosen so that, for k = −3,−2, . . . , s− 1, the map

(4.3.5) Z
(2)
k−1 ×H s,1 → Z

(1)
k

is continuous,

(4.3.6) H s,1 ⊆ Z
(1)
k ,
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and

(4.3.7) u ∈H 1,2
0 and dMµ,κu ∈ Z

(1)
k =⇒ u ∈ Z(2)

k and ‖u‖
Z

(2)
k
4 ‖dMµ,κu‖Z(1)

k
,

where 4 indicates that the right-hand side is larger than the left-hand side when

multiplied by a constant which does not depend on u. Note that Z
(2)
s = H s,2.

Let us prove these conditions, starting with the continuity of the multiplication

maps (4.3.5). For k ∈ {−3,−2,−1} we can simply apply Hölder’s inequality after

a Sobolev embedding of H s,1 into an appropriate space, obtaining the continuous

maps

L∞ ×H s,1 ⊆ L∞ × L2 → L2 ,(4.3.8a)

L6 ×H s,1 ⊆ L6 ×W
1
2
, 1
2
,0,0,3 → H0, 1

2
,0,0 ,(4.3.8b)

W0, 1
2
,0,0,6 ×H s,1 ⊆ W0, 1

2
,0,0,6 ×W

1
2
,1,0,0,3 → H0,1,0,0 .(4.3.8c)

For k = 0 this the map is (C.2.17), and for k ≥ 1 it is (C.2.18).

Condition (4.3.6) is straightforward to verify.

The last condition (4.3.7) follows from the Gagliardo–Nirenberg–Sobolev in-

equality [Nir59] for k ∈ {−3,−2}.5 For k ≥ −1 it is a consequence of the elliptic

regularity results of the b and scattering calculuses, similarly to (4.2.24).

Now, we know that the sequences {mj} and {m′j} are uniformly bounded in

H s,1, since they converge to m∞ = M∞−Mµ,κ and m′∞ = M ′
∞−Mµ,κ, respectively.

Furthermore, the sequence {gj − 1Gµ,κ} is uniformly bounded in L∞, since G is a

compact group.

Our first aim is to show that the sequence {gj−1Gµ,κ} is uniformly bounded in

H s,2, which we will do by finite induction with the hypothesis that the sequence

is uniformly bounded in Z
(2)
k for k = −4,−3, . . . , s. The initial step has already

been seen. To see the induction step, suppose that it is uniformly bounded in

5For k = −2 we need to use the fact that dMµ,κ includes the term adΦµ,κ , which is bounded
below in the C⊥ subbundle near infinity. We can then obtain a weighted version of this inequality
on this subbundle as long as we have chosen the boundary defining function to be equal to 1 on
a sufficiently large compact set.
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Z
(2)
k−1. Rewriting (4.3.2) as

(4.3.9) dMµ,κ(gj − 1Gµ,κ) = (gj − 1Gµ,κ)mj −m′j(gj − 1Gµ,κ) +mj −m′j

and applying properties (4.3.5) and (4.3.6) we deduce that {dMµ,κ(gj − 1Gµ,κ)}
is uniformly bounded inside Z

(1)
k . Applying property (4.3.7) we conclude that

{gj − 1Gµ,κ} is uniformly bounded in Z
(2)
k , as desired.

Now, since {gj−1Gµ,κ} is uniformly bounded in H s,2 it must have a weak limit

g∞, which must be in Gµ,κ and satisfy

(4.3.10) dMµ,κg∞ = g∞m∞ −m′∞g∞ .

It remains to prove that g∞ is the strong limit of {gj} in G s
µ,κ. We once again

prove this by finite induction, with the hypothesis that {gj − 1Gµ,κ} is strongly

convergent in Z
(2)
k for k = −4,−3, . . . , s. The initial step follows from the fact

that {gj − 1Gµ,κ} is weakly convergent, and hence bounded, in H s,2, together

with the compact embedding H s,2 b Z
(2)
−4 , which implies that it must be strongly

convergent in the latter space.

For the induction step, assume that {gj −1Gµ,κ} is strongly convergent in Z
(2)
k−1

and subtract (4.3.10) from (4.3.2) to get

(4.3.11)

dMµ,κ(gj − g∞) = (gj − 1Gµ,κ)(mj −m∞) + (gj − g∞)m∞ + (mj −m∞)

− (m′j −m′∞)(gj − 1Gµ,κ)−m′∞(gj − g∞)− (mj −m′∞) .

Using (4.3.5) and (4.3.6), the fact that {mj} and {m′j} (strongly) converge to m∞

and m′∞ in H s,1 we deduce that the right-hand side of (4.3.11) converges to 0

strongly in Z
(1)
k , and hence so does {dMµ,κ(gj − g∞)}. Using (4.3.7) completes the

proof.

A consequence of this lemma is the following strengthening of Proposition 4.2.5.

Corollary 4.3.12. In Proposition 4.2.5, if the neighbourhood U is required to be

small enough, then the gauge transformation g is unique in the entire group G s
µ,κ.

Proof. Let us take M0 ∈ C s
µ,κ and any U and U ′ which satisfy the statement of

Proposition 4.2.5. We aim to prove that there exists a neighbourhood U0 such that
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there are no two gauge equivalent pairs inside U0 which are in Coulomb gauge with

respect to M0. This will complete are proof, since it will be enough to require U

to be inside U0 in the statement of Proposition 4.2.5.

Suppose that such a U0 did not exist. Then, there would exist a sequence of

pairs {Mj} and a sequence of gauge transformations {gj} such that {Mj} and

{gj ·Mj} tend to M0 and are in Coulomb gauge with respect to it. We can assume

that the sequences are inside U and U ′, so applying Proposition 4.2.5 we deduce

that the sequence {gj} is bounded away from the identity transformation 1Gµ,κ .

But from Lemma 4.3.1 we know that gj must have a limit g∞ ∈ Gµ,κ \{1Gµ,κ} such

that g∞ ·M0 = M0. If we view g∞ as a section of the bundle EMat, this would

mean that dA0(g∞ − 1Gµ,κ) = 0. Since g∞ − 1Gµ,κ ∈ H s,2(EMat) must decay at

infinity, this would imply that g∞ = 1Gµ,κ , arriving at a contradiction.

We can also use the lemma to prove that the moduli space is Hausdorff.

Corollary 4.3.13. The quotient (3.3.26) is Hausdorff.

Proof. Suppose, the contrary. Then, there would be two monopoles M and M ′, a

sequence {Mj} in (Bsµ,κ)−1(0), and a sequence {gj} in G s
µ,κ, such that {Mj} tends

to M and {gj ·Mj} tends to M ′. But then, by Lemma 4.3.1, M and M ′ must be

gauge equivalent.

We now have all the ingredients to show that the moduli space is a smooth

manifold.

Theorem 4.3.14. The moduli space Ms
µ,κ is either empty or a smooth manifold

of dimension dimµ,κ.

Proof. If it is not empty, let M0 ∈ C s
µ,κ be a monopole, which we can assume to

be bounded polyhomogeneous by Theorem 4.2.12, and consider the function

(4.3.15)
fM0 : Cµ,κ →H s,0

M 7→ (−Bsµ,κ(M), d∗M0
(M −M0)) .

It satisfies fM0(M0) = 0, and at this point its derivative is /DM0
, which we know by

Theorem 4.1.39 to be surjective and have a kernel of dimension dimµ,κ. Applying
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the implicit function theorem we obtain a neighbourhood U of M0 and a smooth

embedding from an open set in Rdimµ,κ to U such that pairs in U are in the image

of this embedding if and only if they are monopoles in Coulomb gauge with respect

to M0. We refer to the image of this embedding as the slice S.

We can furthermore take U to be as small as we want, so in particular we

assume that it is small enough that the slice is transverse to gauge orbits, since

this is true at M0 and an open condition.

We furthermore assume that U is small enough for Proposition 4.2.5 to be true

with g being unique in G s
µ,κ, which is possible by Corollary 4.3.12, and take U ′ as

in the statement of that result.

Then, consider the open set of monopoles U ′′ = G s
µ,κ · (U ′ ∩ (Bsµ,κ)−1(0)). Any

orbit of a monopole in U ′′ will have a representative in U ′, and hence will have a

unique representative in U which is in Coulomb gauge with respect to M0. This

unique representative must be in the constructed slice. Since the slice is smoothly

embedded and transverse to the gauge orbits, the map from U ′′ choosing this

unique representative is a submersion onto S ∩ U ′′. It hence provides a chart for

the quotient near M0.

To see that the transition functions between different such charts must be

smooth suppose we have two open sets of orbits U ′′1 and U ′′2 as above. Then, their

intersection has a smooth submersion to two different smooth slices of the gauge

action. The restriction of the first submersion to the second slice provides a smooth

map from the second slice to the first, and we can analogously provide a smooth

map from the first slice to the second. Both of these maps are the identity on the

quotient, so the charts are compatible.

Importantly, this smooth structure does not actually depend on the regularity

parameter.

Proposition 4.3.16. The smooth manifold Ms
µ,κ is independent of the regularity

parameter s.

Proof. Let s1 < s2 be in Z≥1.

We first prove that the identity map between Ms1
µ,κ and Ms2

µ,κ is well defined.

To do so, let [M ] ∈ Ms1
µ,κ. From Theorem 4.2.12 we know that there exists at
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least one g ∈ G s1
µ,κ such that g ·M ∈ C s2

µ,κ, and hence we can define the identity

map as taking [M ] ∈ Ms1
µ,κ to [g · M ] ∈ Ms2

µ,κ for any such g ∈ G s1
µ,κ. This is

well defined because if g ·M and g′ ·M are both in C s2
µ,κ for g, g′ ∈ G s1

µ,κ, then in

fact g′g−1 ∈ G s2
µ,κ, as can be seen by applying the same bootstrapping argument

used in Lemma 4.3.1, and hence [g ·M ] = [g′ ·M ] in Ms2
µ,κ. The definition is also

independent of the choice of representative M in [M ], so the map is well defined.

Since G s2
µ,κ ⊂ G s1

µ,κ, the map is injective, and since C s2
µ,κ ⊂ C s1

µ,κ, it is surjective,

so this identity map is a bijection. We must now prove that it is a diffeomorphism.

To do so, let M0 be a bounded polyhomogeneous monopole, and construct

slices Ss1 and Ss2 for Ms1
µ,κ and Ms2

µ,κ as in the proof of Theorem 4.3.14. When

close enough to M0, any point of Ss2 must also be in Ss1 , since such a point must

be a monopole, in Coulomb gauge with respect to M0, and can be made to be

close enough to M0 in C s1
µ,κ due to the continuity of the embedding of C s2

µ,κ in

C s1
µ,κ. Therefore, this embedding, which is smooth due to being continuous and

linear, restricts near M0 to a smooth map from Ss2 to Ss1 . Since the identity map

has an injective derivative and the slices have the same dimension this must be a

diffeomorphism near M0. Given that it corresponds to the identity map between

Ms2
µ,κ and Ms1

µ,κ, this completes the proof.

This justifies defining the moduli space independently of s.

Definition 4.3.17. We write

(4.3.18) Mµ,κ

for Ms
µ,κ with its smooth structure with respect to any s ∈ Z≥1.

4.4 The hyper-Kähler metric

As we saw in Section 2.2, there is a strong analogy between monopoles and instan-

tons on R4. One of the consequences is the possibility of considering a relationship

with the quaternions.
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To see this, let us fix an identification

(4.4.1) (R3)∗ ∼= ImH .

This induces identifications on related objects, like

∧1 ∼= ImH ,(4.4.2)

Ω1(Ad(P )) ∼= Ω0(Ad(P ))⊗ ImH ,(4.4.3)

H s,k
1
∼= H s,k

0 ⊗ ImH .(4.4.4)

Furthermore, it induces the structure of a left H-module on the space

(4.4.5) (R3)∗ ⊕ R ∼= ImH⊕ ReH ∼= H

through left multiplication. By considering this structure fibrewise on the cor-

responding bundle
∧1 ⊕

∧0, we also obtain a left H-module structure on H s,1.

Since the L2 metric on this space is compatible with this structure, this confers the

structure of a hyper-Kähler manifold to the configuration space C s
µ,κ, which is just

an affine space over this vector space. If we bundle the triple of symplectic forms

into an ImH-valued form we can write it out with a relatively simple expression.

Proposition 4.4.6. The configuration space C s
µ,κ is hyper-Kähler. The triple of

symplectic forms is given on any tangent space T(A,Φ)C
s
µ,κ
∼= H s,1 by the form

(4.4.7)
ω : H s,1 ×H s,1 → ImH

((a1, ϕ1), (a2, ϕ2)) 7→
∫
R3

?〈a1 ∧ a2〉g + 〈ϕ1, a2〉g − 〈a1, ϕ2〉g .

The integral in (4.4.7) is interpreted in the following way: The integrand is a

1-form, so, since the bundle
∧1 is trivial, the form can be integrated to obtain an

element of the fibre, which is (R3)∗ and hence isomorphic to ImH through (4.4.1).

Proof. The metric and the ImH-valued symplectic form on a hyper-Kähler man-

ifold are equivalent to a bilinear form which takes values in H, is H-left-linear in

the first variable, and is conjugate-symmetric. This bilinear form corresponds to

the metric minus the symplectic form.
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On the space H of quaternions such a form can be constructed as the product

of a quaternion and the conjugate of another. To mimic our notation, suppose

that ϕ1, ϕ2 ∈ R and a1, a2 ∈ ImH. Then, this product is given by

(4.4.8) (a1 + ϕ1)(a2 + ϕ2) = (−a1 × a2 − ϕ1a2 + a1ϕ2) + (a1 · a2 + ϕ1ϕ2) ,

where the right-hand side is separated into the imaginary and real parts.

Since the fibres of
∧1⊕

∧0 are isomorphic to H, we can extend this product by

integrating over R3. Combining with the inner product on g we obtain the bilinear

form

(4.4.9)

((a1, ϕ1), (a2, ϕ2)) 7→
∫
R3

(−?〈a1∧a2〉g−〈ϕ1, a2〉g+〈a1, ϕ2〉g, 〈a1, a2〉R3,g+〈ϕ1, ϕ2〉g)

on sections (a1, ϕ1), (a2, ϕ2) of (
∧1 ⊕

∧0)⊕ Ad(P ), and in particular on elements

of H s,1. Here, the integral is interpreted like the previous one, this time using the

isomorphism (4.4.5), and the expression is simply derived from (4.4.8), where the

Hodge dual of the wedge product provides the equivalent of the cross product.

Since the real part of this form is the L2 norm on H s,1, we obtain the desired

expression for the symplectic form as the negative of the imaginary part.

