Beyond Research on Neural Networks: Data-Driven Robust Optimisation of Combined Cycle Gas Power Plant

Wagar Muhammad Ashraf, Vivek Dua

The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, UK

Problem Statement

Objectives

Introduce data-information to infuse interpretability for neural networks Neural networks are universal function approximators but black-box [1] \checkmark Neural networks are point-predictors; do not provide prediction intervals \checkmark Compute prediction intervals using neural network parameters space Present two-stage robust-optimisation framework embedding the \checkmark How to carry out data-driven robust optimisation integrating the neural networks for multi-level operation of combined cycle gas power plant? neural networks

Data Information Integrated	Storage of Weights And	Data-Driven Robust
Neural Network (DINN)	Retrieval Method (SWARM)	Optimisation
Feature association is computed by Pearson	 Online-mode of training is implemented for	 The multi-objective optimisation function is
Correlation Coefficient (PCC)	SWARM approach	defined:

✓ The loss function of DINN is customized to include PCC information for updating the parameters:

 $\mathcal{L} = \left(\frac{\lambda}{1+\lambda}\right) \cdot \frac{\sum (D-Z)^2}{N} + \left(\frac{1}{1+\lambda}\right) \cdot \frac{\sum_{i=1}^m (r_{X_i|D} - r_{X_i|Z})^2}{N}$

✓ Gradient descent with momentum algorithm updates the parameters:

 $W_1^{\text{new}} = W_1 + \eta \left(\beta V_{W_1} + (1-\beta) \left(\frac{2(D-Z)}{N} + r_{X_i|Z} \left(\frac{X_i^{\mu}}{B_i} - \frac{Z^{\mu}}{M}\right)\right) W_2^T (1-y_1^2) X^T$ (2) $W_{2}^{\text{new}} = W_{2} + \eta (\beta V_{W_{2}} + (1 - \beta) \left(\frac{2(D - Z)}{N} + r_{X_{i}|Z} \left(\frac{X_{i}^{\mu}}{B_{i}} - \frac{Z^{\mu}}{M} \right) \right) y_{1}$ (3) $b_1^{new} = b_1 + \eta \left(\beta V_{b_1} + (1-\beta) \left(\frac{2(D-Z)}{N} + r_{X_i|Z} \cdot \left(\frac{X_i^{\mu}}{B_i} - \frac{Z^{\mu}}{M}\right) W_2^T (1-y_1^2)\right)$ (4) $b_2^{new} = b_2 + \eta \left(\beta V_{b_2} + (1-\beta) \left(\frac{2(D-Z)}{N} + r_{X_i|Z} \cdot \left(\frac{X_i^{\mu}}{B_i} - \frac{Z^{\mu}}{M}\right)\right)$

✓ The loss function of neural network incorporates standard deviation term:

$$\mathcal{L} = \frac{(D-Z)^2}{2} + \frac{|D-Z|}{\sqrt{2}}$$

Mean absolute difference based non-(1) 🗸 conformity score for D_1 at each epoch:

 $\mathbf{E}_{1_{epoch}} = \left| D_1 - (Z_1)_{epoch} \right|$

SWARM based prediction interval (PI) on quantile value of $\hat{q}_{1-\alpha}$:

 $PI(Z_1)_{SWARM} = [Z_1 - \hat{q}_{1-\alpha} (E_{1_{epoch}}), Z_1 + \hat{q}_{1-\alpha} (E_{1_{epoch}})]$ (8)

(5) \checkmark The inductive conformal prediction (ICP) technique-based PI for test dataset on quantile value of $\hat{q}_{1-\alpha}$:

 $PI(Z_{test})_{ICP} = [Z_{test} - \hat{q}_{1-\alpha}(E_{cal}), Z_{test} + \hat{q}_{1-\alpha}(E_{cal})]$

Response Χ D

True Value

Model Simulated

(6)

(7)

(9)

(10) $\min_{x} f(x) = (f_1(x) + f_2(x) + \dots + f_n(x))$ subject to: (11) $\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0}$ $x^L \leq x \leq x^U$ \checkmark The mean and variance in $f(x^*)$ for Monte Carlo simulations are computed as: (12) $F(x^*) = \frac{\sum_{k=1}^{H} f(x^* + \delta_k)}{\mu}$ (13) $V(x^*) = \frac{\|F(x^*) - f(x^*)\|}{\|f(x^*)\|} < \varepsilon$ \checkmark The solution is "non-robust" when: (14) $V(x^*) > \varepsilon$ Two – Stage Robust Optimization

Case Studies

- ✓ DINN and ANN are trained to predict power generation from 395 MW capacity gas turbine system
- ✓ The feature importance for the power generation is established for well-trained DINN and ANN models [2]

- ✓ The PI are constructed by SWARM and ICP techniques
- ✓ Energy efficiency cooling data is used [3]

✓ Data-driven robust optimisation of 1180 MW capacity combined cycle gas power plant is carried out under top-down approach [4]

Conclusions & Future Work

References

- \checkmark Expressions for the tuning of the model parameters are derived
- DINN based feature importance order better complies with domain knowledge than those of ANN
- ✓ SWARM based prediction intervals are better local–compliant than the fixed—width prediction intervals of ICP
- ✓ Top-down robust optimisation of combined cycle gas power plant reduces 62 ± 20 kt of CO₂ annually
- ✓ The future work will focus on bi-level optimisation of combined cycle gas power plant with neural networks

[1] Benítez, José Manuel, Juan Luis Castro, and Ignacio Requena. "Are artificial neural networks black boxes?." IEEE Transactions on neural networks 8, no. 5 (1997): 1156-1164 [2] Ashraf, Waqar Muhammad, and Vivek Dua. "Data Information integrated Neural Network (DINN) algorithm for modelling and interpretation performance analysis for energy systems." Energy and AI 16 (2024): 100363

[3] Ashraf, Waqar Muhammad, and Vivek Dua. "Storage of weights and retrieval method (SWARM) approach for neural networks hybridized with conformal prediction to construct the prediction intervals for energy system applications." International Journal of Data Science and Analytics (2024): 1-15.

[4] Ashraf, Waqar Muhammad, and Vivek Dua. "Driving towards net-zero from the energy sector: Leveraging machine intelligence for robust optimization of coal and combined cycle gas power stations." Energy Conversion and Management 314 (2024): 118645.

Contact Details

Waqar Muhammad Ashraf: Waqar.ashraf.21@ucl.ac.uk Vivek Dua: v.dua@ucl.ac.uk

Affiliation Sargent Centre for Process Systems Engineering

