
  

  

Abstract— Practical needs in technology capability 

assessment for extremely low-energy neuromorphic 

computing is addressed via a novel development/analysis 

concept integrating atomic-level material modeling, statistical 

simulations of charge transport in a device material stack and 

verification of the modeling scheme against measurements 

emulating circuitry operation conditions for applications in 

specific neural networks (NN). This multi-scale concept - from 

materials to applications - directly links materials to their 

electrical properties, and the latter to NN algorithms. Such 

link enables identifying structural features controlling device 

characteristics and the range of operation conditions 

delivering performance targets for a given technology 

implementation. In comparison to widely employed 

memristor analyses primarily based on TCAD-type 

methodology with adjustable phenomenological parameters, 

the proposed approach allows to deliver feedback on favorable 

material compositions and cell architecture/dimensions to 

modify memristor fabrication process. Implementation of this 

technology evaluation approach to carbon nanotube (CNT) 

memristors enables identifying structural and operation 

conditions delivering optimal performance ahead of actual 

circuitry fabrication. 

. 

I. INTRODUCTION 

Most demanding applications for future electronics 
hardware such as autonomous sensing/analysis (IoT), 
mobile and environmentally stable computing impose strict 
limitations on energy consumption. To simultaneously meet 
speed, power and density targets prospective devices are 
required to satisfy a wide range of conditions that need to be 
assessed at the initial development stages, prior to circuit 
design and fabrication. Considered options (avoiding “von 
Neumann bottleneck”) include novel computing 
architectures, in particular neuromorphic computing, 
involving non-volatile-memory (NVM) technologies 
capable of 3D integration, among other 
structural/integration features. Furthermore, to achieve on-
chip training, analog devices - memristors (in crossbars 
structure) - should be utilized. Memristor technology 
enabling low power-high performance neuromorphic 
computing must deliver well-controlled multi-level memory 
updates to satisfy operation conditions in the considered NN 
type (DNN, SNN, etc.). Hence, hardware evaluation should 
be done in coordination with intended software use - co-
evaluation of hardware and algorithms for specific 
applications.  

General concerns to be addressed in technology 
evaluation include Classification accuracies; Reliability: for 
each type of neuromorphic computing implementations cells 
should be evaluated within the entire range of considered 
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NC circuitry operation conditions; Variability: Drift and 
fluctuations of device parameters detrimentally impact NC 
operations. Such variability is a new reliability issue for 
neuromorphic classification. In particular, switching 
variability for each individual device occurring when the 
conductance value fluctuates or drifts during cycling 
between memory states. 

The objective of the proposed framework is to expand 
and verify resistive random-access memories (RRAM) 
evaluation methodology, which can be applied to a wide 
range of materials, beyond carbon nanotubes. In its present 
form, it combines atomic-level material modeling (DFT and 
mesoscopic force fields) and statistical simulations of 
currents via conductive paths through the intrinsically 
stochastic structure of material fabrics. Initial verification of 
the proposed physical model for memory update processes 
included matching electrical measurements of cell 
operations performed under circuitry-relevant sub-ns pulse 
durations to simulations employing material modeling 
parameters.  Assessment of the impact of hardware non-
idealities, such as memory-update variability, on NN 
learning characteristics has been conducted. This approach 
was applied to evaluation of carbon nanotubes (CNT 
NRAM), Fig. 1, metal oxides (HfO2 OxRAM) [2] and 2D 
material-based memristors (MoS2 and hBN [3]). 

 

Fig. 1. RRAM evaluation methodology in application to 
CNT technology. Material modeling results are used to 
construct/parametrized a nodal current model, which, in 
turn, is incorporated in statistical simulations of the cell 
operations via a network of conductive paths formed by 
contacting CNTs and verified by electrical measurements. 
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To demonstrate the scope and employed methodology, 
below we focus on the results obtained for CNT material [4, 
5, 6], Fig.2.  CNT technology has demonstrated excellent 
switching characteristics and reliability, including latency, 
cycling endurance, data retention, and radiation hardness.  

        

Figure 2. TEM of cross-section CNT cell bit with Cu 
BEOL  

II.  APPROACH 

The switching mechanism considered here is an 

energy-driven tubes rearrangement via locally 

generated energy determined by the 

duration/magnitude of a current flow I(t) through the 

inter-tubes junction: E = ∫V(t)I(t)dt, Fig. 3. An 

additional factor affecting CNTs switching is an 

electric field across the film inducing tubes torque, 

local charging and details of the film fabric.  

 

Figure 3. Double-well potential that defines switching 

processes, Set and Reset, between high- and low- 

resistance states (HRS and LRS). The minima and barriers 

are calculated based on mutual position/orientation of 

contacting CNTs along the conductive path. 