Then, as it turns out, the group of gauge transformations G s
µ,κ not only pre-

serves this structure, but in fact acts in a tri-Hamiltonian way.6 We can once again

see the analogy with the 4-dimensional case, since the moment map will be given

by the Bogomolny map.

Here it is crucial that we are building the moduli space of framed monopoles,

since the decay conditions are important to not only define the L2 metric, but to

show that the gauge action has a moment map.

Proposition 4.4.10. The action of the group G s
µ,κ on C s

µ,κ is tri-Hamiltonian and

its moment map is given by

(4.4.11) Bsµ,κ : C s
µ,κ →H s,0

1 ⊆ (Gs
µ,κ)

∗ ⊗ ImH .

6We do not go here into the background of hyper-Kähler geometry and quotients, which can
be found in the literature [HKLR87; Hit92]
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Proof. First let us look at the inclusion H s,0
1 ⊆ (Gs

µ,κ)
∗ ⊗ ImH. At the level of

bundles, the imH factor simply comes from
∧1. Then, from Lemma C.2.3, we see

that the L2 pairing between H s,0
0 and Gs

µ,κ = H s,2
0 is continuous.

Now, the moment map equation, for (A,Φ) ∈ C s
µ,κ, (a, ϕ) ∈ T(A,Φ)C

s
µ,κ and

X ∈ Gs
µ,κ, is the ImH-valued expression

(4.4.12) 〈(dBµ,κ)(A,Φ)(a, ϕ), X〉L2 = ω((X#)(A,Φ), (a, ϕ)) .

We once again integrate by parts using Lemma 3.3.13 to get

(4.4.13)

〈(dBµ,κ)(A,Φ)(a, ϕ), X〉L2 = 〈?dAa− dAϕ+ adΦ(a), X〉L2

=

∫
R3

?〈dAa,X〉g − 〈dAϕ,X〉g + 〈adΦ(a), X〉g

=

∫
R3

?〈a ∧ dAX〉g + 〈ϕ, dAX〉g − 〈a, adΦ(X)〉g

= ω((−dAX,− adΦ X), (a, ϕ))

= ω((X#)(A,Φ), (a, ϕ)) ,

as desired.

With this, we can deduce that the moduli spaces are hyper-Kähler – with the

metric being independent of s.

Theorem 4.4.14. The L2 norm on the configuration space descends to a hyper-

Kähler metric on the smooth manifold Mµ,κ.

Proof. Proposition 4.4.10 allows us to interpret the moduli space construction

formally as a hyper-Kähler quotient, since

(4.4.15) Ms
µ,κ = (Bsµ,κ)−1(0)/G s

µ,κ = C s
µ,κ///G

s
µ,κ .

In order for this to actually yield a hyper-Kähler metric we need the quotient to

be a smooth manifold. But this is true by Theorem 4.3.14.

Furthermore, in the construction of the moduli space the tangent spaces were

modelled on subspaces of H s,1 which contained only bounded polyhomogeneous

sections, so they are independent of s and hence so is the metric.
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Chapter 5

Further Observations

We now discuss in more detail some aspects of our construction and its relationship

to other work.

In Section 5.1 we provide an alternative perspective on the conditions imposed

on the mass and the charge. In particular, we explain how the charge can be viewed

as a collection of integers which produce a simpler formula for the dimension of

the moduli space, and discuss the concept of symmetry breaking.

In Section 5.2 we connect this with the correspondence between monopoles and

rational maps, in particular in relation to non-maximal symmetry breaking.

We then revisit some of the concepts surrounding the asymptotic properties of

monopoles in Section 5.3.

We finish in Section 5.4 by explaining how our construction can be used to

build moduli spaces for any real compact Lie group, despite the conditions imposed

originally on G.

5.1 Symmetry breaking and integer charges

One of the aims of the approach we have followed was to carry out the construction

with independence of the symmetries of the mass and the charge. Let us now

examine this with more detail in order to put it into the wider context of previous

research on monopoles and their moduli spaces. We particularly follow Murray

and Singer’s work [MS03].
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General facts about Lie groups and Lie algebras can be found in the literature,

like in Hall’s book [Hal15].

Remark 5.1.1. Recall that if the pair of mass µ and charge κ are (simultan-

eously) related by the adjoint action of an element of G, then all the constructions

carried out in the previous chapters can be taken to be isomorphic. We will keep

this in mind when we are discussing possible choices which are related by these

transformations.

One of the most relevant properties of monopoles is related to the symmetries

of the mass µ.

Definition 5.1.2. Let Cµ be the centraliser group of the mass µ, that is, the

subgroup of G of elements which leave µ invariant under the adjoint action. Then,

we say that for this choice of mass the symmetry breaks from G to Cµ.

In many ways, the simplest case happens when the mass is as generic as pos-

sible.

Definition 5.1.3. If the mass µ is a regular element of the Lie algebra g, we say

that the symmetry breaking is maximal.

Note that in the case of maximal symmetry breaking we are breaking the

symmetry to the smallest possible centraliser subgroup, which will be a (maximal)

torus T rank(G).

One of the features of this case is that we cannot have a root α ∈ R such that

α(µ) = 0. In particular, the subbundle Ad(P )CC is simply tC. We will see how this

makes several matters simpler, but we can start by noticing, for example, that in

the dimensional formula (4.1.35) the second summand no longer appears – with

the corresponding index calculation becoming more straighforward.

Remark 5.1.4. If we recall the definitions of the maximal torus and roots in

Section 2.3, we can see that for the case of maximal symmetry breaking there is

a single possible maximal torus subgroup T . However, in non-maximal symmetry

breaking, depending on the symmetries of the charge κ we might have some ambi-

guity in this choice. Of course, all choices are related by the adjoint action of the

group, so will produce equivalent results. However, we will see how this ambiguity

plays out below.
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The symmetry breaking is very closely related to the understanding of the

dimensional formula for the moduli spaces and the role of the charge in it.

In order to see this, let us take a look at the definition (4.1.35) of the dimension

dimµ,κ, which seems somewhat artificial. Indeed, it can be defined in a more natural

way.

We begin by choosing a set R+ of positive roots of R such that

(5.1.5)
{
α ∈ R | 1

i
α(µ) > 0

}
∪
{
α ∈ R | α(µ) = 0 and

1

i
α(κ) < 0

}
⊆ R+ .

Then, we can rewrite the dimension as

(5.1.6) dimµ,κ = 2
∑
α∈R+

1

i
α(κ) .

Note that we will from now on often consider the functions 1
i
α more often that iα.

This simply changes some signs, but will make our notation more consistent with

the usual notation for specific groups in the next chapter.

Remark 5.1.7. When the symmetry breaking is maximal, the first set that ap-

pears in the condition (5.1.5), which depends only on the mass, determines R+

completely. However, when the symmetry breaking is non-maximal, we must use

the charge to define the set of positive roots. This will play an important role in

the definition of the holomorphic integer charges below.

Note that in some cases there might remain some ambiguity even when taking

into account the charge. This is similar to the ambiguity encountered in the choice

of maximal torus, as observed in Remark 5.1.4, and will not change the results.

From this set of positive roots we obtain the corresponding set of simple roots

α1, α2, . . . , αrank(G). Furthermore, associated to this set of positive roots we have

a set of fundamental weights w1, w2, . . . , wrank(G). As it turns out, the integrality

condition exp(2πκ) = 1G is equivalent to the numbers 1
i
wj(κ) being integers for

j = 1, 2, . . . , rank(G), and we will use these numbers to provide an alternative

understanding of the charge.
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Definition 5.1.8. The integers

(5.1.9)
1

i
w1(κ),

1

i
w2(κ), . . . ,

1

i
wrank(G)(κ) ∈ Z

are the (integer) charges of the monopole. Furthermore, if αj(µ) = 0, then we say

that 1
i
wj(κ) is a holomorphic charge, and otherwise we say that it is magnetic.

Remark 5.1.10. One of the important distinctions between magnetic and holo-

morphic charges is that the former determine some topological information. In

particular, if we trivialise the adjoint bundle Ad(P ), the Higgs field defines near

infinity a map from the sphere at infinity to the adjoint orbit of the mass µ, and

the magnetic charges determine the homotopy type of this map.

We can now use these integers to rewrite the dimensional formula, since half

the sum of the positive roots is equal to the sum of the fundamental weights:

(5.1.11) dimµ,κ = 4

rank(G)∑
j=1

1

i
wj(κ) .

That is, the dimension of the moduli space is four times the sum of all the integer

charges. Let us now compactly write the main result of this thesis, putting together

Theorem 4.3.14, Proposition 4.3.16, and Theorem 4.4.14.

Theorem 5.1.12. The moduli space Mµ,κ of framed monopoles of mass µ and

charge κ is either empty or a smooth hyper-Kähler manifold whose dimension is

four times the sum of the integer charges.

This dimensional formula coincides with the computation of the dimension car-

ried out by Murray and Singer [MS03]7 based on the analogous space of rational

maps, which will be discussed in Section 5.2. Furthermore, it provides more in-

sight into the significance of the charge, by differentiating between holomorphic

and magnetic components, as well as into the possible charges that may appear.

Murray and Singer’s work suggests the following conjecture.

Conjecture 5.1.13. The moduli space Mµ,κ is non-empty if and only if all the

integer charges are non-negative.

7Different conventions account for the different factors of i.
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Note that the combinations of integer charges that could appear for a given

choice of mass µ are not so straightforward to determine, since the definition of

the fundamental weights used the charge κ itself.

In order to better understand the relationship between the different choices we

have made, let us make the following definition.

Definition 5.1.14. Let µ ∈ g, and let (T,R+) be a choice of a maximal torus T

in G such that µ ∈ t and a set of positive roots R+ inside the set R of roots of t

such that

(5.1.15)
{
α ∈ R | 1

i
α(µ) > 0

}
⊆ R+ .

Then, we say that an element κ ∈ g, with [µ, κ] = 0, is compatible with the choice

of pair (T,R+) when κ ∈ t and

(5.1.16)
1

i
α(κ) ≤ 0, ∀α ∈ R+ such that α(µ) = 0 .

Condition (5.1.16) can be rewritten as

(5.1.17)
{
α ∈ R | α(µ) = 0 and

1

i
α(κ) < 0

}
⊆ R+ ,

so, of course, together with (5.1.15) it is simply equivalent to (5.1.5).

Remark 5.1.18. A choice of positive roots R+ is equivalent to choosing a fun-

damental Weyl chamber in t, with condition (5.1.15) requiring this chamber to

contain µ in its closure. Furthermore, let us consider the facets of this Weyl cham-

ber which contain µ, and let us extend them linearly into hyperplanes of t. Then,

the compatibility condition on κ is equivalent to requiring that it be (non-strictly)

on the opposite side of the chosen Weyl chamber with respect to any such hyper-

plane.

These conditions allow us to reframe the choices by starting with a mass and

fixing a maximal torus and set of positive roots, to then investigate which charges

can appear. Importantly, this does not leave out any possibilities, as seen from

Proposition 4.1 in Murray and Singer’s work [MS03].

83



Proposition 5.1.19. Let µ ∈ g and (T,R+) be as above. Then, if κ ∈ g satisfies

[µ, κ] = 0, there is a unique element κ′ ∈ g which is compatible with (T,R+) and

is related to κ through the adjoint action of an element of Cµ.

As observed in Remark 5.1.1, applying the adjoint action of an element of G

produces equivalent results, so we can conclude that, after fixing a µ and a pair

(T,R+) as above, considering only the charges κ that satisfy (5.1.16) will provide

all the possible monopoles (without repeating pairs of mass and charge related

through the adjoint action).

Of course, for there to exist monopoles, according to Conjecture 5.1.13, the

integer charges – which are defined with respect to the first chosen chamber – will

have to be non-negative. This can also be expressed as belonging to a certain

region of the Lie algebra t. The intersection of this region with the Weyl chamber

for R+ will define a conical subset of t, whose integral elements will be the charges

for which we expect to have non-empty monopole moduli spaces.

Remark 5.1.20. We can also consider this approach from the perspective of the

integer charges. The first thing to observe is that after fixing µ ∈ g and (T,R+) as

above we can always find at least one compatible charge κ ∈ g with any combina-

tion of non-negative magnetic charges. This can be done, for example, by setting

all the holomorphic charges equal to 0. However, there might be other possible

choices of holomorphic charges, which will need to satisfy a set of constraints. As

it turns out, these constrains will allow only a finite amount of combinations of

holomorphic charges for each choice of magnetic charges [MS03, Prop. 4.3].

In Chapter 6 we put this discussion into the context of specific groups, masses

and charges. However, let us briefly discuss here a trivial case which appears for

any group.

Remark 5.1.21. Suppose that µ = 0. Then, we do not actually have any inter-
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esting monopoles. Indeed, we first see that

(5.1.22)

d∗d‖Φ‖2
g = −?d?d〈Φ,Φ〉g

= −2?d?〈Φ, dAΦ〉g
= −2?d〈Φ, ?dAΦ〉g
= −2?〈dAΦ ∧ ?dAΦ〉g − 2?〈Φ, dAFA〉g
= −2‖dAΦ‖2

R3,g

≤ 0 .

Then, since the Higgs field of a monopole with mass 0 must decay, it must in fact

be constantly 0 due to the maximum principle. The connection must then be flat,

and hence gauge equivalent to the identity.

Of course, in this case, all the charges are holomorphic. However, follow-

ing Definition 5.1.14, any charge compatible with a choice (T,R+) must satisfy
1
i
α(κ) ≤ 0 for all α ∈ R+. But this implies that we must also have 1

i
w(κ) ≤ 0

for all fundamental weights w associated to this choice – in other words, all the

charges must be non-positive. This is consistent with Conjecture 5.1.13, which

leaves only the case of all the charges being 0. Naturally, it is also consistent with

our dimensional formula, since the resulting moduli space would have dimension

0.

5.2 Rational maps

There is an important relationship between monopoles and rational maps, which

has been explored in different contexts.

More specifically, this correspondence relates framed monopoles with algebraic

maps from CP1 to certain varieties, with a fixed point. Let us remark on two spe-

cific cases, which are once again discussed in Murray and Singer’s work [MS03].

The correspondences themselves can be found in the references therein, partic-

ularly in Jarvis’s work [Jar98a; Jar98b], as well as in the references mentioned

in Chapter 1. The case of G = SU(3) is discussed in this context at the end of

Section 6.3.
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It is important to note here that the precise definition of framing used in this

correspondence differs from ours. Therefore, a rigorous relationship with our work

would require a more detailed study of this matter (on which we comment in

Section 5.3). However, here we point to some of the ideas regarding what this

relationship could look like, since this correspondence provides another way of

building these moduli spaces.

