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Abstract—Most existing works on dual-function radar-
communication (DFRC) systems mainly focus on active sensing,
but ignore passive sensing. To leverage multi-static sensing
capability, we explore integrated active and passive sensing
(IAPS) in DFRC systems to remedy sensing performance. The
multi-antenna base station (BS) is responsible for communication
and active sensing by transmitting signals to user equipments
while detecting a target according to echo signals. In contrast,
passive sensing is performed at the receive access points (RAPs).
Considering the limited capacity of backhaul links, the signals
received at the RAPs cannot be sent to the central controller
(CC) directly. Instead, a novel metric of result aggregation for
IAPS is proposed. Specifically, each RAP, as well as the BS,
makes decisions independently and sends its binary inference
results to the CC for result fusion via voting aggregation.
Then, aiming at minimizing the probability of error at the CC
under communication quality of service constraints, an algorithm
of power optimization is proposed. Finally, numerical results
validate the positive effect of dedicated sensing symbols and the
potential of the proposed IAPS scheme.

Index Terms—DFRC, integrated active and passive sensing,
fusion strategy, voting aggregation, power allocation

I. INTRODUCTION

Communication networks are evolving from 5G to 6G in
pursuit of a network that achieves global coverage, green in-
telligence, sensory interconnection, and synesthesia integration
[1]. Electromagnetic wave has the ability to both sense envi-
ronment and transmit data, but most existing works study and
treat these two techniques independently, resulting in a conflict
of wireless resources between sensing and communication sys-
tems. To improve frequency spectrum and hardware efficiency,
researchers are recently considering the function integration of
wireless communication and radar sensing, which promotes
the research on dual-function radar-communication (DFRC)
systems [2].

The primary idea behind DFRC systems is to share infras-
tructure and resources between communication and sensing
functions [3]. Recently, there have been some works [4–6]
on the design and performance analysis of DFRC systems.
However, only signals of mono-static sensing transceiver was
used in [4–6]. To improve sensing accuracy, [7–9] attempted
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to make use of multiple signals for sensing. In particular, [7]
proposed an uplink sensing scheme which jointly processed
all measurements from the spatial, temporal, and frequency
domains for perceptive mobile networks with asynchronous
transceivers. In [8], a base station (BS) working as a mono-
static radar receiver was used to estimate angles-of-arrival of
targets based on its downlink echo signals and uplink reflect-
ed signals from the users. To address the self-interference
problem of echo signal caused by the concurrent information
transmission, the authors of [9] proposed to select one BS as
a receiver to receive the echo signals while other BSs act as
transmitters.

Different from the above works which are based on mono-
static sensing, multi-static sensing has attracted growing in-
terests and is expected to bring various advantages over the
conventional mono-static sensing [10–12]. Multi-static sensing
can not only reduce the mono-static sensing uncertainties
caused by noise or incompleteness due to wireless fading and
interference [13], but also provide better sensing coverage and
capture richer sensing information [14]. Despite the above
progress, these previous works still suffer from many limita-
tions. On the one hand, although multi-static sensing provides
enhanced sensing capability, we note that most existing works
focus on active sensing in DFRC systems and ignore the
potential performance gain from passive sensing. In multi-
static sensing, we refer to the sensing operation based on echo
signals as active sensing, whereas the sensing operation based
on the received signals from other transmitters (such as BSs
and receive access points (RAPs)) as passive sensing. On the
other hand, direct transmission of multi-static sensing signals
to the central controller (CC) for centralized processing leads
to high communication overhead. However, the channel links
to the CC are often capacity-limited.

Motivated by the analysis above, we aim to improve sens-
ing performance by integrated active and passive sensing
(IAPS) in DFRC systems without sacrificing communication
performance. Specifically, the BS is responsible for commu-
nication as well as active sensing by transmitting signals to
user equipments (UEs) while simultaneously detecting targets
according to the echo signals. The RAPs do not transmit
signals to UEs but they can process reflected signals by the
target. Considering the fact that the capacity of backhaul links
between the CC and the RAPs are usually limited, it is hard for
each RAP to send its observation (i.e., reflected signals they
have received) directly to the CC. This practical consideration
poses a challenge on the integration of active and passive
sensing. The contributions of this work are summarized as
follows:
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Fig. 1. Illustration of IAPS in DFRC System.

