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Abstract
This thesis concerns the study of fibrations between algebraic varieties over fields
of positive characteristic. These are fundamental objects used to study the classifi-
cation of algebraic varieties. In particular, my thesis focuses on two problems: the
canonical bundle formula and the Iitaka conjectures.

Let f : X æ Z be a fibration between normal projective varieties over a perfect
field of positive characteristic.

Assume the Minimal Model Program and the existence of log resolutions. Then,
we prove that, if KX is f -nef, Z is a curve and the general fibre has nice singularities,
the moduli part is nef, up to a birational map. As a corollary, we prove nefness of
the moduli part in the K-trivial case. In particular, if X has dimension 3 and is
defined over a perfect field of characteristic p > 5, the canonical bundle formula
holds unconditionally.

We also study an Iitaka-type inequality Ÿ(X, ≠KX) Æ Ÿ(Xz, ≠KXz)+Ÿ(Z, ≠KZ)
for the anticanonical divisors, where Xz is a general fibre of f . We conclude that
it holds when Xz has good F -singularities. Furthermore, we give counterexamples
in characteristics 2 and 3 for fibrations with non-normal fibres, constructed from
Tango–Raynaud surfaces.
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“It’s the little big things that stay on my mind,
it’s the little big things we leave behind,

and when all is said, and when all is done
they can change the course of the falling sun.

It’s the little things
that mean the big things to me.”

The little big things from “The little big things: the musical”



9



10

Contents

Introduction 13

1 Singularities in birational geometry 25

1.1 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Singularities of the Minimal Model Program . . . . . . . . . . . . . . . . . . 28

1.3 F -singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Fibrations in positive characteristic 39

2.1 Separable fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Singularities of fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Foliations and purely inseparable morphisms . . . . . . . . . . . . . . . . . . 46

3 Overview on the canonical bundle formula 63

3.1 Elliptic surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Hodge theoretic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 An MMP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Canonical bundle formula in positive characteristic . . . . . . . . . . . . . . 73

4 On the canonical bundle formula for GGLC morphisms 81

4.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Property (ú) in positive characteristic . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Bend and Break theorem for the moduli divisor . . . . . . . . . . . . . . . . 94

4.4 The canonical bundle formula . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Iitaka conjectures 109

5.1 Iitaka dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Easy Additivity theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 The Iitaka conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 The anticanonical Iitaka conjecture . . . . . . . . . . . . . . . . . . . . . . . 114

6 Iitaka conjecture for anticanonical divisors 123

6.1 C≠
n,m in low dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



11

6.2 C≠
n,m for F -split fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography 150



12



13

Introduction

Algebraic geometry is the study of algebraic varieties, objects defined as the zero
locus of polynomial equations. One of the guiding problems in the field is their clas-
sification. Curves are completely classified by their genus and, for each genus, we can
parametrise them up to isomorphism (see for example [HM98]). In higher dimen-
sion, the situation is much more complicated. In birational geometry, a promising
approach has been to classify varieties up to birational maps, which are isomor-
phisms on a dense open subset. Much progress has been done in this direction using
the Minimal Model Program (MMP) ([BCHM10]). The MMP is an algorithm which
allows to find a “nice” representative in each birational class of varieties and its guid-
ing principle is that the positivity of the canonical divisor KX of a variety, defined
using the top degree di�erential forms, carries information about its geometry, for
example its Ricci curvature. Fibrations are a fundamental tool in the classification
problem as they allow to decompose each variety into simpler pieces, the base and
the fibres. An important problem arising in this context is to relate the canonical
divisors of the total space, the fibres and the base of a fibration. We will make this
more precise later, when focusing on our problems of interest.

Recently, there has been a lot of developments in the MMP over fields of positive
characteristic, opening an interplay between birational geometry and number theory.
For example, the study of rational points has benefited from applications of MMP
techniques ([GNT19], [BF23]). Over fields of positive characteristic, many results
in birational geometry become open problems and in some cases they fail to hold at
all. Despite this, the MMP has been established in dimension at most 3 over perfect
fields of characteristic p > 5. It is therefore natural to ask to which extent results in
birational geometry in characteristic 0 carry over to fields of positive characteristic.

The work presented in this thesis falls into this context. In particular, we focus
on two main directions in the study of fibrations in positive characteristic: related to
a canonical bundle formula and to the Iitaka conjecture for anticanonical divisors.

Canonical bundle formula

One of the possible outputs of the MMP are K-trivial fibrations f : X æ Z, for
which the fibres are Calabi–Yau. For such fibrations, we study the relation between
KX and KZ . This formula is often used in induction processes since it allows to
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infer geometric properties of X from geometric properties of Z, which is lower di-
mensional. It has had many important applications in birational geometry, ranging
from adjunction on log canonical centres ([Kaw98], [DS17]), to finite generation of
the log canonical ring ([FM00, §5]) and to the Iitaka conjecture for anticanonical
divisors ([Cha23], [Ben22], [BBC23]).

Iitaka conjecture for anticanonical divisors

An important birational invariant of algebraic varieties is their Kodaira dimension
Ÿ(X, KX) (Definition 5.1.1), which is a first measure of the positivity of the canonical
divisor. The Iitaka conjectures give geometric constraints on the varieties that can
appear in a fibration, by studying the relation between their Kodaira dimensions.
Even though it is not a birational invariant, it is useful to study also the negative
counterpart of the Kodaira dimension: the Iitaka dimension of the anticanonical
divisor, Ÿ(X, ≠KX). This number gives information on the geometry of varieties for
which mKX does not have global sections for any natural number m. Inspired by the
Iitaka conjectures, we study a relation between Iitaka dimensions of anticanonical
divisors in fibrations.

Minimal Model Program

A notable progress in classifying algebraic varieties has been the development of the
Minimal Model Program. The MMP consists of an algorithm that, starting from
a variety X, performs two types of birational operations for which the exceptional
locus consists of “negative curves”: divisorial contractions and flips. Divisorial con-
tractions are birational morphisms µ : X æ Y such that the curves in X that are
mapped to points in Y cover a locus of codimension 1. Flips are birational maps
µ : X 99K Y such that the exceptional locus of µ has codimension at least 2 and
the negative curves contained in it are “flipped” to curves in Y which have posi-
tive intersection with the canonical divisor. The MMP predicts that, after finitely
many divisorial contractions and flips, this process terminates with a variety Y ,
birationally equivalent to X, which satisfies one of the following properties.

(1) There exists a fibration f : Y æ Z such that dim(Z) < dim(Y ) and the general
fibres are Fano, i.e. varieties with ample anticanonical divisor.

(2) There exists a fibration (called K-trivial) f : Y æ Z such that dim(Z) <

dim(Y ) and the general fibres are Calabi–Yau, i.e. varieties with trivial canon-
ical divisor.

(3) The variety Y is of general type, i.e. its canonical divisor is a perturbation of
an ample divisor.
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By further running an MMP on the base of the resulting fibration, we can conjec-
turally decompose every variety into building blocks that are either Fano, Calabi–
Yau, or general type varieties. Over fields of characteristic 0, divisorial contractions
and flips have been proven to exist and the MMP has been proven to terminate
in full generality in low dimensions by the work of Kawamata, Kollár, Mori, Reid,
Shokurov and others, and in many important cases in higher dimension ([BCHM10]).

MMP in positive characteristic

Recently, there has been growing interest in the possibility of using birational geom-
etry tools on varieties defined over fields of positive characteristic. However, some of
the foundational results used in birational geometry are proven with analytic tech-
niques and they are known to fail over fields of positive characteristic. An example
is Kodaira Vanishing theorem ([KM98, §2.4]), fundamental to prove the MMP (e.g.
for the proof of the Base Point Free theorem) since it allows to lift sections from
lower dimensional varieties. Over fields of positive characteristic Kodaira Vanishing
is known to not hold ([Xie06, Example 3.7]). A powerful tool that has been revealed
to be fundamental in order to overcome these issues is the Frobenius morphism,
which acts as the identity on the topological space of varieties and as the pth-power
on their structure sheaf. For instance, it is possible to prove vanishing results by
applying the Frobenius morphism multiple times and using Serre Vanishing theo-
rem (an algebraic result, see [Har77, Theorem 5.2, Chapter III]) instead of Kodaira
vanishing. Thanks to this tool, it has been possible to prove the MMP in dimension
at most 3 over fields of characteristic p > 5 ([HX15], [Bir16], [BW17], [HNT20]),
and to have partial results in low characteristics ([HW22]).

Fibrations in positive characteristic

Another problem encountered when trying to mimic the classification process in
characteristic 0 is that fibrations behave very di�erently over fields of positive char-
acteristic. More specifically, over fields of characteristic 0, we have that, given a
fibration f : X æ Z between smooth varieties, the general fibre of f is also smooth
(generic smoothness, [Sta22, Tag 056V]). This is no longer true in positive char-
acteristic, where regularity of the generic fibre X÷ does not imply smoothness of
the geometric generic fibre and, as a consequence, of the general fibres (see Exam-
ple 2.1.6, Remark 2.1.7). In particular, the general fibres may be non-normal or
even non-reduced. This failure of generic smoothness stems from the fact that the
generic fibre of a fibration f : X æ Z over a field of positive characteristic is defined
over an imperfect field. However, this is somehow the only obstacle and, after a
purely inseparable base change, all the singularities of the general fibres appear also
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on the total space. More precisely, we consider the base change:

(`)
X(e) X

Ze Z,

fe f

F
e

where F e is the eth-power of the Frobenius morphism and X(e) is the normalisation
of the reduction of the fibre product. The resulting fibration fe is (universally)
homeomorphic to f , but its fibres are normal for e ∫ 0.

Later, in Chapter 2, we will study in details how we can control the singularities
of the fibres and the properties of this base change. This is a key ingredient that
will be used both in the study of the canonical bundle formula and of the Iitaka
conjecture for anticanonical divisors.

Canonical bundle formula

A natural question arising in birational geometry is whether we can meaningfully
relate the canonical divisors of the source and of the target of a fibration. The
canonical bundle formula tackles this problem. Kodaira’s result on elliptic fibrations
(see, for example, [Cor07, Theorem 8.2.1, Chapter 8]) is the first instance of a formula
in this direction. It states that, given an elliptic fibration f : X æ Z from a normal
projective surface over an algebraically closed field of characteristic 0

KX = f ú(KZ + BZ + MZ),

where BZ is an e�ective divisor which has an explicit description in terms of the
singularities of the fibres, while MZ is a divisor defined via the j-invariant of the
fibres, a number that classifies elliptic curves. More precisely, if j : Z æ P1 is the
map that generically sends z œ Z to the j-invariant of the elliptic curve f≠1(z), then
MZ is a positive rational multiple of jú

OP1(1). Over fields of positive characteristic,
a similar formula holds with an additional term that takes into account the possible
presence of wild fibres, i.e. fibres with multiplicity divisible by the characteristic.

Later, a canonical bundle formula has been proven in any dimension for K-trivial
fibrations in characteristic 0. More precisely, if (X, B) is a log canonical pair and
f : X æ Z is a fibration such that KX + B ≥Q f úLZ , for some Q-Cartier Q-divisor
LZ on Z, then LZ = KZ + BZ + MZ . The divisor BZ is called discriminant part
and it is defined by measuring the singularities of f , whereas MZ is called moduli
part and it measures its variation, i.e. how far the fibration is from being a product.
In general, it is di�cult to construct a moduli space for the fibres, so MZ does not
have an explicit description as in the elliptic curves case. However, we can at least
study whether it defines a meaningful map from Z. The first step is to look at the
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positivity properties of MZ .

Questions 1. The aim is to answer the following.

(1) Does MZ define a map towards a space that classifies the fibres of f?

(2) Is MZ semiample up to a birational base change?

(3) Is MZ nef up to a birational base change?

Using variation of Hodge structures, it is possible to give an a�rmative answer
to the third question (see [Kaw98], [FM00], [Amb04], [Amb05], [Cor07], [FL20]).
Unfortunately, these techniques are not available over fields of positive characteris-
tics.

Canonical bundle formula in positive characteristic

With the development of the theory of F -splitting singularities, it is possible to prove
a canonical bundle formula using more algebraic techniques. In fact, over fields of
positive characteristic, it is useful to study not only the geometric properties, but
also the “arithmetic” properties of the varieties we are considering. These are both
encoded on how the Frobenius morphism F acts on the structure sheaf (see for
instance [PST17, §4]). A famous result of Kunz ([Sta22, Tag 0EC0]) states that a
local ring R is regular if and only if FúR is free. More generally, one is interested
in defining F -singularities, i.e. singularities for which R æ FúR is a split map.
Similarly, in the global case, one is led to the study of globally F -split varieties; that
is, varieties X for which OX æ FúOX is a split map. For example, ordinary elliptic
curves are globally F -split, while supersingular elliptic curves are not.

In [DS17, Theorem 5.2] the authors prove that, given a fibration f : X æ Z with
globally F -split fibres, the splitting map allows to descend e�ectiveness on the base.
More precisely, if f : X æ Z is a K-trivial fibration with globally F -split general
fibres,

KX ≥Q f ú(KZ + BZ),

where BZ is an e�ective Q-divisor.
In our project [BBC23], joint with Brivio and Chang, we use similar techniques

to prove a canonical bundle formula over perfect fields of characteristic p > 0 for
surjective morphisms whose finite part in the Stein factorisation has degree coprime
with p.

Proposition 2 (See Proposition 3.4.10). Let f : X æ Y be a surjective projective
morphism of normal varieties such that its Stein degree St.deg(f) is not divisible by
p. Assume X is globally F -split and (1 ≠ pe)KX ≥ f úL for some Cartier divisor L

on Y . Then, there exists a canonically determined e�ective Z(p)-divisor BY on Y

such that
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(i) (1 ≠ pe)KX ≥ f ú((1 ≠ pe)(KY + BY ));

(ii) (Y, BY ) is globally F -split.

An MMP approach

In [ACSS21], the authors develop a new approach to study positivity properties of
the moduli part over fields of characteristic 0, using techniques coming from the
MMP rather than variation of Hodge structures. In order to have the necessary
flexibility, they consider general fibrations f : X æ Z, not only K-trivial ones. In
this context, it is still possible to define a discriminant part BZ on Z measuring the
singularities of f and then the moduli part MX is a Q-divisor defined on X. The
problem is again to prove that the moduli part has some geometric meaning linked
to the variation in moduli of the fibres.

Question 3. Let f : X æ Z be a fibration between normal projective varieties over
an algebraically closed field and B an e�ective Q-divisor such that the pair (X, B)
is log canonical and KX + B is f -nef, then, is the moduli part MX is nef, up to
birational maps?

The paper [ACSS21] gives an a�rmative answer over fields of characteristic 0.
Conversely, over fields of positive characteristic, the result is known to be false in
general [Wit21, Example 3.5]. One of the main problems to follow the strategy in
characteristic 0 is that, due to the failure of generic smoothness, it is not even possi-
ble to define a discriminant part of the fibration as all the fibres may be very singular.
However, if we ask for the fibration to have log canonical fibres, in [Ben23], we give
a positive answer to the question above over perfect fields of positive characteristic
when the base is a curve.

Theorem 4 (See Theorem 4.4.6). Assume the log MMP and the existence of log
resolutions in dimension up to n. Let f : X æ Z be a fibration from a normal
projective variety X of dimension n onto a normal projective curve Z. Let B be an
e�ective Q-divisor such that both (X, B) and the pair induced on the general fibre
have at most log canonical singularities. Suppose that KX + B is f -nef. Then, there
exist a pair (Y, C) and a commutative diagram

Y b //

g
��

X

f

✏✏
Z,

where b is a birational map such that

(i) if p1 : ÊX æ X and p2 : ÊX æ Y resolve the indeterminacies of Y 99K X, then
the di�erence pú

1(KX + B) ≠ pú

2(KY + C) is vertical with respect to the induced
fibration ÊX æ Z;
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(ii) the moduli part MY of (Y/Z, C) is nef.

In [Wit21, Proposition 3.2], the author proves a weak canonical bundle formula
for fibrations of relative dimension 1 with smooth log canonical fibres. This result,
together with the above theorem, completes the picture in dimension 3 for fibrations
with log canonical general fibres over perfect fields of characteristic p > 5.

