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Abstract
The prediction intervals represent the uncertainty associated with the model-predicted responses that impacts the sequential
decision-making analytics. Here in this work, we present a novel model-based data-driven approach to construct the prediction
intervals around the model-simulated responses using artificial neural network (ANN) model. The loss function is modified
with least mean square error and standard deviation between the model-simulated and actual responses for the online-
training mode of ANN model development. The parameters (weights and biases) stored during the model development are
extracted and are deployed to construct the prediction intervals with 95% confidence level for the test datasets of the three
energy systems-based case studies including: crease recovery angle, energy efficiency cooling & energy efficiency heating
and gas turbine power plant & coal power plant which are taken from literature, benchmark datasets and industrial-scale
applications, respectively. The developed ANN models present root-mean-squared error of 1.20% and 0.52% on test dataset
for energy efficiency cooling and energy efficiency heating, respectively. The width of prediction intervals made by the
proposed approach, called as Storage ofWeights And Retrieval Method (SWARM), incorporates the information available for
each test observation during the model training and the SWARM-based prediction intervals are compared to those of inductive
conformal prediction (ICP) technique. It is noted that SWARM technique offers better locally adaptive prediction intervals
than those of ICP, highlighting the effectiveness of the SWARM technique for the estimation of prediction intervals for the
case studies. This research presents a novel data-driven approach to construct the prediction intervals using the model-based
information that can be applied on different real-life applications.
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Abbreviations

ANN Artificial neural network
CRA Crease recovery angle
ENC Energy efficiency cooling
ENH Energy efficiency heating
HLN Weight links from hidden to output layer
ICP Inductive conformal prediction
R2 Coefficient of determination
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RMSE Root-mean-squared-error
TCP Transductive conformal prediction

List of symbols

b1 Bias introduced on hidden layer neurons
b2 Bias introduced on output layer neuron
D True value
Ecal Non-conformity value corresponding to cali-

bration dataset
Eepoch Non-conformity value corresponding to

epoch
L Loss function
m Number of hidden layer neurons
N Number of observations
q̂1−α(Ecal) Quantile value on 1 − α from Ecal
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q̂1−α

(

Eepoch
)

Quantile value on 1 − α from Eepoch

s Number of input layer neurons
V Velocity matrix
W1 Weight connections from the input to hidden

layer neurons
W2 Weight connections from the hidden to output

layer neuron
X Set of input variables
Z Model-simulated value

Greek letters

1 − α Confidence level
η Learning rate
β Momentum parameter

1 Introduction

In the current era, when machine learning-based models
are increasingly applied for modelling the systems with
varying complexity and design space of the input vari-
ables [1, 2], it becomes equally important to estimate the
uncertainty/prediction intervals associated with the model-
based predictions. In most of the recent popular applications
domain of machine learning like natural language process-
ing and computer vision, the literature is heavily focused
on classification based problems [3, 4] and the problems
analysed by regression are less reported in these published
articles. Many problems associated with the real-time oper-
ation optimization of industrial systems like oil refineries,
chemical processing plants, energy systems, etc., can be
effectively handledwith regression-based techniques [5–11].
The policy makers and system engineers can incorporate the
range of variability in the machine learning model-simulated
responses, while making the effective operational strategies
and informed decision-making, to enhance the operation
excellence of the industrial systems [12, 13].

The techniques used to draw the prediction intervals
for classification and regression-based problems differ sig-
nificantly. The probability estimation as predicted by the
classification methods serve as the starting point for making
the prediction intervals. On the other hand, the point-
predictor methods, which provide one summary statistic
for the conditional distribution, are conventionally used for
regression-based problems. The potential disadvantage of
the point-predictors is the lack of the information about
the confidence the method may express in the predictions.
The prediction intervals can be constructed by modelling
the conditional distribution via Bayesian method [14–17] or

ensemble method [18]. There is an alternative paradigm for
estimating the prediction intervals using direct interval esti-
mation method [19] or conformal prediction intervals [20]
that does not require to model the conditional distribution.

1.1 Literature review

The Bayesian method attempts to model the conditional
distribution by a prior distribution, the available data and
the likelihood function. The prior estimate is updated using
Bayes’ rule and posterior distribution is computed. Gaus-
sian process model works efficiently with Bayesian method
and may incorporate the domain knowledge into the prior
distribution to characterize the distribution underlying the
data generating process that is helpful to compute the predic-
tion intervals [15, 21]. However, the Gaussian process model
assumes that data distribution is Gaussian and the reliabil-
ity of the prediction intervals made by the Gaussian process
model can be unreliable if the assumption is not valid on
the given data. Ensemble method is another popular method
that trains multiple machine learning models and aggregates
their predictions to estimate the mean prediction against the
input conditions [22, 23]. The ensemble method can be con-
sidered as an approximation of Bayesian method where each
trained machine learning model represents a sample in the
parameters space. Thus, the prediction made by the ensem-
ble method contains the notion of uncertainty that lacks the
probabilistic interpretation.

