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Abstract—Automatic modulation classification (AMC) is a
promising technology to realize intelligent wireless communi-
cations in the sixth generation (6G) wireless communication
networks. Recently, many data-and-knowledge dual-driven AMC
schemes have achieved high accuracy. However, most of these
schemes focus on generating additional prior knowledge or
features of blind signals, which consumes longer computation
time and ignores the interpretability of the model learning
process. To solve these problems, we propose a novel knowledge
graph (KG) driven AMC (KGAMC) scheme by training the
networks under the guidance of domain knowledge. A modulation
knowledge graph (MKG) with the knowledge of modulation
technical characteristics and application scenarios is constructed
and a relation-graph convolution network (RGCN) is designed
to extract knowledge of the MKG. This knowledge is utilized
to facilitate the signal features separation of the data-oriented
model by implementing a specialized feature aggregation method.
Simulation results demonstrate that KGAMC achieves supe-
rior classification performance compared to other benchmark
schemes, especially in the low signal-to-noise ratio (SNR) range.
Furthermore, the signal features of the high-order modulation
are more discriminative, thus reducing the confusion between
similar signals.

Index Terms—Automatic modulation classification, data-and-
knowledge dual-driven, knowledge graph, feature aggregation.

I. INTRODUCTION

AUTOMATIC modulation classification (AMC) plays an

important role in the intelligent wireless communications

and is one of the significant components of intelligent spec-

trum management [1]. In civilian dynamic spectrum access

technology, AMC can detect the modulation used by unautho-

rized users. In military spectrum management, AMC facilitates

the detection of abnormal users, signal analysis and the

realization of decryption, and detecting enemy signals. With

the in-depth study of 6G wireless communication networks,

dynamic and complex wireless environment and explosive

growth of wireless terminal devices impose new challenges

to the modulation recognition for 6G wireless communication
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systems, and thus raise urgent need to propose novel AMC

schemes [2].

Traditional AMC schemes, including the maximum like-

lihood method on hypothesis testing and the feature extrac-

tion method based on expert knowledge, are complex, time-

consuming, and cannot adapt to the dynamic wireless environ-

ment [3]. With the rapid development of artificial intelligence,

the deep learning (DL) methods are widely applied to improve

the recognition efficiency and robustness [4]. The existing DL

methods can be mainly classified into two categories, namely,

data-driven AMC and data-and-knowledge dual-driven AMC.

The data-driven AMC methods employ the DL networks to

learn signal feature extraction pattern from the distributions

of massive signal samples, such as deep neural networks

(DNN), convolutional neural network (CNN), recurrent neural

network (RNN) and so forth [3]. These networks are proved

to be effective in other classification tasks. Nevertheless, they

still encounter the data-dependency problem and lack of clas-

sification interpretability, which render classification results

unreliable especially in a complex electromagnetic environ-

ment. To address these challenges, the data-and-knowledge

dual-driven AMC methods combine the data features with

expert knowledge to offer more information about the data,

enhancing the performance and the interpretability of data-

driven networks. The related works are categorized as follows.

Data-driven AMC methods: O’Shea et al. [5] were the first

to use CNN as a data-driven DL model for signal feature

extraction to confirm the effectiveness of DL models in AMC.

A long short-term memory (LSTM) was later adopted by

the authors in [6] to obtain the sequence characteristics of

signals in the time domain and achieve high classification

accuracy. However, it requires a long training time due to its

recurrent structure. Both of the methods above only focus on

the spatial features of the signal waveform or the temporal

features of the signal sequence. To utilize both features of the

modulated signals, a combination of CNN and gated recurrent

unit (GRU) model named PET-CGDNN was proposed in [7],

which achieves impressive modulation classification accuracy.

Data-and-knowledge dual-driven AMC methods: The au-

thors in [8] utilized two pre-trained models with different

training objects, namely, visual model and attribution model.

The data features are extracted by the visual model and the



expert knowledge of the signal is learnt by the attribution

model. Then, the attribution knowledge was converted to the

data features space to aggregate visual vectors for enhancing

the AMC performance. To further enhance the performance of

the data-and-knowledge dual-driven AMC methods, a hybrid

knowledge-and-data dual-driven DL framework in [9] was

proposed. The authors provided each signal sample with its

own handcraft expert features, and designed a data-knowledge

features fusion mechanism with an attention layer. Further-

more, to improve the universality of the models, the authors

of [10] fine-tuned the distribution of data features in high-

dimensional vector space with expert knowledge to address

the open set recognition problem in modulation recognition.