Using Density Functional Tight Binding (DFTB) 

combined with non-equilibrium Green’s functions 

(NEGF) modeling techniques we have carried out 

preliminary atomistic simulations on CNT junctions 

while systematically varying their chirality and 

geometry (length and mutual orientation of 

nanotubes) in order to understand their electrical 

conductivity [7, 8]. The electric current was found to 

strongly depend on the distances between the 

interacting nanotubes and was fitted to an equation 

depending on them. The charge transport parameters 

extracted from the atomistic modeling were used to 

simulate electrical conduction through realistic cell-

size CNT films [9]. 

Structure - Material modeling  

To model the complex behaviour of CNT films, we 

have taken a multi-scale approach to describe various 

elements involved. Properties of individual tubes are 

affected by their anhydride and hydrogen 

terminations, Fig. 4 

 On a larger scale, the film itself is treated using a 

mesoscopic potential, where the nanotubes are coarse-

grained into connected cylindrical segments, Fig.4. 

This allows us to make representative models of CNT 

films with dimensions relevant to experimental 

devices. 

             

 
 

Figure 4. CNTs can have different terminations due to 

processing. Starting from random configuration in solution 

(used in fabrication), a force is applied downward to reduce 

the layer thickness (increase density). Nanotubes evolve in 

time in a new reduced volume until experimental density is 

reached. Stability of films at a given density in the range of 

0.3 – 0.6 g/cm3 was verified. A fully densified structure 

exhibits enhanced bundle formation.  

 

The currents through these mesoscopic structures can 

be evaluated using our previously parameterized 

current model and compared to electrical 

measurements of these devices, Fig.5. 
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Figure 5. Current through the junction is dominated by 

conduction pathways between individual C atoms in 

contacting CNTs. Total contact conduction is a sum all 

individual tunnelling pathways accounting for all mutual 

C-C distances in possible mutual orientations and positions 

(see schematics of mutual CNT-CNT shifts) of neighbouring 

CNTs. 

 

Electronic structure simulations were used to calculate 

the current across a wide range of representative 

junctions between nanotubes, Fig.5. This data allowed 

us to develop simple models capable of predicting 

current based on the geometric properties of a 

nanotube pair, e.g., the minimum distance between 

them. 

Material modelling calculations extracted two main 

features of the CNT fabrics: (a) bundled CNTs are 

strongly coupled and require significant energy in 

order to separate, Fig.4. Additionally, a large surface 

area of contacting CNTs enables effective (low 

resistance) electron tunnelling between CNTs. (b) 

Contacts between stretching CNTs in different 

bundles have a smaller area. Hence, less energy is 

required to modify such inter-tubes contacts, which 

exhibit greater resistance due to smaller electron 

tunnelling. Hence, it is reasonable to expect that the 

electrical switching in such CNT fabrics is dominated 

by the type (b) contact. 

The presently developed model is a proof of 

concept, demonstrating that the current can be directly 

calculated in physics-based models of a CNT fabric 

structure. Dynamical effects in the fabric formation 

can also be included, as the films’ force field allows 

for time-dependent evolution of the structure. We 

demonstrate how structural information and physical 

parameters can be extracted to be employed in 

statistical device simulations. 

 

Simulations 

The developed Python simulation package 

(NRAMPY) connects local transport properties and 

CNT fabric structure obtained by modeling to the 

observable electrical characteristics of NRAM cells. 

 
 

Figure 6. Within the developed simulation scheme, 

statistical 2D device model (NRAMPY) is constructed from 

randomly packed 3D CNT fabric (CNT Film library) 

accounting for possible inter-CNT contacts (CNT Junction 

Conductivity model).  The cell structure presents a set of 

individual conductive paths with randomly oriented 

contacting CNTs. Simulations allow to predict electrical 

characteristics based on the cell 

architecture/dimensions/material fabrication process. It 

enables validation of the switching mechanism and 

modeling findings via comparison to electrical 

measurements, as well as provides feedback to improve 

modeling. 

 

Using material modeling data, Figs. 3-5, 

NRAMPY constructs a unique one-bit cell, which is 

represented by numerous conductive paths formed by 

chains of contacting CNTs between the top and 

bottom electrodes, Fig. 9. Each path consists of 

several single CNTs and CNT bundles, both fixed and 

switchable inter-CNTs junctions and Schottky 

contacts between CNT chain, thin interfacial sub-

oxide layer (3nm TiOx) and metal electrodes. 

Simulations employ statistical distribution of the 

physical parameters defining the cell conductivity, 

such as area density of conductive paths, number of 

bundles in each path, CNT compositions in bundles, 

% of types of inter-bundles CNT contacts, etc. 