Conformal prediction is another class of prediction bound
constructionmethods and it can estimate the prediction inter-
vals upon providing the dataset and the non-conformity
measure [24–27]. The transductive conformal prediction
(TCP) method is computationally intensive since the train-
ing of an underlying model in the data must be redone for
every data point [28]. Furthermore, the error associated dur-
ing the model training is also stacked up which leads to
error propagation in the prediction intervals. To this end,
inductive conformal prediction (ICP) method is introduced
that decouples the training of ‘conformalization’ phase [29].
However, ICP exhibits less strong theoretical guarantees than
the original transductive approach [30]. But, the computa-
tional speed is improved for making the prediction intervals
by the ICP method [31]. Direct interval estimation method
involves training a machine learning model on a loss func-
tion tailored to produce the prediction intervals [32]. Since
this technique is specifically designed to produce predictions
bounds, thus, it is anticipated to perform comparatively better
than the modified point estimators. The potential disadvan-
tage of direct interval estimation method is to incorporate a
pre-defined confidence level in the loss function and produc-
ing prediction intervals on different confidence level requires
to retrain the model [33].
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The four commonly used prediction bound construction
techniques as discussed above have their own merits as well
as drawbacks depending upon their working principles and
the type of the dataset. Direct interval estimation method
directly targets the construction of prediction intervals and
the technique can be applied for the given data-driven appli-
cation. However, the loss function of model being trained
can bemodified and the procedure for drawing the prediction
intervals for the particular confidence level can be updated
in order to overcome the limitation of this technique for its
widespread utilization for the real-life applications.

1.2 Contribution of this research work

In this work, we present a novel data-driven prediction
intervals construction technique called Storage of Weights
And Retrieval Method (SWARM) that is inspired by the
direct interval estimation method and is hybridized with ICP
technique to leverage the power of the two techniques for
constructing the accurate prediction intervals. The proposed
loss function of the ANN model in the SWARM approach
consists of the least mean square error and standard deviation
between the actual and model-simulated response—the new
loss function is written differently as traditionally specified
for the direct interval estimation method [34]. However, the
loss function is minimized considering the minimization of
standard deviation between the actual and model-simulated
responses through the online training for the ANN model
development. It allows to minimize the loss function for each
observation of the output variable as opposed to the batch
trainingmode, and the parameters (weights andbiases) stored
in each iteration are deployed for the construction of the pre-
diction intervals where confidence level can be selected by
the user (generally 95%), which is a different approach to
compute the prediction intervals compared from the tradi-
tional direct interval estimation technique.

The SWARM is applied on three energy systems-based
case studies taken from the literature (crease recovery angle
for resin finishing [35]), benchmark datasets (energy effi-
ciency cooling and energy efficiency heating of residential
buildings [36]) and the industrial applications (power gen-
eration from gas turbine power plant and coal power plant).
Furthermore, the width of the prediction intervals computed
by the SWARM on the case studies is compared with those
computed by the traditional ICP technique; please note that
ICP is computationally inexpensive technique comparedwith
TCP yet producing valid prediction intervals with reasonably
high theoretical guarantees [30]. The SWARM approach uti-
lizes the model-based information for the construction of the
prediction intervals that is computationally inexpensive and
eliminates the need to design additional experiments for the
construction of prediction intervals. Thus, the training algo-
rithm of the ANNmodel can be supplemented to estimate the

prediction intervals around the model-simulated responses
by the SWARM once the ANN model has been trained. The
proposed SWARM technique leverages the power of ICP to
compute the valid prediction intervals by its hybridization
with the ANN parameters and can be applied for real-life
applications involving ANN used for the modelling tasks.

2 Methodology

In this paper, we have proposed the SWARM that hybridizes
the neural network with the inductive conformal predic-
tion technique to construct the prediction intervals around
the model-simulated responses. We have also compared the
width of the prediction intervals and the coverage ratio for
the SWARM and inductive conormal prediction (ICP) tech-
niques for the considered case studies.More details about the
procedure of prediction interval construction by the SWARM
and ICP techniques are described in the following section.

