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A B S T R A C T   

Background and purpose: Radiomics features derived from medical images have the potential to act as imaging 
biomarkers to improve diagnosis and predict treatment response in oncology. However, the complex relation-
ships between radiomics features and the biological characteristics of tumours are yet to be fully determined. In 
this study, we developed a preclinical cone beam computed tomography (CBCT) radiomics workflow with the 
aim to use in vivo models to further develop radiomics signatures. 
Materials and methods: CBCT scans of a mouse phantom were acquired using onboard imaging from a small 
animal radiotherapy research platform (SARRP, Xstrahl). The repeatability and reproducibility of radiomics 
outputs were compared across different imaging protocols, segmentation sizes, pre-processing parameters and 
materials. Robust features were identified and used to compare scans of two xenograft mouse tumour models 
(A549 and H460). 
Results: Changes to the radiomics workflow significantly impact feature robustness. Preclinical CBCT radiomics 
analysis is feasible with 119 stable features identified from scans imaged at 60 kV, 25 bin width and 0.26 mm 
slice thickness. Large variation in segmentation volumes reduced the number of reliable radiomics features for 
analysis. Standardization in imaging and analysis parameters is essential in preclinical radiomics analysis to 
improve accuracy of outputs, leading to more consistent and reproducible findings. 
Conclusions: We present the first optimised workflow for preclinical CBCT radiomics to identify imaging bio-
markers. Preclinical radiomics has the potential to maximise the quantity of data captured in in vivo experiments 
and could provide key information supporting the wider application of radiomics.   

1. Introduction 

Medical imaging is central to clinical decision-making for the iden-
tification of tumours, delivery of treatment and follow-up assessments 
[1]. It is well established that these radiological images are data rich and 
can be used as imaging biomarkers [2]. With the commercialisation of 
parallel preclinical computed tomography (CT) and cone-beam CT 
(CBCT) imaging platforms onboard small animal irradiators [3]; imag-
ing biomarkers can be determined from these preclinical scans [4–6]. 

Radiomics is a high-throughput form of image analysis to extract 
quantitative information from medical images which can be correlated 

to biological outcomes to improve diagnostic, prognostic and predictive 
accuracy [7–11]. Whilst radiomics has been termed a ‘virtual biopsy’ 
and associated with several clinical endpoints, the complex relationships 
between radiomics and clinical factors are still largely unknown [12]. 
Standardisation of image acquisition and analysis to identify and vali-
date imaging biomarkers is a large focus within radiation oncology 
[13–15]. 

The prognostic potential of magnetic resonance (MR)- and CT-based 
clinical radiomics has already been well documented within the litera-
ture [1,16–18], with emerging evidence of feasibility using CBCT scans 
[19–22]. CBCT scans are acquired at multiple timepoints throughout 
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radiotherapy treatment and extraction of radiomics signatures from 
these could lead to surplus data in both clinical and preclinical settings 
[23]. 

Previously, Panth et al demonstrated that mouse models can be used 
to expand our knowledge of CT-based radiomics signatures [24]. Since 
then, preclinical radiomics analysis has evolved to include CT, MRI and 
PET imaging for the detection and prediction of tumour phenotypes, 
early metastases and treatment response [24–27]. However, preclinical 
radiomics lacks standardisation of methods and validation of results 
[28]. This is in addition to the lack of imaging standards and protocols 
which already exist within preclinical studies [29]. Repeatability and 
reproducibility analysis is therefore crucial to evaluate feature stability 
in a controlled scenario (test–retest) and the influence of different im-
aging acquisition or analysis parameters (scan-rescan) [30]. 

In this study, we assessed the repeatability and reproducibility of 
CBCT-based radiomics features toward standardising the first preclinical 
CBCT radiomics workflow. Different image acquisition protocols and 
feature extraction methods were trialled to identify a subset of features 
that are robust for analysis. These features were then applied to pre-
clinical tumour models in a pilot feasibility analysis. 