1) We consider a DFRC system where a BS communicates
with UEs and senses a target simultaneously. Multiple
RAPs are connected to the CC via backhaul links. In
addition to active sensing signals received at the BS,
passive sensing signals received at the RAPs are also
exploited and then the IAPS scheme is proposed to
improve sensing performance.

2) Due to limited backhaul capacity, the BS and the RAPs
make decisions based on their observation independently
and send binary inference results to the CC for result
fusion. Upon receiving active and passive sensing binary
inference results, the CC performs voting aggregation
to determine whether the target exists. We convert the
probability of error minimization into a maximization
problem of joint detection probability and propose a
heuristic power optimization algorithm.

3) Finally, numerical simulations validate the performance
gain of the proposed IAPS scheme and the positive
effect of dedicated sensing symbols. It also reveals the
effectiveness of the proposed fusion schemes. Besides,
we find that the overall performance can be improved by
increasing the available sensing information from RAPs.

II. SYSTEM MODEL

A. System Setting

We consider a downlink DFRC system, as depicted in Fig.
1, where a BS equipped with M transmit antennas and N0

receive antennas is responsible for serving K single-antenna
UEs and detecting a single target simultaneously. There are
also R RAPs each with N1 receive antennas, which can be
used to receive the reflected signals for sensing. Here, we
refer to the sensing operation at the BS and RAPs as active
and passive sensing, respectively. Besides, a CC is introduced
to process both the active and passive sensing signals. For
notational convenience, we denote the set of UEs and the
set of RAPs by K = {1, 2, . . . ,K} and R = {1, 2, . . . , R},
respectively. The BS is indexed using 0 and we denote the set
of the BS and RAPs by R′ = R

⋃
{0}, Besides, the target is

indexed using 0 and the set of UEs and target are denoted by
K′ = K

⋃
{0}.

We define s0 ∈ CL×1 as the dedicated sensing symbol
vector and sk ∈ CL×1 as the communication symbol vector
of the k-th UE, respectively, with L being the length of the
communication time slots. It is assumed that the sensing and
communication symbols are independent of each other so that
1
LE(SSH) ≈ IK+1, where S = [s0, s1, ..., sK ]T , which holds
asymptotically for, e.g., white Gaussian signaling. Then, the
DFRC signal matrix is given as X = WS, where

W = [
√
p0w̃0,

√
p1w̃1, ...,

√
pKw̃K ] ∈ CM×(K+1), (1)

where pk and w̃k are the transmit power and the normalized
precoding vector for target and the k-th UE for all k ∈ K′,
respectively, with ‖w̃k‖2 = 1.

B. Communication Model

The received signal in the l-th communication symbol at
the k-th UE is given as

yk[l] = hHk

K∑
k′=1

√
pk′w̃k′sk′ [l]+

√
p0h

H
k w̃0s0[l]+nk[l], (2)

where nk[l] ∼ CN (0, σ2
n) denotes the additive Gaussian white

noise (AWGN) with zero mean and variance σ2
n and hk

denotes the channel between the k-th UE and the BS.
Then, the signal to interference plus noise ratio (SINR) of

the k-th UE is given by

γk =
pk|hHk w̃k|2∑K

k′=1,k′ 6=k pk′ |hHk w̃k′ |2 + p0|hHk w̃0|2 + σ2
n

. (3)

C. Sensing Model

The BS can sense the target through the echo signal, which
is given as

z0[l] = α0b0(θ)aH(θ)X[l] + n′0[l] ∈ CN0×1, (4)

where n′0[l] ∼ CN (0, σ2
nIN0

) denotes the AWGN vector, X[l]
represents the l-th column of X, α0 ∼ CN (0, σ2

rcs) is the
combined sensing channel gain that includes the path-loss
through target and the radar cross section (RCS) of the target
[15], and θ is the azimuth angle of target relative to the antenna
array at the BS. The transmit and receive steering vectors of
the BS are denoted by

a(·) =
[
1, ej2πδ sin(·), . . . , ej2π(M−1)δ sin(·)

]T ∈ CM×1, (5)

b0(·)=
[
1, ej2πδ sin(·), . . . , ej2π(N0−1)δ sin(·)

]T ∈ CN0×1, (6)

respectively, where δ is the spacing between adjacent antennas
normalized by wavelength.

