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Highlights
Artificial intelligence (AI)-guided methods
are transforming the speed and scale
with which image segmentation and
classification tasks can be managed in
cell biology.

Deep learning (DL)-guided tools to seg-
ment and classify a variety of cells and
subcellular structures are being rapidly
developed, opening the need for stan-
dards and repositories.
The growth of artificial intelligence (AI) has led to an increase in the adoption of
computer vision and deep learning (DL) techniques for the evaluation of micros-
copy images and movies. This adoption has not only addressed hurdles in quan-
titative analysis of dynamic cell biological processes but has also started to
support advances in drug development, precision medicine, and genome–
phenome mapping. We survey existing AI-based techniques and tools, as well
as open-source datasets, with a specific focus on the computational tasks of seg-
mentation, classification, and tracking of cellular and subcellular structures and
dynamics. We summarise long-standing challenges in microscopy video analysis
from a computational perspective and review emerging research frontiers and in-
novative applications for DL-guided automation in cell dynamics research.
Despite DL-guided advances in still-
image analysis, tracking objects in mi-
croscopy movies remains an area of
open development owing to spatial and
temporal discontinuities.

DL methods offer new opportunities to
significantly expand genotype–pheno-
type maps, genetic variant analysis, and
drug development and discovery.
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Automated analysis of cell dynamics
Advances in microscopy have influenced a range of areas in cell biology and biomedical research.
Microscopy advances supported by automated or semi-automated image analysis are being
transformed by DL approaches. DL methods for the analysis and restoration of microscopy
image datasets have been reviewed recently [1,2], but there is no comprehensive survey of the
status of AI methods for tracking or predicting the trajectories of dynamic structures in micros-
copy movies. Time-lapse movies of dynamic cell biological processes are particularly a unique
case because of the temporal discontinuity in image acquisition which is being offset through
high-speed and volumetric imaging [3–5]. Machine learning or deep learning (ML/DL) methodol-
ogies that demonstrate superior performance in most image analysis tasks are yet to be adapted
for movie analysis tasks.

Implementing DL approaches involves data annotation (see Glossary), denoising, selection and
training of a chosen neural network, evaluating and optimising the DL model, and assessment
of outcomes – all dependent on specific imaging and analysis tasks. For a practical guide on how
to build DL models for image analysis, we refer readers to a review focusing on bioimage analysis
workflows [6].

In this review we present an in-depth survey of current AI-based microscopy image and movie
analysis from the perspective of three key computational tasks: object segmentation, classifica-
tion, and tracking. We contrast conventional image analysis approaches against DL techniques
(neural network architectures) that have been successfully used in cell biology. To benefit future
DL tool development, we collate a list of existing open-source datasets. Throughout we discuss
accurate and efficient methods of data preparation for use in DL applications. Finally, we highlight
key challenges and limitations of current DL applications in analysing dynamic cell biologymovies,
and identify opportunities for future DL-guided research developments.
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Glossary
Data annotation: the process of
adding attributes to training data and
labelling them such that a DL model can
learn what predictions it is expected to
make.
Edge-based segmentation: a
conventional segmentation approach
that aims to first detect the contours of
the specific object and then fill in the
contours for segmentation.
Instance classification: usually
consists of object detection, localising their
position within the image, and classifying
them into predefined categories.
Long short-term memory (LSTM): a
type of recurrent neural network (RNN)
architecture that was designed to
overcome the problem of vanishing and
exploding gradients faced by standard
RNNs. LSTM is suited to tasks involving
sequenceswith long-term dependencies,
such as time-series prediction, natural
language processing, and speech
recognition.
Neural network: a densely
interconnected group of nodes. Each
node connects to several nodes in the
layer beneath it, from which it receives
data (e.g., training data in the last layer),
and several nodes in the layer above it,
to which it outputs data. Incoming
connections are assignedweights. Active
nodes multiply their respective weights
and pass each forward if it exceeds a
threshold. Training involves adjusting
weights and thresholds are adjusted to
produce similar outputs for data with the
same labels. Examples include
feedforward neural networks (FNNs),
convolutional neural networks (CNNs),
and recurrent neural networks (RNNs).
Segmentation: the process of dividing
an image into multiple regions or
segments where each corresponds to a
specific object or area of interest.
Single-shot detector (SSD): an
object-detection method that
simultaneously predicts multiple
AI-guided advances in image analysis
We open with a brief illustration of successes in microscopy image analysis that have been en-
abled by ML/DLmethods, and list how these can set new trends in cell biology. First, we can analyse
large image datasets in a context-free and efficient way. This is ideal for large time-lapse videos or
genome-wide imaging screens. Second, we are automating computational tasks, such as, image
segmentation, classification, tracking, and transformation which support high-fidelity spatiotemporal
studies of cellular processes. Third, we are able to recognise complex structures by recovering hidden
patterns among knownmorphological features for hypothesis building and better data interpretation.
Fourth, we can better manage noise and variation. In particular, handling morphological and intensity
variations can bolster data reproducibility and reduce the chances of human biases or errors.