2.1 ANNmodel training and computing
the prediction intervals by the SWARM approach

Let X be the matrix of input variables, say X � [X1, X2, . . . ,
Xs] having the dimension of s by N where s is the number
of inputs, N is the total number of observations in X and
is deployed to construct the functional map by ANN with
an output variable D that has the dimension of 1 by N . The
input layer of ANN has neurons equal to the elements in X .
W1 is the weight matrix containing the weight links from
the input to hidden layer of neural network having the size
‘m’, thus, W1 is a matrix of m by s, while W2 is the matrix
containing the weight links from the hidden layer to output
layer neuron having the dimension of 1 by m. Both X and D
have the same number of observations associated with them.
The observations of the input X are fed to the input layer
of ANN as shown on Fig. 1 and the following computations
take place:

p1 �
∑

W1 � XT + b1 (1)

y1 � f1(p1) (2)

The bias assigned at the hidden layer neurons is enclosed
in b1 matrix with the dimension of m by 1; W1 � X is the
elemental wise multiplication of X with the relevant weight
links and

∑

W1 � X + b1 is calculated at the hidden layer
neurons in the hidden layer; f1 is the activation function that
transforms

∑

W1 � X + b1 calculated at the hidden layer
neurons (p1) in to the scale that depends upon the type of
activation function. In this work, we have implemented the
activation function of tangent hyperbolic on the hidden layer
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Fig. 1 The schematic depicting
the flow of information and
processing at different
computational nodes embedded
in the architecture of artificial
neural network

that scales p1 onto -1 to 1. The scaled observations at the
hidden layer neurons are stored in y1 which are fed to the
neuron in the output layer and themodel-simulated responses
are given as:

p2 �
∑

W2 � y1 + b2 (3)

Z � f2(p2) (4)

Here, b2 is the bias on the output layer’s neuron and it has
the dimension of 1 by 1. W2 � y1 performs the element-
wise multiplication between W2 and y1. The summation
(p2 � ∑

W2� y1+b2) computed on the neuron of the output
layer undergoes the scale-transformation by f2 that produces
the model-simulated response (Z ) calculated at the output
layer of ANN. In this work, f2 is the linear activation func-
tion that is applied on the output layer. The online-training
method is used for the training of ANN model where an
input vector containing one observation of each input vari-
able is fed, thewhole training dataset is utilized via sequential
approach in one epoch and the parameters (weights and
biases) are updated under the specified epochs. Furthermore,
the online-training method is suitable for computing the pre-
diction intervals around the model-simulated responses so
that information associatedwith each observation in an epoch
during the model training can be utilized to construct the pre-
diction intervals.

The new loss function customized in this work is the least
mean square of error and the standard deviation between the
model-simulated and actual responses that is to beminimized
in each training epoch.The constructed loss function is differ-
ent from the standard ANN model-based loss function that
generally consists of a single performance metric depend-
ing upon the type of parameter optimization algorithm and
nature of the problem. The standard deviation termmeasures
the spread of the observations around the mean value and can
be minimized to achieve good simulation performance of the
model. Thus, standard deviation term is made the ingredient
of the new loss function which is to be minimized under the
online-training mode of the ANNmodel development. In the
online-training mode, the training data is passed on as one
input vector for the parameters update and the whole train-
ing dataset is fed for the ANN model development in the

sequential approach [37]. Thus, the standard deviation term
is reduced to |D −Z |√

2
(minimization of the residual between D

and Z) which is written in the new loss function as follows:

L � (D − Z )2

2
+

|D − Z |√
2

(5)

The parameters, i.e. weight and bias values (W1, W2, b1
and b2) of the ANN, are optimized by gradient descent with
momentum algorithm since it has stable and fast convergence
compared to gradient descent algorithm [38]. Furthermore,
the algorithm requires less computational efforts for the effi-
cient parametric optimization to achieve the good simulation
performance of the trained ANN model. The parameters
are updated in the iterative training as governed by the
specified loss function that directs to minimize the least
mean square of error and the standard deviation between
the model-simulated and actual responses. Thus, the tailored
loss function including the standard deviation term allows
to store the parameters information corresponding to each
data observation in the online mode of model training that is
relevant to construct the prediction intervals. The analytical
expressions for the parameters update for ANN algorithm
are derived considering the new loss function tailored for
the construction of the prediction interval which are differ-
ent than those of conventional feedforward ANN algorithm.
The partial derivative of the tailored loss function is taken
with respect to the parameter and the computed error signal
is transmitted backward to produce an update in the paramet-
ric values during the training of the model such that the loss
function is minimized.