2. Materials and methods 

2.1. Phantoms 

Two phantoms were used in this study (Supplementary Fig. 1). 
Firstly, an anatomically correct, tissue-equivalent mouse phantom with 
densities and atomic composition for bone (1.39 g/cm3), lung (0.68 g/ 
cm3) and soft tissue (1.01 g/cm3) was used for workflow analysis 
[31,32]. Secondly, an in-house Perspex phantom (60x60x60 mm) with 
cylindrical inserts (20x60mm) for air, solid water (Bart’s) (1.05 g/cm3), 
PVC (1.47 g/cm3) and acetal (1.52 g/cm3) was used to compare how 
differences in material density effect texture features. 

2.2. Imaging 

CBCT imaging was performed using the Small Animal Radiation 
Research Platform (SARRP, Xstrahl Life Sciences, UK) (Supplementary 
Table 1). For the mouse phantom, scans were acquired twice at 40, 50 
and 60 kV and 0.8 mA (0.5 mm Al filtration). For the texture phantom, 
scans were acquired twice at 60 kV. All energies had an imaging dose of 
2.4 cGy. 

2.3. Tumour models 

CBCT scans from previous in vivo experiments were retrospectively 
analysed. Tumour xenograft studies were performed using the non-small 
cell lung cancer (NSCLC) cell lines, A549 and H460. Cells were cultured 
in vitro (Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
with 10% foetal bovine serum and 1% penicillin/streptomycin) and 
prepared in phosphate-buffered saline (PBS) for subcutaneous injection 
into the flank of SCID mice. At 100 mm3, tumours were imaged at 60 kV 
on the SARRP (n = 9 for each arm). All experimental procedures were 
carried out in accordance with the Home Office Guidance on the 
Operation of the Animals (Scientific Procedures Act 1986) (PPL2813). 

2.4. Segmentation 

Segmentations were created using ITK-SNAP software (version 3.8.0) 
[33]. Manual contours were created using the 3-D round brush in the 
abdominal region of the mouse phantom model (not including lung or 
bone). Standard spherical segmentations of 27.68, 34.38, 41.71, 92.24 
and 237.5 mm3 were used for scan-rescan analysis. Segmentation of 
tumours was completed using a standard spherical segmentation volume 
of 94.25 mm3. This method was adopted to reduce the impact of inter-
observer variabilities associated with manual contours [63]. 

2.5. Radiomics analysis 

Radiomics analysis was performed using PyRadiomics (version 2.7.7, 
Harvard Medical School, Boston, MA, USA) [34], which is compliant 
with the Image Biomarker Standardisation Initiative (IBSI) [14]. 842 
features were extracted including: shape (n = 14), first order statistics 
(n = 18), gray level cooccurrence matrix (GLCM) (n = 23), gray level run 
length matrix (GLRLM) (n = 16), gray level size zone matrix (GLSZM) (n 
= 16), gray level dependence matrix (GLDM) (n = 14) and neighbouring 
gray tone difference matrix (NGTDM) (n = 5). Wavelet filtering was also 
applied to these features. Shape features were only used for correlation 
analysis to segmentation volume. 

To optimise our radiomics workflow, different pre-processing pa-
rameters were tested. The slice thickness of the CBCT scans were 
resampled to either 0.2, 0.26, 0.3, 0.5 or 1 mm by changing the 
“resampledPixelSpacing“, without modifying the axial spacing. Image 
intensity discretization was performed to compare different fixed bin 
width values of 10, 25, 50 and 100 by altering the “binWidth”. 

2.6. Correlation to segmentation volume 

Features highly correlated to volume changes was determined using 
correlation analysis (cor function within the corrplot library in RStudio 
software (version 4.1.2)). The Pearson correlation coefficient was 
calculated for each feature with respect to volume and a correlation 
coefficient > 0.8 applied. 

2.7. Statistical analysis 

The intraclass correlation coefficient (ICC) was used to determine the 
reliability and robustness of radiomics outputs through the production 
of a reliability index (Table 1). ICCs were calculated using the irr library 
from the lpSolve package in RStudio. 