Conductance of each path is updated according to the 

changes of resistivity in individual junctions, Fig. 3, 

and the energy release occurring during the switching 

process that induces local temperature variations. 
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Figure 7. Example of the measurement and simulation of a 

DC I-V Reset process during one of the multiple Set/Reset 

switching cycles. The match is reached for the entire I-V 

range by accounting for about 70 junctions (out of 420 total 

– see Y-axis on the right in top graph) distributed 

throughout ~360 conductive paths, which switched from 

Low (LRS) to High (HRS) resistance state.   

 

Simulations successfully match I-V characteristics 

during forming and switching operations in NRAM 

cells of different thicknesses and dimensions under a 

wide range of operation conditions, Figs.7,8 [10]. 

Perfect match between simulations and measurements 

on a large number of devices and switching/read 

DC/pulse conditions confirms modelling results 

(Figs.4, 5).  

       

 
Figure 8. Example of a Read current simulation (at V= 

0.5V) of cell switching cycling under 1ns pulse at 

(Reset/Set) = (3.5V/4.0) V. Simulations match mean values 

of conductance distribution and conductance variability by 

accounting for randomness of the initial distribution of 

junctions’ resistance values. 

 

 

Operation processes 

Atomic-level structural changes determining 

electron transport in resistive NVM are driven by local 

heating induced by dissipated energy E, which is 

controlled by the magnitude of the current through a 

given conductive path at a given moment in time, I(t). 

Larger amount of energy released under longer 

programming time (t + Δt) may induce additional 

structural changes that can further modify current 

(either to higher > or lower < magnitude) I(t + Δt) ≠ 

I(t): longer time → higher released energy → more 

structural modifications affecting electron transport. 

Thus, the NVM cell characteristics are strongly 

affected by operation time duration. For this reason, 

device assessment should be performed under the test 

conditions which are close to actual circuitry 

operations (~ GHz).  

We implemented ultra-short pulse measurements with 

the pulse duration going down to 100 ps.     

                                                         

 
Figure 9. Cycling with 1 ns and 2 ns pulse durations and 

associated Set and Reset I-V characteristics. Symbols are 

the read current values taken at 0.5V after each pulse 

switching event. 

 

Critical importance of the test time duration for 

assessing technology capability under the circuitry-

relevant operation conditions is demonstrated in Fig. 

9. Higher released energy caused by the increase of 

switching pulse duration from 1 ns to 2 ns induces 

significant structural changes. These additional 

structural changes happen to result in more resistive 

HRS due to larger CNTs separations: consequently, 

the current through such contacts is low and cannot 

generate sufficiently high energy enabling the switch 

to LRS, Fig.3, - the system got stuck in HRS as seen in 

a collapse of the memory window. 

 

Algorithms 

Variability of cell switching between memory 

states came up as one of the major obstacles for 

practical implementation of memristor technologies. 

However, different implementations of neuromorphic 

algorithms have different tolerance with respect to 

switching variability. Our study aims to reduce the 
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solution space, which can be extremely large in the 

machine learning architectures implemented with 

memristors. This task generally requires accounting 

for a variety of available memristor technologies in 

combination with multitude circuit configurations 

used to carry out machine learning algorithms. Our 

simulations are intended to identify combinations of 

devices structures and circuit operations that suit best 

specific hardware applications of interest. Below we 

demonstrate effectiveness of the proposed 

methodology in identifying memory characteristics of 

CNT memristors delivering optimum performance in 

a considered type of neural network.  

 

Probabilistic NN (PNN) 

TensorFlow PNN where weights and biases are 

sampled from a distribution (unlike a standard NN 

was employed to assess its capability to mitigate 

switching variability [11]. In TensorFlow, training is 

done using the mean and variance of the distribution 

for each weight and bias (instead of weights and biases 

directly). It allows to establish a target for device 

characteristics that would enable its use in NN, Fig.10. 

               

 
 

Figure 10. With the given switching variability (upper left 

graph), classification accuracy 86% is unacceptably low. 

Simulations show that in order to increase the classification 

accuracy above 94%, memory window needs to be kept at 

the level 1-4 or higher with standard deviation under 0.1.                                                               

                      SUMMARY                                                                                                                                                                                                                  

Within the proposed evaluation framework, we 

developed physical models describing operation 

processes in CNT material discussed here, as well as 

in metal oxides and other materials of interest. 

Statistical charge transport simulations based on 

output of mesoscopic and atomistic material modeling 

have been verified against device measurements in the 

wide range of switching conditions down to circuity-

relevant sub-ns operations frequencies.                                                                                                                                            
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