Let us consider the update forweight links (W1) from input
to hidden layer. The new value of W1 updated by gradient
descent with momentum algorithm is given as:

W new
1 � W1 − ηVW1 (6)

where η is the learning parameter and VW1 is the velocity
matrix that is defined as [38]:

VW1 � βVW1 + (1 − β)
∂L

∂W1
(7)
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The momentum parameter is denoted by β and VW1 is
zero matrix with the dimension as of W1. ∂L

∂W1
is the partial

derivative of L with respect W1 that is derived by chain rule
which is given as:

∂L

∂W1
� ∂L

∂Z

∂Z

∂p2

∂p2
∂y1

∂y1
∂p1

∂p1
∂W1

(8)

(9)
∂L

∂Z
� ∂

∂Z

(

(D − Z )2

2
+

|D − Z |√
2

)

� − (D − Z ) − (D − Z )

|D − Z | √2

∂Z

∂p2
� ∂p2

∂p2
� 1 (10)

∂p2
∂y1

� ∂

∂y1
(W2 � y1 + b2) � W2 (11)

∂y1
∂p1

� ∂

∂p1

(

ep1 + e−p1

ep1 − e−p1

)

� 1 − y21 (12)

∂p1
∂W1

� ∂

∂W1
(W1 � X + b1) � X (13)

Plugging Eq. (9–13) in Eq. 8:

∂L

∂W1
� −

(

(D − Z ) +
(D − Z )

|D − Z |√2

)

WT
2 (1 − y21 )X

T (14)

Equation 6 can be written with reference to Eqs. 7 and 14
as:

Wnew
1

� W1 + η(βVW1 + (1

− β)

((

(D − Z ) +
(D − Z )

|D − Z | √2

)

WT
2 (1 − y21 )X

T )

)

(15)

Similarly, W2 is updated [38] as follows:

W new
2 � W2 − ηVW2 (16)

VW2 � βVW2 + (1 − β)
∂L

∂W2
(17)

Here, VW2 is defined on the dimensions of W2 as a zero
matrix. The expression for ∂L

∂W2
is derived by chain rule as:

∂L

∂W2
� ∂L

∂Z

∂Z

∂p2

∂p2
∂W2

� −
(

(D − Z ) +
(D − Z )

|D − Z |√2

)

y1

(18)

From Eqs. 17 and 18, Eq. 16 can be written as:

W new
2 � W2 + η(βVW2 + (1 − β))

(

(D − Z ) +
(D − Z )

|D − Z |√2
)yT1

)

(19)

Similarly, the update in b1 and b2 is given as:

bnew1 � b1 + η(βVb1 + (1

− β))

((

(D − Z ) +
(D − Z )

|D − Z | √2

)

WT
2 (1 − y21 )

)

(20)

(21)bnew2 � b2 + η(βVb2 + (1 − β))

(

(D − Z ) +
(D − Z )

|D − Z | √2

)

here, Vb1 and Vb2 are the zero matrices having the same
dimensions as that of b1 and b2, respectively. Thus, the
model-simulated response (Z ) corresponding to the input
vector can have positive or negative deviation from the true
value (D) for the specified epochs. However, the difference
between Z and D continues to decrease as the training of the
ANN model progresses and the ANN model develops good
predictive performance with the update in weights and biases
introduced in the architecture of the ANN model. More-
over, gradient descent with momentum algorithm drives the
smooth update in the parameters to achieve their optimal
values. Generally, a few hundreds or thousands of epochs
are executed for the model development depending upon the
nonlinear characteristics of the output variable, the updated
weights and bias values are stored corresponding to each
epoch and are deployed for the construction of prediction
intervals around each observation of the output variable. The
values of Z with respect to input vector and the parame-
ters (weights and biases) are simulated and the procedure is
repeated for all the input vectors. This procedure allows to
utilize the stored parameters to simulate observations of the
output variable corresponding to the given input vector and
the simulated observations of output variable with respect to
the one input vector incorporate the unique information of
the data distribution when the model is being trained. Thus,
here we hybridize the conformal prediction technique with
the online-training mode of neural network to construct the
prediction bound with the locally adaptive information avail-
able for the output variable. In this work, the model stops the
training upon meeting the either condition of the stopping
criteria, i.e. loss function value on testing dataset is equal
to zero, the gradient is less than 0.000000001 or maximum
number of epochs are executed.