Reliability analysis was based on a single value with absolute- 
agreement and determined using 2-way mixed-effects models for the 
scan-rescan analysis of radiomics feature outputs across each variable 
[35]. Reproducibility analysis was based on an average of each scan and 
rescan (n = 6) with absolute-agreement and determined using 2-way 
mixed-effects models. Analysis was conducted between the tumour co-
horts’ through a 2-way mixed-effects ICC model. The Pearson correla-
tion coefficient was also calculated for each feature (cor in RStudio) and 
a correlation coefficient > 0.8 was considered significant. Comparison of 
radiomics outputs for tumour models was performed using a paired t-test 
(two-tailed, p < 0.05) (n = 9). Analysis was performed using GraphPad 
Prism 7 (Version 7.0) with significance reported as p **** <0.0001. 

3. Results 

3.1. Repeatability of preclinical radiomics features 

Repeatability was assessed using scan-rescans of a mouse phantom 
acquired at different imaging energies or processed using different bin 

Table 1 
Classification of ICC results. Koo et al classifies ICC as poor (<0.5), moderate 
(0.5–0.7), good (0.7–0.9) and excellent (>0.9) [35,36]. A stricter ICC of > 0.8 
was used to determine good/excellent reliability to better match with previous 
thresholds reported in test–retest analysis. The 95% confidence intervals (CIs) 
(>0.7) were used to remove errors and indicate robustness as recommended by 
Koo et al.  

Intraclass correlation coefficient (ICC) Reliability Index 

0.8 Good reliability 
>0.8 Excellent reliability 
1 Perfect reliability 
Classification of ICC in this study 
ICC > 0.8 & 95% confidence interval > 0.7 Highly robust  

K.H. Brown et al.                                                                                                                                                                                                                               
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widths or slice thickness. This analysis aims to show how differences in 
the preclinical radiomics workflow may reduce the reliability of fea-
tures. For imaging energies of 40, 50 and 60 kV there were 343, 420 and 
388 reliable features respectively (ICC > 0.8) (Fig. 1 A). However, only 
46, 53 and 57 features were robust (lower CI of the ICC > 0.7). Scans 
acquired at 40 kV had the greatest variability; potentially due to 
increased artefacts and noise in scans. Only 10 robust features (1%) 
overlapped across all 3 imaging energies; all of which were first order 
features (Fig. 1 A). CBCT scans acquired at different imaging energies 
can therefore limit the number of robust radiomics features for 
comparative analysis and the higher energies (60 kV) recommended for 
analysis. 

Repeatability of features across different bin widths was compared at 
60 kV (Fig. 1 B). Bin widths of 25 and 50 had the most robust features of 
57 and 58 (7%) respectively, 43 of which were shared. Fig. 1 B includes a 
heatmap of the 31 (4%) robust and reliable features maintained across 
all bin widths. 

Radiomics features were extracted with a resampled slice thickness 
of 0.2, 0.26, 0.3, 0.5 or 1 mm (Fig. 1 C). A slice thickness of 0.5 mm had 
the most robust features of 78 (9%). Only 12 (1%) overlapping features 
were identified across all slice thicknesses, all of which were first order. 
Additional analysis showed that increasing the slice thickness led to 
variability in shape and volume analysis 
(“original_shape_MeshVolume”). 

3.2. The volume effect 

To determine if volume impacts feature reliability or if there is a 
minimum volume suitable for extracting reliable results, we compared 
radiomics outputs for a range of volumes in a mouse phantom model. As 
preclinical models are smaller than their clinical counterparts five 
relevant volumes for preclinical analysis were used (28, 34, 42, 92 and 

238 mm3) (Supplementary Fig. 2). The smallest volume, 28 mm3, had 
the least repeatable features (101 features), in comparison, larger vol-
umes of 92 and 238 mm3 had 388 and 381 repeatable features respec-
tively (Fig. 2 B). There was no overlap in robust features across the range 
of segmentation volumes evaluated. Supplementary Fig. 3 details 
overlapping features amongst similar volumes. These results suggest 
that volumes < 34 mm3 may be too small to extract reliable data. 

The number of robust features did not increase with increasing 
segmentation volume. Volumes of 42 and 92 mm3 had the most robust 
and reliable features of 119 and 57 features respectively (Fig. 2 C). A 
volume range of 42–92 mm3 may be suitable for preclinical radiomics 
analysis with 32 features maintained for both volumes (Fig. 2 D). These 
non-linear results may be influenced by the phantom model used in 
which we assume tissue regions are homogeneous. Our results show that 
first order and GLDM features have a higher reliability range when 
comparing different volumes. Whereas GLCM, GLSZM and NGTDM 
features are more sensitive to volume changes (Supplementary Fig. 4). 