Firstly, directly related to the moduli spaces we have constructed, let us fix a

mass µ and a charge κ a consider the orbit space Oµ,κ of the pair (µ, κ) under the

adjoint action of the gauge group. Then, the correspondence establishes a natural

bijection between framed monopoles with mass µ and charge κ and based rational

maps from CP1 to Oµ,κ of a particular type determined by the charge.

However, there is another correspondence in which we only fix the magnetic

charges. Here, the target variety is Oµ, the orbit of the mass µ, and we consider a

framing of the monopoles which fixes the mass but only the topological aspect of

the charge (corresponding to only fixing the magnetic integer charges). We then

have a bijection between such framed monopoles and based rational maps from

CP1 to Oµ of a specific degree, this time given by the magnetic component of the

charge.

Interestingly, the latter moduli spaces gather monopoles with all possible holo-

morphic charges for a set of magnetic ones. The idea is that this is organised into a

stratification, and monopoles with different holomorphic charges would correspond

to points in different strata. The strata, however, don’t necessarily correspond ex-

actly to our framed moduli spaces, since the framing in these moduli spaces of

rational maps leave a certain ambiguity when the centraliser of the mass does not

preserve the charge: in this case the choice of charge κ ∈ g is not uniquely de-

termined by the choice of mass µ and the integer charges. In this situation, the

strata would correspond to a fibration, where the base parametrises these possible

choices for the charge (given by the orbit of any choice under the action of the

centraliser of the mass), which determine a full framing, and the fibres are the

hyper-Kähler moduli spaces we have constructed in this thesis corresponding to

such full framings.

This suggests the possibility of building such a moduli space from a differential-

geometric perspective, and of studying how the hyper-Kähler metric would behave
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inside this stratified space.

5.3 Asymptotic behaviour of monopoles

Our approach to the construction of monopole moduli spaces has been to fix a

notion of mass and charge and to study the monopoles which fit into this definition.

However, there remain some interesting questions about the different asymptotic

conditions of monopoles.

Perhaps the most natural one that arises from our approach is whether every

monopole falls into this classification. That is, whether can we deduce from the

finite energy condition that in fact the asymptotics must be determined by a mass

and charge as we have described them.

Another question, which we have answered to some extent, is what asymptotic

conditions can be deduced about a monopole once we know that it follows our

definition of mass and charge. The regularity theorem Theorem 4.2.12 provides

significantly strong asymptotic properties in this case.

Lastly, as we have noted, different authors have used slightly different defini-

tions for monopoles with a specific mass, charge and framing [Jar98a; CN22]. The

regularity theorem implies that once a monopole fits our definition it will also fit

essentially any other reasonable definition, but the converse is not necessarily so

clear. Of course, this converse would be resolved from a positive answer to the

first question, that is, if the finite energy condition were enough to guarantee that

monopoles fit our framework. Rigorously establishing the equivalence of these

definitions would help to strengthen the connection between the results of this

thesis and other research in the area.

Note that for the gauge group SU(2) these matters have been largely resolved

[JT80; Gro84; AH88].

5.4 General compact groups

In Section 2.1 we restrict our study to monopoles with connected, simply connec-

ted, semisimple gauge groups, but in fact the theory for any real compact Lie group

87



can be related to the one studied here. Let us discuss this more general setting

now, informally considering how the framed moduli spaces would be constructed.

We start by observing that since that base manifold R3 is contractible, the

adjoint bundle must be trivial. Therefore the configuration space only depends on

the connected component of the gauge group which contains the identity. Further-

more, the same is true for the group of small gauge transformations, since these

must tend to the identity at infinity. Hence, the framed moduli spaces for a given

gauge group only depend on the connected component of the identity, and so we

will restrict our attention to connected compact groups.

We also recall that a connected compact Lie group is always a product of a

simply connected, semisimple Lie group and a torus, modulo a finite subgroup of

the centre. In particular, its Lie algebra is the product of a semisimple and an

Abelian Lie algebra.

We will now take two approaches, which largely mirror each other: firstly we

will see how our constructions would be adapted to a general (connected) compact

group, and secondly we will see how the moduli spaces for the general groups can

be built from from the simply connected, semisimple case.

For the first approach, let us revisit the construction of the asymptotic model

from Section 2.3. In order to build it on a sphere, we required the charge to

satisfy the integrality condition exp(2πκ) = 1G. We then relied on the simple

connectedness of the group to extend it radially over R3. If the group is not

simply connected, however, the above integrality condition is not enough, and we

have to require the path

(5.4.1)
[0, 1]→ G

θ 7→ exp(2πθκ)

to be contractible.

In particular, this condition implies that the charge must be entirely inside the

semisimple component of the Lie algebra. Furthermore, the exponential of 2πκ

will be the identity in the simply connected semisimple group factor of the above

decomposition.

Therefore, the choices of mass and charge are equivalent to choosing any mass,
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and then choosing a charge in the semisimple component of the Lie algebra with the

integrality condition coming from the simply connected semisimple group factor in

the decomposition. If we establish a choice of positive roots as in Section 5.1, this

integrality condition is simply that the fundamental weights divided by i produce

integers when applied to the charge, which is a condition that only depends on the

Lie algebra.

In this case, the Lie algebra will have an extra Abelian factor in addition to

the root space decomposition, which will be included in the C part of the adjoint

bundle. However, the dimensional formula would only depend on the semisimple

part, and would coincide with the dimension of the moduli space for the choice of

mass and charge restricted to this factor. Notice, in particular, that it does not

depend on the subgroup of the centre we are quotienting by.

Let us now look at the second approach by considering the three additional

elements involved: torus groups, products and quotients.

If G is an Abelian group, the connection becomes trivial on the adjoint bundle.

Then, we have

(5.4.2) d∗dΦ = d∗?FA = 0 ,

that is, the Higgs field is harmonic on R3. Therefore it must be constant, and the

connection must be flat, and hence gauge equivalent to the trivial one. Given this,

the charge must be 0, and for any mass the moduli space would consist only of

the monopole with a flat connection and a Higgs field constant and equal to the

mass. Note the consistency with the integrality condition described above, which

requires κ = 0 on Abelian groups, as well as with the dimension computations,

which suggest a moduli space of dimension 0.

Suppose now that G is a product of two other groups. In this case, the con-

nection and the Higgs field decompose along this product, and so do the gauge

transformations. Therefore, the moduli space would simply be the product of the

moduli spaces for the factor groups, with the masses and the charges simply being

the components of each factor. This is also consistent with the above discussion.

Lastly, suppose that G is a finite quotient of a group by a finite subgroup of its

centre. Since the base manifold is contractible, the configuration space will be the
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same for G and its cover. Furthermore, the group of small gauge transformations

will also be the same. To see this, let us view these transformations as based

maps from S3 – the one-point compactification of R3 – into the (quotient) gauge

group. Since the 3-sphere is simply connected such maps can always be lifted to a

cover. This lift will provide a small gauge transformation for the cover gauge group.

Furthermore, the action of this gauge transformation will remain unchanged, given

that the quotient was carried out with respect to a central subgroup. Noting once

again that the integrality condition and dimension formula depend only on the

Lie algebra we see that the framed moduli spaces are not affected by this quotient

operation.

To summarise, framed moduli spaces for any real compact group could be

built from the framed moduli spaces for connected, simply connected, semisimple,

compact groups, and in fact most of the interesting phenomena occur in these

cases.

We end by noting that, of course, we could also restrict ourselves to simple

groups, since compact, connected, simply connected, semisimple groups are always

a product of simple groups.
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Chapter 6

Special unitary and orthogonal

groups

We now explain how our results apply to monopoles for specific gauge groups. This

is done by studying the Lie algebra structures and the possible masses, charges

and symmetry breaking types.

Firstly we look at general special unitary groups in Section 6.1, with special

emphasis on SU(2) in Section 6.2 and SU(3) in Section 6.3.

We then move on to the special orthogonal groups in Sections 6.4 and 6.5.

These are not simply connected, but offer a more familiar setting than the spin

groups, their simply connected covers. Recall that in Section 5.4 we discuss how

the framed moduli spaces for both groups would be the same.

A similar approach could be followed to study the symplectic and exceptional

Lie groups, which would cover all the necessary building blocks for any real com-

pact group, as explained in Section 5.4.

Many of the Lie algebra results can be found in the standard literature, like

Hall’s book [Hal15].

6.1 General SU(N)-monopoles

Let us start by considering SU(N), the group of unitary N×N complex matrices of

determinant one, with its Lie algebra su(N), which is the space of anti-Hermitian
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traceless ones. We now have some preferred choices.

Firstly, the maximal toral subalgebra t can be taken to be the subspace of

diagonal matrices inside su(N). These matrices will have N imaginary terms

which add up to zero, that is, they are of the form

(6.1.1) diag(z1, z2, . . . , zN) =


z1 0 · · · 0

0 z2 · · · 0
...

...
. . .

...

0 0 · · · zN


for some z1, z2, . . . , zN ∈ iR such that z1 + z2 + · · ·+ zN = 0.

The roots then correspond to the N(N − 1) linear functionals which subtract

one diagonal term from another (different) one, that is, maps of the form

(6.1.2) diag(z1, z2, . . . , zN) 7→ zj1 − zj2 ,

for j1 6= j2. But there is furthermore a preferred set of positive roots R+: those

which subtract a diagonal term further down from one which is higher up, that

is, maps of the form (6.1.2) but only for j1 < j2. The simple roots corresponding

to this choice are then the ones which subtract a diagonal term from the term

immediately above. We denote these by

(6.1.3) αj : diag(z1, z2, . . . , zN) 7→ zj − zj+1 ,

for j = 1, 2, . . . , N − 1 = rank(SU(N)). The fundamental weights associated to

this choice are given by

(6.1.4) wj : diag(z1, z2, . . . , zN) 7→ z1 + z2 + · · ·+ zj .

Recall that, given that all maximal toral subalgebras and choices of positive

roots are related through the adjoint action of the group, we are not restricting

ourselves by making these choices. Therefore, let us now consider a mass µ and a

charge κ which are compatible.

The mass must be any element in the closure of the fundamental Weyl chamber,
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that is, we must have 1
i
α(µ) ≥ 0 for all the positive roots α ∈ R+. This means

that it must be of the form

(6.1.5) µ = i diag(µ1, µ2, . . . , µN) ,

subject to the condition

(6.1.6) µ1 ≥ µ2 ≥ · · · ≥ µN

(and satisfying µ1 + µ2 + · · ·+ µN = 0).

Then, the charge must satisfy that 1
i
α(κ) ≤ 0 when α(µ) = 0. This means that

it must be of the form

(6.1.7) κ = i diag(κ1, κ2, . . . , κN) ,

subject to the condition

(6.1.8) µj = µj+1 =⇒ κj ≤ κj+1

(and satisfying κ1 + κ2 + · · ·+ κN). The N − 1 integer charges for this choice of µ

and κ are therefore the integers

(6.1.9)
1

i
wj(κ) = κ1 + κ2 + · · ·+ κj,

for j = 1, 2, . . . , N − 1. The dimension formula yields

(6.1.10) dimµ,κ = 4
N−1∑
j=1

(N − j)κj .

As we have seen, the eigenvalues of the mass must be decreasing in their imagin-

ary parts, and the eigenvalues of the charge must be increasing in their imaginary

parts within each block of equal eigenvalues in the mass. In terms of the forms

(6.1.5) and (6.1.7), supposing that µ has B blocks of sizes N1, N2, . . . , NB, these
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conditions can be rewritten as

µ1 = µ2 = · · · = µN1 > µN1+1 = µN1+2 = · · · = µN1+N2 > · · · ,(6.1.11a)

κ1 ≤ κ2 ≤ · · · ≤ κN1 , κN1+1 ≤ κN1+2 ≤ · · · ≤ κN1+N2 , · · · .(6.1.11b)

Naturally, we must have N1 + N2 + · · ·NB = N . The magnetic charges are then

those which include only entire blocks in which the eigenvalues of the mass are

equal, that is, the numbers

(6.1.12)
1

i
wN1+N2+···+Nj(κ) = κ1 + κ2 + · · ·+ κN1+N2+···+Nj

for j = 1, 2, . . . , B − 1. The rest of the charges are holomorphic.

In this case the symmetry of the monopole breaks to the group

(6.1.13) S(U(N1)× U(N2)× · · · × U(NB))

of block-diagonal special unitary elements, of dimension

(6.1.14) N2
1 +N2

2 + · · ·+N2
B − 1 .

Maximal symmetry breaking corresponds to the case

(6.1.15) B = N ⇐⇒ N1 = N2 = · · · = NB = 1 ⇐⇒ µ1 > µ2 > · · · > µN .

Naturally, here the symmetry breaks to the maximal torus

(6.1.16) S(U(1)× U(1)× · · · × U(1)) ∼= TN−1 .

6.2 SU(2)-monopoles

For SU(2) monopoles, the mass must be of the form µ = i diag(µ1,−µ1). But in

fact, when the mass is not zero, the monopole is usually rescaled over R3 so that
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we only consider

(6.2.1) µ = i

(
1 0

0 −1

)
.

The charge is then given by a single integer κ1, which is itself usually referred

to simply as the charge, so that

(6.2.2) κ = i

(
κ1 0

0 −κ1

)
.

In these conditions, the moduli space of framed monopoles of a given charge

κ1 ≥ 0 is a hyper-Kähler manifold of dimension 4κ1, as we expect from our formula.

Note that, in the case of non-zero mass, the single integer charge is magnetic.

6.3 SU(3)-monopoles

For SU(3) the situation is a bit more interesting, since we can now have different

types of symmetry breaking.

Throughout this section we represent several elements in t and its (complexi-

fied) dual in diagrams, where t is a maximal toral subalgebra of the Lie algebra

su(3).

In particular, we represent them on a 2-(real-)dimensional plane, which we can

think of as the plane given by the equation x1+x2+x3 = 0 inside the 3-dimensional

space R3, where all the points with integer coordinates are marked with small dots.

However, we also admit triples of coordinates which do not add up to 0, which

simply represent their orthogonal projections from R3 onto the plane. Note that

this allows points with integer coordinates (not adding up to 0) which are not

marked, since the projections might not have integer coordinates.

In these diagrams, we represent elements of two different but closely related

spaces: t and it∗. In the former case, the coordinates (x1, x2, x3), with x1+x2+x3 =

0, will represent the matrix

(6.3.1) i diag(x1, x2, x3) ,
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and will be marked with dots. In the latter case, the coordinates (ξ1, ξ2, ξ3) – even

if they do not add up to 0 – will represent the map

(6.3.2) i diag(x1, x2, x3) 7→ ξ1x1 + ξ2x2 + ξ3x3 ,

and will be marked with arrows.