2.2 Prediction intervals estimation by the inductive
conformal prediction technique

Let us consider that the dataset is sorted on the input vector
and model-simulated responses as: (X1, Z1), (X2, Z2), …,
(XN , ZN ). We consider the example of one data observation
(X1, Z1) to demonstrate the construction of the prediction
intervals around Z1 by SWARM technique, and then, the
procedure is extended on the remaining data points of Z .
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Since the online mode of neural network training is imple-
mented, the simulated observations of Z1 corresponding
to each epoch are available which is denoted as (Z1)epoch.
The non-conformity measure is taken as absolute difference
between D1 and (Z1)epoch, commonly used for regression
problems [30], and is written as:

E1epoch �
∣

∣

∣D1 − (Z1)epoch

∣

∣

∣ (22)

The quantile value on 1−α confidence level is computed
from (E1)epoch as:

q̂1−α

(

E1epoch
) � (1 − α)

epoch + 1

epoch
(23)

here, q̂1−α depicts the quantile value of (E1)epoch on 1 − α

confidence level which is used to compute the prediction
interval (P I ) around Z1 as:

P I (Z1)SWARM � [Z1 − q̂1−α

(

E1epoch
)

, Z1 + q̂1−α

(

E1epoch
)

] (24)

Using the same procedure, the prediction interval around
the remaining observations of Z can be computed.

The key difference on the computation of the prediction
interval by SWARM technique and the traditional ICP is the
locally adaptive prediction interval construction around each
observation of Z made by SWARM while the width of the
prediction interval remains fixed for ICP for the dataset [39].
In ICP technique, the dataset is split into training, testing and
calibration dataset. The model is trained on training and test-
ing datasetwhile calibration dataset is used for the computing
of (E1)cal and q̂1−α which are given as:

Ecal � |Dcal − Zcal| (25)

q̂1−α(Ecal) � (1 − α)
ncal + 1

ncal
(26)

here, ncal is the size of the calibration dataset. The prediction
interval on Z for test dataset (Z test) made by ICP technique
is given as:

P I (Z test)ICP � [Z test − q̂1−α(Ecal), Z test + q̂1−α(Ecal)]
(27)

The prediction interval computed by SWARM and ICP
techniques is compared for the considered case studies. The
details can be found in the following sections.

2.3 Evaluation criteria

The predictive efficiency of the ANN model for training
and testing dataset is computed by two rigorous statistical

terms, i.e. coefficient of determination (R2) and root-mean-
squared error (RMSE). Mathematically, R2 and RMSE are
represented as follows:

R2 � 1 −
∑N

i (Zi − Di )
2

∑N
i (Di − Di )

2 (28)

RMSE �
√

√

√

√

1

N

N
∑

i�1

(Zi − Di )
2 (29)

here, Di and Zi are the actual and model-driven simulated
responses for i � 1, 2, 3,…N. R2 quantifies the predictive
efficiency of the model and it varies from zero to one. R2 � 0
signifies the poor predictive performance while R2 � 1 indi-
cates that model-simulated and true observations are close to
each other. However, RMSE measures the error associated
in the model-simulated responses and is to be minimized to
achieve the good predictive performance of the trained ANN
model.

3 Results

The SWARM approach proposed in this paper constructs the
prediction intervals around the ANNmodel-based simulated
responses with 95% confidence level and the methodology
is implemented on the datasets taken from the literature,
benchmark datasets and the industrial systems. The dataset
for crease recovery angle is taken from the literature [35],
whereas energy efficiency cooling (ENC) & energy effi-
ciency heating (ENH) dataset for the buildings is taken from
UC IrvineMLdatabase repository [40]. Furthermore, dataset
for power production from a 395 MW capacity gas tur-
bine and a 660 MW capacity supercritical coal power plant
is also taken to draw the prediction intervals around the
model-simulated responses for the industrial-scale applica-
tions. The prediction intervals for the considered case studies
are also constructed by ICP to compare the width of the
prediction intervals computed by the SWARM with those
of the ICP technique. This provides the comparative analy-
sis on the estimation of the prediction intervals around the
model-simulated responses by the two techniques as well
as comparing the SWARM-based results with the existing
benchmark technique in the literature.

The dataset for the considered case studies is split into
training, testing and calibration dataset on the split ratio of
0.7, 0.15 and 0.15, respectively. While training and testing
dataset is primarily used for the ANN model development,
the calibration dataset serves to compute the prediction inter-
vals for the test dataset by the ICP technique [41]. Since
SWARM is a locally adaptive technique for the prediction
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Fig. 2 Computing the prediction intervals for CRA by (a) SWARM and (b) ICP techniques. The prediction intervals are computed on the test dataset
with 95% confidence level

interval estimation, we have computed the prediction inter-
vals for the test dataset by the SWARM technique and have
compared the results with those of ICP technique for the
same test dataset for case studies. The analysis presented in
the paper is conducted inMATLAB2019 b software installed
on a system having a processor of 11th Generation Intel Core
i7 1185G7 @ 3.0 GHz 1.8 GHz and 32 GB installed RAM.