Property (ú)

The proof of [ACSS21] that the moduli part is nef follows two main steps: first, the
statement is proven for a specific class of fibrations with particularly good singu-
larities (satisfying Property (ú), as in Definition 3.3.2), and then the general case is
reduced to this class with a birational base change (a (ú)-modification, as in The-
orem 3.3.4). Using Weak Semistable reduction ([AK00, Theorem 2.1, Proposition
4.4]), over fields of characteristic 0, it is possible to construct (ú)-modifications in
any dimension.

Over fields of positive characteristic, Weak Semistable reduction has not been
proven in such generality. Nonetheless, if the base of the fibration is a curve, we
construct (ú)-modifications using log resolutions and the MMP. Moreover, we are
able to control the singularities of the fibres after a base change on the base with a
high power of the Frobenius morphism as in diagram (`).

Theorem 5 (Existence of geometric (ú)-modifications, see Theorem 4.2.11). Assume
the log MMP and the existence of log resolutions in dimension n. Let f : X æ Z

be a fibration from a normal projective variety X of dimension n onto a normal
projective curve Z, such that X÷ is normal, where ÷ is the geometric generic point
of Z. Then, for e ∫ 0, there exists a (ú)-modification of X(e).

Foliations

The guiding principle of [ACSS21] is that, for fibrations satisfying Property (ú), we
can compare the moduli part of a fibration with the canonical divisor of the foliation
induced by the fibration. Positivity of the moduli part then follows from the foliated
Minimal Model Program, i.e. the MMP for foliations, in particular from the Cone
theorem for foliations [ACSS21, Theorem 3.9].

Over fields of characteristic 0, to each equidimensional fibration f : X æ Z

between normal varieties, we can associate a foliation F , defined as the kernel of
the di�erential map df : TX æ f úTZ . The canonical divisor of the foliation, KF ,
can be explicitly computed as KX ≠ f úKZ ≠ R(f), where R(f) is the ramification
divisor, supported on fibres that have multiplicity at least 2. The moduli part, under
Property (ú) assumptions, has a similar description. On the other hand, over fields
of positive characteristic, the foliation F could behave very di�erently. For example,
if f is not separable, the rank of F is bigger than expected. Moreover, even if we
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require the fibration f to be separable and to have normal general fibres, the divisor
KF has a di�erent description due to the presence of possible wild ramification, i.e.
vertical divisors whose multiplicity is divisible by the characteristic. All in all, we
prove that, over perfect fields of positive characteristic,

KF = KX ≠ f úKZ ≠ R(f) ≠ W (f),

where R(f) is the ramification divisor defined as in the characteristic 0 case, while
W (f) is an e�ective divisor supported on the wild fibres (see Theorem 2.3.6). There-
fore, even if the moduli part will not coincide with the canonical of the foliation,
under Property (ú) assumptions, we have a good control of the di�erence between
the two divisors.

Additionally, over fields of positive characteristic the foliated MMP is known to
fail (see [Ber24]). To overcome this, we exploit a correspondence between foliations
and purely inseparable maps in positive characteristic ([PW22, Proposition 2.9]). In
fact, since the di�erential of the Frobenius morphism vanishes, purely inseparable
maps define foliations as the kernel of their di�erential. Analysing this correspon-
dence in the diagram (`), we relate the canonical divisor of X(e) to the moduli part
of f and then use the “standard” MMP on X(e) to show positivity of the moduli
part.

Theorem 6 (See Corollary 4.2.2). Let f : X æ Z be a separable equidimensional
fibration between normal varieties and B an e�ective Q-divisor such that (X/Z, B)
satisfies Property (ú). Let MX be the associated moduli part. Let –e : X æ X(e) be
the purely inseparable morphism such that the composition X

–e
≠æ X(e)

æ X is F e.
Then,

–ú

e
KX(e) = (pe

≠ 1)(MX ≠ Bh) + KX ≠ We,

where We is an e�ective divisor supported on the wild fibres of f .

Iitaka conjectures
For varieties defined over the complex numbers, Iitaka proposed a conjecture (called
Cn,m) which motivated Mori to start the theory that led to the MMP. It states that,
given a fibration f : X æ Z, the Kodaira dimensions of X, Z and the general fibre
Xz, satisfy a subadditivity formula.

Conjecture 7 (Cn,m, [Iit72]). Let f : X æ Z be a fibration of smooth projective
varieties over C, of dimensions n and m respectively, and let Xz be a general fibre.
Then

Ÿ(X, KX) Ø Ÿ(Xz, KXz) + Ÿ(Z, KZ).

In the same spirit, we can ask if there is a similar relation between the Iitaka
dimensions of the anticanonical divisors in fibrations.
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Question 8. Let f : X æ Z be a fibration between normal projective varieties over
an algebraically closed field such that X is klt. Let Xz be a general fibre. Does the
inequality

Ÿ(X, ≠KX) Æ Ÿ(Xz, ≠KXz) + Ÿ(Z, ≠KZ)

hold?
It was recently shown in [Cha23, Theorem 1.1] that, under some additional

conditions to control the singularities of the anticanonical linear system, the above
superadditivity statement holds. We refer to this inequality as C≠

n,m
.

However, over fields of positive characteristic it is known that both Cn,m ([CEKZ21])
and C≠

n,m
(Section 5.4.3) do not hold. On the other hand, some positive results on

Cn,m have been obtained for fibrations whose general fibres have good F -split sin-
gularities ([Eji17], [BCZ18], [EZ18], [Zha19], [Bau24]).

We prove C≠

n,m
for low dimensional fibrations whose fibres have good F -singularities.

Theorem 9 (See Theorem 6.1.10, Theorem 6.1.14, Theorem 6.1.17). Let f : X æ Z

be a fibration between normal projective varieties over a perfect field of characteristic
p > 0. Assume that ≠KX is Z(p)-Cartier. Suppose that the general fibre Xz is
regular, that the stable base locus of ≠mKX does not dominate Z for some integer
m Ø 1 not divisible by p and that one of the following holds:

(a) Z is a curve (C≠

n,1);

(b) X is a threefold, p Ø 5 and Z has at worst canonical singularities (C≠

3,m);

(c) Ÿ(Z, ≠KZ) = 0 and f has relative dimension 1 (C≠

n,(n≠1)).

Then,
Ÿ(X, ≠KX) Æ Ÿ(Xz, ≠KXz) + Ÿ(Z, ≠KZ).

Moreover, if Ÿ(Z, ≠KZ) = 0, equality holds.

In a joint work with Brivio and Chang ([BBC23]), we study C≠

n,m
for higher

dimensional fibrations. In this case, with our strategy we need to assume global
F -splitting conditions on the general fibres (K-globally F -regular, as in Defini-
tion 6.2.1).

Theorem 10 (Tame C≠

n,m
, see Theorem 6.2.19). Let f : X æ Z be a fibration of

smooth projective varieties over a perfect field of characteristic p > 0, and let Xz

be a general fibre. Assume that Xz is K-globally F -regular. Moreover, suppose that
there exists an integer m Ø 1 not divisible by p such that the base locus of ≠mKX

does not dominate Z and let „ be the rational morphism induced by ≠mKX . If p

does not divide the Stein degree of „|Xz , then

Ÿ(X, ≠KX) Æ Ÿ(Xz, ≠KXz) + Ÿ(Z, ≠KZ).

Furthermore, if Ÿ(Z, ≠KZ) = 0, equality holds.
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Counterexamples

Over fields of positive characteristic, there exist ruled surfaces g : P æ C which con-
tain a subvariety B that set-theoretically is a section of g, but g|B is the Frobenius
morphism. These surfaces were the first examples of varieties where Kodaira Van-
ishing theorem does not hold. By taking a suitable cover S æ P æ C and the
fibre product of S with itself over C multiple times, in [CEKZ21], the authors found
counterexamples to Cn,m in positive characteristic. By choosing S appropriately,
we find counterexamples to C≠

7,6 in characteristics 2 and 3 (see Theorem 5.4.10,
Corollary 5.4.12).

Positivity descent

The main technical ingredient that is used in the proof of C≠

n,m
in characteristic 0

is a positivity descent result, which relies on Hodge theoretic techniques which are
not available in positive characteristic. More in details, given a fibration f : X æ Z

such that there exists an e�ective Q-divisor � ≥Q ≠KX ≠ f úE for some Q-Cartier
Q-divisor E on Z, we want to find an e�ective Q-divisor that is Q-equivalent to
≠KZ ≠ ‘E for small ‘ > 0. Over fields of positive characteristic, this result can be
achieved for fibrations in low dimensions whose fibres have controlled F -singularities,
using [Eji17, Theorem 5.1] or the canonical bundle formula result for fibrations
of relative dimension 1 proven in [CTX15, Lemma 6.6, Lemma 6.7] and [Wit21,
Theorem 3.2].

In higher dimension, in order to get the positivity descent result, we use the
canonical bundle formula Proposition 2 for globally F -split varieties. However, ask-
ing for global F -splitting does not give us enough flexibility since this class is not
stable under small perturbations of the boundary. We therefore introduce a new
class of varieties, namely K-globally F -regular varieties, which interpolates between
globally F -split and globally F -regular varieties. We conjecture that, for these va-
rieties, a Weak Ordinarity statement holds.

Conjecture 11 (Relative Weak Ordinarity, see Conjecture 6.2.6). Let X be a pro-
jective klt pair over C such that ≠KX is semiample. Assume that X can be defined
over Z and let Xp be the reduction modulo a prime p of X. Then, Xp is K-globally
F -regular for infinitely many primes p.

Moreover, these singularities satisfy a Bertini-type theorem for semiample anti-
canonical linear sub-series.

Theorem 12 (See Theorem 6.2.12). Let X be a normal projective variety that is
K-globally F -regular, and let {Vm ™ H0(X, ≠mKX)}mØ0 be a graded linear sub-
series. Let „m be the rational morphism induced by Vm. Assume there exists an
integer m Ø 1 not divisible by p such that „m is a morphism defined everywhere and
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such that p does not divide the Stein degree of „m. Then, there exists n Ø 1 and
Dn œ |Vn| such that

1
X, 1

n
Dn

2
is globally F -split.

As a direct consequence of this positivity descent result, we prove C≠

n,m
for fi-

brations whose base has 0 anticanonical Iitaka dimension (see Corollary 6.1.9, The-
orem 6.1.14, Theorem 6.2.15).

Singularities of the Iitaka fibration

To conclude the proof of Theorem 9 and Theorem 10, given a fibration f : X æ Y ,
we reduce to the case of fibrations whose base has 0 anticanonical Iitaka dimension,
by exploiting the Iitaka fibration g : Y 99K Z induced by ≠KY . The idea is to apply
the results obtained with the positivity descent we discussed above to the induced
fibration f |Xy : Xy æ Yz, where Xy is a general fibre of f and Yz a general fibre of
g. However, since over fields of positive characteristic generic smoothness fails, Yz

may be highly singular. When Yz is a curve, this “bad behaviour” happens only in
characteristics 2 and 3, but when Yz is higher dimensional it is not even known if Yz

is normal for p ∫ 0. To overcome this and recover the regularity we need in higher
dimension, we perform a high enough Frobenius base change as in diagram (`).

Content outline

The original work in this thesis is based on three projects: [Ben22], [Ben23] and
[BBC23]. The latter is a collaboration with Brivio and Chang. We outline here the
subdivision of the chapters, highlighting the original material in them.

In Chapter 1, we set some notation that will be used throughout the thesis and
we recall the definitions of the main types of singularities that are considered in the
theory of the Minimal Model Program. We then focus on F -singularities, defined
over fields of positive characteristic. We recall their definition and discuss some of
their properties.

In Chapter 2, we set some more notation concerning fibrations. Then, we discuss
the properties of the fibration obtained after a Frobenius base change as in diagram
(`). In particular, in Section 2.3, we exploit the correspondence between foliations
and purely inseparable maps to analyse how the canonical divisors are related after
this base change. The material presented there comes from [Ben23, §2, §3], with
some modifications, and from [BBC23, §2.4]. Lastly, we study how singularities
of the general fibres behave over fields of positive characteristic. The results in
Section 2.2.1 follow [Ben23, §1, §4], and they discuss some properties of fibrations
with geometric generic log canonical fibre. On the other hand, in Section 2.2.2,
we present results from [BBC23, §2.3] and from [Ben22], concerning fibrations with
globally F -split and sharply F -pure geometric generic fibre.
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In Chapter 3, we give an overview of some of the literature on the canonical
bundle formula both over fields of characteristic 0 and p > 0. In particular,in
Section 3.3, we introduce the approach to the canonical bundle formula studied in
[ACSS21], which inspires the work presented in the following chapter. At the end
we discuss a canonical bundle formula for morphisms of Stein degree not divisible
by p > 0, which we studied in [BBC23, §3].

The material in Chapter 4 covers the core of [Ben23], and includes some mod-
ifications. In particular, the aim of the chapter is the proof of a canonical bundle
formula for separable fibrations onto curves over fields of positive characteristic.

In Chapter 5, we start by recalling some properties of the Iitaka dimension, as
presented in [BBC23, §2.2]. We recall the Easy Additivity theorems, with material
from [Ben22] and from [BBC23, §2.2, §5]. We then discuss the Iitaka conjectures
in characteristic 0 and p > 0, with some remarks that we studied in [BBC23, §8]
and a heuristic presented in [BBC23, Introduction]. At the end, we describe some
counterexamples to the Iitaka conjecture for anticanonical divisors over fields of
positive characteristic, that we studied in [Ben22, §5].

In Chapter 6, we present some positive results on the Iitaka conjecture for an-
ticanonical divisors over fields of characteristic p > 0. In particular, Section 6.1
covers the results in low dimensions, which form the core of [Ben22]; whereas in
Section 6.2, we present the results in higher dimension and we introduce K-globally
F -regular varieties, as studied in [BBC23].

In particular, readers primarily interested in the results on the canonical bundle
formula in [Ben23], may concentrate on Section 2.1, Section 2.2.1, Section 2.3.1,
Section 2.3.2, Section 2.3.3, Section 2.3.4, Section 3.3 and Chapter 4.

Readers that prefer focusing on the Iitaka conjectures for anticanonical divi-
sors, should follow the path: Section 1.3, Section 2.1, Section 2.2.2, Section 2.3.2,
Section 2.3.5, Section 3.4.2, Chapter 5 and Chapter 6.
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Chapter 1

Singularities in birational
geometry

In this chapter we discuss the main classes of singularities that are considered in
birational geometry both in characteristic 0 and in positive characteristic. Singu-
larities arise naturally because the class of smooth varieties is not stable under the
birational operations of the Minimal Model Program. Over fields of positive charac-
teristic, furthermore, it is natural to define new types of singularities that take into
account also the “arithmetic” of the variety, not only its geometry.

¶ In the whole thesis, a variety X over a field k is an integral and separated
scheme of finite type over k.

¶ We denote the function field of a variety X by k(X).

¶ If a variety X is non-normal, we denote by ‹ : X‹
æ X its normalisation

morphism.

¶ If X is a non-reduced scheme, we denote by Xred its reduced structure.

1.1. Divisors

In this section we introduce some notation regarding divisors that will be used
throughout the thesis.

¶ By Z(p) we denote the localisation of Z at the prime ideal generated by p.

¶ A K-divisor D on a scheme X is a formal finite linear combination D =
q

i aiDi, where Di are irreducible closed subsets of codimension one in X and
ai œ K. We will take K œ {Z,Z(p),Q}. If K = Z we refer to D as an integral
divisor or simply a divisor. We define the positive part (resp. negative part)
of D to be D+ := q

ai>0 aiDi (resp. D≠ := q
ai<0(≠ai)Di).
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¶ A Q-divisor D on a scheme X is Q-Cartier if mD is Cartier for some integer
m. If there exists such m Ø 1 not divisible by p, then we say D is a Z(p)-Cartier
Z(p)-divisor.

¶ If D1, D2 are Q-divisors on a scheme X such that mDi is integral for i = 1, 2
and mD1 ≥ mD2 for some positive integer m, then we say D1 and D2 are
Q-linearly equivalent Q-divisors, denoted by D1 ≥Q D2. If m is not divisible
by p, we say D1 and D2 are Z(p)-linearly equivalent Z(p)-divisors, denoted
D1 ≥Z(p) D2.