Table 1 lists themost widely used DL techniques for microscopy image analysis. Apart from these
well-established techniques, a reusable and adaptable image segmentation architecture utilising
a zero-shot learning approach, the Segment Anything Model (SAM) has been recently pro-
posed by Meta AI [7]. Its performance appears to be competitive with or even superior to earlier
fully supervised trained models and has been applied in medical imaging [8] and digital pathology
[9]. SAM is unexplored for cellular or subcellular segmentation tasks, but it encounters challenges
with intricate subcellular structures [10]. Evidently, SAM has the ability to simplify segmentation,
but it has not yet been tested in densely packed microscopy images. For instance, electron mi-
croscopy (EM) images displaying crowded organelles may pose challenges to achieving accurate
segmentation without trained datasets of individual organelles.

AI-guided methods outperform conventional image analysis tools
DL neural networks are more effective than traditional computer vision techniques. They learn from
large-scale datasets and have the capacity to extract high-level features without heavy reliance on
domain knowledge for feature extraction [11]. Although many DL tools have focused on
segmenting nuclei and whole cells labelled with fluorescent markers, some specialised DL tools
have been developed to segment distinct organelles such as the Golgi apparatus, mitochondria,
and endoplasmic reticulum from EM data (Table 2). However, DL tools that can both segment
and track dynamic subcellular structures in time-lapse fluorescent movies are currently limited. Mi-
tochondria [12], microtubule ends [13], and mitotic spindles [14] are among the few dynamically
changing structures for which automated analysis tools are available, but DL has only been used
in the last case. Popular DL-based tools include U-Net [15,16], StarDist [17,18], and Cellpose
[19,20]. Because most DL-based solutions are data-driven, there are no standards to inform biol-
ogists which model is most suitable for their own dataset and specific computational tasks. As a
result, most people veer towards integrated platforms such as Fiji (through plugins) [21], CellProfiler
[22], QuPath [23], ZEISS arivis Cloud (formerly APEER) [24], and ZeroCostDL4Mic [25].We discuss
below the application of DL to cellular image and movie analysis via segmentation, classification,
and tracking, and contrast it against conventional non-DL methods.
Table 1. Deep learning (DL) techniques for cell biology

DL techniques Applications in microscopy data analysis

Convolutional neural networks
[88]

Segmentation [118], classification [119–121], tracking [76]

Recurrent neural networks [56] Cell tracking [76], segmentation [122], cell-cycle analysis [123,124]

U-Net [15] Segmentation [15,16,82,125], denoising [126], feature extraction [127]

Generative adversarial
networks [128]

Image denoising [129,130], data augmentation [81], virtual staining of biological
samples [131]