In Figure 6.3.3a we demostrate the coordinate system. In Figure 6.3.3b we show

the root system of su(3), following the notation of the previous section for α1 and

α2, and furthermore shade the preferred Weyl chamber and show the associated

fundamental weights w1 and w2. We also mark the lines (1
i
wj)

−1(Z), for j = 1, 2 on

whose intersections lie precisely the marked integer points, which are those which

satisfy the integrality condition required of charges.

We will now study the possible charges that can appear for different types of

symmetry breaking. These are represented in Figure 6.3.4.

Let us firstly assume that we have maximal symmetry breaking, that is,

(6.3.5) µ = i

µ1 0 0

0 µ2 0

0 0 µ3

 .

with µ1 > µ2 > µ3 and µ1 + µ2 + µ3 = 0.

Then, the two integer charges are magnetic, there is no compatibility condition

on the charge, and we expect to have monopoles with any non-negative integer

values for these two magnetic charges. In Figure 6.3.4a we see the region of non-

negative charges, marked with dense diagonal lines, and some possible charges κ

are annotated with the pair of corresponding magnetic charges (1
i
w1(κ), 1

i
w2(κ)).

The case of non-maximal symmetry breaking is slightly more involved. Let us

suppose that µ2 = µ3, so that

(6.3.6) µ = i

µ1 0 0

0 µ2 0

0 0 µ2

 ,

with µ1 > µ2 and µ1 + 2µ2 = 0.
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0

(1,0,−1)

(0,2,−2)

(−1,−1,2)

(1,0,0)∼( 2
3
,− 1

3
,− 1

3
)

(0,1,0)

(0,0,1)

(1,−1,0)

a: Diagram with integer points marked and

examples of elements with coordinates

0
α1

α2

−α1 − α2

−α1

−α2

α1 + α2

w1

w2

b: Root system, preferred Weyl chamber,

fundamental weights and integral lines

Figure 6.3.3: Diagram of t and it∗

0
α1

α2

w1

w2 µ

(0, 0)

(0, 1)

(1, 0)

(0, 2)

(1, 1)

(2, 0)

(0, 3)

(1, 2)

(2, 1)

(3, 0)

(1, 3)

(2, 2)

(3, 1)

(1, 4)

(2, 3)

(3, 2)

(4, 1)

(2, 4)

(3, 3)

(4, 2)

a: Maximal symmetry breaking

0
α1

α2

w1

w2

µ

(0, 0)

(1, 0)

(2, 0)

(2, 1)

(3, 0)

(3, 1)

(4, 0)

(4, 1)

(4, 2)

(5, 1)

b: Non-maximal symmetry breaking

Figure 6.3.4: Possible charges for different symmetry breaking types
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Then, the first charge 1
i
w1(κ) is still magnetic, but 1

i
w2(κ) is in this case holo-

morphic. In Figure 6.3.4b, aside from the region of non-negative charges, we see the

compatibility condition added to the diagram, marked with perpendicular dense

diagonal lines. The intersection of these two regions contains the possibilities for

which we expect to have monopoles. Once again, some of these possible charges

are annotated with their integer charges, the first one being the magnetic one and

the second one being the holomorphic one. Notice that for each choice of the

magnetic charge we only have finitely many choices of the holomorphic one, which

can also be deduced from the fact that the charge must be of the form

(6.3.7) µ = i

κ1 0 0

0 κ2 0

0 0 κ3

 ,

with κ2 < κ3 (compatibility), κ1, κ1 + κ2 ≥ 0 (non-negativity) and, of course,

κ1 +κ2 +κ3 = 0. Using this, given any non-negative choice of the magnetic charge
1
i
w1(κ) = κ1, for the holomorphic charge we must have

(6.3.8)
1

i
w2(κ) = −κ3 ∈

{
0, 1, . . . ,

⌊κ1

2

⌋}
.

This covers all the interesting possibilities for SU(3), since the only other pos-

sible symmetry breaking for non-zero mass would be for µ = i diag(µ1, µ1, µ2).

However, by changing the sign of the Higgs field and reflecting the underlying

space R3 (thereby changing the orientation) we obtain a case equivalent to the

last one discussed.

The case of non-maximal symmetry breaking has been studied already in some

detail, especially for magnetic charge 2 [Dan92; DL93; Dan94; BS98]. In the in-

terpretation of the stratified spaces of rational maps pointed at in Section 5.2,

the moduli space for magnetic charge 2 has an open stratum of dimension 12

corresponding to holomorphic charge 1 and a lower stratum of dimension 10 cor-

responding to holomorphic charge 0. In terms of rational maps, these are made

up of based maps from CP1 to SU(3)/U(2) ∼= CP2 of degree 2, with the lower

stratum consisting of the maps which fall into a specific line CP1 ⊂ CP2.
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Since for holomorphic charge 1 the charge κ has the same centraliser as the

mass, the open stratum would correspond directly to the moduli space we have

constructed (which, of course, also has dimension 12). However, for holomorphic

charge 0 the orbit of the charge κ under the adjoint action of the centraliser

of the mass is a 2-sphere, so, in terms of the fibration picture, the lower 10-

dimensional stratum would be a fibration over this sphere, with the 8-dimensional

fibres corresponding to the moduli spaces of this thesis. The base of this fibration

could also be viewed as parametrising the line CP1 ⊂ CP2 which forms the image

of the maps.

Bais and Schroers give an account of some properties of SU(3) moduli spaces

beyond charge 2. In particular, it is worth remarking on the similarity and re-

lationship between Figure 6.3.4 and Figure 1 in their work. In their case, they

point out the dimension of the strata of the stratified moduli space, which differs

from our dimension when the stratum is a fibration, as explained. Note that the

orbit of the charge under the action of Cµ is always a 2-sphere in su(3) when the

holomorphic charge is not one half of the magnetic charge.

6.4 SO(2N)-monopoles

Let us now consider the group SO(2N) (for N ≥ 2) of orthogonal, orientation-

preserving 2N × 2N real matrices, and its Lie algebra so(2N) of anti-symmetric

matrices.

A maximal toral subalgebra can be written as the space of matrices of the block

diagonal form

(6.4.1) bdiag(z1, z2, . . . , zN) :=



0 z1

−z1 0

0 0

0 0
· · ·

0 0

0 0

0 0

0 0

0 z2

−z2 0
· · ·

0 0

0 0
...

...
. . .

...

0 0

0 0

0 0

0 0
· · ·

0 zN

−zN 0


,
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with z1, z2, . . . , zN ∈ R.

The root system in this case has rank N , with the roots corresponding to the

2N(N − 1) maps of the form

bdiag(z1, z2, . . . , zN) 7→ i(zj1 + zj2) ,(6.4.2a)

bdiag(z1, z2, . . . , zN) 7→ i(zj1 − zj2) ,(6.4.2b)

bdiag(z1, z2, . . . , zN) 7→ −i(zj1 + zj2) ,(6.4.2c)

bdiag(z1, z2, . . . , zN) 7→ −i(zj1 − zj2) ,(6.4.2d)

for j1 < j2.

We can choose the roots of the forms (6.4.2a) and (6.4.2b) to constitute the

set of positive roots R+, among which the N simple roots are

αj : bdiag(z1, z2, . . . , zN) 7→ i(zj − zj+1) for j = 1, 2, . . . , N − 1 ,(6.4.3a)

αN : bdiag(z1, z2, . . . , zN) 7→ i(zN−1 + zN) .(6.4.3b)

The corresponding fundamental weights are then

wj : bdiag(z1, z2, . . . , zN) 7→ i(z1 + z2 + · · ·+ zj)

for j = 1, 2, . . . , N − 2 ,
(6.4.4a)

wN−1 : bdiag(z1, z2, . . . , zN) 7→ i

2
(z1 + z2 + · · ·+ zN−1 − zN) ,(6.4.4b)

wN : bdiag(z1, z2, . . . , zN) 7→ i

2
(z1 + z2 + · · ·+ zN−1 + zN) .(6.4.4c)

A mass µ for these choices must therefore be of the form

(6.4.5) µ = bdiag(µ1, µ2, . . . , µN) ,

satisfying

(6.4.6) µ1 ≥ µ2 ≥ · · · ≥ µN−1 ≥ |µN | ,
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and compatible charges must be of the form

(6.4.7) κ = bdiag(κ1, κ2, . . . , κN) ,

where

µj = µj+1 =⇒ κj ≤ κj+1 for j = 1, . . . , N − 1 ,(6.4.8a)

µN−1 = −µN =⇒ κN−1 ≤ −κN .(6.4.8b)

The integer charges in this case are the numbers

1

i
wj = κ1 + κ2 + · · ·+ κj for j = 1, . . . , N − 2 ,(6.4.9a)

1

i
wN−1 =

1

2
(κ1 + κ2 + · · ·+ κN−1 − κN) ,(6.4.9b)

1

i
wN =

1

2
(κ1 + κ2 + · · ·+ κN−1 + κN) .(6.4.9c)

Note here how these are integers precisely when all the numbers κj are integers and

additionally they add up to an even number. Without this last condition, we would

still have exp(2πκ) = 1SO(2N), but not exp(2πκ) = 1Spin(2N) (see Section 5.4 for a

discussion of integrality conditions on groups which are not simply connected).

From the integer charges we can deduce that the dimension of the corresponding

moduli space of framed monopoles is

(6.4.10) dimµ,κ =
N−1∑
j=1

(N − j)κj .

In order to understand the possible symmetry breaking types, let us assume,

once again, that the mass element is split into blocks8. However, this time we

consider blocks in which the elements µj are equal up to sign. Given (6.4.6), this

is only relevant in the last block, since all elements but µN must be non-negative,

and µN can only be equal in absolute value to the elements in the last block. In

8By this we mean “large” blocks made up of the 2× 2 blocks in (6.4.1).
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other words, we have

(6.4.11)
µ1 = µ2 = · · · = µN1 > µN1+1 = µN1+2 = · · · = µN1+N2 > · · ·

> µN−NB+1 = µN−NB+2 = · · · = µN−1 = ±µN ,

with the charge hence satisfying

(6.4.12)
κ1 ≤ κ2 ≤ · · · ≤ κN1 , κN1+1 ≤ κN1+2 ≤ · · · ≤ κN1+N2 , · · ·

κN−NB+1 ≤ κN−NB+2 ≤ · · · ≤ κN−1 ≤ ±κN .

The magnetic charges will always include those of the form 1
i
wN1+N2+···+Nj(κ)

for j = 1, 2, . . . , B − 1. However, we also have 1
i
wN−1(κ), given by (6.4.9b), if

µN−1 6= µN , and 1
i
wN(κ), given by (6.4.9c), if µN−1 6= −µN . Note that both of

these last two conditions hold simultaneously precisely when NB = 1 (in which

case N1 + N2 + · · · + NB−1 = N − 1), and neither will be satisfied if NB > 1 and

the last block is 0. The remaining charges are holomorphic.

Let us now study the symmetry breaking groups. By looking at the root

spaces we can deduce that the elements which commute with the mass must be

block diagonal, following the blocks of sizes 2N1, 2N2, . . . , 2NB outlined above.

Let us therefore consider the case of any such 2Nj × 2Nj block, and we assume

that µN1+N2+···+Nj 6= 0. After dividing by a positive number, the corresponding

block of the mass element will be of the form

(6.4.13)



0 1

−1 0

0 0

0 0
· · ·

0 0

0 0

0 0

0 0

0 1

−1 0
· · ·

0 0

0 0
...

...
. . .

...

0 0

0 0

0 0

0 0
· · ·

0 1

−1 0


,

where the sign of the last 2 × 2 block might have the opposite sign if j = B.

By identifying R2Nj with CNj we can see that the subgroup of SO(2Nj) which

preserves this is precisely U(Nj).
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On the other hand, if µN1+N2+···+Nj = 0, the subgroup preserving it is simply

SO(2Nj). This can only happen when j = B and αN−1(µ) = αN(µ) = 0.

We therefore have two slightly different cases. Firstly, if

(6.4.14) αN−1(µ) = αN(µ) = 0 ,

then the symmetry breaks to

(6.4.15) U(N1)× U(N2)× · · · × U(NB−1)× SO(2NB) .

Otherwise it breaks to

(6.4.16) U(N1)× U(N2)× · · · × U(NB−1)× U(NB) .

The case of maximal symmetry breaking here corresponds to

(6.4.17)

B = N ⇐⇒ N1 = N2 = · · · = NB = 1 ⇐⇒ µ1 > µ2 > · · · > µN−1 > |µN | ,

where the symmetry breaks to the maximal torus

(6.4.18) U(1)× U(1)× · · · × U(1)× U(1) ∼= TN .

6.5 SO(2N + 1)-monopoles

Lastly, let us consider the group SO(2N+1) (for N ≥ 1) of orthogonal, orientation-

preserving (2N + 1) × (2N + 1) real matrices, and its Lie algebra so(2N + 1) of

anti-symmetric matrices.

Its maximal toral subalgebra can be identified with the one for so(2N), since
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it can be written as the space of matrices of the form

(6.5.1) bdiag0(z1, z2, . . . , zN) :=



0 z1

−z1 0

0 0

0 0
· · ·

0 0

0 0

0

0

0 0

0 0

0 z2

−z2 0
· · ·

0 0

0 0

0

0
...

...
. . .

...
...

0 0

0 0

0 0

0 0
· · ·

0 zN

−zN 0

0

0

0 0 0 0 · · · 0 0 0


,

with z1, z2, . . . , zN ∈ R.

Through the identification

(6.5.2) bdiag(z1, z2, . . . , zN)↔ bdiag0(z1, z2, . . . , zN) ,

the roots here are the same as for so(2N), which were given by (6.4.2), with the

addition of the 2N maps of the form

bdiag0(z1, z2, . . . , zN) 7→ izj ,(6.5.3a)

bdiag0(z1, z2, . . . , zN) 7→ −izj ,(6.5.3b)

for j = 1, 2, . . . , N , having a total of 2N2 roots.