The correlation of segmentation volume to unfiltered radiomics 
features is shown in Fig. 2 E. Fifty-four features were highly correlated to 
an increase in segmentation volume (original_shape_MeshVolume). 
These included 9 shape, 12 first order, 13 GLCM, 6 GLRLM, 6 GLSZM, 6 
GLDM and 2 NGTDM features (Supplementary Table 2). Of these, 7 have 
been determined as reliable features from scan-rescan analysis for vol-
umes of 42 – 92 mm3. 

A workflow of scans imaged at 60 kV and features extracted at bin 
width of 25 and slice thickness maintained at 0.26 mm was determined. 
From repeatability analysis 119 (14%) robust features can be extracted 
at 42 mm3 (Supplementary Table 3) and 57 (7%) robust features at 92 
mm3 (Supplementary Table 4) which are stable for preclinical analysis. 

Fig. 1. Reliability and robustness of radiomics features with varying CBCT image acquisition and image discretisation methods. CBCT scans of a 3-D mouse phantom 
were acquired on the SARRP and analysed using PyRadiomics. Boxplots display ICC values of radiomics features (left). The number of reliable radiomics features 
(ICC > 0.8) (middle-left). The number of robust radiomics features (lower CI > 0.7) (middle-right). Heatmap of ICC values for overlapping robust features (right). 
Panel A: Reliability of radiomics features across imaging energies of 40, 50 and 60 kV. Panel B: Reliability of radiomics features after changing the intensity dis-
cretization via bin width to 10, 25, 50 or 100. Panel C: Reliability of radiomics features after changing the slice thickness during analysis (0.2, 0.26, 0.3, 0.5 & 1 mm). 
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Fig. 2. Overview of radiomics outputs for a range of segmentation volumes. Panel A: Boxplots to display ICC values of radiomics features assessed across a range of 
segmentation volumes (28 – 238 mm3). Panel B: The number of reliable radiomics features by feature class for each segmentation volume. Panel C: The number of 
robust features for each segmentation volume Panel D: Heatmap of overlapping robust features for 42 and 92 mm3 segmentation volumes. Panel E: Hierarchical 
correlation matrix to identify unfiltered radiomics features that are highly correlated to an increase in segmentation volume. 54 unfiltered features were highly 
correlated to changes in the segmentation volume. 

K.H. Brown et al.                                                                                                                                                                                                                               



Physics and Imaging in Radiation Oncology 26 (2023) 100446

5

3.3. Reproducibility of preclinical radiomics features 

To further optimise our results, we assessed the reproducibility of 
radiomics outputs. Changing the imaging energy had the biggest impact 
on the reproducibility of features with only 2 features identified. 
Altering the slice thickness resulted in 45 reproducible features. Varia-
tions in the bin width and segmentation sizes were least affected with 
176 and 183 reproducible features respectively (Fig. 3 A). Overall, the 
most reproducible feature types were first order, GLCM and GLRLM. 

No robust features overlapped from repeatability and reproducibility 
studies for varying imaging energies; however, there was an overlap of 
45, 16 and 31 features for bin width, slice thickness and segmentation 
size respectively (Fig. 3 B). These features are therefore highly 
conserved for comparison of preclinical radiomics outputs when using 
different workflow parameters (Supplementary Table 5). 

3.4. Texture analysis 

A multi-density phantom was used to measure the variability of 
radiomics features to changes in texture. Bart’s solid water (1.05 g/cm3) 
and the mouse phantom (1.01 g/cm3) have similar densities and visually 
look similar from CBCT scans yet the average gray level intensity 
(original_firstorder_Mean) values differ from 2,940 to 16,844 (Fig. 4 A). 
Scan-rescan analysis was conducted with ICC outputs for wavelet fea-
tures shown in Fig. 4 B. GLSZM features had the lowest median ICC for 
all textures apart from acetal (Fig. 4 B). NGTDM features were further 
analysed and shown to be influenced by changes in density (Fig. 4 C). 
This confirms that preclinical radiomics analysis can be used to differ-
entiate materials with differing density through textural radiomics 
analysis. 