¶ Let f : X æ Y be a morphism of schemes and let D be a divisor on X: we
write D ≥Y 0 if D ≥ f úM where M is a Cartier divisor on Y . If D is a
Q-divisor (resp. a Z(p)-divisor) we write D ≥Q,Y 0 (resp. D ≥Z(p),Y 0) if for
some integer m (resp. for some integer m not divisible by p) we have that mD

is integral and mD ≥Y 0. In particular, we have that D is Cartier (resp. Q or
Z(p)-Cartier).

¶ Let D be a Q-divisor on a scheme X: we say D is e�ective (D Ø 0) if all of its
coe�cients are non-negative. We say D is Q-e�ective (resp. Z(p)-e�ective) if,
for some integer m Ø 1 (resp. for some integer m Ø 1 not divisible by p) mD

is integral and H0(X, mD) ”= 0.

¶ Let D and DÕ be Q-divisors on a scheme X: we write D Æ DÕ if DÕ
≠ D is an

e�ective Q-divisor, and D ÆQ DÕ if DÕ
≠ D is a Q-e�ective Q-divisor.

¶ Let D be a divisor on a normal projective variety X. We say D is base point
free if for every x œ X there is s œ H0(X, D) such that s(x) ”= 0. If D is a
Q-divisor, we say it is semiample if there exists an integer m Ø 1 such that
mD is base point free.

¶ Let D be a divisor on a normal projective variety X. We define the base locus
of D, Bs(D), as the set of points x œ X such that for all s œ H0(X, D),
s(x) = 0.

¶ If D is a Q-Cartier divisor on a normal projective variety, we say it is nef if for
every curve › ™ X, D · › Ø 0. Given f : X æ Z a proper morphism between
normal projective varieties, we say D is f -nef if D · › Ø 0 for all curves › ™ X

such that f(›) has dimension 0.

Divisors on normal varieties

Let X be a normal variety.

¶ A coherent sheaf F on X is called reflexive if the natural map F æ F
úú is an

isomorphism, where F
úú denotes the double dual.
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¶ We say that a coherent sheaf L on X is divisorial if it is of rank one and
reflexive. Weil divisors on X correspond bijectively to divisorial sheaves via
the assignment L ‘æ OX(L). The set of divisorial sheaves forms a group
with the reflexified tensor product L1[¢]L2 := (L1 ¢ L2)úú. In particular, if
Li = OX(Li) for some divisor Li, then L1[¢]L2 = OX(L1 + L2), and L1 ƒ L2

if and only if L1 ≥ L2. Throughout the rest of the thesis we will often confuse
between a divisorial sheaf and its associated Weil divisor; for example we will
write H i(X, L) rather than H i(X, OX(L)).

¶ The canonical divisor of X, denoted by KX , is the divisor corresponding to
ÊX , the reflexification of the determinant of the sheaf of 1-forms, �1

X
.

¶ If U ™ X is an open subset such that codimX(X \ U) Ø 2, we say that U is a
big open of X.

¶ If X is a normal variety and F a sheaf on X, then F is reflexive if and only if it
is determined in codimension one. More explicitly, if U ™ X is a big open and
j denotes the natural inclusion, then F is reflexive if and only if the natural
map F æ jújú

F is an isomorphism.

¶ When X is a normal projective k-variety and L is a Weil divisor, then H0(X, L)
is a finite dimensional k-vector space. We denote by |L| the associated projec-
tive space. We can naturally identify |L| as the set of e�ective Weil divisors
LÕ which are linearly equivalent to L, and we refer to |L| as the linear system
associated to L.

¶ Let X be a normal projective variety and V a subspace of H0(X, L) for some
Weil divisor L. We denote by |V | ™ |L| the natural associated projective sub-
space, which is called the linear subsystem associated to V . This notation ex-
tends naturally to Q-divisors: given a Q-divisor L we denote by |L|Q the set of
all e�ective Q-divisors LÕ such that LÕ

≥Q L. Similarly, if L is a Z(p)-divisor, we
denote by |L|Z(p) the set of all e�ective Z(p)-divisors LÕ such that LÕ

≥Z(p) L. We
refer to |L|Q and |L|Z(p) as the Q- and the Z(p)-linear system of L, respectively.
We say that a collection of subspaces V• := (Vm ™ H0(X, mL))mœN forms a
Q-linear subsystem if Vm · VmÕ := {‡· s.t. ‡ œ Vm and · œ VmÕ} ™ VmmÕ .

¶ Let X be a normal projective variety and V a subspace of H0(X, L) for some
Weil divisor L. We say |V | is base point free if, for every x œ X there is s œ V

such that s(x) ”= 0. We define the base locus of |V | as the set of points x œ X

such that s(x) = 0 for every s œ V .
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1.2. Singularities of the Minimal Model Program

If µ : X æ Y is a proper birational map, KX and KY may di�er by some exceptional
divisors. In order to have flexibility in handling this discrepancy, it is often useful
to consider a log version of the canonical divisor instead. This is why in birational
geometry it is more natural to work with pairs. The main classes of singularities
studied in birational geometry are classified according to the discrepancy that ap-
pears under birational maps. For a more detailed discussion, see [KM98, Chapter
2].

In this section we consider varieties defined over a perfect field of any character-
istic.

Definition 1.2.1. A sub-couple (X, B) over a field k consists of a normal variety
X and a Q-divisor B. If B Ø 0 we say (X, B) is a couple. If B is a Z(p)-divisor,
we call (X, B) a Z(p)-(sub)-couple. A sub-pair is a sub-couple (X, B) such that
KX + B is Q-Cartier. If B Ø 0 we say (X, B) is a pair. If KX + B is Z(p)-Cartier,
we call (X, B) a Z(p)-(sub)-pair.

Definition 1.2.2. A pair (X, B) is said to be log smooth if X is regular, every
prime divisor in Supp(B) is regular and, for every closed point x œ X, a local
equation of B around x is given by x1 · ... · x¸ for x1, ..., x¸ œ OX,x independent local
parameters with ¸ Æ dim(X). This condition on B is also called simple normal
crossing or snc.

Definition 1.2.3. Let (X, B) be a sub-pair. Given a proper birational morphism
from a normal variety µ : Y æ X, we denote by Exc(µ) the union of all exceptional
divisors of µ. We write:

KY + (µ≠1)úB = µú(KX + B) +
ÿ

iœI

a(Ei, X, B)Ei,

where (µ≠1)úB is the strict transform of B and the Ei’s are all the prime exceptional
divisors in Exc(µ). For every exceptional divisor E, a(E, X, B) does not depend on
the chosen morphism µ, but only on the valuation that E induces on the function
field of X ([KM98, Remark 2.23]). The quantity a(E, X, B) is called the discrep-
ancy of E with respect to (X, B). The divisor E is called a place over X, while its
image in X is called the centre of E. We say (X, B) is:

• terminal if a(E, X, B) > 0 for all possible exceptional divisors E over X;

• canonical if a(E, X, B) Ø 0 for all possible exceptional divisors E over X;

• Kawamata log terminal or klt if a(E, X, B) > ≠1 for all possible excep-
tional divisors E over X and ÂBÊ Æ 0;
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• divisorial log terminal or dlt if there exists a dense open subset U ™ X

such that (U, B|U) is log smooth, and a(E, X, B) > ≠1 for every E whose
centre is not contained in U ;

• log canonical or lc if a(E, X, B) Ø ≠1 for all possible exceptional divisors E

over X.

Remark 1.2.4. If a sub-pair (X, B = q
i aiDi) is log canonical, where the Di’s are

distinct prime divisors, then all ai are Æ 1 (see [KM98, Corollary 2.31(1)]).

Remark 1.2.5. Given a sub-pair (X, B), we can check whether it is terminal/ canon-
ical/ klt or lc on a log resolution. More precisely, if there exists a birational map
µ : Y æ X such that Y is regular and Supp(µ≠1

ú
(B))fiExc(µ) is simple normal cross-

ing, then (X, B) is terminal/ canonical/ klt or lc if and only if all the exceptional
divisors on Y satisfy the above inequalities.

Each of the above notions play an important role in the Minimal Model Program.

• Terminal singularities are the smallest class that is necessary to consider to
run the Minimal Model Program for smooth varieties X with B = 0.

• Canonical singularities appear on the canonical models of varieties of general
type if B = 0.

• Kawamata log terminal singularities are the natural setting where vanishing
theorems hold. They are preserved by the Minimal Model Program.

• Divisorial log terminal singularities are useful for inductive purposes.

• Log canonical singularities are the largest class where the notion of discrepancy
makes sense. Indeed, if there exists an exceptional divisor E over a pair (X, B)
such that a(E, X, B) < ≠1, then for every a œ Z there exists Ea exceptional
over X such that a(Ea, X, B) < ≠a.

Lemma 1.2.6 ([BCHM10, Lemma 3.6.3, Lemma 3.6.9]). Let (X, B) be a log canon-
ical (resp. divisorial log terminal or Kawamata log terminal) pair and Ï : X 99K Y

a step of the (KX + B)-MMP. Then, (Y, ÏúB) is log canonical (resp. divisorial log
terminal or Kawamata log terminal).

Sometimes it is useful to consider a weakening of the notion of log canonical sin-
gularities for varieties that are not necessarily normal (for a more detailed discussion
see [Kol13, Chapter 5]).

Definition 1.2.7. Let X be a variety, we say it is demi-normal if it is S2 and
its codimension one points are either regular or nodal. Note that we can define the
canonical divisor KX also for demi-normal varieties. Given B e�ective Q-divisor on
a demi-normal variety X such that KX + B is Q-Cartier, we say (X, B) is semi-log
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canonical or slc if (X‹ , B‹) is log canonical, where ‹ : X‹
æ X is the normalisation

morphism and B‹ is defined by log pullback, i.e. KX‹ + B‹ = ‹ú(KX + B).

We end the section with some Bertini-type results. These are well-known over
fields of characteristic 0, while they fail in general in positive characteristic. However,
in [Tan17], the author proves that we can perturb log canonical and klt pairs with
divisors coming from a semiample linear system without changing the singularities
also in positive characteristic.

Definition 1.2.8. A field k is called F -finite if the field obtained by adding all
pth-roots, k

1
p , is a finite extension of k.

Theorem 1.2.9 ([Tan17, Theorem 1]). Let k be an F -finite field of characteristic
p > 0 and k0 a perfect field contained in it. Let X be a projective variety over k and
(X, B) a log canonical (resp. klt) pair, where B is an e�ective Q-divisor. Assume
there exists a log resolution of (X, B). Let M be a semiample Q-Cartier Q-divisor
on X. Then, for m ∫ 0, there exists an e�ective Q-divisor �m ≥ mM such that1
X, B + 1

m
�m

2
is log canonical (resp. klt).

Corollary 1.2.10. Let k be an F -finite field of characteristic p > 0 and k0 a perfect
field contained in it. Let X be a projective variety over k and (X, B) a log canonical
(resp. klt) pair, where B is an e�ective Q-divisor. Assume the existence of log
resolutions in dimension n := dim(X). Let M be a Q-Cartier Q-divisor on X and
|V•| := (|Vm| ™ |mM |)mœN a sub-linear system. Fix a positive integer m Ø 1, choose
a basis B := {s1, ..., s¸} of Vm and define Vm(k0) :=

Óq
¸

i=1 aisi s.t. ai œ k0
Ô
.

(i) Suppose that Vm is base point free. Then, for m ∫ 0 and su�ciently divisible,
there exists an e�ective Q-divisor �m œ |Vmm| such that �m can be decomposed
as q

m

i=1 Di with Di œ |Vm(k0)| and
1
X, B + 1

mm
�m

2
is log canonical (resp. klt).

(ii) Suppose that Bs(Vm) = W ™ X. Then, for m ∫ 0, there exists an e�ective
Q-divisor �m œ |Vmm| such that �m can be decomposed as q

m

i=1 Di with Di œ

|Vm(k0)|, and
1
X, B + 1

m
�m

2
is log canonical (resp. klt) outside W and has a

non-klt centre at every irreducible component of W .

Proof. Point (i) follows directly from the proof of Theorem 1.2.9 noting the following.
In the notation of the proof of [Tan17, Proposition 2, Proposition 3], we consider
T1 := A¸ with basis B and then we choose B

dim(X) as basis of T := T dim(X)
1 . With

this choice, we get the statement.
As for point (ii), let µ : Y æ X be a birational model such that µú

|Vm| =
|Mm| + �, where |Mm| is base point free and � is the fixed divisor. In particular, �
contains a place over every component of W . By possibly passing to a higher model,
we can assume µ is a log resolution of (X, B). Define an e�ective Q-divisor BY as

KY + BY = µú(KX + B) + E,
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where E is an e�ective µ-exceptional divisor with no common components with
BY . Let Ï be the rational function defining �, then, for all i = 1, ..., ¸, there is
a rational function ti such that µúsi = Ïti. Define B

Õ := {t1, ..., t¸}, W1(k0) :=Óq
¸

i=1 aiti s.t. ai œ k0
Ô

and, for all m œ N, let Wm := SymmMm. Note that
|W1(k0)| + � = µú

|Vm(k0)|. By point (i), for some integer m Ø 1, we find an
e�ective Q-divisor �Y,m that admits a decomposition as q

m

i=1 Di with Di œ W1(k0)
and such that

1
Y, BY + 1

m
�Y,m

2
is log canonical. Therefore,

1
Y, BY + 1

m
�Y,m + �

2

is log canonical outside Supp(�) and has a non-klt place over every component of
W . Since Di + � œ µú

|Vm(k0)|, by the projection formula, there exists an e�ective
Q-divisor �m œ |Vmm| on X which pulls-back to �Y,m +m� and satisfies the required
properties. qed

1.3. F -singularities
In this section, we overview the definitions of the main types of F -singularities over
fields of positive characteristic. For a more detailed discussion, we refer to [PST17].

Definition 1.3.1. Let k be a field of characteristic p > 0 and let k ™ L be a field
extension. Let l œ L be an element of L. We say l is separable over k if its minimum
polynomial over k has distinct roots. We say l is purely inseparable over k if there
exists e œ N>0 such that lp

e
œ k. The extension L is called separable (resp. purely

inseparable) over k if all its elements are separable (resp. purely inseparable) over
k. If L is neither separable nor purely inseparable over k, it is called inseparable
over k. Let – : X æ Y be a finite morphism between normal varieties over a field k.
It is called separable (resp. purely inseparable or inseparable) if the induced
extension of function fields k(Y ) ™ k(X) satisfies the corresponding property.

The most fundamental purely inseparable map is the Frobenius morphism. In-
deed, every purely inseparable map factorises a suitable power of it.

Definition 1.3.2. Let X be a variety over a field of characteristic p > 0. We will
denote by FX : X1

æ X the absolute Frobenius morphism of X or simply
Frobenius morphism. It is the identity on the underlying topological space, and
it acts on regular functions by raising them to the pth power. For all e Ø 1 we denote
by F e : Xe

æ X the eth power of the absolute Frobenius. Note that X and Xe are
the same scheme abstractly, although they are not isomorphic over k, hence we will
often simply write F e : X æ X, when it does not cause ambiguity.

Remark 1.3.3. Let X be a variety over a perfect field k of characteristic p > 0. The
geometric Frobenius morphism of X is a variant of the Frobenius morphism that
is k-linear (see Definition 2.3.12). However, since k is perfect, it di�ers from the
absolute Frobenius only by an automorphism of k, therefore we will not distinguish
them.
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1.3.1. Traces of Frobenius map

A fundamental tool in the theory of F -singularities is the following duality state-
ment, that we will apply to the Frobenius morphism.

Given a variety X, we denote by HomOX (≠, ≠) the sheaf of OX-homomorphisms,
whereas HomOX (≠, ≠) denotes its space of global sections.

Theorem 1.3.4 (Grothendieck–Verdier duality, [Huy06, Theorem 3.34]). Consider
f : X æ Y a morphism between smooth schemes over any field of relative dimension
d := dim(X)≠dim(Y ). For any F and G coherent sheaves on X and Y respectively,
there exists a functorial isomorphism in the bounded derived category of coherent
sheaves on Y :

RfúR HomOX

1
F , Lf ú

G ¢ ÊX ¢ f úÊ≠1
Y

[d]
2

ƒ R HomOY (RfúF , G),

where the R and L in the formula above mean that we are taking the right and left
derived functors and [d] is the shift in the derived category. In particular, if we apply
it to F e : X æ X and F and G locally free sheaves, we obtain the isomorphism:

F e

ú
HomOX

1
F , F eú

G ¢ Ê¢(1≠p
e)

X

2
ƒ HomOY (F e

ú
F , G).