A set of positive roots R+ can then be defined from those of the forms (6.4.2a),

(6.4.2b) and (6.5.3a), and the corresponding simple roots are

αj : bdiag0(z1, z2, . . . , zN) 7→ i(zj − zj+1) for j = 1, 2, . . . , N − 1 ,(6.5.4a)

αN : bdiag0(z1, z2, . . . , zN) 7→ izN .(6.5.4b)
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The fundamental weights are then

wj : bdiag(z1, z2, . . . , zN) 7→ i(z1 + z2 + · · ·+ zj)

for j = 1, 2, . . . , N − 1 ,
(6.5.5a)

wN : bdiag(z1, z2, . . . , zN) 7→ i

2
(z1 + z2 + · · ·+ zN) .(6.5.5b)

We now consider a mass µ and a charge κ compatible with these choices. The

mass must be of the form

(6.5.6) µ = bdiag0(µ1, µ2, . . . , µN) ,

with

(6.5.7) µ1 ≥ µ2 ≥ · · ·µN ≥ 0 ,

and the charge must be

(6.5.8) κ = bdiag0(κ1, κ2, . . . , κN) ,

where

µj = µj+1 =⇒ κj ≤ κj+1 for j = 1, . . . , N − 1 ,(6.5.9a)

µN = 0 =⇒ κN ≤ 0 .(6.5.9b)

The integer charges are then

1

i
wj = κ1 + κ2 + · · ·+ κj for j = 1, . . . , N − 1 ,(6.5.10a)

1

i
wN =

1

2
(κ1 + κ2 + · · ·+ κN) .(6.5.10b)

We once again note how the integrality condition requires the exponential of 2πκ

to be the identity in the 2-to-1 cover Spin(2N + 1).

The dimension of the moduli space of framed monopoles of mass µ and charge
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κ in this case is

(6.5.11) dimµ,κ =
N∑
j=1

(
N +

1

2
− j
)
κj .

To study the possible symmetry breaking types we once again divide the

matrices into B “large” blocks, each corresponding to distinct values of the num-

bers µj. For notational convenience, we always leave the last diagonal element

outside of these blocks, so they have sizes 2N1, 2N2, . . . , 2NB. In this case, the

values µj will be exactly the same in each block, since they must all be non-

negative (as opposed to the case of SO(2N) where a change of sign was allowed).

In other words, the conditions (6.1.11) are satisfied (with the addition of µN ≥ 0

and (6.5.9b)).

The magnetic charges, once more, include those of the form 1
i
wN1+N2+···+Nj(κ)

for j = 1, 2, . . . , B − 1, as well as the charge 1
i
wN(κ) when µN 6= 0, with the rest

being holomorphic.

Lastly, we can once again look at the root spaces to see that the centraliser of

the mass element is also block-diagonal. Also similarly, the centraliser of a block

of size Nj with µNj > 0 is U(Nj). The only block which can be zero is the last

one, when αN(µ) = 0, in which case the centraliser must be considered adding the

last 1× 1 block in (6.5.1), yielding the group SO(2NB + 1).

Summarising, if

(6.5.12) αN(µ) = 0 ,

then the symmetry breaks to

(6.5.13) U(N1)× U(N2)× · · · × U(NB−1)× SO(2NB + 1) .

Otherwise it breaks to

(6.5.14) U(N1)× U(N2)× · · · × U(NB−1)× U(NB) .
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The case of maximal symmetry breaking now corresponds to

(6.5.15) B = N ⇐⇒ N1 = N2 = · · · = NB = 1 ⇐⇒ µ1 > µ2 > · · · > µN > 0 ,

where the symmetry breaks to the maximal torus

(6.5.16) U(1)× U(1)× · · · × U(1)× U(1) ∼= TN .
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poles with arbitrary symmetry breaking. 2022. arXiv: 2205.15246

[math.DG] (cit. on pp. 19, 87).

[Dan92] Dancer, A. S. ‘Nahm data and SU(3) monopoles’. Nonlinearity 5.6

(1992), 1355–1373 (cit. on pp. 19, 98).

[Dan93] Dancer, A. S. ‘Nahm’s equations and hyperkähler geometry’. Com-

munications in Mathematical Physics 158.3 (1993), 545–568 (cit. on

p. 19).

[Dan94] Dancer, A. S. ‘A family of hyperkähler manifolds’. The Quarterly

Journal of Mathematics 45.4 (1994), 463–478 (cit. on pp. 19, 98).

[DL93] Dancer, A. S. and Leese, R. A. ‘Dynamics of SU(3) monopoles’.

Proceedings of the Royal Society of London A 440.1909 (1993), 421–

430 (cit. on pp. 19, 98).

[DL97] Dancer, A. S. and Leese, R. A. ‘A numerical study of SU(3) charge-

two monopoles with minimal symmetry breaking’. Physics Letters

B 390.1-4 (1997), 252–256 (cit. on p. 19).

[Don84] Donaldson, S. K. ‘Nahm’s equations and the construction of mono-

poles’. Communications in Mathematical Physics 96.3 (1984), 387–

407 (cit. on p. 19).

[DK90] Donaldson, S. K. and Kronheimer, P. B. The Geometry of Four-

Manifolds. Oxford Mathematical Monographs. Oxford Science Pub-

lications, 1990 (cit. on pp. 20, 68).

110

https://arxiv.org/abs/2205.15246
https://arxiv.org/abs/2205.15246


[FKS18] Fritzsch, K., Kottke, C. and Singer, M. A. Monopoles and the Sen

conjecture: part I. 2018. arXiv: 1811 . 00601 [math.DG] (cit. on

p. 18).

[GRG97] Gibbons, G. W., Rychenkova, P. and Goto, R. ‘HyperKähler quo-

tient construction of BPS monopole moduli spaces’. Communica-

tions in Mathematical Physics 186.3 (1997), 581–599 (cit. on p. 19).

[Gro84] Groisser, D. ‘Integrality of the monopole number in SU(2) Yang–

Mills–Higgs theory on R3’. Communications in Mathematical Phys-

ics 93.3 (1984), 367–378 (cit. on pp. 17, 87).

[Hal15] Hall, B. C. Lie Groups, Lie Algebras, and Representations. 2nd ed.

Vol. 222. Graduate Texts in Mathematics. Springer, 2015 (cit. on

pp. 80, 91).

[Heb96] Hebey, E. Sobolev Spaces on Riemannian Manifolds. Vol. 1635. Lec-

ture Notes in Mathematics. Springer, 1996 (cit. on p. 132).

[Hit82] Hitchin, N. J. ‘Monopoles and geodesics’. Communications in Math-

ematical Physics 83.4 (1982), 579–602 (cit. on p. 19).

[Hit83] Hitchin, N. J. ‘On the construction of monopoles’. Communications

in Mathematical Physics 89.2 (1983), 145–190 (cit. on p. 19).

[Hit92] Hitchin, N. J. ‘Hyperkähler manifolds’. Astérisque 206 (1992).
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Appendix A

Dirac operators

In this appendix we work out some details regarding Dirac operators and spinor

bundles which are relevant to us. Although they are not particularly original or

surprising results – in fact, they are used in the cited literature –, we write them out

to have a clear picture of the elements involved and the notation and conventions

followed.

We shall not dwell on the general theory, which can be found in many references,

like Lawson and Michelsohn’s book [LM89], and instead focus on the particular

case at hand.

We will start by looking at the pointwise picture of the relevant bundles in

Sections A.1 and A.2, and then we will translate this to actual bundles and see

how it relates to certain differential operators in Section A.3. Lastly, in Section A.4

we consider the case of the Euclidean 3-space which is relevant to us.

A.1 Linear algebra in dimension 3

Let R3 = span(e1, e2, e3) be the oriented Euclidean 3-space. Later, we will think

about this space as the fibre of the tangent bundle of an oriented Riemannian

3-manifold. We will consider several other vector spaces and their relationships.

These spaces will then yield relevant bundles on the manifold.

Let us therefore also consider the space C(2) of complex 2 × 2 matrices. A
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useful basis for this space is given by

(A.1.1) τ0 =

(
1 0

0 1

)
, τ1 =

(
0 i

i 0

)
, τ2 =

(
0 1

−1 0

)
, τ3 =

(
i 0

0 −i

)
,

where we notice that the matrices τ1, τ2, τ3 are obtained from the Pauli matrices,

and that they satisfy the quaternionic relations

(A.1.2) τ 2
1 = τ 2

2 = τ 2
3 = τ1τ2τ3 = −τ0 .

Now let Cl(R3) denote the complex Clifford algebra of R3. As a vector space,

this is isomorphic to the complexification of the exterior algebra of R3, that is,

(A.1.3) Cl(R3) ∼= (
∧

(R3))C ,

where

(A.1.4)

∧
(R3) =

∧0(R3)⊕
∧1(R3)⊕

∧2(R3)⊕
∧3(R3)

= span(1, e1, e2, e3, ?e1, ?e2, ?e3, ?1) .

Furthermore, as an algebra, we have the isomorphism

(A.1.5) Cl(R3) ∼= C(2)⊕ C(2) ,

which is given by

1↔ (τ0, τ0) ,(A.1.6a)

ej ↔ (τj,−τj) ,(A.1.6b)

?ej ↔ (τj, τj) ,(A.1.6c)

?1↔ (τ0,−τ0) ,(A.1.6d)

for j = 1, 2, 3, where the basis elements are interpreted through the isomorphism

(A.1.3).

The spin group Spin(3) is defined as the unit-norm elements of the real subspace

spanR(1, ?e1, ?e2, ?e3) ⊂ Cl(R3). If we regard it as a subspace of C(2) through
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either of the two (in this case, equivalent) components of the isomorphism (A.1.5),

we obtain an isomorphism

(A.1.7) Spin(3) ∼= SU(2) .

Furthermore, since Spin(3) is inside the Clifford algebra, its elements can act on

the Clifford algebra itself through conjugation. This action preserves the space

R3 ⊂ Cl(R3), and in fact is orthogonal and preserves the orientation. This provides

a spin representation ρR
3

on R3 and in fact defines a 2-to-1 cover

(A.1.8) Spin(3)
2:1→ SO(3) .

We now define several additional spaces with Clifford and spin actions.

We start with the space C2, which will define the spinor bundle.

Definition A.1.9. On the space C2 we define the Clifford action as

(A.1.10) clC
2

(τ,τ ′) := τ ′ ,

that is, as the action of the matrix given by the second component of the iso-

morphism (A.1.5). We define the spin action as the restriction of this action to

the group Spin(3),

(A.1.11) ρC
2

τ := τ ,

that is, the defining SU(2) representation through the isomorphism (A.1.7).

Remark A.1.12. Note that there are two inequivalent irreducible Clifford actions,

given by the action of the matrix given by either component of (A.1.5). Here we

take the second component, but making the other choice would simply change

some signs. Note that the spin representation would not change in either case.

We now consider the space C2 ⊗ (C2)∗. It will be convenient to view it as a

space of matrices through the isomorphism

(A.1.13) C2 ⊗ (C2)∗ ∼= C(2) .
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Definition A.1.14. On the space C2 ⊗ (C2)∗ we define the Clifford action as the

action defined on its first component,

(A.1.15) cl
C2⊗(C2)∗

(τ,τ ′) (•) := τ ′• ,

that is, left matrix multiplication on C(2) by the second component of the iso-

morphism (A.1.5). The spin representation is defined as the representation asso-

ciated to this space from the one on C2,

(A.1.16) ρC
2⊗(C2)∗

τ (•) := ρC
2

τ (•)⊗ (ρC
2

τ )∗(•) = τ •τ−1 ,

that is, matrix conjugation on C(2) through the isomorphism (A.1.7).

Definition A.1.17. On the space (R3)∗ ⊕ R we define a spin action ρ(R3)∗⊕R as

the dual of ρR
3

together with the trivial action on R.

Now, if {ê1, ê2, ê3} is the dual basis of {e1, e2, e3}, we have an isomorphism

(A.1.18) ((R3)∗ ⊕ R)C ∼= C2 ⊗ (C2)∗

given by

êj ↔ −τj ,(A.1.19a)

1↔ τ0 ,(A.1.19b)

where we are once again we are viewing the latter space as C(2). Crucially, the

spin representations on both spaces coincide.

Proposition A.1.20. The isomorphism (A.1.18) exchanges the spin representa-

tions (ρ(R3)∗⊕R)C and ρC
2⊗(C2)∗.

Proof. We can see this by looking at the representations induced on the Lie algebra

(A.1.21) spin(3) = spanR(?e1, ?e2, ?e3) ∼= spanR(τ1, τ2, τ3) .

If (j1, j2, j3) is a cyclic permutation of (1, 2, 3), the representation on (R3)∗⊕R
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is given by

ρ(R3)∗⊕R
?ej1

(êj1) = 0 ,(A.1.22a)

ρ(R3)∗⊕R
?ej1

(êj2) = 2êj3 ,(A.1.22b)

ρ(R3)∗⊕R
?ej1

(êj3) = −2êj2 ,(A.1.22c)

ρ(R3)∗⊕R
?ej1

(1) = 0 .(A.1.22d)

This can be computed from the representation ρR
3

making use of the fact that the

group action is orthogonal.

Similarly, on C2⊗ (C2)∗ we can deduce from (A.1.2) that the representation is

given by

ρC
2⊗(C2)∗

τj1
(τ0) = 0 ,(A.1.23a)

ρC
2⊗(C2)∗

τj1
(τj1) = 0 ,(A.1.23b)

ρC
2⊗(C2)∗

τj1
(τj2) = 2τj3 ,(A.1.23c)

ρC
2⊗(C2)∗

τj1
(τj3) = −2τj2 ,(A.1.23d)

Comparing through the necessary isomorphisms shows that these representa-

tions are the same.

This isomorphism, lastly, provides a Clifford action on the former space.

Definition A.1.24. On the space ((R3)∗ ⊕ R)C we define the Clifford action

cl((R
3)∗⊕R)C as the action clC

2⊗(C2)∗ pulled back through the isomorphism (A.1.18).

We are particularly interested in the Clifford action of R3 ⊂ Cl(R3) on the

space ((R3)∗ ⊕ R)C.

Proposition A.1.25. If (j1, j2, j3) is a cyclic permutation of (1, 2, 3), we have

cl(R
3)∗⊕R

ej1
(êj1) = −1 ,(A.1.26a)

cl(R
3)∗⊕R

ej1
(êj2) = −êj3 ,(A.1.26b)

cl(R
3)∗⊕R

ej1
(êj3) = êj2 ,(A.1.26c)

cl(R
3)∗⊕R

ej1
(1) = êj1 .(A.1.26d)
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Proof. Once more, we can use (A.1.2) to see that

cl
C2⊗(C2)∗

(τj1 ,−τj1 )(τ0) = −τj1 ,(A.1.27a)

cl
C2⊗(C2)∗

(τj1 ,−τj1 )(τj1) = τ0 ,(A.1.27b)

cl
C2⊗(C2)∗

(τj1 ,−τj1 )(τj2) = −τj3 ,(A.1.27c)

cl
C2⊗(C2)∗

(τj1 ,−τj1 )(τj3) = τj2 ,(A.1.27d)

and the result follows from the appropriate isomorphisms.

A.2 Linear algebra in dimension 2

We now summarise the the basic structures in dimension 2, paying special attention

to their relationship with the constructions seen above for dimension 3.