Graph neural networks [132] Cell tracking [1]
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bounding boxes and class scores for
each box in a single pass. Unlike YOLO,
SSD operates on multiple feature maps
with different resolutions to handle
objects of various sizes.
Thresholding segmentation: a
conventional segmentation method
that chooses a threshold based on the
intensity histogram for segmenting an
object.
Youonly look once (YOLO): an object
detection method with the key idea of
applying a single neural network to the
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full image, which then divides the image
into regions and predicts bounding
boxes and probabilities for each region.
The high speed and accuracy of YOLO
make it suitable for real-time tracking of
objects.
Zero-shot learning: a remarkable
machine learning/deep learning (ML/DL)
method which refers to recognising new
unseen objects; it can therefore be
applied to new image distributions and
tasks.
Segmentation
Two types of image segmentation, semantic and instance, serve different purposes. Semantic
segmentation aims to classify individual pixels within an image into specific classes (Figure 1A,
top). It groups objects of a class together, but lacks the ability to differentiate between individual
objects such as overlapping nuclei. However, this approach effectively separates membrane out-
lines from intra- or extracellular space. Instance segmentation differentiates objects of the same
class (Figure 1A, bottom). For example, Cellpose [19,20] and SAM [7] can separate overlapping
nuclear objects, and treat them as separate entities, thus allowing the differentiation of individual
nuclei even when they overlap. Recently, a new type of learning model called panoptic segmen-
tation has been introduced which integrates instance and semantic segmentation. It identifies in-
dividual objects and labels each pixel with what it represents (a semantic category) [26].

Conventional segmentation methods include thresholding segmentation, edge-based algo-
rithms, and region-based segmentation [27]. Edge-based segmentation methods such as
Canny and Sobel edge-detectors followed by contour filling [27] perform better than thresholding,
but can produce imperfect contours. Region-based segmentation, watershed segmentation in par-
ticular, is widely used in cell biology [27]. Conventional segmentationmethods are often used for au-
tomated annotation of large datasets, followed by manual correction to save annotation time [14].

DL methods not only surpass conventional techniques in the segmentation of subcellular struc-
tures in microscopy images but also exhibit a remarkable generalisation capacity, and accommo-
date diverse imaging conditions, fluorescent markers or proteins, and cell types [14,28,29]. This
has led to the creation of several freely available tools that provide pretrainedmodels for biologists
to segment and subsequently analyse microscopy datasets in a quantitative manner (Table 2).

Classification
Classification refers to assigning text labels to images and is frequently used in cell biology and
digital pathology. Instance classification focuses on recognising and categorising individual
objects within an image rather than classifying the image as a whole. DL techniques are used
to identify and classify individual cells, nuclei or subcellular structures (Figure 1B), as well as to
provide quantitative information about cell populations and their distribution [30,31]. Cell type
and subcellular structure identification are other applications of instance classification, and have
allowed robust quantitative studies of cell function [32], cell interaction [33], phenotype ('yes' or
'no' prediction) [34], and spatial patterns and protein localisation in fluorescence images
[35,36]. Classification has also been used for large-scale phenotypic profiling of small molecules
by analysing cellular responses to drug treatments at the single-cell level [37] to evaluate drug ef-
ficacy, mechanism of action, and potential side effects.

Manual annotations by cell biology experts are robust but time-consuming and expensive. To off-
set this cost, active learning [38] has been proposed. Active learning is a powerful human-in-the-
loop process in DL. It involves annotating manually a subset of (not all) relevant objects in images,
training with this subset, and generating initial segmentation and classification masks for all in-
stances including unannotated ones [39]. Then, the autogenerated initial segmentation and clas-
sification can be reviewed and manually corrected, which then serve as annotations of the next
training iteration, thus making the human-in-the-loop process a cost-efficient approach [14,19].

Unlike DL methods used for image classification, traditional ML-based classifiers are humanly
interpretable, which is important for failure analysis and model improvement [40]. Although the
DL framework has higher recognition accuracy on large sample datasets, the traditional ML ap-
proach (e.g., support vector machine, SVM) is thought to be a better solution for small datasets
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 3
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Table 2. Deep learning-based tools for subcellular organelle segmentation

Tool (Refs) Subcellular structuresa DL architecture Dynamics
tracking

Strengths in user experience Source

U-Netb

[15,16]
Fluorescent and label-free cell
membrane, fluorescent nuclei,
and EM neurites