Remark 1.3.5. We can apply the above isomorphism also to F e : X æ X, where X

is a normal variety and to reflexive sheaves F and G on X by first restricting to
the regular locus of X and then extending the isomorphism everywhere using the
S2 property of X.

Recall also that, if F is a coherent sheaf on X and G is reflexive, then HomX(F , G)
is again reflexive, and so are the sheaves OX(D) for any Weil divisor D. In particu-
lar, as X is R1, we have that OX(D) always restricts to a line bundle on X \Sing(X),
thus we have isomorphisms

HomX(F(≠D), G) ≥= HomX(F , G(D)).

This fact will be tacitly used when applying Grothendieck–Verdier duality for a
finite morphism.

From now on, throughout the section we will denote by (X, B) a sub-couple over
a perfect field of characteristic p > 0, such that KX + B is a Z(p)-divisor, unless
otherwise stated.

We introduce notation relative to trace maps of Frobenius morphisms. Given
(X, B), let a Ø 1 be the smallest integer such that aB is integral, and let d Ø 1 be
the smallest integer such that a divides (pd

≠ 1). As (pe
≠ 1)B is integral for all

e œ dN, we have divisorial sheaves

L
(e)
X,B

:= OX((1 ≠ pe)(KX + B)).
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When X is clear from the context, we will simply write L
(e)
B

. In particular, L
(e) =

OX((1 ≠ pe)KX). We have a trace map F e

ú
OX(KX) æ OX(KX) by Grothendieck–

Verdier duality. When (X, B) is a Z(p)-couple, i.e. B Ø 0, then twisting by ≠KX

gives a map
T e

B
: F e

ú
L

(e)
X,B

™ F e

ú
L

(e)
X

æ OX .

By further twisting the above map by any integral divisor L we then obtain

T e

B
(L) : F e

ú
L

(e)
X,B

¢OX OX(L) æ OX(L).

Definition 1.3.6. We define the space of Frobenius stable sections of OX(L)
as

S0(X, B; L) :=
‹

eœdN
Im(H0(X, T e

B
(L))) ™ H0(X, OX(L)).

Note that, when X is proper, we have S0(X, B; L) = Im(H0(X, T e

B
(L))) for some

su�ciently large e œ dN ([PST17, Definition 3.10]).

We now extend the above construction to the case where B is not necessarily
e�ective. As B is Z(p)-Weil, we have an OX-linear twisted trace map T e

B
, fitting in

the following commutative diagram

F e

ú
L

(e)
B+ OX

F e

ú
L

(e)
B

k(X)

T
e
B+

T
e
B

for all e œ dN. To construct it we work locally over the regular locus of X. Write
(pe

≠ 1)B = E+
≠ E≠, and let f be a regular function such that E≠ = (f = 0). If

‡ is a section of L
(e)
B

, then locally ‡ = s/f , where s œ L
(e)
B+ . Then, by OX-linearity

we must have
T e

B
(F e

ú
(‡)) := T e

B+(F e

ú
(fp

e
≠1s))

f
.

In particular, Im(T e

B
) ™ OX(E≠).

Proposition 1.3.7 ([DS17, §2]). The assignment B ‘æ (T e

B
: F e

ú
L

(e)
B

æ k(X)) de-
fines bijections
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Y
]

[
Q-divisors B Ø 0 such that
(1 ≠ pe)(KX + B) is integral

Z
^

\

Y
___]

___[

divisorial sheaves L and
OX-linear maps
Â : F e

ú
L

”=0
≠æ OX

Z
___̂

___\

?
≥

Y
]

[
Q-divisors B such that

(1 ≠ pe)(KX + B) is integral

Z
^

\

Y
___]

___[

divisorial sheaves L and
OX-linear maps

Â : F e

ú
L

”=0
≠æ k(X)

Z
___̂

___\

?
≥,

where Â1 ≥ Â2 if the two maps agree up to multiplication by a unit of H0(X, OX).

Sketch of proof. We construct the top horizontal maps. For the general case, we
refer the reader to [DS17, 2.1.1]. Given B Ø 0 we set L := L

(e)
X,B

and Â := T e

B
.

Conversely, given Â, by Grothendieck–Verdier duality (Theorem 1.3.4) we have

Â œ HomOX (F e

ú
L, OX) ƒ HomOX (L, OX((1 ≠ pe)KX))

ƒ H0(X, L
≠1((1 ≠ pe)KX)).

We identify Â with an element DÂ œ H0(X, L
≠1((1 ≠ pe)KX)), up to multiplication

by a unit in H0(X, OX), and we set B := DÂ/(pe
≠ 1). qed

1.3.2. Global F -singularities

In this section, we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.

Definition 1.3.8. Let (X, B) be a Z(p)-sub-couple and d the smallest integer such
that (pd

≠1)B is integral. Then (X, B) is globally sub-F -split (GsFS) if, for some
e œ dN, there exists a map ‡e : OX æ F e

ú
L

(e) such that T e

B
¶ ‡e is the identity on

OX . If B Ø 0, we say (X, B) is globally F -split (GFS).

Remark 1.3.9 ([Eji17, Remark 2.2]). If (X, B) is globally sub-F -split, then T e

B
is

split surjective for all e œ dN.

Lemma 1.3.10. A Z(p)-couple (X, B) is globally F -split if and only if S0(X, B; OX) =
H0(X, OX).

Proof. If T e

B
is split surjective for all e œ dN, then clearly S0(X, B; OX) = H0(X, OX).

Conversely, let ‡e
œ H0(X, OX((1 ≠ pe)(KX + B))) such that H0(X, T e

B
)(‡e) = 1.

The induced map of sheaves ‡e : OX æ F e

ú
L

(e)
B

gives a splitting of T e

B
. qed

Definition 1.3.11. A Z(p)-couple (X, B) is globally F -regular (GFR) if, for every
divisor E Ø 0, the map T e

B+E/(pe≠1) is split surjective for all e œ dN su�ciently large.
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Globally F -regular couples behave similarly to klt pairs with respect to pertur-
bations of the boundary.

Lemma 1.3.12 ([SS10, Corollary 6.1]). Let (X, B) be a globally F -regular couple
and let D Ø 0 be a divisor. Then (X, B+ÁD) is globally F -regular for all su�ciently
small and positive Á œ Z(p).

Lemma 1.3.13 ([SS10, Proposition 3.8(i)]). Let (X, B) be a Z(p)-couple. Then
(X, B) is globally F -regular if and only if for all divisors D Ø 0 and all su�ciently
small positive Á œ Z(p) the couple (X, B + ÁD) is globally F -split.

The following examples show how the arithmetic comes into play when we con-
sider these singularities.

Example 1.3.14. When B = 0, a variety X is GFS if and only if the morphism
OX æ FúOX splits. This is equivalent to asking the map

HomOX (FúOX , OX) æ HomOX (OX , OX)

to be surjective. If X is regular of dimension n, by Serre duality, this is in turn
equivalent to asking

Hn(X, ÊX) æ Hn(X, ÊX ¢ FúOX)

to be injective. Let E be an elliptic curve over an algebraically closed field of
characteristic p > 0, then it is GFS if and only if it is ordinary, i.e. its subgroup of
p-torsion points E [p] is isomorphic to Z/pZ. This fact is well-known to the experts,
anyway we sketch a proof here. Since ÊE is trivial, by the above discussion, the GFS
condition is equivalent to F acting injectively on H1(E, OE). Note that H1(E, OE)
can be identified with the tangent space to Pic0(E) ƒ E and the action of the
Frobenius on H1(E, OE) under this identification corresponds to the action of the
Verschiebung morphism V on the tangent space to E. This action is injective if and
only if it is an isomorphism and this happens if and only if it is étale. But V being
étale is equivalent to asking that its kernel on E is a constant group scheme (of order
p). Since the multiplication by p can be written as [p] = F ¶ V , E[p] = E[F ]E[V ].
Since F is purely inseparable, E[p] contains the constant group scheme Z/pZ if and
only if E[V ] does.

Example 1.3.15. Let B := q4
i=1

1
2(pi), where the pi’s are distinct points on P1.

Consider the pair (P1, B) over a field of characteristic p > 2. Let fi : E æ P1 be
the natural cover by an elliptic curve ramified at the four chosen points. The pair
(P1, B) is GFS if and only if E is GFS, thus ordinary. To prove this, apply [ST14,
Theorem 6.28] to the map induced on the cones over E and P1 and conclude by
[SS10, Proposition 5.3].
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Globally F -split and globally F -regular pairs should be thought of as pairs of log
Calabi–Yau type, resp. log Fano type, with arithmetically well-behaved Frobenius.
This is made more precise in the next statements.

Definition 1.3.16. Let (X, B) be a projective pair over a perfect field of any char-
acteristic. We say (X, B) is log Fano if KX +B is anti-ample and (X, B) is klt. We
say it is log Calabi–Yau if KX +B is Q-linearly trivial and (X, B) is log canonical.
We say (X, B) is of log Fano type (resp. of log Calabi–Yau type) if there exists
an e�ective Q-divisor � such that (X, B + �) is log Fano (resp. log Calabi–Yau).

Definition 1.3.17. Let (X, B) be a projective sub-couple over C. A model of
(X, B) is a normal, integral, separated, projective scheme of finite type over a
finitely generated Z-algebra A, X æ Spec(A), together with a Q-divisor B such
that (X, B) = (X , B) ◊Spec(A) Spec(C). Let p be a prime ideal of A and k(p) the
corresponding residue field. We denote by (Xp, Bp) the fibre product (X , B)◊Spec(A)

Spec(k(p)) and we call it the reduction modulo p of (X, B).

Theorem 1.3.18 ([SS10, Theorem 5.1]). Let (X, B) be a projective pair over C of
log Fano type. Then (X, B) has open globally F -regular type; that is, for every model
(X , B) æ Spec(A) of (X, B), the set of primes p ™ A such that (Xp, Bp) is globally
F -regular is open and dense in Spec(A).

Theorem 1.3.19 ([CGS16, Corollary 4.1]). Let I ™ (0, 1) fl Q be a finite subset.
Let

I+ :=

Y
]

[

mÿ

j=1
ajij | ij œ I, aj œ N, m œ N

Z
^

\ fl [0, 1]

and
D(I) :=

;
m ≠ 1 + f

m
| m œ N, f œ I+

<
fl [0, 1] .

Then there exists a positive integer p0 such that, if (P1, B) is a log Fano pair defined
over a perfect field of characteristic p > p0 such that the coe�cients of B belong to
D(I), then (P1, B) is globally F -regular.

A similar result is expected to hold for log Calabi–Yau pairs.

Conjecture 1.3.20 (Weak Ordinarity, [HW02, Problem 5.1.2], [SS10, Remark 5.2]).
Let (X, B) be a projective pair over C of log Calabi–Yau type. Then (X, B) has dense
globally F -split type; that is, for every model (X , B) æ Spec(A) of (X, B), the set
of primes p ™ A such that (Xp, Bp) is globally F -split is dense in Spec(A).

Remark 1.3.21. Let (X, B) be a Z(p)-couple over k such that X is geometrically
normal, then it is globally F -regular (resp. globally F -split) if and only if the base
change (X, B) := (X, B) ◊Spec(k) Spec(k) over the algebraic closure k is globally F -
regular (resp. globally F -split). To see this, apply Lemma 1.3.10 and Lemma 1.3.13
and use the fact that S0(X, B; OX) ◊k k = S0(X, B; O

X
).
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Given (X , B) æ Spec(A), model of a projective pair (X, B) over C, by [Gro67,
Proposition 9.9.4], the set of primes such that Xp is normal, is open and dense.
Therefore, asking for the existence of an open and dense set of primes p of Spec(A)
for which (Xp, Bp) is globally F -regular is equivalent to asking that there exists such
set for which (Xp, Bp) := (X , B) ◊Spec(A) Spec(k(p)) is globally F -regular. In the
same spirit, we can rephrase Conjecture 1.3.20 by asking for the set of primes p ™ A

such that (Xp, Bp) := (X , B) ◊Spec(A) Spec(k(p)) is globally F -split to be dense in
Spec(A).

1.3.3. Local F -singularities

In this section, we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.

Definition 1.3.22. A couple (X, B) is sharply F-pure (resp. strongly F -regular
or SFR for short) if X is covered by a finite number of open subsets U such that
the pairs (U, �|U) are globally F -split (resp. globally F -regular).

Example 1.3.23. If X is a regular variety, then it is SFR. Indeed, Kunz’ theorem
states that X is regular if and only if F e

ú
OX is locally free for all e œ N. Therefore,

on a regular variety, we can always construct the splitting maps locally.

Remark 1.3.24. If (X, B) is sharply F-pure (resp. SFR), then it is log canonical
(resp. klt) ([HW02, Theorem 3.3]). A surface S over a field of characteristic p > 5
is SFR if and only if it is klt (with no boundary divisor). If we allow boundary
divisors, we get the same conclusion for every p Ø p0 for a fixed p0 œ N>0, which
depends on the coe�cients of the boundary (see [CGS16, Theorem 1.1]).
Furthermore, if X is a normal variety over C and we choose X a model of X over
Spec(Z), then X is klt if and only if Xp is SFR for infinitely many primes p (see
[Har98, Theorem 5.2], [HW02, Theorem 3.7]).

Remark 1.3.25. If (X, B) is SFR and D is an e�ective divisor, then for any su�ciently
small Á > 0, (X, B + ÁD) is SFR as well ([CTX15, Remark 2.8]).

The next results are Bertini-type theorems for semiample linear systems. This
problem has been studied in [Tan17]. We will use a slight variation of those results,
proven as a corollary below.

Definition 1.3.26. Let X be a normal projective variety. Let |V•| := (|Vm|)mœN ™

(|mM |)mœN be a semiample graded linear system on X, where M is a Cartier divisor
on X. We say |V•| is Z(p)-semiample if there exists an integer m Ø 1 not divisible
by p such that Vm is base point free.

Proposition 1.3.27 ([Tan17, Proposition 2]). Let k be an F -finite field of charac-
teristic p > 0 and k0 a perfect field contained in it. Let X be a projective regular
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variety over k and let (X, B) be a strongly F -regular pair, where B is an e�ective
Q-divisor. Let M be a semiample Q-divisor on X. Then, for m ∫ 0, there exists
an e�ective divisor �m ≥ mM such that

1
X, B + 1

m
�m

2
is strongly F -regular.

Corollary 1.3.28. Let k be an F -finite field of characteristic p > 0 and k0 a perfect
field contained in it. Let X be a projective regular variety over k and (X, B) a
strongly F -regular pair, where B is an e�ective Q-divisor. Let |V•| := (|Vm|)mœN ™

(|mM |)mœN be a semiample graded linear system on X, where M is a Cartier divisor
on X. Then, for m ∫ 0, there exists an e�ective divisor �m œ |Vm| such that1
X, B + 1

m
�m

2
is strongly F -regular. Moreover, if |V•| is Z(p)-semiample, �m can

be chosen in |Vm|, for some m ∫ 0 not divisible by p.

Proof. The proof of Proposition 1.3.27 carries over in the same way, taking divisors
inside |V•| instead of divisors Q-equivalent to L. This can be done since |V•| is
semiample. qed
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Chapter 2

Fibrations in positive
characteristic

Fibrations are a fundamental tool in birational geometry, used to “split” varieties
into simpler pieces. In fact, the Minimal Model Program predicts that we can
decompose each variety by means of fibrations into building blocks that are either
log Fano varieties, log Calabi–Yau or varieties of general type.

In this section we study properties of fibrations that appear specifically in positive
characteristic.

Definition 2.0.1. Let f : X æ Z be a projective morphism between normal vari-
eties over any field. It is called a fibration if fúOX = OZ .

Remark 2.0.2. In characteristic 0, the above definition is equivalent to asking f to
be surjective with connected fibres ([Har77, §11, Chapter III]). On the other hand,
purely inseparable morphisms are surjective with connected fibres, but they are not
fibrations.

Notation

Let f : X æ Z be a fibration between normal varieties over a field k of any charac-
teristic.

¶ Given a prime divisor D ™ X, we say D is horizontal if f(D) = Z, we say it
is vertical otherwise.

¶ Given a curve › ™ X, we say › is horizontal if f(›) is a curve, we say it is
vertical otherwise.