3.1 Case study-1: crease recovery angle

The crease recovery angle (CRA) is modelled by five input
variables, namely resin, polyethylene softener, catalyst, cur-
ing temperature and curing time. The dataset taken from the
literature [35] consists of 27 experiments designed on differ-
ent levels of input variables.

During the training of ANN model, learning rate and
momentum coefficient are taken as 0.01 and 0.9, respec-
tively. Tangent hyperbolic and linear activation functions are
applied on the hidden and output layer of ANN, respectively.
The hidden layer neurons are taken as 10 which are reason-
ably large number to approximate the function space. The
predictive performance of the model on the training and test-
ing dataset is computed which is as follows: R2_train� 0.98,
RMSE_train � 1.1 (o), R2_test � 0.99, RMSE_test � 0.83
(o).

Having trained the ANN model for CRA, the prediction
intervals are computed by SWARM and ICP techniques and
are presented on Fig. 2. Comparing the prediction intervals
computed by the two techniques, it is evident that SWARM-
based prediction intervals for test dataset observation number
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Fig. 3 The prediction intervals estimation for ENC dataset by (a) SWARM and (b) ICP techniques. The ICP technique-based prediction intervals
seem to be more spread out than those of SWARM, yet providing full data coverage on the test dataset

2, 3 and 4 are comparatively tighter yet the true observations
lying within the prediction intervals of ICP, thereby validat-
ing the efficacy of the estimated prediction intervals made
by the SWARM. However, the prediction interval for obser-
vation 1 as made by SWARM is relatively spread out which
can be attributed to the modelling inaccuracy of model in the
localized region. Moreover, full data coverage is observed
for SWARM and ICP, indicating the good performance of
the techniques to construct the prediction intervals for the
CRA application.

3.2 Case study-2: energy efficiency cooling & energy
efficiency heating

Energy efficiency cooling (ENC) and energy efficiency
heating (ENH) are the two performance indicators of the

residential buildings and are modelled on orientation, sur-
face area, relative compactness, roof area, overall height,
wall area, glazing area and glazing area distribution [36].
The compiled dataset for the input and output variables has
768 observations that are deployed to train the ANN-based
models for ENC and ENH separately.

In the literature [42], a feedforward neural network model
is constructed for ENC on ten number of hidden layer neu-
rons; tangent hyperbolic and linear activation function are
applied on hidden and output layer of the model, respec-
tively. Thus, we also apply the same settings to initialize
the ANN architecture incorporating the loss function as pro-
posed in this study in Eq. 5 and have trained the ANNmodel.
The predictive performance of the ANNmodel trained in this
work is as follows: R2_train � 0.99, RMSE_train � 1.1%,
R2_test � 0.98, RMSE_test � 1.2%.
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The prediction intervals on the test dataset of ENC with
95% confidence level are computed by the SWARM and
ICP techniques and are presented on Fig. 3. The SWARM
technique-based prediction intervals around some observa-
tions, as shown on Fig. 3a, are quite tight that represent the
reduced modelling inaccuracy of the trained ANN in the
localized regions. However, the ICP technique-based pre-
diction intervals seem to be comparatively more spread out,
as shown on Fig. 3b, than those of SWARM. However, ICP-
based computed prediction intervals offer full data coverage,
demonstrating the accuracy of the technique to predict the
test observation with good estimate of prediction intervals.

Similarly, the ANN model for ENH is trained using the
same set of initializations as established for ENC-basedANN
model. The predictive performance of theANNmodel for the
training and testing dataset is computed as: R2_train � 0.99,
RMSE_train� 0.44%,R2_test� 0.99, RMSE_test� 0.52%.
The computed prediction intervals on 95% confidence level
by the SWARM and ICP techniques for ENH are depicted
on Fig. 4. Nearly the same width of the prediction intervals
is observable for ENH as computed by the two techniques
for most of the test observations. We also observe the full
data coverage on ICP technique-based prediction intervals,
thereby validating their accuracy. A few test observations
have comparatively large width of the prediction intervals
as computed by the SWARM with those of the ICP tech-
nique. This is attributed to the deviation of the true test values
with those of the model-simulated responses, resulting in
the computation of the prediction intervals which are adap-
tive to locally available information on the model-simulated
responses.