However, the data-and-knowledge dual-driven AMC meth-

ods discussed above failed to reduce the computational com-

plexity due to the additional prior knowledge computation

required for each blind signal, and neglected the opportunity to

further boost the model performance by guiding the learning

of model with knowledge. To address these issues, we inves-

tigate a new application of knowledge within the data-and-

knowledge AMC scheme. Knowledge graph (KG) has been

demonstrated to be an effective approach for representing the

knowledge and the knowledge hierarchy. Recently in [11], KG

has been applied as a fundamental knowledge database in the

contrastive learning of chemical molecular property prediction,

showing extraordinary ability in enhancing the interpretability

and performance of the feature extractor.

Motivated by the KG potential in enhancing the per-

formance of other data-driven models, a novel knowledge

graph driven AMC (KGAMC) scheme is proposed in this

paper. It is the first time that a modulation KG (MKG)

is constructed to enhance the interpretability of the model

classification mechanism. Moreover, an improved relation-

graph convolution network (RGCN) with a residual connection

branch is designed to extract the semantic features. Based

on the constructed MKG and RGCN, a novel knowledge

graph driven framework for AMC is proposed to leverage the

semantic difference of knowledge, enabling the data-driven

model to learn a new feature extraction pattern. Simulation re-

sults exhibit compelling evidence of the superior classification

performance of our proposed KGAMC compared to other DL-

based AMC schemes, particularly at low SNR. Furthermore,

the signal features of the high-order modulations are more

discriminative, reducing the confusion between the similar

signals.

The remainder of this paper is organized as follows. The

preliminaries are presented in Section II. Section III presents

our proposed scheme. Section IV presents the simulation

results. Finally, the paper concludes with Section V.

II. PRELIMINARIES

A. Signal Model

Generally, in the modulation classification problem, the

received signal r(n) can be expressed as

r(n) = s(n) + w(n), n = 1, 2, ..., L, (1)

where L is the length of the discrete-time series, s(n) denotes

the n-th (complex) symbol, and w(n) is the additive white

Gaussian noise (AWGN) with zero mean and δ2w variance.

In DL-based AMC, the original discrete signals are typically

preprocessed into an I/Q vector, since those two parts usually

obey an identical distribution [12]. And the I/Q samples can

be expressed as a vector, given as

ri = Ii+Qi, (2a)

= �(ri) + j�(ri), (2b)

where Ii and Qi denote the in-phase and the quadrature parts

of the received signal, respectively, and j is the unit imaginary

number. �(ri) and �(ri) represent the operators of real and

imaginary parts of the signal, respectively. The raw data can

be expressed as

ri =

(
�[r(1), r(2), ..., r(L)]
�[r(1), r(2), ..., r(L)]

)
. (3)

B. Problem Formulation

In the knowledge graph driven AMC scheme, two feature

extractors fθ, gσ and a classifier hϕ are trained, given as

fθ : ri ∈ R
L×2 → yi ∈ R

d, (4a)

gσ : mj ∈ R
a×b → nj ∈ R

d, (4b)

hϕ : yi → ỹi, (4c)

where mj denotes the original j-th node feature of the KG,

yi and nj denote the i-th signal features and the j-th semantic

features, respectively, ỹi is the prediction result of ri, θ, σ, ϕ
are the parameters of each module, a and b are the number of

nodes in the KG and the dimension of initial node features.

The total loss l of this scheme can be calculated as

l =
∑
i

∑
j

L(yi,nj , ỹi, pi,j |θ, σ, ϕ), (5)

where L(·) denotes the loss function of our proposed scheme

which will be introduced, and pi,j denotes the probability

that the i-th signal belongs to the k-th modulation. The loss

function requires both signal and semantic features as inputs to

update the networks using the gradient backpropagation. Thus,

the knowledge encoded in the KG can impact the parameters

of data-driven models.

III. THE PROPOSED KGAMC SCHEME

The proposed KGAMC scheme is illustrated in Fig. 1. The

scheme has 3 parts with different functions. In Fig. 1(a), an

improved relation-graph convolution network (RGCN) [13]

is adopted to extract the semantic features of modulations

by passing knowledge along the KG edges. In Fig. 1(b), an

improved multi-scale network (MSNet) is utilized to extract

the discriminative I/Q signal features on multiple time scales.

In Fig. 1(c), a joint loss composed of the cross-entropy loss and

the metric loss aims to exploit the semantic feature differences

to aggregate the same signal features and separate the differ-

ent signal features to achieve high modulation classification

accuracy.
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Fig. 1. The scheme of KGAMC.