¶ Given a Q-divisor D on X, we can decompose it into its horizontal and vertical
parts, denoted by Dh and Dv, respectively, so that D = Dh + Dv.

¶ A general (resp. very general) fibre of f is Xz := f≠1(z) where z is a closed
point over k belonging to a dense open subset of Z (resp. to a countable
intersection of dense open subsets of Z).
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¶ If ÷ is the generic point of Z, we denote by ÷ its geometric generic point and
by X÷ (resp. X÷) the generic (resp. geometric generic) fibre of f . Note that
X÷ may be defined over an imperfect field.

¶ Let D be a Q-divisor on X, and let z, ÷ œ Z denote a general point and the
generic point, respectively. We denote by D÷ the base change of D to the
generic fibre and D÷ the base change to the geometric generic fibre. If Xz

is normal, D is Q-Cartier along any codimension 1 point of Xz, hence the
restricted divisor Dz := D|Xz is well-defined.

¶ If ” is a prime divisor on Z whose preimage under f is of pure codimension 1 in
X, we denote by f≠1(”) the induced divisor on X with its reduced structure.

¶ Assume the general fibre Xz is normal and X is projective. Let D be a divisor
on X and let V ™ H0(X, D) be a subspace. We denote by Vz the image of V

under the natural restriction map H0(X, D) æ H0(Xz, Dz) and by |V |z ™ |Dz|

the linear subsystem generated by Vz. In other words, the divisors in |V |z are
exactly the divisors in |Dz| which extend to divisors in |V | ™ |D|.

Remark 2.0.3. Let f : X æ Z be an equidimensional morphism of normal varieties,
and let D be a Q-divisor on Z. Then we can define f úD even if D is not Q-Cartier.
Let Z0

™ Z denote the regular locus and let f 0 : X0 := f≠1(Z0) æ Z0 be the
induced morphism: then we define f úD as the closure of f 0ú(D|Z0) inside X; it is
canonically determined since codim(X \ X0) Ø 2.

Up to a birational base change, we can always assume our fibration is equidi-
mensional.

Lemma 2.0.4 (Flattening lemma, [AO00, §3.3], [RG71, Théorème 5.2.2]). Consider
f : X æ Z, a projective dominant morphism of normal varieties, and let ÷ be the
generic point of Z. Then, there exists a projective birational morphism Z Õ

æ Z such
that, if ÊX µ X ◊Z Z Õ is the Zariski closure of the generic fibre X÷ ◊ZÕ Z, the induced
morphism f̃ : ÊX æ Z Õ is flat. In particular, if X Õ := ÊX‹, the morphism f Õ : X Õ

æ Z Õ

is equidimensional.

As a consequence of the Flattening lemma we have the following.

Lemma 2.0.5 ([JW21, Lemma 2.19]). Let f : X æ Z be a projective dominant mor-
phism of normal varieties. Then, there is an open subset U ™ Z with codim(Z \ U) Ø

2 such that XU := f≠1(U) is flat over U .

We will often use the following straightforward extension of the projection for-
mula.
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Lemma 2.0.6. Let f : X æ Z be an equidimensional projective morphism between
normal varieties, let L be a divisorial sheaf on Z and F a reflexive sheaf on X.
Then we have a natural isomorphism

fúF [¢]L ƒ
≠æ fú(F [¢]f ú

L).

Proof. By the usual projection formula, we have an isomorphism as above over the
regular locus of Z. By [Har80, Corollary 1.7], if G is a coherent reflexive sheaf on X,
fúG is a coherent reflexive sheaf on Z. Therefore, the sheaves on both sides of the
equation are reflexive. As Z is normal, we conclude by restricting on the smooth
locus of Z. qed

2.1. Separable fibrations

In characteristic 0, given a fibration, it is automatic that the generic fibre is geomet-
rically reduced. In positive characteristic, this is no longer true and it is equivalent
to asking that the fibration is separable.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.

Definition 2.1.1. Let K ™ L be a field extension. It is called separable if there
exists a transcendence basis t1, ..., t¸ such that L is a finite separable extension of
K(t1, ..., t¸).
Let f : X æ Z be a morphism between integral varieties. We say that f is separable
if the field extension k(Z) ™ k(X) is separable; otherwise, f is called inseparable.

Proposition 2.1.2 ([Liu02, Proposition 2.15, Chapter 3]). Let K be a field. A
variety X over Spec(K) is geometrically reduced if and only if f : X æ Spec(K) is
separable.

Remark 2.1.3. In particular, a fibration f : X æ Z is separable if and only if the
geometric generic fibre X÷̄ is reduced.

When Z is a curve, a theorem of MacLane [Mac40] allows us to compare the
notion of separability of a surjective morphism with its Stein factorisation. In this
case it is therefore easier to check this condition. We write here a version of it
restated in geometric terms.

Theorem 2.1.4 ([Sch10, Corollary 2.5]). Let f : X æ Z be a fibration onto a curve
Z. Then f is separable.

Definition 2.1.5. Let f : X æ Z be a surjective projective morphism between
normal varieties and let Ï ¶ g be its Stein factorisation, where Ï is finite and g is a
fibration. We denote by St.deg(f) the degree of Ï and we call it the Stein degree
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of f . We further decompose Ï = Â ¶ ÏÕ, where Â is purely inseparable and ÏÕ is
finite separable. We say that the degree of Â is the purely inseparable degree of
f .

Example 2.1.6. In general, the condition fúOX = OZ is not enough to ensure sepa-
rability. Consider, for example, the threefold X = V (sxp +typ +zp) µ P2

[x:y:z] ◊A2
(s,t).

Let f be the fibration induced by the natural projection onto Z := A2
(s,t). Then f

satisfies fúOX = OZ , but it is not separable.

Remark 2.1.7. Even if a fibration is separable, its fibres may be highly singular.
For example, in characteristics 2 and 3, there exist elliptic surfaces whose structural
fibration has general fibre being a cuspidal curve. In dimension 2 this phenomenon
happens only for p = 2, 3, whereas in higher dimension it is not even known if
Calabi–Yau fibrations have normal general fibre for p ∫ 0.

2.2. Singularities of fibrations

2.2.1. Log canonical singularities in families

Over fields of positive characteristic, heuristically, the generic fibre of a fibration
f : X æ Z reflects properties of X, while the geometric generic fibre is strictly
related to the general fibres of f . Here, we make this philosophy more precise, in
particular studying the property of being log canonical.

In this section we consider varieties defined over a perfect field of any character-
istic, unless otherwise stated.

Definition 2.2.1. We denote by (X/Z, B) the data of a a sub-pair (X, B) and a
fibration between normal varieties f : X æ Z.

We say (X/Z, B) is generically log canonical or GLC if the sub-pair (X÷, B÷)
is log canonical, where ÷ is the generic point of Z and B÷ is defined by restriction.
We say (X/Z, B) is geometrically generically log canonical or GGLC if Z

is irreducible and the sub-pair (X÷

‹ , B÷

‹) is log canonical, where X÷

‹ is the nor-
malisation of the geometric generic fibre and B÷

‹ is the divisor defined on it by
restriction.

Remark 2.2.2. In particular, given a fibration f : X æ Z between normal varieties,
if there exists a Q-divisor B on X such that (X/Z, B) is GGLC, then f is separable.

Remark 2.2.3. If f : X æ Z is a fibration between normal varieties over a field of
characteristic 0 and B is a Q-divisor on X, then (X/Z, B) is GLC if and only if it
is GGLC.

Definition 2.2.4. Let K be a field and K its algebraic closure. Let K ™ L ™ K be
a finite field extension of K. Let X be a variety over K. We say that X is defined
over L if there exists a variety XL over L such that XL ◊Spec(L) Spec(K) = X.
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Lemma 2.2.5. Let f : X æ Z be a fibration between normal varieties. Assume
that B is a Q-divisor on X such that KX + B is Q-Cartier. Suppose that the
geometric generic fibre X÷ is integral and let X÷

‹ be its normalisation. Let B÷

‹ be
the boundary divisor on X÷

‹ defined by restriction. If (X÷

‹ , B÷

‹) is log canonical,
then X÷ is normal. In particular, the geometric generic fibre of a GGLC pair is
normal.

Proof. The pair (X÷, B÷) is slc. In fact, the S2 property is invariant by flat base
change and X÷ is normal. Moreover, if X÷ had singularities worse than nodal in
codimension 1, B÷

‹ would have coe�cients strictly bigger than 1 coming from the
conductor over those singularities, contradicting the log canonical assumption.

Furthermore, the normalisation of the geometric generic fibre is a universal home-
omorphism by [Tan18, Lemma 2.2]. Thus, nodal singularities cannot appear. qed

Remark 2.2.6. If the characteristic of the base field is p > 2, the following is an
alternative proof. Since (X÷, B÷) is slc, the divisor B÷

‹ can be written as C +
B, where C is the conductor of the normalisation (see [Kol13, 5.7]). By [PW22,
Theorem 1.2], the coe�cients of C are divisible by p≠1. When p > 2, this contradicts
the assumption that (X÷

‹ , B÷

‹) is log canonical. Hence, C = 0 and the normalisation
of the geometric generic fibre is an isomorphism.

Proposition 2.2.7 ([PW22, Proposition 2.1, Lemma 2.2]). Let f : X æ Z be a
morphism of varieties. Then the geometric generic fibre is normal (resp. regular,
reduced) if and only if a general fibre is normal (resp. regular, reduced). Let Y æ X

be the normalisation of X. If for a general point z œ Z, Yz is normal, then Yz is the
normalisation of Xz.

Lemma 2.2.8. Let f : X æ Z be a separable fibration between normal varieties and
let Ï : Z Õ

æ Z be a generically finite map. Let Y Õ be the normalisation of the main
component of the fibre product X Õ := X ◊Z Z Õ. If the geometric generic fibre X÷ is
normal, the conductor of Y Õ

æ X Õ is vertical. In particular, Y Õ

÷
= X÷.

Proof. Note that X÷ = X Õ

÷
, therefore X Õ

÷
is geometrically normal. This implies

that there exists an open dense subset U ™ Z Õ such that V := f Õ≠1(U) is normal,
whence Y Õ

æ X Õ is an isomorphism over V . Indeed, by the universal property of
the normalisation, Y Õ

÷
is isomorphic to X Õ

÷
. qed

Lemma 2.2.9. Let f : X æ Z be a separable fibration between normal varieties.
Assume that the geometric generic fibre X÷ is normal and let ‡ : Y æ X÷ be a proper
birational morphism between normal varieties. Then, there exist a generically finite
map Ï : Z Õ

æ Z and a proper birational morphism ‡ : Y æ Y Õ, where:

(i) Y Õ is the normalisation of the main component of X ◊Z Z Õ;

(ii) Y÷ = Y .
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If X and Z are projective, we can choose Z Õ and Y projective.

Proof. There exists L, finite extension of k(Z) such that Y and ‡ are defined over
L. By “spreading out techniques” (see [DW22, Proof of Corollary 1.10] and [Bri22,
Lemma 2.25]), there exist U ™ Z dense open subset and a finite map Ï : U Õ

æ U

such that, if W Õ is the normalisation of the main component of f≠1(U) ◊U U Õ,
there is a proper birational map s : W æ W Õ with W÷ = Y . In general, we take
Z Õ := U Õ. If Z is projective, let U Õ be a projective closure of U Õ and define Ï : Z Õ

æ Z

generically finite, as a resolution of the indeterminacies of U Õ 99K Z. Let Y Õ be the
normalisation of the main component of X ◊Z Z Õ and Y ÕÕ a projective closure of W ,
it has an induced rational map · : Y ÕÕ 99K Y Õ, which is well-defined over U Õ. We take
‡ : Y æ Y Õ to be a resolution of indeterminacies of · that is an isomorphism over
U Õ. qed

Proposition 2.2.10. Assume the existence of log resolutions of singularities in
dimension d. Let f : X æ Z be a fibration between normal varieties such that
dim(X) ≠ dim(Z) = d. Let B Ø 0 be a Q-divisor such that KX + B is Q-Cartier.
The pair (X/Z, B) is GGLC if and only if:

(i) the general fibre Xz of f is reduced and normal, and

(ii) the pair (Xz, Bz) is log canonical.

Proof. Note that, by Proposition 2.2.7, condition (i) is equivalent to asking that
X÷ is reduced and normal, where ÷ is the geometric generic point of Z. Thus, by
Lemma 2.2.5, the GGLC condition implies (i).

Let Y be a log resolution of (X÷, B÷). By the above Lemma 2.2.9, there exist
a generically finite map Ï : Z Õ

æ Z and a birational map ‡ : Y æ Y Õ, where Y Õ

is the normalisation of the main component of X Õ := X ◊Z Z Õ and Y÷ = Y . By
Proposition 2.2.7, the general fibre of Y æ Z is a log resolution of the general fibre
of Y Õ

æ Z. Let Â : Y Õ
æ X be the induced generically finite map and define BÕ on

Y Õ by log pullback, so that KY Õ + BÕ = Âú(KX + B).
Let Xz be the fibre of f over a general point z œ Z, zÕ

œ Z Õ a point mapping to z

and Y Õ

zÕ := f Õ≠1(zÕ). By Lemma 2.2.8, since X÷ is reduced, the restriction of Â to Y Õ

zÕ

is an isomorphism and the pairs (Xz, Bz) and (Y Õ

zÕ , BÕ

zÕ) defined via adjunction from
(X, B) and (Y Õ, BÕ) respectively, coincide. So, (Xz, Bz) is log canonical if and only
if (Y Õ

zÕ , BÕ

zÕ) is. Moreover, X÷ = Y Õ

÷
. Now, let E be a horizontal exceptional divisor of

‡. Since ‡≠1(Y Õ

zÕ) is a log resolution of (Y Õ

zÕ , BÕ

zÕ), by construction the restriction of
E to ‡≠1(Y Õ

zÕ) is an irreducible exceptional divisor, call it EzÕ . The same holds true
for the restriction of E to the geometric generic fibre, say E÷. Then, by adjunction,
we see that the discrepancies of E, EzÕ and E÷ coincide for zÕ

œ Z Õ general. qed
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2.2.2. F -singularities in families

Here, we state some openness results for globally F -split and sharply F -pure singu-
larities.

In this section we consider varieties defined over a perfect field k of characteristic
p > 0, unless otherwise stated.

Remark 2.2.11. Let (X, B) be a sub-couple such that KX + B is a Z(p)-divisor.
Then all the di�erent classes of F -singularities can be given by replacing the absolute
Frobenius F e

X
by the k-linear Frobenius F e

X/k
, as the two di�er by the automorphism

F e

k
.

Lemma 2.2.12. Let R be a smooth local k-algebra essentially of finite type, and let
0, ÷ œ Spec(R) be its closed and generic point, respectively. Let (X, B = q

i aiBi)
be a Z(p)-pair and let fi : X æ Spec(R) be a fibration with normal fibres such that fi

and fi|Bi are flat for all i. Suppose that (1 ≠ pe)(KX + B) ≥ 0 and that (X0, B0) is
globally F -split. Then (X÷, B÷) is globally F -split.

Proof. Consider the Grothendieck trace map F e

X/Rú
OXe(KXe/Re) æ OXRe (KXRe /Re)

of the R-linear Frobenius. Twisting by ≠KXRe /Re we obtain
(V)
T e

X/R,B
: F e

X/Rú
OXe((1 ≠ pe)(KXe/Re + B)) ™ F e

X/Rú
OXe((1 ≠ pe)KXe/Re) æ OXRe .

As all sheaves involved are reflexive and all varieties normal, we can replace X with
the complement of some closed subset Z such that codimX(Z), codimXt(Z flXt) Ø 2
for all t œ Spec(R). In particular, we may assume that fi is smooth. Taking global
sections of (V) yields a map of finitely generated Re-modules

H0(X, T e

X/R,B
) : H0(Xe, OXe((1 ≠ pe)(KXe/Re + B))) æ Re.

Note that H0(Xe, OXe((1 ≠ pe)(KXe/Re + B))) ƒ Re, since (1 ≠ pe)(KX + B) ≥ 0.
By [PSZ18, Lemma 2.18] the trace map (V) is compatible with base change.