When a target is present, the reflected sensing signal re-
ceived at the r-th RAP for passive sensing is given as

zr[l] = αrb1(ϕr)a
H(θ)X[l] +GrX[l] +n′r[l] ∈ CN1×1, (7)

where n′r[l] ∼ CN (0, σ2
nIN1

) denotes the AWGN vector,
αr ∼ CN (0, σ2

rcs) is the combined sensing channel gain,
ϕr is the azimuth angle of target relative to the r-th RAP,
Gr ∈ CN1×M represents the target-free channel between the



BS and the r-th RAP and is assumed to subject to complex
Gaussian distributions, and b1(·) is the steering vector of the
RAPs similar to b0(·).

D. Transmit Precoding Vectors

The transmit precoding is designed based on the regularized
zero-forcing (RZF) scheme, i.e., w̃k = w̄k/‖w̄k‖2 with w̄k =
(HHH + λIM )−1hk, where H = [h1,h2, ...,hK ] ∈ CM×K
and λ is the regularization parameter.

In order to eliminate the interference caused by sensing
symbols to the UEs, we employ the zero-forcing radar (ZFR)
precoder w̃0 = w̄0/‖w̄0‖2 [16], where w̄0 = (IM −
HHH)−1a(θ).

III. PROPOSED POWER OPTIMIZATION

The RAPs are connected to the CC through the backhaul
channel with the limited capacity. However, it is impractical
for the RAPs to send the sensing signal directly due to the
large amount of sensing signals. As an alternative solution,
each RAP first makes decisions independently and then send
binary inference results to the CC for voting aggregation, such
that only a few bits are needed to exchange. Moreover, since
the BS and RAPs are network infrastructure and belong to
network operators, it is reasonable to assume that the BS
and RAPs share a public set of random symbols. After the
CC selects the sensing and communication symbols from the
known symbol set, it sends the indices of the selected symbols
to the RAPs. Then, the RAPs determine a matching filter based
on the indices.

A. GLRT Detector

The binary hypothesis is described as{
H0 : zr[l] = GrX[l] + n′r[l],

H1 : zr[l] = αrBrX[l] + GrX[l] + n′r[l].
(8)

where B0 = b0(θ)aH(θ) and Br = b1(ϕr)a
H(θ). We use

the generalized likelihood ratio test (GLRT) detector to solve
the unknown parameters αr, ϕr and θ. In order to consider
the sufficient statistic of the received signal, a matching filter
(i.e., S) is adopted [17],

Z̃r=
1√
L

L∑
l=1

zr[l]S
H[l]=αr

√
LBrW+

1√
L

(GrX+n′r)S
H . (9)

Define z̃ as the vectorization of Z̃, which is given as

z̃r = vec(Z̃r) = αr
√
Lvec(BrW) + εr, (10)

where εr = 1√
L

vec
(
(GrX + n′r)S

H
)

is zero-mean, complex
Gaussian distributed, and has the following block covariance
matrix [18]:

Cr=

Qr+σ2
nIN1

0
· · ·

0 Qr+σ2
nIN1

∈CN1M×N1M , (11)

where Qr = GrŴGH
r .

Before using the GLRT detector, we apply a whitening filter
to εr. Specifically, considering that Cr is a positive-definite
Hermitian matrix, the Cherosky decomposition is adopted as
C−1r = UrU

H
r , where Ur is the lower triangle matrix. Then,

UH
r is used as the whitening filter in (8),{

H0 : z̃r = UH
r εr,

H1 : z̃r = αr
√
LUH

r d(ϕr, θ) + UH
r εr,

(12)

where d(ϕr, θ) = vec(BrW). Thus, the corresponding GLRT
detector is given by

∆r =
maxαr,ϕr,θ f(z̃r|αr, ϕr, θ,H1)

f(z̃r|H0)

H1

≷
H0

ζ, (13)

where f(z̃r|αr, ϕr, θ,H1) and f(z̃r|H0) are the joint proba-
bility density function under H1 and H0, respectively, and ζ
is the decision threshold. For given ϕr and θ, the maximum
likelihood estimation (MLE) of αr is obatined using the
complex least-squares estimation and given as

α̂r =
dH(ϕr, θ)C

−1
r z̃r

dH(ϕr, θ)C
−1
r d(ϕr, θ)

. (14)

By substituting (14) into (13), the MLE of [ϕr, θ] can be
expressed as

[ϕ̂r, θ̂] = arg max
ϕr,θ

∣∣dH(ϕr, θ)C
−1
r z̃r

∣∣2
dH(ϕr, θ)C

−1
r d(ϕr, θ)

. (15)