Let us hence consider R2 = span(e1, e2) ⊂ R3. We have an embedding of the

corresponding Clifford algebras, so, preserving the notation of the previous section,

we can write

(A.2.1) Cl(R2) ∼= spanC(1, e1, e2, ?e3) ⊂ Cl(R3)

(where the Hodge star ? still refers to the structure on R3). Through the second

component of the isomorphism (A.1.5) we obtain the isomorphism

(A.2.2) Cl(R2) ∼= C(2) ,

given by

1↔ τ0 ,(A.2.3a)

e1 ↔ −τ1 ,(A.2.3b)

e2 ↔ −τ2 ,(A.2.3c)

?e3 ↔ τ3 .(A.2.3d)

(A.2.3e)
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The spin group Spin(2) is then made up of the unit-norm elements of the real

subspace spanR(1, ?e3), and as such is a subgroup of Spin(3).

Let us consider the spin representation on C2 given in the previous section. If it

is restricted to Spin(2) it splits into two 1-dimensional components, corresponding

to each component of C2. We refer to the first component as ρC
+

and to the second

as ρC
−

. Both are faithful, and they are the inverse of one another. By declaring

ρC
−

to be the fundamental representation of U(1) we obtain an isomorphism

(A.2.4) Spin(2) ∼= U(1) .

The group Spin(2) also acts on R2 ⊂ Cl(R2) through conjugation, providing the

2-to-1 cover

(A.2.5) Spin(2)→ SO(2) .

If we identify R2 ∼= C, then this spin representation is the square of ρC
−

.

Lastly, we note that if we consider the Clifford representation clC
2

on C2 defined

in the previous section, and we restrict it to Cl(R2), then we can observe that the

action of R2 ⊂ Cl(R2) exchanges the two components of C2.

A.3 Associated bundles

Our interest in the spaces and representations discussed in the previous section

stems from the associated bundles we can obtain. In particular, if we have an

oriented, Riemannian 3-manifold with a spin structure, we can use any spin rep-

resentation to associate a bundle. If we furthermore had a Clifford representation

on it this will also carry over to the bundle to provide a Clifford action of the

tangent bundle. In particular we will be able to define a Dirac operator on it,

defined at each point of the manifold by the formula

(A.3.1)
3∑
j=1

clej ∇ej ,

where {e1, e2, e3} is an orthonormal basis for the tangent space at the given point.

121



The two spaces we are most interested in are ((R3)∗ ⊕ R)C and C2 ⊗ (C2)∗,

with the representations described above. If we write /S for the bundle associated

to the spin representation on C2, then the two relevant bundles on the manifold

are (
∧1 ⊕

∧0)C and /S ⊗ /S
∗
.

Proposition A.3.2. We have an isomorphism of bundles

(A.3.3) (
∧1 ⊕

∧0)C ∼= /S ⊗ /S
∗

Proof. Proposition A.1.20 shows that the spin representations used to define the

bundles are isomorphic, so the bundles must be as well.

The aim of this construction is to understand a Dirac operator on the former

bundle. We further tensor with a vector bundle E with a connection A.

Proposition A.3.4. Through the isomorphism (A.3.3), the operator

(A.3.5)

(
−?dA dA

d∗A 0

)
: (Ω1(E)⊕ Ω0(E))C → (Ω1(E)⊕ Ω0(E))C

is the Dirac operator

(A.3.6) /DA : Γ(/S ⊗ /S
∗ ⊗ E)→ Γ(/S ⊗ /S

∗ ⊗ E)

associated to the Clifford multiplication on the factor /S (and the connection made

up of the Levi-Civita connection and A). In other words, it is the Dirac operator

associated to the spinor bundle /S on the manifold, twisted by the bundle /S
∗ ⊗E.9

Proof. This is equivalent to proving that (A.3.5) is the Dirac operator obtained

from the Clifford action cl((R
3)∗⊕R)C from Definition A.1.24.

Let x1, x2, x3 be normal coordinates around any given point and let us write

elements of (Ω1(E)⊕ Ω0(E))C as column vectors with 4 entries, corresponding to

the coefficients for dx1, dx2 and dx3, and the element of (Ω0)C(E), in that order.

9Here, the bundle /S
∗ ⊗ E is considered simply as a bundle with a connection, that is, with

no Clifford action on it.
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If ∇ denotes de covariant derivative of E, from Proposition A.1.25 we can

deduce that the Dirac operator at the point (0, 0, 0) must have the form

(A.3.7)
0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

∇ ∂
∂x1

+


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

∇ ∂
∂x2

+


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

∇ ∂
∂x3

,

which is simply

(A.3.8)


0 ∇ ∂

∂x3

−∇ ∂
∂x2

−∇ ∂
∂x3

0 ∇ ∂
∂x1

∇ ∂
∂x2

−∇ ∂
∂x1

0

∇ ∂
∂x1

∇ ∂
∂x2

∇ ∂
∂x3

−∇ ∂
∂x1

−∇ ∂
∂x2

−∇ ∂
∂x3

0

 =

(
−?dA dA

d∗A 0

)
,

as desired.

For dimension 2 we can similarly associate bundles to spin representations. In

this case, the representation described on C2 splits into two 1-dimensional rep-

resentations, so we write the associated bundle as /S
+ ⊕ /S

−
, corresponding to the

representations ρC
+

and ρC
−

. Recall that, although the spin representation reduces

into these two components, the Clifford action does not. In fact, Clifford multiplic-

ation by elements in the original space R2 interchanges these two subspaces. In the

associated bundle, this means that the corresponding Dirac operator interchanges

these subbundles, so we can write its components as /D
±

, where

(A.3.9) /D
±

: Γ(/S
±

)→ Γ(/S
∓

) .

A.4 On S2 and R3 \ {0}

Let us consider the unit sphere S2. The complex unitary line bundles on it can be

classified by their degree, which can be any integer. Furthermore, for any degree d,

we can define a homogeneous unitary connection on the corresponding line bundle

(which is unique up to automorphisms). We refer to this line bundle with its
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connection as

(A.4.1) L d .

As we saw, a spin structure on S2 – which exists and is unique – provides

a spinor bundle /S
+ ⊕ /S

−
as described above. The bundles /S

±
are complex line

bundles, and with their spin connections they satisfy

(A.4.2) /S
± ∼= L ∓1 .

On these bundles we have the operators /D
±

, but it will be useful to understand

how these objects behave when twisting by additional line bundles. Therefore, let

us take d ∈ Z, and let us write /D
±
d for the components of the Dirac operator

twisted by L d, which act as

(A.4.3) /D
±
d : Γ(/S

± ⊗L d)→ Γ(/S
∓ ⊗L d) .

Some crucial facts for us are the following.

Proposition A.4.4. The operator /D
±
d is Fredholm of index ±d. Furthermore,

(A.4.5) dim ker /D
±
d =

{
d if d R 0

0 otherwise .

Furthermore, the eigenvalues of

(A.4.6) /D
∓
d

/D
±
d : Γ(/S

± ⊗L d)→ Γ(/S
± ⊗L d)

are

(A.4.7) j(j + |d|) ,

for j ∈ Z≥1, and additionally for j = 0 when d ≷ 0.

Proof. The first part is easily deduced from the identification of S2 with CP1 and

the general facts about holomorphic line bundles on this space.
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For the second part, from the Lichnerowicz–Weitzenböck formula one obtains

(A.4.8) /D
∓
d

/D
±
d = d∗d∓1dd∓1 +

1∓ d
2

,

where dd∓1 is covariant derivative on the bundle /S
± ⊗ L d ∼= L d∓1. Using the

known spectrum of this Laplacian [Kuw82, Thm. 5.1], we deduce that the spectrum

of /D
∓
d

/D
±
d is

(A.4.9)
( |d∓ 1|

2
+ j
)( |d∓ 1|

2
+ j + 1

)
− (d∓ 1)2

4
+

1∓ d
2

,

for j ∈ Z≥0, from which we obtain our result.

We lastly consider R3\{0} with the Euclidean metric, which we view as R>0×S2

with the cone metric.

On each sphere {r} × S2 we can consider its spinor bundle, which we write

as /S
+ ⊕ /S

−
. This bundle can be identified with the bundle on the unit sphere

regardless of the scale. Furthermore, we use /D
±

to refer to the components of the

Dirac operator specifically on the unit sphere. On other spheres {r} × S2, due to

scaling, the Dirac operator will instead be given by 1
r

/D
±

.

On R3\{0}, the spinor bundle /S restricted to each sphere {r}×S2 can be iden-

tified with the spinor bundle of this submanifold. This provides a decomposition

of the spinor bundle on R3 \ {0} as

(A.4.10) /S = /S
+ ⊕ /S

−
,

where /S
±

restrict to the corresponding bundles on each sphere centred at the

origin. We likewise carry over the notation for the Dirac operator on the spheres

as described above. Then, the Dirac operator /D on /S can be written as

(A.4.11) /D =

i
( ∂
∂r

+
1

r

) 1

r
/D
−

1

r
/D

+ −i
( ∂
∂r

+
1

r

)


with respect to the decomposition (A.4.10) [Nak93].

Note that the subbundles /S
±

of /S can also be defined as the ±i eigenspaces of
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the Clifford action of ∂
∂r

.

Extending the notation from the unit sphere, for any d ∈ Z we can consider

the complex line bundle of degree d on each sphere {r} × S2. Extending the

homogeneous connection radially over R3 \{0} provides complex line bundles with

unitary connections over this 3-manifold, which we still refer to as L d.

The formula (A.4.11) still holds when twisting by any such line bundle L d.

That is, if /Dd is the Dirac operator on the bundle

(A.4.12) /S ⊗L d = (/S
+ ⊗L d)⊕ (/S

− ⊗L d) ,

we can write

(A.4.13) /Dd =

i
( ∂
∂r

+
1

r

) 1

r
/D
−
d

1

r
/D

+
d −i

( ∂
∂r

+
1

r

)
 .
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Appendix B

Analytical tools

The main analytic results used in this thesis make use of the b and scattering

calculuses, as well as of polyhomogeneous expansions. We summarise here the

main concepts which we will need to apply. Our exposition and notation largely

follow Kottke’s work [Kot15a] (with some slight differences, like defining Sobolev

spaces for general p), since we aim to apply the Fredholmness and index theorems

found in it. This article and the references therein [Cal78; LM85; Mel93; Mel94;

Kot11] provide a more extensive and rigorous treatment of most of the contents

of this appendix.

The main setup will be a compact n-manifold K with boundary and a smooth

vector bundle E over it with an inner product and a connection which preserves

the inner product and whose covariant derivative is denoted by ∇. We furthermore

assume we have a boundary defining function x, that is, a smooth non-negative

function on K which is zero precisely on its boundary ∂K and such that dx|∂K 6= 0.

The bundle E can be assumed to be real or complex in the first two sections

of this appendix, but must be complex to be able to apply the Fredholm theory

later on.

Note that in this appendix and the next, the term smooth refers to being

smooth in the entire compact manifold, that is, up to the boundary. When only

smoothness in the interior is required this will be specified. An intermediary

condition is introduced in Section B.1.

In Section B.2 we introduce the b and scattering calculuses. We then summarise
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some of the Fredholm theory for these frameworks in Sections B.3 and B.4 to

provide the main elements involved in the Fredholm theory of the hybrid calculus

explained in Section B.5.

In Appendix C and in Chapters 3 and 4 we will see how these results adapt to

the study of monopoles.

B.1 Polyhomogeneous expansions

Polyhomogeneous expansions provide a framework to better understand different

possible asymptotic behaviours near the boundary of sections which are smooth

in the interior of K but not necessarily smooth up to the boundary. This is done

by considering expansions in terms of powers of the boundary defining function x

and its logarithm.

These powers will be indexed by the following sets.

Definition B.1.1. Let δ ≥ 0. We say a I ⊂ C×Z≥0 is a index set if it is discrete,

for any k ∈ Z≥0, the set

(B.1.2) {(λ, ν) ∈ I | Reλ ≤ k}

is finite, and

(B.1.3) (λ, ν) ∈ I =⇒ (λ+ j1, ν − j2) ∈ I

for all j1 ∈ Z≥0 and j2 ∈ {0, 1, . . . , ν}.

These conditions guarantee that these indices can be used to define an expan-

sion.

Definition B.1.4. Let u be a smooth section of E on the interior of K. We say

that u has a polyhomogeneous expansion in x with index set I if for every (λ, ν) ∈ I
there exists a section u(λ,ν) which is smooth on K up to the boundary such that,

for any k ∈ Z≥0, the section

(B.1.5) u−
∑

(λ,ν)∈I
Re(λ)≤k

xλ log(x)νuλ,ν
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and its first k derivatives vanish at the boundary of K to order xk.

We are particularly interested in functions which are polyhomogeneous with

certain index sets. In particular, we restrict to real exponents, and we will be

mainly interested in the leading term, which must be of the form xδ for δ ≥ 0.

Definition B.1.6. Let δ ∈ [0,∞]. We say u is bounded polyhomogeneous of order

xδ if it is polyhomogeneous with an index set I which satisfies

(B.1.7)
I ⊂ ((δ,∞)× Z≥0) ∪ {(δ, 0)} if δ <∞ ,

I = ∅ if δ =∞ .

We write

(B.1.8) Bδ(E)

for the space of such sections, and refer to the sections in B0(E) simply as bounded

polyhomogeneous.

Of course, sections in B∞(E) are those which vanish with all derivatives to

infinite order at the boundary. Furthermore,

(B.1.9) Bδ(E) ⊆ Bδ′(E)

when δ ≥ δ′, and

(B.1.10) B∞(E) =
⋂

δ∈[0,∞)

Bδ(E) .

B.2 B and scattering calculuses

The b and scattering calculuses are based on considering differential operators with

different asymptotic behaviours near the boundary. Given their similarities, we will

here define the most important concepts of both side by side, usually denoting the

relevant objects with the subscript b for the b calculus and the subscript sc for the

scattering calculus.
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Throughout, will write y1, y2, . . . , yn−1 to denote a set of local coordinates on

the boundary, which together with the boundary defining function x provide local

coordinates on the manifold near a boundary point.

We start by defining the corresponding spaces of vector fields (derivations) on

the compact manifold K, from which we will build differential operators.

Definition B.2.1. If V denotes the space of smooth vector fields on K, we define

the spaces of b and scattering vector fields as

Vb := {V ∈ V | V is tangent to ∂K} ,(B.2.2)

Vsc := xVb .(B.2.3)

These vector fields can be viewed as sections of certain bundles on K, called

the b and scattering tangent bundles. Their dual bundles are the b and scattering

cotangent bundles. Local frames for these bundles near a boundary point are given

by

(B.2.4)
{ ∂

∂y1

,
∂

∂y2

, . . . ,
∂

∂yn−1

, x
∂

∂x

}
,
{

dy1, dy2, . . . , dyn−1,
dx

x

}
,

for the b tangent and cotangent bundles, respectively, and

(B.2.5)
{
x
∂

∂y1

, x
∂

∂y2

, . . . , x
∂

∂yn−1

, x2 ∂

∂x

}
,
{dy1

x
,
dy2

x
, . . . ,

dyn−1

x
,
dx

x2

}
,

for the scattering tangent and cotangent bundles, respectively.