A. MKG Construction and Embedding
KG is a directed graph whose basic elements are the entity

nodes and the relationship edges. The basic facts described in

the KG are in the form of ordered triples, given as

T = {(h, r, t)|h, t ∈ E, r ∈ R} , (6)

where T is the set of triples, E is the set of entities, R is the

set of relations, h, t and r represent the head entity, tail entity,

and their relations, respectively [14].
In our proposed scheme, the MKG ought to expose the

differences and similarities of information among various

modulations in a comprehensive manner. Thus, the distinctive

semantic features can guide the learning and updating process

of the data-driven model, thereby enhancing the model inter-

pretability. To obtain high accuracy in AMC, we construct

a modulation-oriented radio KG, which combs the techni-

cal characteristics and application scenarios of modulations.

Moreover, we note that the variability of knowledge structures

has a vital impact on the embeddings of heterogeneous graphs.

Thus, the MKG knowledge hierarchy is intentionally designed

to ensure that the knowledge propagation over various edges

is differentiated. To be specific, the relation types in the MKG

are shown in Table I, which present the ontology of the

MKG. Subsequently, the relevant knowledge of modulations

is collected, and the MKG is constructed by connecting the

knowledge entities with relations to form triples based on the

ontology.
After constructing the MKG, the initial feature embeddings

of nodes that maintain the original semantic and structural

information of the MKG are of vital importance due to the

message-passing mechanism in the graph convolution process.

Therefore, in our proposed KGAMC framework, the feature

initialization of the nodes in the KG is mainly determined

TABLE I
RELATION TYPES OF MKG

Head Node Type Relation Tail Node Type

modulationType possesses modualtionMethod

base isBaseOf modualtionMethod

bandwidthLevel hasBandwidthIn modualtionMethod

situation adopts modualtionMethod

modulationTheory includes modulationType

carrierType isUsedIn modulationType

dataType isModulatedBy modulationType

by the following attributes, including the number of first-

order neighbors of the node, the number of the second-order

neighbors, the out-degree, the in-degree, the node type, and

the corresponding rows of the node in the adjacency matrix.

B. Models for Signal and Semantic Feature Extraction

The core of achieving high accuracy in modulation clas-

sification lies in realizing effective feature extraction and

differentiation on the blind signals. In the proposed framework,

semantic features are used to aggregate the same class of signal

features and separate the different classes of signal features.

Consequently, the basis of the proposed KGAMC scheme is

to extract stable and distinguishing semantic information on

the MKG and map different signal features to the positions of

corresponding modulations in the semantic space.

As shown in Fig. 1(a), an improved RGCN functioning as

the semantic feature extractor for the MKG is designed. The

improved RGCN consists of two HeteroGraphConv layers,

a residual connection branch, and a multi-relation projection

layer. Firstly, the whole-graph messages are gathered and ex-

tracted through two heterogeneous convolution layers, which



contain graph convolution units for different relationships. And

the GraphSAGE algorithm is utilized as the graph convo-

lution units to learn a function that generates embeddings

by sampling and aggregating features from a node local

neighborhoods [15], whose expression is

h
(l+1)
N(i) = aggregate

({
hl
j , ∀j ∈ N (i)

})
, (7a)

h
(l+1)
i = norm

(
σ
(
W · concat

(
hl
j , h

(l+1)
N(i)

)))
, (7b)

where hl
j is the feature of node j in the lth iteration, N(i)

is the neighbor node set of node i and W is the parameter

matrix. Secondly, a FC layer works as a residual connection

branch to avoid the oblivion of original information and to ac-

celerate the RGCN convergence. Finally, after accomplishing

the semantic features spreading by 2 RCGN layers, a multi-

relation projection layer consisting of several FC layers is used

to project the embeddings into semantic space that enhances

the quality of embeddings for the introduction of learnable

nonlinear transformation. Additionally, the activation function

used in the RGCN between the layers is the leaky rectified

linear function (Leaky-ReLU) to introduce non-linearity into

the RGCN and capture more information over the ReLU.

Simultaneously, an improved MSNet is employed as the

signal features extractor shown in Fig. 1(b), which is composed

of two multi-scale blocks, a global average pooling (GAP)

and a FC layer. To obtain various time-scale signal features,

two multi-scale blocks are adopted. The multi-scale blocks are

formed by a 3×1 convolution block with a stride of 2 to reduce

feature dimension and five convolution branches to extract

different level information. The convolution branch consists of

a 1×1 convolution block ahead and a convolution block with

customized kernel size in series. The kernel size is 1×1, 3×1,

5×1, 7×1 and 9×1, respectively. Through these branches, the

MSNet is capable to learn the similarities of the same modula-

tion class signals in different sequential lengths. Afterwards, a

global average pooling operation is used to merge multi-scale

features. GAP is beneficial for maintaining the original spatial

features and reducing the over-fitting problem since there is

no parameter to be optimized. Lastly, the fused features are

transferred into the semantic space by a FC layer as well,

enabling the MSNet to learn the projection relation between

the signal data space and semantic space.