CNN No Documentation (application),
tutorials (Jupyter notebook)

https://lmb.informatik.uni-freiburg.de/
people/ronneber/u-net/

Cellposeb

[19,20]
Fluorescent cell membrane
and nuclei

U-Net No Documentation (installation and
application), tutorials (Jupyter
notebook), integrated through the
ZEISS arivis Cloud (formerly
APEER) [24]

https://github.com/mouseland/
cellpose

Stardist (3D)b

[17,18]
Fluorescent and H&E-stained
nuclei

U-Net No Documentation (installation and
application), tutorials (Jupyter
notebook), integrated plugin
(ImageJ/Fiji [21], QuPath [23])

https://github.com/stardist/stardist

ASEM
[133]

EM Golgi apparatus,
mitochondria, nuclear pore
complexes, caveolae,
endoplasmic reticulum,
clathrin-coated pits, vesicles

3D U-Net No Documentation (installation and
application)

https://github.com/kirchhausenlab/
incasem

MitoSegNetb

[29]
Fluorescent mitochondria U-Net No Documentation (application), GUI

(multiple operation systems)
https://github.com/MitoSegNet/
MitoS-segmentation-tool

SpinXa

[14]
Fluorescent mitotic spindle,
label-free cell cortex

Mask R-CNN Yes Documentation (application),
integrated through the ZEISS arivis
Cloud (formerly APEER) [24]

https://github.com/Draviam-lab
/spinx_local

Multicut
[134]

EM neural membrane U-Net No Documentation (installation),
tutorials (Jupyter notebook)

https://github.com/ilastik/nature_
methods_multicut_pipeline

nucleAIzer
[135]

Fluorescent and H&E-stained
nuclei

Mask R-CNN,
U-Net

No Documentation (installation and
application), tutorials (shell scripts)

https://github.com/spreka/
biomagdsb

DenoiSeg
[136]

Fluorescent cell membrane
and nuclei

U-Net No Documentation (installation),
tutorials (Jupyter notebook)

https://github.com/juglab/DenoiSeg

InstantDL
[137]

Fluorescent, H&E-stained,
and label-free nuclei

U-Net, Mask
R-CNN

No Documentation (installation and
applications), dockerised

https://github.com/marrlab/
InstantDL

DeepCell
[73,138]

Fluorescent nuclei and cell
membrane

ResNet50 Yes Documentation (application),
tutorials (script), dockerised

https://github.com/vanvalenlab/
deepcell-applications

SplineDist
[139]

Fluorescent and H&E-stained
nuclei

SartDist (U-Net) No Tutorials (Jupyter notebook) https://github.com/uhlmanngroup/
splinedist

CDeep3M
[140]

XRM, ET, fluorescent and
SBEM nuclei, SBEM
synaptic vesicles, mitochondria
and membranes

DeepEM3D-Net
(dense CNN)

No Documentation (installation),
dockerised, implemented through
Amazon Web Services

https://github.com/CRBS/cdeep3m

CellSeg
[141]

Fluorescent nuclei and cell
membrane

Mask R-CNN No Tutorials (Jupyter notebook) https://github.com/michaellee1/
CellSeg

EmbedSeg
[142]

Fluorescent cell membrane
and nuclei

Branched
ERF-Net (3D)

No Documentation (installation),
datasets provided for
reproducibility

https://github.com/juglab/
EmbedSeg

aAbbreviations: EM, electron microscopy; ET, electron tomography; H&E, haematoxylin–eosin; SBEM, serial block-face electron microscopy; XRM, X-ray microscopy.
bTools with comprehensive documentation and tutorials that can be accessed independently of the source code.
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[41]. Hybrid approaches that combine ML and DL techniques are therefore being used for high
accuracy and precision for cell type classification problems [42] as a step towards explainable AI.