3.3 Case study-3: power generation from gas
turbine & coal power plant

The power generation from a gas turbine power plant is mod-
elled on flow rate of fuel gas, air temperature at the outlet
of compressor, air pressure at the outlet of compressor, fuel
gas temperature at the outlet of performance heater, ambient
pressure, ambient temperature and ambient humidity. A total
of 578 observations compiling the dataset for input–output
variables is deployed for the development of ANN model.
The initialization settings for ANN model training are the
same as discussed in case study 2 except the hidden layer
neurons are kept at 16. The modelling performance of ANN
for the training and testing dataset is as follows: R2_train �
0.99, RMSE_train � 1.42 MW, R2_test � 0.99, RMSE_test
� 1.94 MW.

The prediction intervals are calculated for the gas tur-
bine power on 95% confidence interval with the SWARM
and ICP techniques and are shown on Fig. 5. Overall, the
two techniques present the comparable width of the predic-
tion intervals for the test dataset of the gas turbine power.

We observe nearly full data coverage by the ICP technique
with only one observation lying outside the estimated pre-
diction intervals. However, overall, the estimated prediction
intervals by the ICP technique are quite tight with good data
coverage. The comparable width of the prediction intervals,
as visualized on Fig. 5a, b for SWARM and ICP techniques,
respectively, demonstrates the accuracy of the SWARM tech-
nique to estimate the prediction intervals with good accuracy
for the gas turbine power as they have been compared with
the benchmarked ICP technique.

Similarly, power generation from a coal power plant is
modelled by input variables, namely coal flow rate, total air
flow rate,main steampressure,main steam temperature,main
steam flowrate, feed water temperature, reheat steam temper-
ature and condenser vacuum. A total of 639 observations are
taken for the input and output variables and same initializa-
tion settings as those of gas power plant-based ANN model
are applied for the training of ANN model for power gener-
ation from coal power plant except hidden layer neurons are
taken as 10. The performance metrics for the trained ANN
are as follows: R2_train � 0.99, RMSE_train � 2.64 MW,
R2_test � 0.99, RMSE_test � 2.20 MW.

The computed prediction intervals by the SWARM and
ICP techniques for coal power on test dataset at 95% confi-
dence interval are shown on Fig. 6a, b, respectively. Nearly,
comparable width of the prediction intervals is observed for
the coal power by the SWARM and ICP techniques. Further-
more, full data coverage is achieved for the test dataset by
ICP technique. The comparable width of the prediction inter-
vals demonstrates the usefulness of exploiting the parameters
(weight and biases) information for drawing the prediction
intervals by the SWARM approach.

4 Discussion

4.1 Visualization of parameters
andmodel-simulated responses distribution

In the previous section, we have presented the results on
drawing the prediction intervals by using the information
stored for the parameters (weights and biases) of ANNmodel
and have compared the width of prediction intervals for
testing datasets with those of the ICP method. Here, we pro-
vide the data-distribution profiles of some of the parameters
taken from the trained ANN model for gas turbine power
as shown on Fig. 7. The weight links from hidden to out-
put layer (HLN) are updated during the iterative training of
the model. The weight connections for HLN are visualized
since linear activation function is applied on the output layer,
and thus, weight connections of HLN have direct impact on
the computation of the model-simulated responses. Thus,
the impact of the update in the HLN-weight connections
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Fig. 4 Estimation of prediction intervals with 95% confidence level on test dataset for ENH by (a) SWARM and (b) ICP techniques. The ICP
technique-driven prediction intervals are quite tight, yet having full data coverage for the test observations

on the computation of model-simulated responses can be
visualized which is presented on Fig. 7a. Initially, the slope
of weight-epoch graph is high until the epochs are around
200 for gas turbine power, and then, it starts stabilizing for
most of the weight connections. To further confirm the dis-
tribution profiles of HLN-weight connections of the trained
ANN model for gas turbine power, HLN-1, 6, 10, 14 are
selected, and their weight-connection distributions are pre-
sented onFig. 7b.Weobserve thatweights distribution profile
is asymmetric yet following almost log-normal distribution
profile for the weight connections. The similar observation
is presented in literature that connection weights in the neu-
ral network follow log-normal distribution which can help
design the schemes for the efficient and cost-effective train-
ing of neural networks [43].