As T e

X/R,B
¢ k(0) is surjective by the GFS hypothesis, then T e

X/R,B
¢ k(÷) is also

surjective by Nakayama’s lemma. Thus, we have H0(X÷, OX÷
) = S0(X÷, B÷; OX÷

),
and we conclude by Lemma 1.3.10. qed

We state the next result in the assumptions in which we need to use it later. In
the original paper it is proven in greater generality.

Theorem 2.2.13 ([PSZ18, Corollary 3.31]). Let f : X æ Z be a fibration between
normal varieties such that the geometric generic fibre X÷ is normal and the variety
Z is Q-Gorenstein. Let B be an e�ective Z(p)-Weil divisor on X. Suppose that
KX + B is Q-Cartier and (Xz, Bz) is sharply F-pure, where Xz is a normal fibre
over a closed point over k and Bz is defined by (KX + B)|Xz = KXz + Bz. Then,
(X÷, B÷) is sharply F-pure.
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2.3. Foliations and purely inseparable morphisms

2.3.1. Foliations

Every separable fibration f : X æ Z defines a foliation F whose general leaves
consist of the fibres of f and those subvarieties on which f is inseparable. Here, we
give a formula for the canonical divisor of F assuming that the general fibres of f

are normal.
In this section we consider varieties defined over a perfect field of any character-

istic, unless otherwise stated.

Definition 2.3.1. Let X be a normal variety. A subsheaf F ™ TX is said to be
saturated if the quotient TX/F is torsion free. A foliation on X is a subsheaf of
the tangent sheaf, F ™ TX , which is saturated, closed under Lie brackets, and, if
the characteristic of the base field is p > 0, closed under p-powers.
Let ÊF := det(F)ú, the dual of the reflexified top exterior power of F . The canonical
divisor of a foliation F is any Weil divisor KF such that OX(KF) = ÊF .

Remark 2.3.2. Over fields of characteristic p > 0, closure under Lie brackets follows
from closure under p-powers by [Ger64].

Fibrations naturally induce foliations by considering the relative tangent bundle.

Lemma 2.3.3. Let f : X æ Z be a separable flat fibration between normal varieties.
The kernel of df : TX æ f úTZ is saturated in TX .

Proof. Note that TX/ ker(df) ™ f úTZ . Since Z is normal, TZ is torsion free and
since f is flat, by [Sta22, Tag 0AXV] f úTZ is torsion free. Therefore, TX/ ker(df) is
torsion free as well. qed

Definition 2.3.4. Let f : X æ Z be a separable fibration between normal varieties.
It defines an induced foliation F as the saturation of the kernel of df : TX æ f úTZ .

Definition 2.3.5. Let f : X æ Z be a separable equidimensional fibration between
normal varieties. If f is equidimensional, we define the ramification divisor of f

to be
R(f) :=

ÿ
(f ú” ≠ f≠1(”)) =

ÿ
(¸D ≠ 1)D,

where the first sum is taken over all prime divisors ” of Z, while the second sum
is taken over all vertical prime divisors D on X and ¸D is their multiplicity with
respect to f . Assume now the characteristic of the base field is p > 0 and let D be
a vertical prime divisor. If p divides ¸D, we call D a wild fibre. If f : X æ Z is an
equidimensional separable fibration without wild fibres, we call it a tame fibration.
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Theorem 2.3.6. Let f : X æ Z be an equidimensional separable fibration between
normal varieties and let F be the foliation induced by f . Assume that the geometric
generic fibre X÷ is normal. Then

KF = KX ≠ f úKZ ≠ R(f) ≠ W (f),

where R(f) is the ramification divisor and W (f) Ø 0 is supported on the wild fibres.
More precisely, for every wild fibre D, there exists an integer aD Ø 0 such that

W (f) =
ÿ

D wild
(aD + 1)D.

Proof. Step 1: Since f is equidimensional and X and Z are normal, by Lemma 2.0.5,
by restricting to big open subsets, we can assume f is a flat morphism between
smooth varieties. Therefore, by Lemma 2.3.3, we can assume F = ker(df).
Step 2: We claim that there exists a dense open subset U ™ X such that U÷ is a
big open subset of X÷ and the sequence

0 æ F|U æ TX |U æ f úTZ |U æ 0

is exact. The sequence 0 æ F æ TX æ f úTZ is always exact, therefore we only need
to show surjectivity at the generic fibre. Since X÷ is normal, its singular locus � has
codimension Ø 2. Let L be a finite Galois extension of k(Z) over which � is defined.
Let G := Gal(L/k(Z)), then �G := q

gœG g(�) descends to a cycle of codimension
Ø 2 defined on X÷. Let T be the Zariski closure of �G in X, U := X \ Supp(T )
and V := f(U). By [Sta22, Tag 01V8], up to possibly restricting V further (and
restricting U accordingly), f |U : U æ V is a flat smooth fibration. By [Sta22, Tag
02G1], the sheaf TU/V is locally free and by [Sta22, Tag 02K4], the sequence

0 æ TU/V æ TU æ f úTV æ 0

is exact, whence the claim.
Step 3: By the first step, the di�erence between KF and KX ≠ f úKZ is supported
on vertical divisors. Therefore, to conclude, we compute explicitly the image I

of df : TX æ f úTZ around codimension 1 points corresponding to prime vertical
divisors. Note that I is locally free around points of codimension 1.

Let D be a prime vertical divisor. By localising at the generic point of D, we
can assume f : X æ Z is a fibration onto a curve Z. Around a general point of
D, we can further assume that the fibres of f (with their reduced structure) are
smooth. Therefore, we can choose local étale coordinates x, y1, ..., yd around D such
that D = V (x) and f is the map (x, y1, ..., yd) ‘æ x¸Du, where u œ k[x, y1, ..., yd] is a
unit around D and ¸D is the multiplicity of D with respect to f . Let ˆx, ˆy1 , ..., ˆyd

be the derivations in TX corresponding to the coordinate directions. Let t := x¸Du
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be a local coordinate of Z and ˆt the corresponding derivation which generates TZ .

Tame case: Assume that either the characteristic of the base field is 0 or p > 0
and p does not divide ¸D. Then,

Y
_]

_[

df(ˆx) = x¸D≠1(vxˆt);

df(ˆyi) = x¸D(vyiˆt),

where vx is a unit around D and vyi is a function. In particular, in this étale
neighbourhood, I = x¸D≠1f úTZ . Therefore, at the generic point of D, the sequence

0 æ F æ TX æ x¸D≠1f úTZ æ 0

is exact. By taking determinants, we get that KF = KX ≠f úKZ ≠(¸D ≠1)D around
D.

Wild case: Assume that the characteristic of the base field is p > 0 and p divides
¸D. Then, Y

_]

_[

df(ˆx) = x¸D(xa0v0ˆt);

df(ˆyi) = x¸D(xaiviˆt),

where, for j = 0, ..., d, aj Ø 0 and, since f is separable, there exists an index j

such that 0 ”= vj is a unit around D. In particular, in this étale neighbourhood,
I = x¸D+aDf úTZ , for some aD Ø 0 and the sequence

0 æ F æ TX æ x¸D+aDf úTZ æ 0

is exact. By taking determinants, we obtain KF = KX ≠f úKZ ≠(¸D +aD)D around
D. qed

Remark 2.3.7. The formula in Theorem 2.3.6 is well-known over fields of character-
istic 0, where all fibrations are tame. See for example [Dru17, §2.6].

Example 2.3.8. Let g : A2
æ A1 be the fibration defined by (x, y) ‘æ t := xy. Let X

be the blow-up at the origin of A2 and call E the exceptional divisor. Let f : X æ A1

be the induced fibration. Then, f is tame if and only if the characteristic of the
base field is ”= 2, in which case KF = KX ≠ f úKA1 ≠ E. If the characteristic is 2,
the wild fibre is exactly E and KF = KX ≠ f úKA1 ≠ 2E.

Example 2.3.9. The assumption on the normality of the geometric generic fibre in
Theorem 2.3.6 is essential. Indeed, let k be a field of characteristic 3 and S :=
V (y2

≠ x3
≠ t) ™ A3

(x,y,t). Let f : S æ C := A1
t

be the projection onto the third
coordinate. The fibration f is a quasi-elliptic fibration, the geometric generic fibre
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is reduced, but it has a cusp. Let F := ker(df) and D := V (y) ™ S. We compute
Y
_]

_[

df(ˆx) = 0;

df(ˆy) = 2yˆt.

Therefore, we obtain the short exact sequence 0 æ F æ TS æ 2yf úTC æ 0, whence

KF = KS ≠ f úKC ≠ D.

2.3.2. Frobenius base change

Note that the di�erential of the Frobenius morphism is 0. This easy observation
plays a key role in the study of fibrations. In fact, to each finite purely inseparable
morphism corresponds a foliation and vice-versa. In particular, given a fibration f ,
its induced foliation corresponds to the foliation induced by any power of the relative
Frobenius. Using this correspondence, we provide formulas to relate the canonical
divisors obtained from a Frobenius base change of a fibration. In Chapter 4, we
perform this base change to overcome two issues: the fact that in positive character-
istic we do not have a Cone theorem for foliations and to deal with fibrations with
normal, but non-log canonical fibres. In Section 6.2, we use it to control fibrations
with non-normal fibres.

In this section we consider varieties defined over a perfect field k of characteristic
p > 0, unless otherwise stated.

Definition 2.3.10. Let X and X Õ be schemes over a field of characteristic p > 0.
A purely inseparable morphism a : X Õ

æ X is called of height one if there exists
– : X æ X Õ such that a ¶ – = F .

Proposition 2.3.11 ([PW22, Proposition 2.9]). Let X be a normal variety. There
is a 1-to-1 correspondence

Y
]

[
Height one morphisms

X æ X Õ with X Õ normal

Z
^

\

Ó
Foliations F ™ TX

Ô

given by:

(Ω) X Õ := Spec
X

(OF

X
), where O

F

X
™ OX is the subsheaf of OX that is taken to zero

by all the sections of F ;

(æ) F := {ˆ œ TX s.t. ˆOXÕ = 0}.

Moreover, morphisms of degree pr correspond to foliations of rank r.

We now define the relative version of the Frobenius morphism and set some
notation that will be used throughout the thesis, unless otherwise stated.
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Definition 2.3.12. Let fi : X æ V be a morphism of k-schemes. We have the
following commutative diagram

Xe XV e X

V e V,
fi

e

F
e
X/V

F
e
X

fiV e

(F e
V )X

fi

F
e
V

where the square is Cartesian and in particular:

¶ (F e

V
)X and fiV e are the natural morphisms induced on the fibre product XV e :=

X ◊V V e;

¶ fie is exactly the map fi;

¶ since (F e

V
)X factorises the Frobenius morphism F e, there is an induced mor-

phism F e

X/V
, which is called the eth-relative Frobenius of X over V, or

V -linear Frobenius.

In the rest of the thesis, we will often omit the superscript e on the source of F e

when it is clear from the context.

Remark 2.3.13. Note that F e : Xe
æ X is not k-linear. On the other hand, if

Spec(ke) æ V e is a ke-point, the base change

F e

Xe/V e ¢V e ke : Xe

ke æ Xke

coincides with the k-linear Frobenius of Xk := X ◊V Spec(k).

Construction(`)

Given a fibration f : X æ Z between normal varieties, we consider the following
diagram

Xe X(e) X

Ze Z,

F
e

–e

f

fe

—e

f

F
e

where:

¶ X(e) is the normalisation of the reduction of XZe and fe is the induced fibration;

¶ –e and —e are the induced maps, so that —e ¶ –e = F e. When XZe is reduced,
–e generically coincides with the eth-power of the relative Frobenius of X over
Z;
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¶ if D ™ X is a prime divisor, denote by D(e)
™ X(e) its reduced image in X(e);

¶ when f is separable, F denotes the foliation induced by f and Fe the foliation
induced by fe, unless otherwise stated.

Next, we study some properties of the maps and the varieties involved in diagram
(`). In particular, we determine the relations between the canonical divisors KX ,
K

X(e) and the canonical divisors of the foliations induced by f and fe.

Lemma 2.3.14. If f : X æ Z is a flat separable fibration between normal varieties,
XZe is integral and X(e) is its normalisation.

Proof. By [Wit21, Remark 2.5], if in XZe there are some non-reduced components,
they must dominate Z since f is flat. Thus, we can check reducedness at ÷, the
generic point of Z. By Proposition 2.1.2, X÷ is geometrically reduced. Moreover,
since purely inseparable morphisms are homeomorphisms, XZe is irreducible as X.
All in all, XZe is integral. qed

Lemma 2.3.15. Let f : X æ Z be a separable fibration between normal varieties
such that the geometric generic fibre X÷ is normal. Let › be a horizontal curve in X

and pe0 the purely inseparable degree of f |›. Let e œ N and assume that –e(›) is not
contained in the conductor of X(e)

æ XZe (note that this is automatically satisfied
if Z is a curve). Then, deg(–e|›) = min{pe, pe0}.

Proof. Let npe0 be the degree of f |›, where n œ N is coprime with p. In particular,
f |› factors through F e0 , but not through F e0+1. Let ›e := –e(›) and ’ := f(›).
Around ›e we can assume that X(e)

æ XZe is an isomorphism. Note that, when Z

is a curve, since the normalisation of XZe is not an isomorphism only on a vertical
subset by Lemma 2.2.8, we can always assume this. By the universal properties of
the fibre product the purely inseparable part of fe|›e has degree pe0≠e if e Æ e0, while
fe|›e is separable otherwise. Consider the diagram:

›‹
–e|›‹

//

f |›‹   

›‹

e

fe|›‹
e

✏✏
’‹ .

The purely inseparable parts of f |›‹ and of fe|›‹
e

¶ –e|›‹ have the same degree, whence
the conclusion. qed

Example 2.3.16. In general, we cannot conclude that e0 in the above Lemma 2.3.15
is 0. Below an example where e0 = 1, on Tango–Raynaud surfaces (for more details
about their construction, see Section 5.4.3). A Tango–Raynaud curve is a normal
projective curve C of genus Ø 2 on which we can find a rational map r such that
the divisor defined by dr is pD ≥ KC for some D e�ective integral divisor. This
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determines a non-zero element of H1(C, OC(≠D)) which is mapped to zero by the
Frobenius morphism. Hence dr determines a (non-split) short exact sequence

0 æ OC(≠D) æ E æ OC æ 0,

which becomes split after applying the Frobenius morphism:

0 æ OC(≠pD) æ F ú
E æ OC æ 0.

Let P := P(E) be the P1-bundle defined by E , P Õ := P(F ú
E) the one defined by

F ú
E , f : P æ C and g : P Õ

æ C the structural maps. Thus, we have a commutative
diagram:

P P Õ P

C C,
f

–

FP

—

g f

FC

where the lower square is a fibre product diagram and – is the relative Frobenius.
The splitting of the last short exact sequence defines a section of g, T Õ. Let T :=
–úT Õ. The morphisms f |T and –|T both coincide with the Frobenius morphism,
while g|T Õ is separable.

Lemma 2.3.17. If f : X æ Z is a separable fibration between normal varieties, the
foliations induced by f and –e coincide for every e > 0.

Proof. Fix e > 0. By [CS23, Lemma 2.2], we can check whether the foliation induced
by f and the one induced by –e coincide on a dense open subset of X. Therefore,
since f is separable, we may assume that XZe is normal, –e is the eth relative
Frobenius of X over Z, f is smooth, and both ker(d–e) and ker(df) are saturated.

Let › ™ X be a curve. If › is vertical, both df |› and d–e|› are 0. On the other
hand, if › is horizontal, by Lemma 2.3.15, –e|› is purely inseparable if and only if
f |› = g ¶ F for some surjective morphism g. Therefore, d–e|› = 0 if and only if
df |› = 0.

Given a general point x œ X, if v œ ker(df)x, there exists a curve › passing
through x with tangent vector v and the same holds for ker(d–e). This implies that
ker(df) and ker(d–e) coincide on an open subset U ™ X. qed

Remark 2.3.18. Let X be a normal variety and F a foliation on X. A subvariety
W is said to be tangent to F if TW ™ F . We point out that, over fields of positive
characteristic, tangent subvarieties behave di�erently than in the characteristic 0
case.

Indeed, let F be a the foliation induced by a separable fibration f : X æ Z with
normal general fibres. Then, there may be curves that are tangent to F , but that
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are horizontal. Moreover, their image in X(e) may be not tangent to Fe, the foliation
induced by fe. In fact, if › is a curve such that the purely inseparable degree of f |›

is pe0 , for some e0 > 0, then T› ™ ker(df), whereas, for e Ø e0, T›e ”™ ker(dfe), where
›e is the image of › in X(e).