Tracking
Tracking is the process of identifying and linking the movement of specific objects over time in a
series of time-lapse images or a movie. Tracking methods in cell biology are primarily DL-
4 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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Figure 1. Deep learning (DL)-guided methods to analyse still images and time-lapse movies. (A) Image
segmentation tasks, semantic and instance, that serve different purposes. Semantic (top) treats multiple objects within a
single category (cell or nucleus) as one entity, whereas instance (bottom) identifies individual objects within a category. (B)
Image classification tasks to categorise objects (cells or nuclei) within an image. This task requires a predefined set of
classes (e.g., organelle names). The output is a single label from the set of classes. (C) Object tracking where segmented
and classified objects are monitored through time to follow changes in object morphology or intensity. The cartoon shows
an example of vesicle tracking through time. Vesicle numbers indicate the complex nomenclature that is necessary to
manage dynamic changes in morphology and interactions during vesicle fission, fusion, or growth events. Figure created
with BioRender (https://biorender.com/).
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independent, unlike real-world scenarios such as autonomous driving where DL-based tracking
is being widely used [43–47]. From a computational perspective, the task of tracking consists of
detection-based tracking (DBT) and detection-free tracking (DFT) [48]. DBT, also commonly re-
ferred to as tracking-by-detection, usually consists of two main steps: detection of the objects
of interest, and linking their positions and properties across consecutive frames. On the other
hand, DFT requires manual initialisation of a fixed number of objects in the first frame and then
localising (location-identification) these objects in the subsequent frames. DBT is widely used
compared to DFT because objects can be newly discovered or transiently lost through time in
most scenarios, and DFT cannot deal with such cases [48].

Inmany tracking studies, DL is used in the detection step as in the R-CNN series [49–51], you only
look once (YOLO) [52–54] and single-shot detector (SSD) [55]. DL can also be used for trajec-
tory or motion prediction to support tracking. Most DL-based trajectory predictions use the long
short-term memory (LSTM) technique [56] which has extensively progressed by predicting
the coordinates of selected objects in the upcoming time frame [57–60]. Some studies
have taken advantage of convolutional feature extraction [43] for predicting trajectories. Currently
[44–47] the top application scenarios of DL-based tracking are pedestrian detection and
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 5
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autonomous vehicles – augmented reality (AR) and virtual reality (VR) [61,62]. Similar DL-
based tracking could be brought to cell biology to advance multiscale system studies where
subcellular-, cellular-, and tissue-level changes are simultaneously modulated and measured.

Typical examples for tracking in cell biology applications include single-cell tracking [63], multi-cell
tracking during collective cell migration [64], and particle or organelle tracking within cells [65,66].
Tracking is challenging from both computational and biological perspectives for many reasons.
First, objects can move from area to area; each instance should therefore be identified on a sin-
gle-frame basis and these detections should be linked over time to avoid misconnections. Second,
objects that are to be tracked can merge (mitochondria) or vesicles or split (cell division), and this
presents a discontinuity challenge in their morphology, leading to misrecognition (Figure 1C).
Third, there is a limitation in terms of the frame rate in time-lapse movies [67,68], and this makes
tracking in general, and in 3D in particular, challenging because of time discontinuity. Misconnec-
tion and misrecognition challenges could be overcome at least in part by using DLmethods for tra-
jectory prediction, and live predictions can facilitatemicroscope-based physical tracking of objects.

Tracking subcellular structures and their changes through 3D space is a challenging but reward-
ing application because it can provide valuable insights into cell dynamics [69,70] and support
systems-level modelling efforts to explore complex signalling and regulatory pathways [71,72].
For example, analysis of the patterns of cell movements following distinct molecular perturbations
has helped to dissect the molecular principles that govern cellular migration [73–75]. Whole-cell
tracking to monitor cell or nuclear size changes and the timing and duration of cell-cycle phases
[14], or intracellular tracking to analyse the movement of intracellular organelles, vesicles, or pro-
teins within a cell [66,76,77], have taken advantage of a priori knowledge of distinct features
(structural or dynamic) which have been uniquely used to solve each individual tracking problem.