3.5. Differentiation of tumour models using radiomics features: Pilot 
analysis 

Pre-treatment CBCT scans from two NSCLC tumour models were 
retrospectively analysed (Fig. 5 A). There were 773 and 776 highly 

correlated features for A549 and H460 tumours respectively with 731 
shared (Fig. 5B). Test-retest analysis identified 26 and 89 reliable fea-
tures for the A549 and H460 cohorts respectively (Fig. 5 C/D). After 
comparison with robust features (Supplementary Table 5), 4 features 
can be used to differentiate A549 and H460 tumours on preclinical CBCT 
scans (Fig. 5 E). 

4. Discussion 

Since the first application of radiomics analysis for phenotype pre-
diction, it has led to the discovery of imaging biomarkers and evolved to 
include multiple imaging modalities [1,14,23,36,37]. Radiomics anal-
ysis also has major clinical and economic benefits for the replacement of 
invasive and expensive procedures to determine tumour heterogeneity, 
such as biopsies [38]. Yet, real-world application of radiomics in 
oncology is limited by the lack of “big” and standardised clinical data 
due to different imaging protocols, variability in patient history and 
restrictions by law and ethics [39]. 

Mouse models are hugely beneficial in radiation oncology for the 
understanding of cancer progression and treatment development [40]. 
In addition, preclinical radiomics analysis has been successful using 
preclinical CT and MR scans [24,25,41]. Despite evidence that mouse 
models can expand our knowledge in radiomics signatures, there are 
currently no established guidelines to ensure consistency in preclinical 
analysis [28]. We aimed to optimise and standardise the first preclinical 
CBCT-radiomics workflow to improve the accuracy and reproducibility 
of outputs. 

A typical radiomics workflow includes 4 main steps: image acquisi-
tion, tissue delineation, feature extraction and analysis. Clinical studies 
have shown that changes to these can reduce the number of robust 
features to 6 – 43% [14,42]. Some steps depend on expertise (tissue 
delineation) or research question (analysis), but others can be stand-
ardised (image acquisition and feature extraction) [43,44]. We have 
shown preclinical analysis to be more sensitive to these changes with 
0.2–22% robust features identified. 

Preclinical CBCT scans are acquired at lower energies than used 

Fig. 3. Results of the reproducibility analysis for preclinical radiomics. Panel A: Reproducibility of radiomics outputs was compared within each variable and the 
number of features with a good ICC (>0.8) was plotted for imaging energy, bin width, slice thickness and segmentation size. Panel B: Venn diagrams to show the 
overlap of repeatable and reproducible features extracted from a mouse phantom using varying preclinical radiomics analysis methods. Repeatable features include 
the 119 robust features detailed in Table 2. 
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clinically [15,45], CBCT scan quality is known to have scattering and 
beam hardening artefacts in comparison to CT scans causing additional 
variabilities between scans [20]. Reduction of variabilities during image 
acquisition was achieved through use of a single, high imaging energy 
(60 kV). Advanced imaging methods such as dual-energy CT (DECT) 
improve image quality and could potentially reduce variabilities in 
radiomics analysis. However, imaging doses associated with preclinical 
DECT (60 cGy) are higher than single energy exposures (2.4 cGy) and 
repeated longitudinal imaging may have increased biological implica-
tions [46,47]. 

Studies also recommend standardising image intensity discretisation 
through bin widths as a normalisation step for comparative analysis 
[48–50]. A fixed bin width was used for intensity discretisation for 
filtered features [51]. Our analysis identified bin widths of 25 or 50 to 
have the most robust features for analysis. Changing the slice thickness 
or pixel size can also reduce the impact of noise within the scans for the 
extraction of more reproducible and robust features [48]. First order, 
GLCM and GLRLM feature classes were the most robust to changes in 
slice thickness in agreement with other studies [48,52]. However, 
altering the slice thickness during analysis caused changes to shape 
features which could significantly impact analysis. Further normal-
isation methods may be of interest for future preclinical radiomics 