We have taken two observations from the test dataset of
gas turbine power and the iterative variation in the model-
predicted responses is depicted on Fig. 7c, d for true value
of 364 and 290 MW, respectively. Referring to Fig. 7c,
the model-predicted responses start from 423 MW and are
improved during the iterative training of the model after
the parametric update. The distribution of model-predicted
responses during the model training is depicted where the
model estimated the value of 373 MW corresponding to the
true value of 364MWupon stopping of its training. It depicts
that model training was localized in a region where model-
predicted responses are far away from the true value to be
simulated, and thus, a significant deviation between the true
and model-simulated responses exists. The significant devia-
tion between the true and model-predicted responses directs
to incorporate the locally available information to construct
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Fig. 5 Comparison of the prediction intervals for gas turbine power computed on the test dataset by (a) SWARM and (b) ICP techniques on 95%
confidence interval

the prediction interval around the model-simulated response.
Thus, the SWARM technique calculates q̂1−α

(

Eepoch
) �

21 on 95% confidence interval from the computed non-
conformity score corresponding to the true value of 364MW.
However, q̂1−α(Ecal) � 3.94 is calculated on 95% confidence
interval by ICP technique. From Fig. 5, the true value is taken
corresponding to test observation number of 74 and it is evi-
dent that theSWARM-basedprediction interval provides data
coverage for the true value, whereas ICP technique-based
estimated prediction interval has missed the data coverage
for the considered test observation. The missed data cover-
age can be attributed to fixed width of the prediction interval
that can be conservative enough to capture the true value.

Similarly, referring to Fig. 7d, the model-predicted
responses start from 249 MW and are iteratively updated.
The model achieves the predicted value of 289.4 upon the

termination ofmodel training corresponding the true value of
290 MW. The true and model-predicted responses are com-
parably close to each other, meaning that SWARM-based
quantile value is reasonably tight, i.e. q̂1−α

(

Eepoch
) � 2.1

to capture the true test value. Similarly, the ICP technique-
based q̂1−α

(

Eepoch
) � 3.94 is also wide enough to capture

the true value. The SWARM-based estimation of prediction
intervals incorporates the iterative values of the model-
predicted responses to estimate the prediction intervals for
each observation that offers unique and locally compliant
prediction intervals to construct the prediction intervals. The
ICP technique-driven fixed-width prediction intervals can
sometimes be wide enough to satisfy the guarantees of the
data coverage, but they result in significantly large width
of the prediction intervals depicting the high uncertainty in
the model-predicted responses [39]. Therefore, adapting the
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Fig. 6 Prediction intervals comparison for coal power on test dataset at 95% confidence interval by (a) SWARMand (b) ICP techniques. Comparable
width of the prediction intervals is observable as computed by the two techniques

prediction intervals with the locally available information
retrieved during the ANN model training can provide the
adjustable width of the prediction intervals for the given con-
fidence level for each observation of the test dataset.

5 Conclusions

Constructing the prediction intervals around the model-
simulated responses presents the range of variability in the
predictions. In this work, we present a novel data-driven
approach to construct the prediction intervals around the
model-simulated responses using the artificial neural net-
work—a commonly used algorithm of machine learning for
function approximation applications. The loss function com-
prises of the least mean square of error and the standard

deviation between the model-simulated and actual responses
embedded with the online-training method for the develop-
ment of the ANN model. The online mode of ANN model
development allows to store the parameters information in
each epoch during the model development. The SWARM
approach is built on hybridizing the ANN parameters with
conformal prediction technique to construct the prediction
intervals. Three case studies, namely CRA, ENC& ENH for
buildings, and gas turbine power & coal power are consid-
ered in this work for the construction of prediction intervals
by the SWARM approach. Furthermore, the SWARM-based
prediction intervals are compared with those of traditional
ICP technique.
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Fig. 7 Visualization of parameters distribution during the model train-
ing for gas turbine power. (a) The iterative update in the weight
connections from the hidden to output layer of ANN shows the smooth
improvement in theweight connections. (b) Theweight-connection dis-
tribution profiles for the selected hidden layer neurons show the asym-
metric distribution. The distribution of the model-predicted responses

during the iterative training along with the true value is depicted on
(c) and (d). Furthermore, the quantile value on 95% confidence level
computed by SWARM and ICP techniques is also mentioned. It is
important to note that SWARM-based quantile values are locally adap-
tive, thus subject to variation as opposed to the ICP-based values which
remain fixed for the test observations

• The width of the prediction intervals computed by
SWARM and ICP techniques is compared for the con-
sidered case studies. A comparable width of prediction
intervals is noted for CRA, ENH, gas turbine power and
coal power, indicating the validity of the SWARM-based
prediction intervals as compared with the benchmark ICP
technique.

• Slightly large spread out of the prediction intervals is noted
for ICP-based prediction intervals for ENC in comparison

with those of the SWARM technique. However, ICP con-
structs fixed-width prediction intervals that are influenced
by the predictive accuracy of the model to simulate the
calibration dataset.

• The SWARM technique produces adaptive prediction
intervals, which are compliant with the locally available
information of the observations, enclose the true values
and quantify the valid uncertainty in the model-predicted
responses.
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