
✓ Feature association is computed by Pearson 

Correlation Coefficient (PCC) 

✓ The loss function of DINN is customized to 

include PCC information for updating the 

parameters:
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✓ Gradient descent with momentum algorithm 

updates the parameters:
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✓ Expressions for the tuning of the model parameters are derived

✓ DINN based feature importance order better complies with domain 

knowledge than those of ANN

✓ SWARM based prediction intervals are better local–compliant than the 

fixed–width prediction intervals of ICP

✓ Top-down robust optimisation of combined cycle gas power plant 

reduces 62 ± 20 kt of CO2 annually

✓ The future work will focus on bi-level optimisation of combined cycle 

gas power plant with neural networks

✓ The PI are constructed by SWARM and ICP 

techniques

✓ Energy efficiency cooling data is used [3]

✓ Online-mode of training is implemented for 

SWARM approach

✓ The loss function of neural network 

incorporates standard deviation term:
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✓ Mean absolute difference based non-

conformity score for 𝐷1 at each epoch:

                          𝚬𝟏𝐞𝐩𝐨𝐜𝐡 = 𝑫𝟏 − (𝒁𝟏)𝐞𝐩𝐨𝐜𝐡                             (7)

✓ SWARM based prediction interval (PI) on 

quantile value of ො𝑞1−𝛼:

             𝑷𝑰 𝒁𝟏 𝑺𝑾𝑨𝑹𝑴 =  [𝒁𝟏−ෝ𝒒𝟏−𝜶 𝜠𝟏𝒆𝒑𝒐𝒄𝒉 , 𝒁𝟏 + ෝ𝒒𝟏−𝜶 𝜠𝟏𝒆𝒑𝒐𝒄𝒉 ]              (8)  

✓ The inductive conformal prediction (ICP) 

technique-based PI for test dataset on 

quantile value of ො𝑞1−𝛼:

                  𝑷𝑰 𝒁𝒕𝒆𝒔𝒕 𝑰𝑪𝑷 =  [𝒁𝒕𝒆𝒔𝒕−ෝ𝒒𝟏−𝜶 𝜠𝒄𝒂𝒍 , 𝒁𝒕𝒆𝒔𝒕 +  ෝ𝒒𝟏−𝜶 𝜠𝒄𝒂𝒍 ]                        (9)

             

✓ Neural networks are universal function approximators but black-box [1]

✓ Neural networks are point-predictors; do not provide prediction intervals

✓ How to carry out data-driven robust optimisation integrating the neural 

networks for multi-level operation of combined cycle gas power plant ?
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✓ Introduce data-information to infuse interpretability for neural networks 

✓ Compute prediction intervals using neural network parameters space

✓ Present two-stage robust-optimisation framework embedding the 

neural networks
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Problem Statement Objectives

✓ DINN and ANN are trained to predict power 

generation from 395 MW capacity gas turbine 

system

✓ The feature importance for the power 

generation is established for well-trained 

DINN and ANN models [2]

Data Information Integrated 

Neural Network (DINN)
Storage of Weights And 

Retrieval Method (SWARM)

Data-Driven Robust

Optimisation

✓ The multi-objective optimisation function is 

defined:
 𝒎𝒊𝒏

 𝒙
 𝒇(𝒙)=(𝒇𝟏 𝒙 + 𝒇𝟐 𝒙 + ⋯ + 𝒇𝒏(𝒙))                                              (10)

subject to:                      

          𝒉 𝒙 = 𝟎                                                                               (11)
𝒙𝑳  ≤ 𝒙 ≤ 𝒙𝑼

✓ The mean and variance in 𝑓(𝑥∗) for Monte Carlo 

simulations are computed as:
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✓ The solution is “non-robust” when:

 𝑉 𝑥∗ >  𝜀                (14)

✓ Data-driven robust optimisation of 1180 MW 

capacity combined cycle gas power plant is 

carried out under top-down approach [4]
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