Hence, the GLRT test statistic is expressed as

ln(Λr) =

∣∣ tr(Z̃rWHB̂H
r Q̃−1r )

∣∣2
tr(B̂rŴB̂HQ̃−1r )

H1

≷
H0

ln(ζ), (16)

where Q̃r = Qr + σ2
nIN1

. The asymptotic distribution is
expressed as

ln(Λr) ∼
{
H1 : X 2

2 (ρr),
H0 : X 2

2 ,
(17)

where X 2
2 and X 2

2 (ρr) are central and non-central chi-squared
distributions with two Degrees of Freedom, respectively, and
the non-centrality parameter ρr of the r-th RAP is given as

ρr = E
(
|αr|2L vecH(BrW)C−1r vec(BrW)

)
= σ2

rcsL tr
(
BrŴBH

r (Qr + σ2
nIN1

)−1
)
. (18)

Besides, the non-centrality parameter ρ0 of the BS is given as

ρ0 = σ2
rcsL tr

(
B0ŴBH

0 (σ2
nIN1

)−1
)
. (19)

When the GLRT is used, the threshold ζ can be expressed as
ζ = F−1X 2

2
(1−PFA), and the detection probability PD is given

as PD = 1 − FX 2
2 (ρr)

(ζ), where FX 2
2 (ρr)

is the non-central
chi-square Cumulative Distribution Function [19].

B. Voting Aggregation

The CC performs voting aggregation when receiving the
binary inference results from the RAPs and BS, which can be



modeled by {
H0 : No target,
H1 : Exist target.

(20)

Then the voting rule is expressed as{
H0 :

∑R
r=0Dr ≤ κ,

H1 :
∑R
r=0Dr ≥ κ,

(21)

where Dr, r ∈ R′ is the binary inference result, with Dr = 0
standing for no target and Dr = 1 standing for an existing
target, κ represents the voting threshold. The probability of
error at the CC is [20]

Υ(κ, P̂D) =
1

2
+

1

2

κ−1∑
i=0

(
R+ 1

i

)
×[

(P̂D)i(1 − P̂D)R+1−i − (P̂FA)i(1 − P̂FA)R+1−i], (22)

where P̂D = 1
R+1

∑R
r=0 PDr and P̂FA = 1

R+1

∑R
r=0 PFAr .

PDr and PFAr ,r ∈ R′ represent the detection probability and
the false alarm probability, respectively, and(

R+ 1

i

)
=

(R+ 1)!

i!(R+ 1− i)!
. (23)

The optimal κ is obtained as [20]

κ̃ = min

(
R+ 1,

⌈
R+ 1

1 + β(P̂D)

⌉)
, (24)

where

β(P̂D) =
ln P̂FA

P̂D

ln 1−P̂D

1−P̂FA

. (25)

C. Problem Formulation
We aim to minimize the probability of error at the CC, but

the expression of Υ(κ, P̂D), as shown in (22), is quite complex.
To handle this issue, we first introduce the following lemmas.

Lemma 1: Given P̂D ∈ (0, 1), β(P̂D) decreases as P̂D

increases.
Proof: The proof is based on the first and second deriva-

tives and is omitted here due to the limited space. �
Lemma 2: Given P̂D ∈ (0, 1), Υ(κ̃, P̂D) decreases as P̂D

increases.
Proof: Based on Lemma 1,

⌈
R+1

1+β(P̂D)

⌉
follows a step-

wise ascent as P̂D increases. We first define P̂ κ̃,min
D and

P̂ κ̃,max
D , which satisfy

P̂ κ̃,min
D =arg min

P̂D

[
min

(
R+ 1,

⌈
R+ 1

1 + β(P̂D)

⌉)
= κ̃

]
, (26)

and

P̂ κ̃,max
D =arg max

P̂D

[
min

(
R+1,

⌈
R+ 1

1 + β(P̂D)

⌉)
= κ̃

]
, (27)

respectively. κ is a constant and equal to κ̃ when P̂D ∈
[P̂

˜κ,min
D , P̂ ˜κ,max

D ]. We will prove Lemma 2 in two step-
s. Specifically, we first prove that the probability of error
Υ
(
κ, P̂D

)
at the CC decreases as P̂D increases when P̂ κ̃D ∈

(P̂ κ̃Dmin
, P̂ κ̃Dmax

]. In such a case, κ̃ is fixed and equal to κ̃ and
Υ(κ, P̂D) can be simplified as