We can now define differential operators.

Definition B.2.6. For k ∈ Z≥0, we define the b and scattering differential oper-

ators on E of order k as

Diffkb (E)

:= spanΓ(End(E)){∇V1∇V2 · · · ∇V` | V1, V2, . . . , V` ∈ Vb, 0 ≤ ` ≤ k} ,
(B.2.7)

Diffksc(E)

:= spanΓ(End(E)){∇V1∇V2 · · · ∇V` | V1, V2, . . . , V` ∈ Vsc, 0 ≤ ` ≤ k} ,
(B.2.8)

where Γ(End(E)) is the space of sections of End(E) smooth up to the boundary,
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and a composition of 0 covariant derivatives is understood as the identity map.

In order to define Sobolev spaces from this we will assume that we have a

scattering metric hsc on the interior of K, that is, a metric which in a tubular

neighbourhood of ∂K has the form

(B.2.9) hsc =
(dx)2

x4
+
h∂K
x2

,

where h∂K is a symmetric 2-tensor which is smooth up to the boundary and re-

stricts to a metric on ∂K. We will use the measure on K provided by this scattering

metric.

As its name indicates, this metric is particularly suited to the scattering cal-

culus, since it in fact defines an inner product on the scattering tangent bundle.

However, we will also use it for the b calculus to make the combination of both

calculuses – and the notation involved – simpler.

A metric adapted to the b calculus would simply be the scattering metric

weighted by x2, that is,

(B.2.10) hb = x2hsc .

The resulting measure would hence differ from the scattering one in a weighting

by xn, so some results for the b calculus will involve tailoring the weights to this

situation.

Furthermore, in order to make sure that the Sobolev spaces we define satisfy

the necessary properties we will add the assumption that the interior of K has

bounded geometry with respect to both hsc and hb, by which we mean that it has

positive injectivity radius and that the curvature tensor and all its derivatives are

bounded.

Since we are interested in spaces which combine b and scattering derivatives,

we will directly define such Sobolev spaces. Additionally, we will consider them

with weights, since, as we will see, these will play an important role throughout

the analysis. Note that we consider spaces of sections of E on the interior of K.
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Definition B.2.11. Let δ ∈ R, k, ` ∈ Z≥0 and p ∈ [1,∞]. We define

(B.2.12)
xδW k,`,p

b,sc (E) := {u ∈ Lploc(E) | x−δDbDsc u ∈ Lp(E),

∀Db ∈ Diffkb (E),∀Dsc ∈ Diff`sc(E)}

and

(B.2.13) xδHk,`
b,sc(E) := xδW k,`,2

b,sc (E) .

When k = 0 we omit it as a superscript, together with the subscript b, and

similarly with ` = 0 and sc. The weight is also omitted when trivial.

Remark B.2.14. Note that in (B.2.12) the order of the three terms in x−δDbDsc

is not important. This can be checked by studying the commutators of these terms.

Remark B.2.15. It is important to note that the spaces W k,p
sc (E) are just the

standard Sobolev spaces on the interior of K with respect to the scattering metric

hsc. If we instead consider the metric hb we obtain the spaces x
n
pW k,p

b (E).

These Sobolev spaces can be equipped with norms in the usual way, with

respect to which they acquire the structure of Banach spaces – and Hilbert spaces

if p = 2. Importantly, with this topology we have the following property.

Lemma B.2.16. If p < ∞, the space of smooth compactly supported sections is

dense in xδW k,`,p
b,sc (E).

Proof. This is a consequence of the bounded geometry [Heb96, Thm. 2.8].

We now provide some embedding properties for these spaces, many of them

shared with the usual Sobolev spaces. The notation ⊆ will be used to indicate

that the identity map is an inclusion between the spaces which is continuous with

respect to their Banach space topology.

We start by noting the following property.

Lemma B.2.17. If

(B.2.18) xδW k,`,p
b,sc (E) ⊆ xδ

′
W k′,`′,p
b,sc (E)
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and we have δ′′ ∈ R and k′′, `′′ ∈ Z≥0, then

(B.2.19) xδ+δ
′′
W k+k′′,`+`′′,p
b,sc (E) ⊆ xδ

′+δ′′W k′+k′′,`′+`′′,p
b,sc (E) .

Furthermore, if (B.2.18) is compact, so is (B.2.19).

Proof. This is a consequence of the property noted in Remark B.2.14.

This means that we can state embedding results which only involve some of

the parameters and then combine them in the way we would expect.

Furthermore, b and scattering derivatives can be exchanged by taking the

weights into account in the following way.

Lemma B.2.20. We have

(B.2.21) xkW k,p
sc (E) ⊆ W k,p

b (E) ⊆ W k,p
sc (E) .

Proof. This follows from the fact that

(B.2.22) x−1Vsc ⊇ Vb ⊇ Vsc .

Lastly, we state the Sobolev embedding theorems adapted to these spaces.

One of the advantages of considering weights is that in some cases we can obtain

compact embeddings.

Lemma B.2.23. Assume that

k > k′ ,(B.2.24a)

k − n

p
> k′ − n

p′
,(B.2.24b)

p ≤ p′ ,(B.2.24c)

δ ≥ δ′ .(B.2.24d)

Then

(B.2.25) xδW k,p
b (E) ⊆ x

δ′+n
p
− n
p′W k′,p′

b (E)
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and

(B.2.26) xδW k,p
sc (E) ⊆ xδ

′
W k′,p′

sc (E) .

If, furthermore, δ > δ′, then the embeddings are compact.

Proof. The continuous embeddings are simply the usual Sobolev embeddings,

which follow from the bounded geometry [Aub82, Thm. 2.21], and the interpreta-

tion noted in Remark B.2.15.

The compactness follows by relying on the compactness of the equivalent spaces

over compact subsets, similarly to Proposition 1.2 in Kottke’s work [Kot15a].

Remark B.2.27. Following the same argument we can also obtain embeddings

into Hölder spaces. We don’t need such precise statements for this case, and it is

enough to observe that sections in H2
sc(E) are continuous and bounded.

B.3 Fredholm theory for the b calculus

If we have a b operator D ∈ Diffkb (E) on K, we can define its principal symbol in

the usual way on the b tangent bundle. Then, if it is elliptic we can expect it to

be Fredholm between Sobolev spaces with appropriate weights, and we can obtain

certain information about its index.

In order to determine the appropriate weights, let us look more closely at its

behaviour at the boundary. Suppose that locally near the boundary we have

(B.3.1) D =
∑

j+|β|≤k

bj,β(x, y)
(
x
∂

∂x

)j( ∂
∂y

)β
,

where y represents the coordinates on the boundary, β is a multiindex, and ( ∂
∂y

)β

is interpreted in the usual way. Then, we can define the indicial operator

(B.3.2) I(D) =
∑

j+|β|≤k

bj,β(0, y)
(
ζ
∂

∂ζ

)j( ∂
∂y

)β
,

which is a differential operator on the inward-pointing normal bundle to the bound-

ary ∂K of K inside the b tangent bundle. The fibres of this bundle are generated
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by x ∂
∂x

and parametrised by the variable ζ ≥ 0, and the bundle can be thought of

as a model for K near its boundary.

From this, for any λ ∈ C, we can consider the operator

(B.3.3) I(D,λ) =
∑

j+|β|≤k

bj,β(0, y)λj
( ∂
∂y

)β
,

which is an elliptic differential operator on the boundary ∂K. We are interested

in the values of λ ∈ C for which this operator is not invertible, which form the b

spectrum of the operator,

(B.3.4) specb(D) := {λ ∈ C | I(D,λ) is not invertible} .

The real parts of elements in this b spectrum are called indicial roots, although in

our case these elements will be real and hence will coincide with the indicial roots.

The idea is that if λ ∈ specb(D), then an element u ∈ Null(I(D,λ)) represents

an asymptotic section in the kernel of D which is homogeneous of order λ, in the

sense that I(D)ζλu(y) = 0. Of course, its possible that this does not correspond

to an actual element in the kernel of D over the entire manifold K, but it will

nonetheless affect the index of the operator. In fact, an indicial root λ may have

an order ord(λ) ∈ Z≥1, which represents elements in the kernel of the indicial

operator of the form

(B.3.5)

ord(λ)−1∑
j=0

ζλ log(ζ)juj(y) .

The space of such elements is referred to as the formal nullspace at λ, and its

dimension is simply ord(λ) Null(I(D,λ)). In our case the order of elements of the

b spectrum will always be 1.

If we avoid the indicial roots, then the operator is Fredholm. Furthermore,

the elements in the b spectrum and the operators I(D,λ) can provide information

about the index with respect to different weights, as well as about the elements in

in the kernel of D.

Theorem B.3.6. Let D ∈ Diff`b(E) be elliptic, and suppose that elements in its b
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spectrum are real and of order 1. Then, for any δ /∈ specb(D), the map

(B.3.7) D : xδ−
n
2Hk

b (E)→ xδ−
n
2Hk−`

b (E)

is Fredholm for any k.

The indices ind(D, δ) for different values of δ satisfy

(B.3.8) ind(D,λ0 − ε) = ind(D,λ0 + ε) + dim Null(I(D,λ0))

when [λ0 − ε, λ0 + ε] ∩ specb(D) = {λ0}. Furthermore, if D is self-adjoint, then

(B.3.9) ind(D,−δ) = − ind(D, δ) .

Lastly, let λ1 be the smallest indicial root larger than δ. Then, if λ1 ≥ 0, the

elements in the kernel of D are bounded polyhomogeneous sections in Bλ1(E).

B.4 Fredholm theory for the scattering calculus

For the scattering calculus, the usual notion of ellipticity is not enough to guarantee

Fredholmness: we need an additional non-degeneracy condition near the boundary.

Operators which satisfy this are referred to as fully elliptic.

Essentially, on top of the usual principal symbol, we can define a scattering

symbol on the boundary ∂K which takes into account the terms of all orders,

rather than only the highest order. This symbol is then required to be invertible

everywhere (even on the zero section).

With these conditions, elliptic operators will be Fredholm, and furthermore

elements in their kernels will decay to infinite order with all derivatives.

The case of most interest to us is that of Dirac operators, where we essentially

follow the line of Callias’s index theorem and Kottke’s adaptation to this context.

Here, the full ellipticity is provided by an algebraic term which is non-degenerate

at the boundary.

Assume K is odd-dimensional and that we have a Clifford action of the scat-

tering tangent bundle of K (with respect to the scattering metric) on the bundle

E. Then, our setting is an operator D+Ψ, where D is the associated Dirac oper-
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ator on E and Ψ is an algebraic, skew-Hermitian term which commutes with the

Clifford action and is non-degenerate on the boundary ∂K.

Now, let E+ denote the subbundle of E|∂K formed of the positive-imaginary

eigenspaces of E with respect to Ψ, and let E±+ denote the ±i eigenspace of the

Clifford action of x2 ∂
∂x

on E+. Then, we have a Dirac operator

(B.4.1) /∂
+
+ : Γ(E+

+)→ Γ(E−+)

induced on the boundary of K. This operator can be viewed as (one part of) the

operator associated to the Clifford action of the scattering tangent bundle restric-

ted to the boundary considered along the boundary directions, or equivalently the

operator associated to the metric h∂K from (B.2.9) restricted to the usual tan-

gent bundle of the boundary. Note that the Clifford relations guarantee that the

Clifford action of the vectors tangent to the boundary will exchange E+
+ and E−+ .

This operator provides the index of D+Ψ, which is Fredholm for any weight.

Importantly, elements in its kernel vanish to infinite order.

Theorem B.4.2. Let D + Ψ be as above. Then, for any δ ∈ R, the operator

(B.4.3) D+Ψ: xδHk
sc(E)→ xδHk−1

sc (E)

is Fredholm for any k, and

(B.4.4) ind(D+Ψ) = ind(/∂
+
+) .

Furthermore, elements in the kernel of D+Ψ are in B∞(E).

B.5 Hybrid calculus

The hybrid calculus combines the b and scattering calculuses to study operators

whose behaviour along different subbundles fits into these two formalisms.

To be more precise, let us assume that the bundle E decomposes as E = E0⊕E1

into two subbundles in a neighbourhood of the boundary, and suppose that the

connection decomposes along this splitting. Our aim is to study operators which
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behave like weighted elliptic b operators along E0 and as fully elliptic scattering

operators along E1.

We start by defining Sobolev spaces adapted to this situation. Here, we let Π

denote the projection from E onto E0 near the boundary, and χ a cutoff function

which is identically 0 everywhere except near the boundary, and 1 when sufficiently

close to it.

Definition B.5.1. Let δ0, δ1 ∈ R and s, k ∈ Z≥0. Then, we define

(B.5.2)

Hδ0,δ1,s,k(E) := {u ∈ L2
loc(E) | Πχu ∈ xδ0Hs+k

b (E0),

(1− Π)χu ∈ xδ1Hs,k
b,sc(E1),

(1− χ)u ∈ Hs+k
loc (E) } .

The parameter k accounts for b derivatives along the subbundle E0 and scatter-

ing derivatives along the subbundle E1, and hence an operator with the behaviour

described above will decrease k. The parameter s simply adds b derivatives on the

entire bundle, and will be used in most of the thesis as a fixed parameter.

We also define spaces of bounded polyhomogeneous sections with different or-

ders along the different subbundles.

Definition B.5.3. Let δ0, δ1 ∈ R≥0. Then, we define

(B.5.4) Bδ0,δ1(E) := {u ∈ B0(E) | Πχu ∈ Bδ0(E0), (1− Π)χu ∈ Bδ1(E1)} .

We now restrict ourselves once again to the case of a Dirac operator D on an

odd-dimensional manifold with an additional algebraic term Ψ. However, unlike for

the pure scattering calculus, we no longer require this term to be non-degenerate.

Instead, we assume that it is non-degenerate only along E1, but degenerate along

E0.