studies [53,54]. 
Studies have shown different segmentation volumes have a more 

significant effect on CT-derived features than MR- features [55]. 
[56–58] Roy et al showed that volume size had the largest influence on 
GLSZM features followed by GLCM, GLRLM and NGTDM features [28]. 
Some clinical analysis excludes tumours if they have a volume under a 
defined limit [56–58]. Segmentation volumes are typically smaller in 
preclinical models making them more challenging to delineate and 
contain fewer voxels or quantitative information for analysis. Our study 
is the first to evaluate the volume effect on preclinical radiomics outputs. 
Similar to clinical results, GLCM, GLSZM and NGTDM features were 
affected the most by changes in volume. As some features classes are 
more heavily influenced or dependent on volume to maximise reli-
ability, first order and GLDM features should be used for analysis, or 
similar segmentation volumes should be compared [28,56]. 

In clinical analysis, tumour volume has been shown to complement 
texture analysis of intra-tumoral heterogeneity [57]. Our results have 
determined 54 features highly correlated to changes in volume (Sup-
plementary Table 2). Removing features dependent on volume changes 
should therefore be excluded from studies assessing tumour 
heterogeneity. 

Phantoms are invaluable to radiation research to mimic tissue 

Fig. 4. Radiomics features are affected by changes in texture. Panel A: Textural phantom on imaging bed with labels for each textural insert (left). CBCT cross section 
of the 4 different cylindrical inserts and the mouse phantom (right). The average gray level intensity (original_firstorder_Mean) for each material was 1861 for air, 
2940 for solid water, 4138 for PVC, 2917 for acetal and 16,844 for the mouse phantom. Panel B: Boxplots of ICC outputs for wavelet radiomics features across 
textures at a segmentation volume of 42 mm3. Panel C: NGTDM feature values for air, solid water, PVC, acetal and the mouse phantom. 
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texture and density without repeated imaging dose to human or animal 
subjects [59]. Through the inclusion of a density phantom, similar to 
that of soft tissue (solid water) and bone (PVC), we demonstrated pre-
clinical radiomics can differentiate between density changes. NGTDM 
features were further analysed as understandable texture properties 
[60,61]. The creation of a dedicated preclinical radiomics phantom with 
differing densities and textural components may be more applicable for 
comparison of texture outputs with tissue equivalents. 

Whilst our study provides a thorough analysis of robust and reliable 
features for preclinical radiomics, it has several limitations. Shape fea-
tures was excluded from the repeatability and reproducibility analysis to 
remove user bias from manual contouring methods. Results from tumour 
models only provide proof of principle in extracting useful information 
from preclinical scans with additional analysis required to correlate 

features to biological parameters. This study is the first effort to optimise 
and standardise preclinical CBCT-radiomics analysis with further scope 
to compare radiomics outputs between research centres and across im-
aging modalities [62]. 

We present the first preclinical CBCT-radiomics workflow comparing 
changes to the repeatability and reproducibility of features across image 
acquisition, pre-processing parameters and segmentation sizes. Our re-
sults recommend that preclinical CBCT scans should be acquired at 
higher imaging energy (60 kV) and features extracted using a set bin 
width (25) and slice thickness (0.26 mm). Feasibility of extracting 
meaningful data was validated in a multi-texture phantom and pre-
clinical models of NSCLC. Our data demonstrates that preclinical 
radiomics analysis is a novel tool that has the potential to develop im-
aging biomarkers to support the wider application of radiomics. 

Fig. 5. Application of radiomics analysis to preclinical CBCT scans of lung tumour models (A549 and H460). Panel A: Example of pre-treatment CBCT scan acquired 
at 60 kV used for analysis. An example of the spherical segmentation can be visualised in red. Panel B: Venn diagram of highly correlated features overlapping 
between tumour cohorts. Panel C: Schematic to represent the 26 reliable radiomics features for A549 tumours (ICC > 0.8) subdivided by feature type and class. Panel 
D: The 89 reliable radiomics features for H460 tumours (ICC > 0.8) broken down by feature type and class. Panel E: Example of 4 repeatable and reproducible 
radiomics features which can be used to differentiate the two tumour cohorts. Significance reported as p **** < 0.0001. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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