Furthermore, there may be curves that are vertical, but not tangent to F . For
example, if f : A2

æ A1 is defined by (x, y) ‘æ xp(x + y), then the induced foliation
is generated by ˆx ≠ˆy and the curve defined by x = 0 is a fibre which is not tangent
to F .

2.3.3. Wild multiplicities

We now set the ground for the base change formula that we prove in Section 2.3.4.
In particular, we study how the above base change (`) of a fibration with a power
of the Frobenius morphism modifies the “multiplicities” of horizontal and vertical
divisors.

In this section we consider varieties defined over a perfect field k of characteristic
p > 0, unless otherwise stated. We use the notation of (`) in Section 2.3.2.

Lemma 2.3.19. Let f : X æ Z be a fibration between normal varieties such that
the geometric generic fibre X÷ is normal. Let D µ X be a horizontal prime divisor.
Let ÷ be the generic point of Z and assume that D÷ = pe0(D÷)red at the generic point
of D÷ for some integer e0 Ø 0. Then, at the generic point of D÷, we have:

D÷ =

Y
_]

_[

peD(e)
÷

if e Æ e0

pe0D(e)
÷

otherwise,

and

—ú

e
D =

Y
_]

_[

peD(e) if e Æ e0

pe0D(e) otherwise,
–ú

e
D(e) =

Y
_]

_[

D if e Æ e0

pe≠e0D otherwise.

Moreover, D(e0)
÷

is reduced at its generic point.

Proof. First of all, note that, by Lemma 2.2.8, around the generic point of D, we can
assume XZe is normal. By cutting Z with general hyperplanes, we can assume that
f : X æ Z is a fibration onto a curve. Let fe|D : D(e)

æ Z be the induced map on
D(e). By the universal property of the fibre product and since Z is a curve, fe0 |

D(e0)

is separable, thus D(e0)
÷

is reduced. We will prove the lemma by induction on e0.
If e0 = 0, fe|D(e) is separable for each e œ N, so D(e)

÷
is reduced and it coincides

with D÷. In particular, —ú

e
D = D(e) and –ú

e
D(e) = peD for all e > 0. If e0 > 0,

consider the natural maps X(e0)
æ X(1)

æ X. By the universal properties of the
fibre product and since Z is a curve, D and D(e) are isomorphic at their generic
points for all e Æ e0, thus fe|D(e) has purely inseparable degree pe0≠e for e Æ e0. In
particular, fe0|

D(e0) is separable and f1|D(1) has purely inseparable degree pe0≠1. The
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map X(1)
æ X is purely inseparable of degree p and D(1)

æ D is an isomorphism.
Thus —ú

1D = pD(1). Then, we conclude by the inductive assumption. qed

Remark 2.3.20. Let f : X æ Z be a fibration between normal varieties and (X/Z, B)
a GGLC pair associated with it. Let D be a horizontal prime divisor contained in
the support of B. If D÷ = pe0(D÷)red, the coe�cient of D in B is at most 1

pe0 .

Remark 2.3.21. Let f : X æ Z be a tame separable equidimensional fibration be-
tween normal varieties. Then, fe is tame as well. Indeed, if ” is a prime divisor in
Z,

pef ú

e
” = —ú

e
f ú” =

ÿ

D over ”

¸D—ú

e
D =

ÿ

D over ”

¸DpdDD(e),

where the divisors D and D(e) are prime and reduced, ¸D is coprime with p by the
tameness assumption on f and dD Æ e since —e is a purely inseparable morphism
factorising F e. Hence, we have dD = e and the multiplicity of the vertical divisor
D(e) with respect to fe is again ¸D.

Proposition 2.3.22. Let f : X æ Z be a separable equidimensional fibration be-
tween normal varieties and D a vertical prime divisor with multiplicity ¸ = npe0, for
some n coprime with p and e0 Ø 0. Then, the multiplicity of D(e) with respect to fe

is

¸e =

Y
_]

_[

npe0≠e if e Æ e0

n if e Ø e0.

In particular,

—ú

e
D =

Y
_]

_[

D(e) if e Æ e0

pe≠e0D(e) otherwise,
and –ú

e
D(e) =

Y
_]

_[

peD if e Æ e0

pe0D otherwise.

Proof. Step 1: If f is tame, i.e. e0 = 0, ¸e = n for all e Ø 0 by Remark 2.3.21,
whence the conclusion.
Step 2: Now, suppose e0 > 0. Since f is equidimensional, by Lemma 2.0.5, up
to restricting the fibration to a big open subset, we can assume f : X æ Z is a
flat fibration between smooth varieties. Let d := dim(X) ≠ dim(Z). By localising
around the generic point of f(D), we can assume that Z is a curve. Then, around
D, by [Sta22, Tag 039P] there exist étale morphisms Ï and Â and a fibration f et,
fitting in the following diagram:

X A := Spec(k[x, y1, ..., yd])

Z B := Spec(k[t]).

f

Â

f
et

Ï

We can assume D = V (x) ™ A and t = xnp
e0 u, where u œ k[x, y1, ..., yd] is a unit

around D and, since f is separable, its Jacobian has rank 1.



2.3. Foliations 55

Step 3: Let e Æ e0. In this step, we prove the proposition for the morphism
f et : A æ B.

Consider the diagram:

A A(e) A

B := Spec(k[· ]) B,

f
et

–
et
e

f
et
e

—
et
e

f
et

F
e

where · p
e = t and A(e) is the normalisation of Spec(k[x, y1, ..., yd, · ]/(· p

e
≠ xnp

e0 u)).
We compute A(e) explicitly: it is constructed by adding an element z such that
zxnp

e0≠e = · . The map f et
e

is described as:

A(e) = Spec
A

k[x, y1, ..., yd, z]
(zpe

≠ u)

B

æ B; (x, y1, ..., yd, z) ‘æ zxnp
e0≠e

.

Therefore, the multiplicity of the divisor D(e)
™ A(e) with respect to f et

e
is npe0≠e.

Step 4: We claim that, around D(e)
™ X(e), there are étale morphisms Ïe and Âe

and a fibration f e

et, fitting in the following diagram:

X(e) A(e)

Z B.

fe

Âe

f
et
e

Ïe

Since multiplicities can be computed étale locally, Step 3 shows that ¸e = npe0≠e.
Now, let us show the claim. Note that, by commutativity of the Frobenius

morphism, we can choose Ïe := Ï. Moreover, by the universal properties of the
fibre product and since X(e) is normal, there is a map X(e) Âe

≠æ A(e). We need to
show that it is étale. Let C := X ◊A A(e) ‰

≠æ A(e). Since Â is étale and A(e) is normal,
‰ is étale and C is normal as well. By construction, there is a map X(e)

æ C. By
the universal properties of the normalisation and of the fibre product, we construct
also a map C æ X(e). With a diagram chasing, we conclude that C and X(e) are
isomorphic and Âe = ‰ is étale.
Step 5: Let e Ø e0. By the previous steps and Remark 2.3.21, fe is tame around
D and ¸e = n.

As for the “In particular” part, we compute —ú

e
D and –ú

e
D(e) by using the fact

that f = fe ¶ –e and —e ¶ –e = F e. qed

Corollary 2.3.23. Let f : X æ Z be a separable equidimensional fibration between
normal varieties. Define ef to be the maximum of the integers e such that there
exists a wild fibre with multiplicity ¸ = npe for some n œ N coprime with p. Then,
for e Ø ef , fe is tame.

Proof. First of all, note that f has at most finitely many wild fibres, therefore ef is
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a well-defined natural number. If e Ø ef , by Proposition 2.3.22, for every vertical
prime divisor in X(e), its multiplicity with respect to fe is coprime with p. qed

2.3.4. Base change formula 1

In the papers [Eke87, Corollary 3.4], [PW22] and [JW21], the authors give a very
explicit description of the relative canonical bundle of a purely inseparable base
change of height 1. In the next two sections, we study similar relations for the base
change described in (`) in Section 2.3.2.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated. We use the notation of (`) in Section 2.3.2.

Proposition 2.3.24 ([PW22, Proposition 2.10], [SB92, Proposition 9.1.2.3], [Eke87,
Corollary 3.4]). Let X æ X Õ be a purely inseparable morphism of height one between
normal varieties and let F be the corresponding foliation. Then

ÊX/XÕ ƒ (det F)[¢](p≠1).

Lemma 2.3.25. Let f : X æ Z be a separable equidimensional fibration between
normal varieties. If D is a wild fibre, denote by eD the integer such that the multi-
plicity of D is ¸D = nDpeD , for some nD coprime with p. Then,

–ú

e
R(fe) = R(f) ≠

ÿ

D

(peD ≠ 1)D,

for all e ∫ 0. If f is tame, for any e Ø 1,

–ú

e
R(fe) = R(f).

Proof. Let D ™ X be a vertical prime divisor and ” := f(D) ™ Z. We do local
computations around D. Denote f ú” = ¸D, f ú

e
” = ¸eD(e). By Proposition 2.3.22,

if ¸ = npe0 , with e0 œ N and n coprime with p, for all e Ø e0, ¸e = n. Moreover,
–ú

e
D(e) = pe0D. Hence,

–ú

e
R(fe) = (n ≠ 1)–ú

e
D(e) = R(f) ≠ (pe0 ≠ 1)D.

qed

Corollary 2.3.26. If F is the foliation induced by a separable equidimensional tame
fibration f : X æ Z between normal varieties such that the geometric generic fibre
X÷ is normal, then:

–ú

e
K

X(e) = (pe
≠ 1)KF + KX and –ú

e
KFe = peKF .
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Proof. We prove the statement by induction on e. For e = 1,

–ú

1KX(1) = (p ≠ 1)KF + KX ,

by Proposition 2.3.24 and Lemma 2.3.17. Thus, since f is tame, by Theorem 2.3.6
and Lemma 2.3.25, –ú

1KF1 = pKF .
If e > 1, factorise the diagram in (`) in Section 2.3.2, in the following way:

X

–e≠1 ##

–e

))

f 11

X(e≠1)

fe≠1
$$

” // X(e)

fe

✏✏

// X(e≠1)

fe≠1
✏✏

Z F // Z.

Let Fe≠1 be the foliation induced by fe≠1. By Proposition 2.3.24 and Lemma 2.3.17
applied to the lower part of the diagram above,

–ú

e
KX(e) = –ú

e≠1”
úKX(e) = (p ≠ 1)–ú

e≠1KFe≠1 + –ú

e≠1KX(e≠1) .

Since fe≠1 is tame by Remark 2.3.21, we get that KFe≠1 = K
X(e≠1) ≠ f ú

e≠1KZ ≠ R(fe≠1)
by Theorem 2.3.6.

By induction, we know that

–ú

e≠1KX(e≠1) = (pe≠1
≠ 1)KF + KX .

Using that KF = KX ≠f úKZ ≠R(f) by Theorem 2.3.6 and that –ú

e≠1R(fe≠1) = R(f)
by Lemma 2.3.25, we get the result. qed

Theorem 2.3.27. Let f : X æ Z be a separable equidimensional fibration between
normal varieties such that the geometric generic fibre X÷ is normal. Then,

–ú

e
K

X(e) = (pe
≠ 1)(KX ≠ f úKZ ≠ R(f)) + KX ≠

ÿ

D wild
wD,eD,

where wD,e Ø 0 for all e and all D wild fibres.
More precisely, if the multiplicity of D with respect to f is ¸ = npe0, with n

coprime with p, then wD,e Ø pe
≠ 1 if e Æ e0 and wD,e Ø pe0 ≠ 1 otherwise.

Proof. Let D ™ X be a vertical prime divisor. We prove the statement locally
around D. By Corollary 2.3.26, if f is tame around D, the theorem holds. Therefore,
we can suppose D is a wild fibre of multiplicity ¸ = npe0 .

Claim 2.3.28. If e Æ e0,

–ú

e
K

X(e) = (pe
≠ 1)(KX ≠ f úKZ ≠ R(f)) + KX ≠ weD,
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where we Ø pe
≠ 1.

We prove the claim by induction. If e = 1, by Proposition 2.3.24, Lemma 2.3.17
and Theorem 2.3.6,

–ú

1KX(1) = (p ≠ 1)(KX ≠ f úKZ ≠ R(f)) + KX ≠ (p ≠ 1)(aD + 1)D,

for some integer aD Ø 0. If 1 < e Æ e0, factorise the diagram in (`) in Section 2.3.2,
in the following way:

X

–e≠1 ##

–e

))

f 11

X(e≠1)

fe≠1
$$

” // X(e)

fe

✏✏

// X(e≠1)

fe≠1
✏✏

Z F // Z.

Then, by Proposition 2.3.22, the multiplicity of D(e) is ¸e = npe0≠e. Then,

–ú

e
K

X(e) = –ú

e≠1”
úK

X(e)

= –ú

e≠1((p ≠ 1)KFe≠1 + K
X(e≠1)) by Proposition 2.3.24 and Lemma 2.3.17

= –ú

e≠1((p ≠ 1)(K
X(e≠1) ≠ f ú

e≠1KZ ≠ (npe0≠e+1
≠ 1)D(e≠1))

≠ (p ≠ 1)(bD + 1)D(e≠1) + K
X(e≠1)) by Theorem 2.3.6

= p(pe≠1
≠ 1)(KX ≠ f úKZ ≠ R(f)) + pKX ≠ (p ≠ 1)f úKZ ≠ (p ≠ 1)(npe0 ≠ 1)D

≠ pwe≠1D + (p ≠ 1)(pe≠1
≠ 1)D ≠ pe≠1(p ≠ 1)(bD + 1)D

by induction and Proposition 2.3.22

= (pe
≠ 1)(KX ≠ f úKZ ≠ R(f)) + KX ≠ weD,

where bD Ø 0 and we≠1 Ø pe≠1
≠ 1 by the inductive step. Therefore,

we = pwe≠1 ≠ (p ≠ 1)(pe≠1
≠ 1) + pe≠1(p ≠ 1)(bD + 1) Ø pe

≠ 1.

Now, let e Ø e0 and consider the factorisation

X
–e0 //

–e

&&

X(e0) Ae // X(e) Be //

—e

%%
X(e0) —e0 // X.

By Proposition 2.3.22, fe is tame around D(e) for e Ø e0, therefore we can apply
Corollary 2.3.26 to the morphisms X(e0) Ae

≠æ X(e) Be
≠æ X(e0). After that, we apply
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Claim 2.3.28 to the morphisms X
–e0
≠≠æ X(e0) —e0

≠≠æ X. All in all,

–ú

e
K

X(e) = –ú

e0Aú

e
K

X(e)

= –ú

e0((pe≠e0 ≠ 1)(K
X(e0) ≠ f ú

e0KZ ≠ (n ≠ 1)D(e0)) + K
X(e0))

by Corollary 2.3.26

= pe≠e0(pe0 ≠ 1)(KX ≠ f úKZ ≠ R(f)) + pe≠e0KX ≠ (pe≠e0 ≠ 1)f úKZ

≠ (pe≠e0 ≠ 1)R(f) ≠ pe≠e0we0D + (pe≠e0 ≠ 1)(pe0 ≠ 1)D

by Claim 2.3.28 and Proposition 2.3.22

= (pe
≠ 1)(KX ≠ f úKZ ≠ R(f)) + KX ≠ weD,

where
we = pe≠e0we0 ≠ (pe≠e0 ≠ 1)(pe0 ≠ 1) Ø pe0 ≠ 1.

qed

Remark 2.3.29. Let f : X æ Z be an equidimensional separable fibration between
normal varieties with normal geometric generic fibre and let F be the induced fo-
liation. For every e Ø 0, let Fe be the foliation induced by fe. The sequence
(F , F1, ..., Fe, ...) (resp. (F , F1, ..., Fe)) is an Œ-foliation (resp. an e-foliation) in
the sense of [Gra23, Definition 2.19, Definition 4.6]. Combining the above Theo-
rem 2.3.27 with Theorem 2.3.6, we see that

–ú

e
K

X(e) = (pe
≠ 1)KF + KX +

ÿ

D wild
((pe

≠ 1)(aD + 1) ≠ wD,e)D.