Then, along E1, it will behave similarly to the fully elliptic scattering operators

considered in the previous section. Furthermore, if the algebraic term degenerates

fast enough along E0, we will be able to weight the operator on this subbundle to

produce one which is elliptic in the sense of the b calculus. Note that this weighting

is necessary to account for the weight relating the b and scattering tangent bundles.
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If we write the Dirac operator on E as

(B.5.5) D =

(
D00 D10

D01 D11

)

near the boundary along the decomposition E0 ⊕ E1, then D11 is a scattering

operator which we can expect to be fully elliptic with the additional algebraic

term, while

(B.5.6) D̃00 := x−
n+1
2 D00 x

n−1
2

is a b operator, where it is necessary to multiply by x−1, and we additionally

conjugate by x−
n−1
2 to make the notation simpler later on.

Let us formulate the relevant result, adapted to our case to some extent, where

we once again assume that there is a Clifford action of the scattering tangent

bundle on E. This time we allow D to also include some algebraic terms, and

decompose it as Equation (B.5.5) in the same way. We use /∂
+
+ to denote the Dirac

operator induced on the boundary by D11 as in Section B.4, as well as the notions

surrounding the b calculus from Section B.3.

Importantly, the following result does not require the operators involved to be

smooth up to the boundary, only to be bounded polyhomogeneous.

Theorem B.5.7. Suppose that

• D is the Dirac operator associated to the bundle E plus a bounded polyho-

mogeneous algebraic term of order x,

• Ψ is a bounded polyhomogeneous skew-Hermitian endomorphism of E which

commutes with the Clifford action and satisfies ker Ψ = E0 near the bound-

ary,

• the endomorphism Ψ, the Clifford action and the connection preserve the

decomposition E = E0 ⊕ E1 near the boundary, and

• the elements of specb(D̃00) are real and of order 1.
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Then, for any δ /∈ specb(D̃00),

(B.5.8) D+Ψ: Hδ− 1
2
,δ+ 1

2
,s,1(E)→ Hδ+ 1

2
,δ+ 1

2
,s,0(E)

is Fredholm.

Furthermore, its index is given by

(B.5.9) ind(D+Ψ) = ind(/∂
+
+) + def(D̃00, δ) ,

where def(D̃00, δ) satisfies

(B.5.10)
(λ0 − ε, λ0 + ε) ∩ specb(D̃00) = {λ0}

=⇒ def(D̃00, λ0 − ε) = def(D̃00, λ0 + ε) + dim Null I(D̃, λ0)

and

(B.5.11) D is self-adjoint =⇒ def(D̃00,−δ) = − def(D̃00, δ) .

Lastly, elements in its kernel are in the space Bλ1+1,λ1+2(E), where λ1 is the

smallest indicial root in specb(D̃00) larger than δ, provided that λ1 ≥ 0.

Proof. This follows from Theorems 2.4 and 3.6 in Kottke’s work [Kot15a].
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Appendix C

Function spaces

We now put the results of the previous appendix into our context and prove some

useful properties of the related spaces. The specific spaces chosen are motivated

by our requirements in this thesis and adapted to the analytical tools explained

in the last appendix, particularly Theorem B.5.7. The lemmas proved are simply

technical conditions needed to carry out our construction.

In Section C.1 we explain how we view the Euclidean 3-space as a manifold

with boundary to be able to apply the results from the previous appendix.

Then we define the most relevant spaces that we will use and show some of

their properties in Section C.2.

C.1 The radial compactification

The b and scattering calculuses were formulated in terms of a compact manifold

with boundary. The base manifold we are considering in this thesis, R3, will

therefore be regarded as the interior of its radial compactification.

This compactification of the Euclidean space adds to it the sphere at infinity,

which consists of a point for every (oriented) direction. Topologically, the result is

a compact ball, whose interior is the original Euclidean space and whose boundary

is the sphere at infinity.

More precisely, consider the space R4, with coordinates x0, x1, x2, x3, and the

hyperplane {x0 = 1} ⊂ R4, which we identify with R3 with the coordinates
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x1, x2, x3. The projection through the origin to the unit sphere is then a dif-

feomorphism from the hyperplane to the open hemisphere

(C.1.1) S3
+ = {x2

0 + x2
1 + x2

2 + x2
3 = 1, x0 > 0} ⊂ R4 .

The closure of this hemisphere is a compact manifold with boundary, and the

function

(C.1.2)
x0√

1− x2
0

,

appropriately smoothed out near x0 = 1, provides a boundary defining function

which we will write simply as x. This will be the setting for the b and scattering

calculuses in our case.

Note that its interior is diffeomorphic to R3, and, when pulled back, the bound-

ary defining function is

(C.1.3) x =
1

r

near infinity. The boundary of this compactification, as intended, is a 2-sphere

with a point corresponding to each direction in R3. This provides the radial

compactification R3.

If we write R3 \ {0} = R>0 × S2, the Euclidean metric can be written near

infinity as

(C.1.4) dr2 + r2hS2 =
dx2

x4
+
hS2

x2
,

where hS2 is the metric on the unit 2-sphere. Hence, the Euclidean metric is of the

form (B.2.9), and hence a scattering metric, and will be the one used throughout.

Lastly, we know that the Euclidean metric has bounded geometry. Further-

more, if we weight it by x2 = 1
r2

, near infinity it will become a cylindrical metric,

which also satisfies this property.
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C.2 Hybrid spaces

Let us assume that we have a vector bundle E on R3 with a connection A. This

will usually be a combination of bundles associated to P with the connection

Aµ,κ and tensor bundles with the Levi-Civita connection. From the constructions

in Section 2.3 we can see that P and Aµ,κ can be extended smoothly up to the

boundary of the radial compactification, and the same is true for the tensor bundles

and the Levi-Civita connection. We furthermore assume, as in Section B.5, that

we have a splitting E = E0 ⊕ E1 preserved by the connection.

We start by fixing some combinations of parameters which will be particularly

useful for our constructions. Here we once again use the regularity parameter

s ∈ Z≥0, which in Chapters 3 and 4 will be mostly fixed to a value in Z≥1.

Definition C.2.1. Let k ∈ {1, 2, 3}. We define

(C.2.2) H s,k(E) := H1−k,1,s,k(E) .

Note how this definition is adapted to the operators we are interested in, which

behave like weighted b operators along E0 and like scattering operators along E1.

We now prove some properties which will be useful for us.

Lemma C.2.3. The L2 pairing is continuous on the pair H s,k(E) ×H s,2−k(E)

for k ∈ {0, 1, 2}.

Proof. This is a consequence of the fact that H s,k(E) ⊆ x1−kL2(E).

Lemma C.2.4. The map

(C.2.5) dA : H s,k(
∧j ⊗ E)→H s,k−1(

∧j+1 ⊗ E)

is continuous.

Additionally, suppose that Ψ is a smooth endomorphism of E which preserves

the decomposition E0 ⊕ E1 and satisfies that x−1 Ψ|E0
is smooth and bounded.

Then,

(C.2.6) Ψ: H s,k(E)→H s,k−1(E)
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is countinuous

Proof. To prove the continuity of the first map we observe that dA is a scattering

operator of order 1, and that x−1dA is a b operator of order 1.

The continuity of the second map follows from the definitions of the spaces and

the condition imposed on the endomorphism, observing that reducing the number

of b or scattering derivatives of a Sobolev space by 1 is continuous.

In order to prove some multiplication properties for the Sobolev spaces, let us

assume that E ′ = E ′0⊕E ′1 and E ′′ = E ′′0 ⊕E ′′1 are bundles like the above, and that

we have a smooth fibrewise multiplication map

(C.2.7) γ : E × E ′ → E ′′

which satisfies

(C.2.8) γ(E0, E
′
0) ⊆ E ′′0 .

This will induce products on the hybrid Sobolev spaces we have defined, so that

if all the paramenters are chosen appropriately, we will have maps

(C.2.9) γ : Hδ0,δ1,s,k ×Hδ′0,δ
′
1,s
′,k′ → Hδ′′0 ,δ

′′
1 ,s
′′,k′′

which are continuous (and bilinear). We will furthermore be interested in maps

which are compact in the first argument, by which we mean that for any element

u′ ∈ Hδ′0,δ
′
1,s
′,k′ the map

(C.2.10) γ(•, u′) : Hδ0,δ1,s,k → Hδ′′0 ,δ
′′
1 ,s
′′,k′′

is a compact linear map.

The relevant properties are the following.
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Lemma C.2.11. Let s, k ∈ Z≥1. Then, the maps

γ : H s,2(E)×H s,1(E ′)→H s,1(E ′′) ,(C.2.12)

γ : H s,2(E)×H s,0(E ′)→H s,0(E ′′) ,(C.2.13)

γ : H s,1(E)×H s,1(E ′)→H s,0(E ′′) ,(C.2.14)

γ : H s,2(E)×H s,2(E ′)→H s,2(E ′′) ,(C.2.15)

γ : H0,1,s,k(E)×H0,1,s,k(E ′)→ H
5
4
, 5
4
,s,k(E ′′) ,(C.2.16)

γ : H−1,1,0,1(E)×H s,1(E ′)→H 0,1(E ′′) ,(C.2.17)

and, if k ≤ s, the map

(C.2.18) γ : H k−1,2(E)×H s,1(E ′)→H k,1(E ′′) ,

are continuous. Furthermore, in the first three cases they are compact in the first

argument.

Proof. This can be deduced by applying Hölder’s inequality and the Sobolev em-

beddings from Lemma B.2.23. It will be important to take advantage of the weight

improvement of the Sobolev embedding (B.2.25) for b Sobolev spaces.

We start by observing that the decay conditions imposed on the subbundle

E0 are always weaker than those imposed on the subbundle E1 (with the local

regularity conditions being the same). Together with (C.2.8), this means that to

prove the continuity of a multiplication map of the form

(C.2.19) γ : Hδ0,δ1,s,k(E)×Hδ′0,δ
′
1,s
′,k′(E ′)→ Hδ′′0 ,δ

′′
1 ,s
′′,k′′(E ′′)

we only need to prove the continuity of

γ : xδ0Hs+k
b (E0)× xδ′0Hs′+k′

b (E ′0)→ xδ
′′
0Hs′′+k′′

b (E ′′0 ) ,(C.2.20a)

γ : xδ0Hs+k
b (E0)× xδ′1Hs′,k′

b,sc (E ′1)→ xδ
′′
1Hs′′,k′′

b,sc (E ′′) ,(C.2.20b)

γ : xδ1Hs,k
b,sc(E1)× xδ′0Hs′+k′

b (E ′0)→ xδ
′′
1Hs′′,k′′

b,sc (E ′′) ,(C.2.20c)

and the same applies to the compactness property.

In the rest of the proof we omit the bundles from the Sobolev spaces to avoid
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overburdening the notation.

Let us now demonstrate the proof for the map (C.2.12), and taking s = 0. The

above observation means that we only have to consider the maps

γ : x−1H2
b ×H1

b → H1
b ,(C.2.21a)

γ : x−1H2
b × xH1

sc → xH1
sc ,(C.2.21b)

γ : xH1
sc ×H1

b → xH1
sc .(C.2.21c)

Now, let us take u and u′ to be smooth compactly supported sections. For the

first map, we write

(C.2.22)

‖uu′‖H1
b

4 ‖x−1∇(uu′)‖L2 + ‖uu′‖L2

4 ‖x−1(∇u)u′‖L2 + ‖ux−1∇u′‖L2 + ‖uu′‖L2

4 ‖x−1∇u‖
x−

1
2L4
‖u′‖

x
1
2L4

+ ‖u‖L∞‖x−1∇u′‖L2 + ‖u‖L∞‖u′‖L2

4 ‖u‖
x−

1
2W 1,4

‖u′‖
x
1
2L4

+ ‖u‖L∞‖u′‖H1
b

+ ‖u‖L∞‖u′‖L2 ,

where 4 denotes that the right-hand side is greater than the left-hand side after

multiplying by a constant which is independent of u and u′. Note that when taking

the covariant derivative ∇ we obtain a 1-form, and the metric used to define the

corresponding Sobolev space of such forms uses the scattering metric. Therefore,

the derivative x−1∇ must be used for b derivatives.

We can now deduce from Lemma B.2.23 that

(C.2.23) x−1H2
b b x−

1
4W 1,4, L∞

and

(C.2.24) H1
b ⊆ x

1
2
L4

, L2 ,

where b denotes a compact embedding. Observing that smooth compactly sup-

ported functions are dense in x−1Hb and H1
b by Lemma B.2.16, we are done.
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Applying the same procedures to (C.2.21b) and (C.2.21c) finishes the proof of

the properties of (C.2.12) for s = 0.

The same method will yield proofs of the properties of (C.2.13), (C.2.14) and

(C.2.15) with s = 0, and of (C.2.16), (C.2.17) and (C.2.18) with s = k = 1.

It then only remains to observe that if we take higher values of s and k the same

proofs apply. This is because Hölder’s inequality can also be used with Sobolev

spaces with b and scattering derivatives, so the Lp spaces used in (C.2.22) can be

substituted with Sobolev spaces W
•,•,p
b,sc as appropriate.

Lastly, to simplify notation, we introduce the following conventions for Sobolev

spaces over the bundles we will use most typically. Here, we take any bundle

E ⊗Ad(P ) to be decomposed as (E ⊗Ad(P )C)⊕ (E ⊗Ad(P )C⊥) for the relevant

definitions.

Definition C.2.25. We write

Hδ0,δ1,s,k
j := Hδ0,δ1,s,k(

∧j ⊗ Ad(P )) ,(C.2.26)

Hδ0,δ1,s,k := Hδ0,δ1,s,k((
∧1 ⊕

∧0)⊗ Ad(P )) ,(C.2.27)

and similarly

H s,k
j := H s,k(

∧j ⊗ Ad(P )) ,(C.2.28)

H s,k := H s,k((
∧1 ⊕

∧0)⊗ Ad(P )) .(C.2.29)

Likewise, we simplify the notation for the space of bounded polyhomogeneous

sections which we will use most often.

Definition C.2.30. We write

(C.2.31) Bδ0,δ1 := Bδ0,δ1((
∧1 ⊕

∧0)⊗ Ad(P )) .

We also define a space of bounded polyhomogeneous sections with more gran-

ular decay conditions. To do so, assume that χ is a cutoff function which is only

non-zero near infinity and 1 when sufficiently close to it, and for any α ∈ R, let

Πα be the projection of Ad(P )C to gα
::

– where Π0 is simply the projection onto tC.
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Definition C.2.32. If κ ∈ g, we write

(C.2.33)
Bδ,(κ),∞

:= {u ∈ Bδ,∞ | Παχu ∈ Bδ+
|iα(κ)|

2 ((
∧1 ⊕

∧0)⊗ Πα(Ad(P ))),∀α}.

Note that the spaces described in this section have been defined as real spaces

of sections. Their complexifications will simply be notated with a subscript C.

In the last definition in particular, note that it is well defined because the

projections Πα can be restricted to the real bundle Ad(P ), although they will

project into sections which are not necessarily real.
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