Different from other data-and-knowledge dual-driven

schemes, the distinctive semantic differences in the MKG exist

between different modulations that create a larger decision

interval, since the knowledge output by the RGCN illumes the

learning direction of the data-oriented MSNet to map signal

features into semantic space. This implies that the RGCN

and the MSNet are trained in parallel only in the model

optimization phase. However, during the model reasoning

phase, only the well-trained MSNet is exploited to analyze

and classify the signals. This approach makes the KGAMC

scheme easier to deploy on miniaturized distributed devices.

C. Feature Aggregation Loss Function and Training Strategy

Unlike general classification tasks, where the models are

guided to output the correct classification probabilities only

by the cross-entropy loss function, in order to fully exploit the

knowledge, the KGAMC requires additional loss items for the

KG to guide the training process of the networks. Inspired by

the N-pair loss in the contrastive learning [16], a metric-based

loss function is proposed to exploit the semantic features of

knowledge to aggregate data features and reduce the inter-class

distance.

Fig. 1(c) describes the feature aggregation process. Specif-

ically, after the RGCN and the MSNet independently extract

and distinguish the features of the corresponding domains, the

cosine similarity ycik between each signal feature xi ∈ R
d and

each semantic feature xsk ∈ R
d are calculated. Then, ycik

activated by the softmax activation function is considered

as the predicted probability. Lastly, the cross-entropy loss

is deployed to measure the N-pair loss Lnpair between the

predicted probability and the true probability. The N-pair loss

Lnpair is given as

yc, i,k =
xixsk

|xi| |xsk| , (8a)

Lnpair = − 1

N

N∑
i=1

M∑
k=1

p(yc, i,k) log(softmax(yc, i,k)), (8b)

where M is the number of the modulations needed to be

classified, N is the batch size, and p(ycik) represents the true

probability belonging to the i-th signal feature of the k-th

modulation. The advantage of the cross-entropy form is to

gently propagate the gradient, and the cosine similarity reduces

the impact of amplitude differences in the same class.

Moreover, to enable the MSNet to learn the discriminative

signal features, the angles between different semantic features

should be larger than 90°. For instance, the traditional classifi-

cation space can be considered as a M -dimensional space, and

the one-label classification task is making each modulations’s

true label on different orthogonal axis, which is the one-hot

encoding. However, in the R
d semantic space of dimension d

(d > M ), it is capable to create larger decision space in the

hypersphere for M categories. Hence, the penalty term Lp is

added to the metric loss function to enlarge the angles, and it

can be expressed as

yp =
2

M(M − 1)

M∑
k=1

M∑
l=1

xslxsk

|xsl| |xsk| , l �= k, (9a)

Lp = max(0, yp), (9b)

where yp is the average cosine similarity between each seman-

tic features of the modulations. Besides, the signal features are

also input into a FC classifier and a cross-entropy loss Lce is

calculated. The joint loss of KGAMC L is formulated as

Lce = − 1

N

N∑
i=1

M∑
k=1

p(yik) log(softmax(yik)), (10a)

L = Lce + λ(Lnpair + Lp), (10b)



Fig. 2. The MKG constructed for RadioML 2016.10b.

where yik is the probability that the i-th signal belongs to the

k-th modulation, and the weight λ of the metric loss is used

to balance the learning rate of two different loss functions.

Through the metric loss, the models learn how to form a

semantic space of the MKG at once and how to derive the

discriminating signal features by projecting the signal features

to the semantic space. Notably, in order to adapt the learning

progress of the model and ensure that the semantic features in

the semantic space are as stable as anchors during the training

process, the learning rate of the parameters of the RGCN

should be several orders of magnitude lower relative to that of

MSNet. The stable semantic features of modulations accelerate

the aggregation of the same class signal features, making the

joint loss more efficient for KGAMC.

IV. SIMULATION RESULTS

In this section, the effectiveness of our proposed KGAMC

is verified by presenting simulation results obtained from

RadioML 2016.10b dataset [5], which is presented on the

website1. The dataset encompasses 8 digital and 2 analog

modulations spanning a SNR range from -20dB to 18dB

with a step of 2dB. Each type of modulations contains 6000

samples per SNR for a total of 1,200,000 signal samples. The

dimension of the sampled I/Q signals is 2×128. The dataset is

divided into the training set and testing set at a ratio of 8:2.