Υ1(P̂D) =
1

2

κ̃−1∑
i=0

(
R+ 1

i

)
(P̂D)i(1− P̂D)R+1−i, (28)

which decreases as P̂D increases. This is because the CDF of
the binomial distribution Υ1(P̂D) can be represented in terms
of the regularized incomplete beta function [21]:

Υ(P̂D)=(R+ 2− κ̃)
(
R+ 1

i

)∫ 1−P̂D

0

tR+1−κ̃(1− t)κ̃−1dt,

whose derivative meets the following constraint,

dΥ(P̂D)

dP̂D

=−(R+ 2 − κ̃)

(
R+ 1

i

)
(1 − P̂D)R+1−κ̃(P̂D)κ̃−1 ≤ 0.

Secondly, we prove that the probability of error Υ(κ, P̂D) at
the CC decreases when κ varies from κ̃ to κ̃ + 1 due to the
increase of P̂D. According to (26) and (27), we have

Υ(κ̃+ 1,P̂ κ̃+1,min
D ) − Υ(κ̃, P̂ κ̃,max

D )

≤

(
R+ 1

κ̃

)[
(P̂ κ̃,max

D )κ̃(1 − P̂ κ̃,max
D )R+1−κ̃

− (P̂FA)κ̃(1 − P̂FA)R+1−κ̃], (29)

and

κ̃ =
R+ 1

1 + β(P̂ κ̃,max
D )

=
(R+ 1) ln 1−P̂FA

1−P̂ κ̃,max
D

ln
P̂
κ̃,max
D (1−P̂FA)

P̂FA(1−P̂ κ̃,max
D )

. (30)

Then, substituting (30) into (29), we obtain

Υ(κ̃+ 1, P̂ κ̃,max
D )−Υ(κ̃, P̂ κ̃,max

D ) = 0 (31)

which suggests that Υ(κ, P̂D) decreases when κ varies from
κ̃ to κ̃+ 1. Finally, we can conclude that Υ(κ, P̂D) decreases
as P̂D increases in the whole feasible region P̂D ∈ (0, 1). �

Based on Lemma 2, the minimization of the probability of
error at the CC is equivalent to the maximization of P̂D. Thus,
the optimization problem is formulated as

P1 : max
p≥0

P̂D

s.t. γk ≥ Γ, k ∈ K,
||p||1 = Pmax,

which is a non-convex problem. Before giving the solution to
problem P1, we first introduce the following lemma.

Lemma 3: When p0 gradually increases and satisfies the
transmit power constraint ||p||1 = Pmax, P̂D gradually in-
creases.

Proof: Since P̂D is the average of PDr and PDr is a
monotonically increasing function with respect to ρr, we just
need to prove that ρr increases as p0 increases. It is observed
that tr(Qr + σ2

nIN1) is a constant associated with Pmax, and



Fig. 2. The trade-off between the step size ∆p and the time cost or the
sensing performance.

we also have

tr(BrŴBH
r ) = tr

(
Ŵa(θ)bH1 (ϕr)b1(ϕr)a

H(θ)
)

' tr
(
Ŵa(θ)aH(θ)

)
. (32)

where ' represents the same trend with respect to the variation
of p0 on the left-hand and right-hand sides.

Then,

ρr'tr

(
BrŴBH

r

)
=tr

(
diag(p)W̃Ha(θ)aH(θ)W̃

)
. (33)

Obviously, w̃H
0 a(θ) > w̃H

i a(θ) due to the ZFR precoder.
Thus, ρr increases as p0 increases. �

Based on Lemma 3, we propose a heuristic algorithm and
summarize the proposed algorithm in Algorithm 1. Specifical-
ly, the gap between the performance achieved by the heuristic
algorithms and the optimal (upper bound) performance is
mainly caused by ∆p. When ∆p is small enough, the heuristic
algorithm performance is equal to the optimal performance but
the running time is very long. Fig. 2 shows that the trade-off
between the step size ∆p and the time cost or the sensing
performance. Taking into account the time cost and sensing
performance, we set ∆p to 0.01.

Algorithm 1 Proposed heuristic algorithm of power allocation.
1: Initialize p′0 = Pmax, the step size ∆p, and Psum = p′0.
2: while Psum >= Pmax do
3: Set p0 = p′0 −∆p.
4: Find solution to the following problem using semi-

definite programming (SDP), i.e.,

PA :

{
minp′ ‖p‖1
s.t. γk ≥ Γ, k ∈ K.