The challenges and opportunities
Challenges of AI-guided methods in cell dynamics studies
Lack of well-annotated datasets
DL-based approaches require large amounts of labelled (annotated) data. Ideally, high-quality cell
biology data need to be annotated by experts, which is time-consuming. Although
crowdsourcing can offer cost-effective solutions, annotation inconsistencies would require cor-
rection by experts [78]. Furthermore, variations in subcellular morphologies, staining protocols,
and imaging quality can make the annotation challenging for non-experts. Many solutions are
being developed to tackle this challenge [1], including active learning [79], transfer learning
[79,80], and data augmentation techniques [81]. Augmentation strategies where an image is al-
tered in scale or intensity provide additional samples without necessarily increasing the number
of manually annotated samples [14]. Karabag and colleagues investigated the impact of the
amount of training data and shape variability on U-net-based segmentation [82]. They suggest
that data augmentation methodologies may not improve training if the acquired cell pairs are
not representative of other cells. Therefore, thorough investigation of various augmentations is
recommended. Despite the mentioned solutions, the shortage of high-quality labelled data re-
mains a crucial limitation for AI-guided analysis of images and time-lapse movies. Only a limited
number of open-source datasets are available, as listed chronologically in Table 3.

The quality of image datasets
DL models rely on extracting patterns and features from a dataset, making the quality of the an-
notated data crucial. Inconsistent ground truth yields incorrect analytical results, whereas biased
data (highlighting some but not all phenotypes) can lead to incorrect patterns or inaccurate pre-
dictions. Noise intrinsic to microscopy can also increase the complexity of the model that is
6 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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Table 3. Open-source datasets for cell biology image and movie analysis tasks

Dataset
(Refs)

Description Source

Broad Bioimage Benchmark
Collection
[143]

Over 11 million images from 52
datasets for segmentation,
phenotype classification, and
image-based profiling tasks

https://bbbc.broadinstitute.org/image_sets

ISBI cell tracking challenge
dataset collection
[144]

Ten 2D image datasets and ten 3D
time-lapse movie datasets of
fluorescent counterstained nuclei or
cells for segmentation and tracking
tasks

http://www.celltrackingchallenge.net/

DeepCell dataset
[73]

∼75 000 single-cell annotations
including live-cell movies of
fluorescent nuclei (∼10 000
single-cell movie trajectories over 30
frames) and static images of whole
cells for segmentation tasks

https://github.com/vanvalenlab/deepcell-tf

Image data resource (IDR)
[85]

Over 13 million images from 118
published studies

https://idr.openmicroscopy.org/

Human Protein Atlas
[145]

Over 80 000 high-resolution
confocal immunofluorescence
images showing localisation patterns
of thousands of proteins for a variety
of human cell lines for segmentation
tasks

http://www.proteinatlas.org

The Cell Image Library
[146]

919 874 five-channel fields of
morphologies of U2OS cells and
populations representing 30 616
tested compounds

https://github.com/gigascience/
paper-bray2017

Salmonella-infected HeLa
cells
[147]

93 300 multi-channel confocal
fluorescence images

https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/FYGHFO

JUMP cell painting datasets
[148]

Images of osteosarcoma cells
perturbed with CRISPR-mediated
knockdowns and overexpression
reagents and ∼120 000 compounds

https://jump-cellpainting.broadinstitute.org/

NYSCF automated deep
phenotyping dataset (ADPD)
[149]

Cell painting dataset of 1.2 million
images (48 TB)

https://nyscf.org/open-source/nyscf-adpd/

Poisson–Gaussian
fluorescence microscopy
denoising dataset
[150]

Over 12 000 fluorescence microscopy
images using confocal, two-photon
and widefield microscopes

https://drive.google.com/drive/folders/
1aygMzSDdoq63IqSk-ly8cMq0_owup8UM
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necessary to accurately capture the underlying features. This may lead to overfitting, where the
model becomes too complex and fails to generalise to new and unseen data. Noisy data can
also lead to challenges for DL models, resulting in under- or over-segmentation of cells or mis-
classification of cell types [83], which could lead to incorrect tracking of cells in movies. Meiniel
and colleagues present a comprehensive review of current techniques for denoising microscopy
images, and they introduce a novel sparsity-based method for enhanced image clarity [84] which
leverages the inherent sparsity in microscopy images and offers improved denoising performance
compared to existing methods [84]. To manage the problem of high-quality image availability, the
image data resource has been set up to allow easy image data access, storage, and dissemina-
tion [85]. Overall, it is essential to ensure that the datasets used for DL are of high quality, with
solid ground truth and minimal noise, and are free from bias [86].
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 7