Based on the discussion in section III-A, the MKG should be

constructed with the general knowledge of modulations in the

dataset under the restriction of the ontology, and the overview

of the MKG constructed for this dataset is shown in Fig. 2.

The networks of KGAMC are built on a Linux server with

the PyTorch platform and Deep Graph Library (DGL) [17].

Since the HeteroGraphConv layers are comprised by the DGL

neural network modules, the MKG should be transformed

into a computable DGL heterography object first. The Adam

optimizer is adopted to update the models, and the weight

decay is 0.0005. The initial learning rate is set at 0.001

for the MSNet and 0.000001 for the RGCN, and a StepLR

scheduler is utilized to reduce 20% learning rate every 5

epochs. The number of training epochs is set as 80 with a

batch size N = 1024. For the hyperparameters involved in

1https://www.deepsig.ai/datasets/
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the experiment, we choose the feature dimension d = 128 and

the weight λ = 0.2 to obtain the best performance.

Sseveral crucial AMC models are implemented to provide a

benchmark comparison with our proposed KGAMC, including

MSNet-Att [8], MSNet [1], ResNet [12], LSTM [6], PET-

CGDNN [7]. Fig. 3 shows the classification accuracy of each

modulation in the testing set at varying SNRs. Additionally,

the legends in Fig. 3 highlight the overall average accuracy of

all modulations at all SNRs. It is evident that our proposed

KGAMC scheme is superior to other baseline models. The

KGAMC achieves the highest overall accuracy of 66.50%

compared to others, exceeding the MSNet-Att with second

highest accuracy by 2.02%, and it also outperforms other

compared methods in the SNR range of -20dB to 0dB. The

accuracy of an AMC model at -20dB for a classification task

with 10 modulations is typically around 10%, while KGAMC

can reach an accuracy rate of 16.33%. Simultaneously, the

KGAMC continues to demonstrate top-tier classification per-

formance for modulations with SNR exceeding 0dB that

demonstrates the effectiveness of our scheme. In this sense,

it confirms that it is beneficial to project the signal features

into the semantic space and the MKG provides MSNet with a

clearer insight into the characteristics of different modulations.

The considerable boost in classification precision at low SNR

holds a vital importance for AMC schemes to adapt to the

complex wireless communication environment.

In Fig. 4, a comparison of the confusion matrices at 0dB

of MSNet and the KGAMC is displayed. It is clear that

the misclassification between QPSK and 8PSK, QAM16 and

QAM64 is alleviated with the help of the MKG. Only the

AM-DSB and WBFM achieve the worst performance in both

schemes. As stated in [3], this challenge arises from the

relatively small observation window employed during the

dataset’s analog signal generation process, indicating that the

models have difficulty in using identical network parameters

to classify the digital and analog signals.
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Fig. 4. Comparison of confusion matrix at 0dB, (a) MSNet [1], and (b) Our
proposed KGAMC.
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Fig. 5. The t-SNE [18] visualization of signal features extracted by (a) MSNet
[1], and (b) Our proposed KGAMC.

To further evaluate the effectiveness of the metric loss and

the MKG in feature aggregation, we visualize the extracted

signal features at 0dB and 2dB by converting them into 2-

dimensional scatter map with t-SNE [18] operation in Fig. 5.

The scatter map generated by t-SNE operation illustrates

relative distance between the features. The signal features

of our proposed KGAMC are considerably more aggregated

within the inter-class and more separated between different

classes compared to the MSNet alone. The signal features

of high-order modulations including QPSK, 8PSK, QAM16

and QAM64 are more discriminative than those extracted by

MSNet. Hence, we can draw the conclusion that our proposed

KGAMC offers an attractive solution to mitigate the challenge

of high-order modulations in AMC.

V. CONCLUSION

A novel KG driven AMC scheme, named KGAMC, was

proposed by aggregating the signal features with semantic

features of the MKG. The MKG is constructed with the

fundamental knowledge of modulations. The differences be-

tween the modulations in knowledge domain were extracted

by the improved RGCN with a residual branch, and enhanced

the performance of MSNet in aggregating and separating the

signal features by adopting a designed metric loss, which

reduced the distance between signal features and semantic

features of the same modulation. Simulation results demon-

strated that our proposed KGAMC scheme was superior to

other benchmark schemes in terms of classification accuracy

and feature attribution, especially in the low SNR range. The

KG driven method reveals encouraging prospects in improving

the performance and interpretability of data-driven models,

and is worth an in-depth investigation on addressing other

AMC challenges.
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