5: Set Psum = ‖p‖1.
6: Set p′0 = p0.
7: end while
8: Output: p.

D. Complexity Analysis

Note that the complexity of Algorithm 1 is mainly deter-
mined by finding solution to PA using SDP, which needs to be
done by each iteration. The corresponding SDP problem has K
nonnegative variables and K linear inequality constraints. For
a feasible instance of PA, interior point methods can generate
an µ-optimal solution in O(

√
K log(1/µ)) iterations, each

requiring at most O(K3) arithmetic operations. Then we set
the complexity of solving PA as O(D). Hence, the complexity
for Algorithm 1 is O(DiterD), where Diter is the number of
iterations, which is known to have the order of magnitude of
O(log(Pmax/∆p)).

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed DFRC system,
we perform numerical simulations in a 500 m × 500 m region
with a BS, R = 10 RAPs, and K = 8 UEs in the suburb area.
We assume that the target is dynamic, in which the velocity
of the target is low compared to the total sensing duration.
However, in order to facilitate simulation, the locations of the
RAPs, UEs, and BS are randomly generated and the target
is in the center of the region. The BS and RAPs each is
equipped with N0 = N1 = 20 receive antennas. Besides, the
BS is equipped with M = 16 transmit antennas [10]. The
channel model is generated using hk =

√
mkh̃k ∈ CM×1,

where h̃k ∼ CN (0, IM ) is the small-scale fading and mk =
128.1 + 37.6 log10(d) [dB] represents the path loss between
the k-th UE and BS with d being the distance in kilometers.
The target-free channel G is generated using the same channel
model. The combined sensing channel gain of target is using
the Swerling-I model. The symbol number is set as L = 30
and the detection threshold is determined by the false alarm
probability PFA = 10−5. The SINR threshold is set as Γ = 15
dB.

Before presenting the numerical results, we first introduce
the following baseline schemes for comparison. Firstly, we
find the solution to problem P1 considering the cases with
and without dedicated sensing symbols (marked as “with
s0” and “w/o s0”, respectively). Then, only-active and only-
passive sensing schemes (marked as “active” and “passive”,
respectively) are introduced.

We evaluate these schemes using average detection prob-
ability, which is calculated by averaging over 1000 random
samples. Fig. 3 shows that the average detection probability
increases with the increase of σ2

rcs. It is observed that the
proposed IAPS scheme always achieves a higher average
detection probability than that of the only-active and only-
passive sensing schemes. We also observe that compared to the
cases without dedicated sensing symbols, the average detection
probability of difference schemes can be improved by using
dedicated sensing symbols, which validates the importance of
dedicated sensing symbols. Moreover, the performance of the
only-passive sensing scheme is much better than that of the
only-active sensing scheme. This is because R binary inference
results can be utilized in the only-passive sensing scheme.



Fig. 3. The average detection probability vs. σ2
rcs, Pmax = 30 dBm.
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Fig. 4. The average detection probability vs. the number of RAPs, Pmax =
30 dBm.

However, only one binary inference result is utilized in the
only-active sensing scheme.

Fig. 4 shows the average detection probability with respect
to the number of RAPs with different σ2

rcs values. The increase
of the RAP number can reduce the probability of misjudgment
after the voting aggregation. We note that the average detection
probability increases as the number of the RAPs increases
when σ2

rcs ≥ −19 dB, but the curve with σ2
rcs = −18dB

rises faster than the curve with σ2
rcs = −19dB. In addition,

we also find that when σ2
rcs = −20dB, the average detection

probability is almost unchanged. This is because the voting
aggregation at the CC highly depends on the binary inference
results of each single RAP and the detection probability of
each single RAP relies on σ2

rcs.

V. CONCLUSION

In this paper, we considered a DFRC systems where a
multi-antenna BS is responsible for communication and active
sensing and multiple RAPs perform passive sensing. Due to
limited backhaul capacity, a novel metric of result aggregation
for IAPS is proposed. In particular, the BS and RAPs make
decisions independently and send binary inference results to
the CC for result fusion via voting aggregation. We then
formulated optimization problem to minimize the probability
of error at the CC under communication QoS constraints and
proposed a heuristic power optimization algorithm. Finally,
numerical results validated the positive effect of dedicated

sensing symbols and the performance gain of the proposed
IAPS scheme.
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