https://bbbc.broadinstitute.org/image_sets
http://www.celltrackingchallenge.net/
https://github.com/vanvalenlab/deepcell-tf
https://idr.openmicroscopy.org/
http://www.proteinatlas.org
https://github.com/gigascience/paper-bray2017
https://github.com/gigascience/paper-bray2017
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FYGHFO
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FYGHFO
https://jump-cellpainting.broadinstitute.org/
https://nyscf.org/open-source/nyscf-adpd/
https://drive.google.com/drive/folders/1aygMzSDdoq63IqSk-ly8cMq0_owup8UM
https://drive.google.com/drive/folders/1aygMzSDdoq63IqSk-ly8cMq0_owup8UM
CellPress logo


Trends in Cell Biology
OPEN ACCESS
Model interpretability
The challenge of interpretability for DL models arises from the complex and black-box nature of
these models [87]. DL models can automatically extract complex features and patterns from
large amounts of data through multiple layers of neurons [88]. Although this makes such models
powerful, in tasks such as image segmentation or classification, it also presents a challenge in un-
derstanding how the models arrived at their predictions or decisions. One way to address this
challenge is to visualise and examine the activations of individual neurons or groups of neurons
within the model [89]. This technique provides insights into the patterns that the model has
used to form its decision. However, these visualisations may be difficult to interpret without a
deep understanding of the model architecture and data domain ([90] for more information).

High cost in real-world scenarios
DL-based methods are often expensive due to two main factors. First, effective training of DL
models requires a large amount of data which can be expensive to generate. Second, the training
process can be computationally intensive, requiring high-performance computing resources
such as hardware of graphics processing units (GPUs) and tensor processing units (TPUs).
This infrastructure cost can dissuade the planning of imaging studies that are necessary to
build the DL model [91]. DL model-building efforts supported by agencies/consortiums beyond
individual researchers can help to meet upfront costs and maintain standards to make sure
that the models are reusable [92].

The generalisability issue
Generalisability denotes the extent to which a DL model trained on a specific dataset might per-
form well on new data, especially when the new data have different features or patterns com-
pared to the training data. To showcase generalisability, DL models are deployed on data
acquired from a different cell type or microscope [30,31]. Efforts to reuse or generalise workflows
are ongoing [75]. Generalisability issues arising due to sample variability or differences in image
acquisition are being addressed through data augmentation, multi-task learning, swarm learning,
or collaboration with domain specialists [93,94].

Opportunities for AI-guided methods in cell dynamics studies
With the advent of new AI-guided methods to identify, track, and analyse objects in time-lapse
movie datasets (Table 3), we expect new opportunities for large-scale cell biological applica-
tions in drug discovery, drug repositioning, and phenome–genome interaction map-building
efforts.

Drug discovery and repositioning
AI approaches in microscopy-based drug development or drug target identification primarily use
still image datasets which are snapshots of dynamic processes [2,95]. Such still image-based
drug screening efforts do not yet fully benefit from cellular and subcellular dynamics that can be
visualised using high-speed live-imaging microscopes [3,96,97]. Incorporating dynamic changes
through time can address challenges posed by cellular heterogeneity, cell cycle stages, cell fate
dissimilarities, variations in protein expression and in cellular or subcellular dimensions, and
inter/intracellular signalling [98]. In addition to taking advantage of cell dynamics principles, AI-
guided methods for movie datasets can accelerate several steps of drug discovery including
cell toxicity assays [99], cell cycle profiling, and morphology analysis [98,100]. Increasing sin-
gle-cell movie datasets together with the development of DL model standards can integrate
image-omics with other omic datasets that capture dynamic information and have accelerated
drug repositioning studies [101,102]. Investing in collaborative efforts to compile microscopy
datasets can fuel the development of robust AI-guided methods. This in turn will unlock research
8 Trends in Cell Biology, Month 2023, Vol. xx, No. xx
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Outstanding questions
Despite the rapid growth of DL-guided
methods for microscopy image
analysis, very few tools have been
developed to be reusable and
generalisable. The infrastructure costs
associated with DL tool development
are significant. Can scaling up of
shared online spaces for model
training and the adoption of universal
data standards further accelerate the
development of reusable DL models?

DL-guided tracking algorithms built
specifically for cell biology can
revolutionise long-term live imaging by
enabling simultaneous tracking of
rapidly moving objects. How can
algorithms previously developed for
tracking objects in autonomous
driving be adapted to track dynamic
cellular structures experiencing
morphological changes?

Larger datasets of microscopy images
and movies can support the
development of new algorithms. How
can annotated images and trained
models be fairly reused to promote
the storage of datasets in open-
source image archives?

Despite the impressive scale and
speed of AI-guided image analysis
methods, their lack of transparency
and interpretability has obscured
connections and relationships within
cell fates or phenotypes. What design
efforts should be considered when
building explainable AI methods for
cell biology such that trustworthy
biomedical and clinical applications
can thrive?
and engineering opportunities, thereby facilitating a cyclical learning process to uncover unex-
plored cellular transition states in frontier biology and drug discovery studies.

Genome–phenome mapping
Genetic interaction maps built using cell biological approaches are transforming our understand-
ing of several biological processes [103], but their influence is limited to the specific model system
or experimental setup. We are only beginning to reliably link datasets from different cell types,
fluorescent markers, or imaging systems [104,105]. AI-guided image analysis methods are well
positioned to extract information across image and video datasets, and across different data-
bases, in an unbiased form because they can be trained to search for patterns (e.g., nuclear
atypia such as multinucleated, misshapen, and binucleated structures [106] could be gathered
across hundreds of cell lines or drug treatments). Currently, high-throughput genome–phenome
mapping image datasets of various cell types and models are deposited in a disconnected fash-
ion because there is not much incentive to unify them. AI-guidedmethodsmay offer the possibility
and the value of developing universal standards for collating data, in addition to existing global ef-
forts to name and store large movie datasets [107,108].

Precision medicine
Genetic variant interpretation and classification using high-throughput cell biological methods is still
a nascent field. Germline variant guidelines are well established [109] and somatic variant guidelines
are being established [110]. In both cases we expect single-cell imaging, the associated image
dataset, and image analysis methods to play a crucial role in stratifying variant pathogenicity. To
build stratification methods that are scalable, generalisable, and interrogative (crosscheck), DL
models could be trained to detect and classify phenotype changes and hidden patterns. Swarm
learning has been proposed for decentralised and confidential X-ray image analysis [111] and dig-
ital pathology [112], and could be extended to cell biological images and live-cell movies. As AI
methods become incorporated within the clinical prognosis framework [113,114], we predict
there will be a growing demand for robust models for evaluating the clinical actionability of molec-
ular targets in cancer therapies, genetic rare diseases, and infectious diseases.

Concluding remarks
The impact of DL methods in the analysis of large-scale and complex microscopy data has been
significant. DL techniques have already revolutionised still-image analysis and are now beginning
to transform time-lapse movie analysis through state-of-the-art performance in a wide range of
applications, such as object detection and tracking, segmentation, and unsupervised clustering
and classification. DL methods used to segment and classify cells are beginning to detect
novel anomalies in 3D structures [115] or time-series data [116], identify distinctive transient
cellular transitions [100], and reveal complex behaviours and movement patterns [14,117]
which were previously unrecognised.

Automated and data-driven workflows together with cloud-based large-scale solutions have sig-
nificantly improved the speed, efficiency, and accuracy of DL-guided image analysis tasks, while
also increasing the ease with which biologists can implement and share AI tools. Overall, the use
of DL methods in microscopy has enabled researchers to extract valuable information, some that
is not obvious to the eye, from huge volumes of image data and has opened new opportunities in
medical diagnosis and clinical translation.

It is important to recognise that DL methods rely on abundant, robustly annotated data and care-
ful parameter-tuning. Assessing their reliability and interpretability can be challenging [86], which
can restrict their applications in some domains (see Outstanding questions). The establishment of
Trends in Cell Biology, Month 2023, Vol. xx, No. xx 9
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universally accepted standards and frameworks to store and share human-annotated image
datasets, DL models, and post-processing pipelines are complex challenges [91] that necessi-
tate attention through international collaborations and consortia.
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