We compare this with the results in [Gra24], which state that

–ú

e
K

X(e) = (pe
≠ 1)KF + KX + E,

for E e�ective Q-divisor such that E = 0 if and only if (F , F1, ..., Fe) is Ekedahl
in the sense of [Gra24]. Therefore, we conclude that E is supported on the wild
fibres, wD,e Æ (pe

≠ 1)(aD + 1) and (F , F1, ..., Fe) is Ekedahl if and only if f is a
tame fibration. We expect that, if the geometric generic fibre of f is not normal,
the divisor E is supported on the wild fibres and on the (horizontal) singular locus
of the fibres.

2.3.5. Base change formula 2

Now, we study a base change formula for fibrations whose geometric generic fibre is
not necessarily normal.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.
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Lemma 2.3.30 ([JW21, Lemma 2.4], [PW22, Proposition 2.1]). Let f : X æ Z

be a fibration between normal varieties over a perfect field of characteristic p > 0.
Let ÷ be the geometric generic point of Z. There exists an integer e Ø 1 such that
X(e)

÷
e = (X÷,red)‹. In particular, for e ∫ 0, the general fibres of fe are reduced and

normal.

Theorem 2.3.31 ([PW22, Theorem 3.1]). Let f : X æ Z be a morphism between
normal varieties. Let a : Z Õ

æ Z be a purely inseparable morphism of height one
from a normal variety, let X Õ be the normalisation of the reduction of X ◊Z Z Õ and
let f Õ : X Õ

æ Z Õ be the induced morphism. Set A to be the foliation induced by a.
Then:

(i) KXÕ/X ≥ (p ≠ 1)D for some Weil divisor D on X Õ;

(ii) there is a non-empty open subset U ™ Z Õ and an e�ective divisor C on f Õ≠1(U)
such that C ≥ ≠D|f Õ≠1(U).

Moreover, assume that the geometric generic fibre X÷ is reduced, and f is equidi-
mensional. Then:

(iii) f Õú(det A) ≠ D ≥ C Õ for some e�ective divisor C Õ on X Õ.

Proof. Points (i) and (ii) correspond to [PW22, Theorem 3.1(a),(b)]. We prove (iii).
Step 1. Suppose first X ◊Z Z Õ is reduced. Since f is equidimensional and f Õ is
universally homeomorphic to f , f Õ is equidimensional as well. As Z and Z Õ are R1

we can replace Z by Z0 := Z \ (Sing(Z) fi a(Sing(Z Õ))), Z Õ by Z
Õ0 := a≠1(Z0), X

by f≠1(Z0) and X Õ by f Õ≠1(Z Õ0). Then point (iii) follows from point (d) of [PW22,
Theorem 3.1].
Step 2. Suppose now X ◊Z Z Õ is not reduced. By [JW21, Lemma 2.19] we can
find an open U ™ Z with codim(Z \ U) Ø 2 such that f |XU : XU æ U is flat, where
XU := f≠1(U). Let U Õ := a≠1(U) and XU Õ := f Õ≠1(U Õ). By [Wit21, Remark 2.5]
we have that XU Õ is reduced, since f |XU is flat and X÷ is reduced. Let X‹

U Õ ™ X Õ

be the normalisation of XU Õ . By applying Step 1 to X‹

U Õ æ U Õ, we conclude that
f Õú(det A)|X‹

UÕ ≠D ≥ C Õ for some e�ective divisor C Õ on X‹

U Õ . Since codimZÕ(Z Õ
\U Õ) Ø

2 and f Õ is equidimensional, we have codim(X Õ
\ X Õ

U Õ) Ø 2, therefore, by normality
of X Õ, we can extend the above linear equivalence on all of X Õ. qed

We will need to consider base changes with purely inseparable maps that are not
necessarily of height one. Theorem 2.3.31 extends to this situation by induction on
the height.

Corollary 2.3.32. Let f : X æ Y be an equidimensional fibration between normal
varieties and let g : Y æ Z be a morphism between normal varieties. Let Y (e) be
the normalisation of the reduction of Y ◊Z Ze, and X(e) the normalisation of the
reduction of X ◊Y Y (e). Assume that the geometric generic fibre X÷ is reduced, where
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÷ is the geometric generic point of Y . Let fe : X(e)
æ Y (e) and ge : Y (e)

æ Ze be the
induced morphisms. Then:

(i) K
X(e)/X

≠ f ú

e
K

Y (e)/Y
≥ (1 ≠ p)C for some e�ective Weil divisor C on X(e);

(ii) K
Y (e)/Y

≥ (p ≠ 1)D for some Weil divisor D on Y (e) and there is a non-
empty open subset U ™ Ze with an e�ective divisor C Õ on g≠1

e
(U) such that

≠D|
g

≠1
e (U) ≥ C Õ.

Proof. We proceed by induction. When e = 1, let A be the foliation on Y (1) cor-
responding to Y (1)

æ Y . By Proposition 2.3.24, KY (1)/Y ≥ (det A)[p≠1] and, by
Theorem 2.3.31(i, iii),

KX(1)/X ≠ (p ≠ 1)f ú

1 (det A) ≥ (1 ≠ p)C

for some e�ective divisor C on X(1), giving point (i). Point (ii) follows from Theo-
rem 2.3.31(i, ii). If e > 1, consider the diagram:

X(e) X(e≠1) X

Y (e) Y (e≠1) Y

Ze Ze≠1 Z,

fe

fi2 fi1

fe≠1 f

p2

ge

p1

ge≠1 g

F F
e≠1

where fi1, fi2, p1 and p2 are the induced maps. By the inductive assumptions, there
exist C1, C2, D1 and D2 Weil divisors on X(e≠1), X(e), Y (e≠1) and Y (e) respectively,
such that:

• K
X(e≠1)/X

≠ f ú

e≠1KY (e≠1)/Y
≥ (1 ≠ p)C1 and C1 Ø 0;

• K
X(e)/X(e≠1) ≠ f ú

e
K

Y (e)/Y (e≠1) ≥ (1 ≠ p)C2 and C2 Ø 0;

• K
Y (e≠1)/Y

≥ (p≠1)D1 and there exist a dense open U1 ™ Ze≠1 and an e�ective
divisor C Õ

1 on g≠1
e≠1(U1) such that ≠D1|g≠1

e≠1(U1) ≥ C Õ

1;

• K
Y (e)/Y (e≠1) ≥ (p≠1)D2 and there exist a dense open U2 ™ Ze and an e�ective

divisor C Õ

2 on g≠1
e

(U2) such that ≠D2|g≠1
e (U2) ≥ C Õ

2.

Setting C := fiú

2C1 + C2, D := pú

2D1 + D2, U := U1 fl U2 and C Õ := (p2|g≠1
e (U))úC1 +

C2|g≠1
e (U) we get the claim. qed
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Chapter 3

Overview on the canonical bundle
formula

In this chapter we give an overview of the main results concerning the canonical
bundle formula, presenting the di�erent approaches that have been taken to address
the problem.

The first instance of such result is Kodaira’s theorem on elliptic surfaces. It
states that, given a relatively minimal fibration f : S æ C from a smooth surface S

to a smooth curve C with elliptic fibres, the canonical divisor of S can be computed
in terms of KC , the multiplicities of the singular fibres and the Euler characteristics
‰(OS), ‰(OC) in a very explicit way. In Section 3.1 we present this and we highlight
the main di�erence between the formula over fields of characteristic 0 and of positive
characteristic: the possible presence of wild fibres.

Ideally, we would like to have similar formulae for K-trivial fibrations f : X æ Z,
i.e. fibrations equipped with a pair (X, B), such that KX + B is the pullback of a
line bundle LZ from Z. More specifically, the goal is to write LZ as the sum of KZ ,
a divisor BZ measuring the singularities of the fibres (the discriminant part) and
another divisor MZ which induces a map measuring the variation of f , determined
by how “di�erent” the fibres are between each other or how they vary in the moduli
space if this is known to exist (the moduli part). The first property the moduli part
should have in order to even being able to define such a map is being semiample.
Unfortunately, there is no numerical criterion to prove whether a divisor is semi-
ample, and the closest property that can be checked numerically is whether it is
nef.

The main tool that has then been used to study positivity of the moduli part is
variations of Hodge structures. In fact, given a smooth fibration f : X æ Z over the
complex numbers, the sheaf fúOX(KX ≠ f úKZ) naturally measures how the Hodge
data of the fibres vary. Using Hodge theory, this sheaf has been proven to be weakly
positive. In Section 3.2, we present the results obtained with this approach. Note
that the Hodge theoretic input is not available over fields of positive characteristic.
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More recently, in [ACSS21], the authors adopt a di�erent approach to the sub-
ject. In fact, they use the Minimal Model Program for foliations to get the desired
positivity properties of the moduli part. We will talk more about this in Section 3.3.
In the next Chapter 4 we discuss a canonical bundle formula result in positive char-
acteristic that builds on these ideas.

Over fields of positive characteristic, weaker results on the canonical bundle
formula have been obtained for fibrations of relative dimension 1, exploiting existence
and properness of the moduli space of curves. Moreover, in [Wit21] and [CWZ23] the
authors prove a canonical bundle formula result for fibrations of relative dimension
1 whose general fibres are non-normal. We discuss them in Section 3.4.1.

In the last Section 3.4.2, we discuss a canonical bundle formula for fibrations in
positive characteristic with F -split fibres. Using the technique of Frobenius split-
tings, in [Eji17] and [DS17], the authors “descend” e�ective boundaries along a
K-trivial fibration. We discuss also a generalisation of these results to morphisms
such that the degree of the finite part of their Stein factorisation is not divisible by
the characteristic, proven in [BBC23].

3.1. Elliptic surfaces
Kodaira’s canonical bundle formula was reformulated in terms of the j-invariant and
the singularities of the fibres by Fujita. We write this latter version since it is more
suited for higher dimensional generalisations.

In this section we consider varieties defined over an algebraically closed field, we
will specify the characteristic in each result.

Definition 3.1.1. Let f : X æ Z be a surjective morphism between normal varieties
and B a Q-divisor on X such that KX + B is Q-Cartier. For each divisor ” ™ Z,
define

“” := sup{t œ R s.t. (X, B + tf ú”) is log canonical at the generic point of ”}.

Note that the pullback is always well-defined around the generic point of ”.

Theorem 3.1.2 ([Cor07, Theorem 8.2.1, Chapter 8]). Let f : S æ C be a fibration
from a smooth surface S to a smooth curve C over an algebraically closed field of
characteristic 0. Assume there are no (≠1)-curves in the fibres and that the general
fibres are smooth elliptic curves. Then,

KS ≥Q f ú (KC + BC + MC) ,

with

(i) BC = q
cœC(1 ≠ “c)(c);
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(ii) MC = 1
12jú

OP1(1), where j : C æ P1 is defined by extending the natural map
given by the j-invariant on the smooth fibres.

The Q-divisor BC is called discriminant part, while MC is called moduli part.

There are similar versions of this theorem when S is only normal or when the
characteristic of the base field is p > 0 ([BM77]). The main di�erence between the
situation in characteristic 0 and in positive characteristic is the possible presence of
wildly ramified fibres.

Definition 3.1.3. Let f : S æ C be a fibration between a smooth projective surface
S and a smooth projective curve C over an algebraically closed field of characteristic
p > 0. The sheaf R1fúOS has rank 1 and it can be decomposed into O(L)üT , where
L is a divisor on C and T is torsion. In positive characteristic T may be non-trivial.
The points in the support of T are called wildly ramified. All the other points
over which the fibre is multiple are called tamely ramified (see [KU85, §1] for
some equivalent definitions). Remark that wild ramification is a more “arithmetic”
phenomenon, rather than “geometric”.

Theorem 3.1.4 ([BM77, Theorem 2]). Let f : S æ C be a fibration from a smooth
projective surface S to a smooth projective curve C over an algebraically closed field
of characteristic p > 0. Assume there are no (≠1)-curves in the fibres and that the
general fibres are smooth elliptic curves. Then,

KS ≥Q f ú (KC ≠ L) +
¸ÿ

i=1
aiSzi ,

where:

(i) miSzi = f ú(zi) for i = 1, ..., ¸ are the multiple fibres, and Szi is defined so that,
if Szi = q

j djDj is the decomposition in prime divisors, the greatest common
divisor of the dj’s is 1;

(ii) ai = mi ≠ 1 if the fibre is tame and 0 Æ ai Æ mi ≠ 1 otherwise.

Example 3.1.5. Let f : S := E ◊ C æ C, where E is an elliptic curve, C is any
normal projective curve and f is the second projection over any algebraically closed
field. Then, KS = f úKC . In this case all the fibres are smooth and isomorphic,
there is no variation in moduli, thus BC = MC = 0.

Example 3.1.6. Let S be the projective closure of V (y2
≠ x(x ≠ 1)(x ≠ ⁄)) inside

P2
[x:y:z] ◊ P1

[⁄:µ] over an algebraically closed field of characteristic 0 and let f : S æ C,
where C := P1, be the induced projection.

We compute the discriminant part of f . Note that S is normal. Indeed, it is a
complete intersection and it is singular at the nodal points of the fibres over ⁄ = 0, 1
and at the intersection point of the three lines composing the fibre over [1 : 0] =: Œ.
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Let S Õ be a resolution of S and let g : S ÕÕ
æ C be the fibration obtained after a

relative KSÕ-MMP over C. By Kodaira’s canonical bundle formula Theorem 3.1.2,
the moduli part of g is 1

12jú
OP1(1), where j is the j-invariant map. We remark

that S is isomorphic to S ÕÕ everywhere but at its three singular points, therefore the
moduli part of f can also be expressed as

MC = 1
12jú

OP1(1).

Since the j-map has degree 6 on the Legendre family, we conclude that the dis-
criminant part has degree 1/2 since the canonical bundle of S is OP2◊P1(0, ≠1)|S.
Using [GS], we see that the reduction of S modulo 5 is strongly F -regular, thus,
by [MS18, Theorem 7.9], S is klt. Using [GS], we check that the F -pure threshold
of the fibres over 0 and 1 at the reduction of f modulo 5 is exactly 1. Therefore,
(S, f ú(0) + f ú(1)) is log canonical. All in all, we get that the discriminant part is

BC = 1
2(Œ).

Example 3.1.7 ([KU85, Example 4.7]). This is an example of a wildly ramified fi-
bration. Let E be an ordinary elliptic curve over an algebraically closed field of
characteristic p > 0. Fix P0 œ E a point of order p. Define g to be the automor-
phism of P1

◊ E given by

g : (t, P ) ‘æ (t + 1, P + P0).

The group G = ÈgÍ ƒ Z/pZ acts freely on P1
◊ E. Therefore, we have an elliptic

surface structure f : S := (P1
◊E)/G æ P1/G = P1 given by the natural projection.

This surface has only one multiple singular fibre pEŒ over Œ œ P1 of multiplicity
p, it is a wild fibre and KS = f ú

OP1(≠1) + (p ≠ 2)EŒ.

3.2. Hodge theoretic approach
The biggest evidence of nefness of the moduli part comes from Hodge theoretic in-
puts. Under the standard normal crossing assumptions, variations of Hodge struc-
tures can be used to prove semipositivity of fúÊX/Z . The moduli part is closely
related to this bundle, and, in particular, it is nef.

In this section we consider varieties defined over an algebraically closed field of
characteristic 0.

Definition 3.2.1. Let f : X æ Z be a fibration between normal projective varieties,
let B and � be Q-divisors on X and Z respectively. We say that (f, B, �) satisfies
the standard normal crossing assumptions if:

(a) X and Z are smooth,
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(b) Supp(B + f ú�) and � are log smooth,

(c) f is smooth over Z \ �,

(d) B is simple normal crossing.

Theorem 3.2.2 ([Cor07, Theorem 8.3.7, Chapter 8]). Let f : X æ Z be a fibra-
tion between smooth projective varieties and B and � Q-divisors such that (f, B, �)
satisfies the standard normal crossing assumptions. Assume that KX + B ≥Q f úLZ

for some Q-divisor LZ on Z. Let B = Bh + Bv be the decomposition of B into its
horizontal and vertical parts and assume that Bh

Ø 0. Then,

KX + B ≥Q f ú(KZ + BZ + MZ),

and the following holds.

(i) The moduli part MZ is nef. Moreover, it depends only on Z and (X÷, B|X÷),
where X÷ is the generic fibre of f .

(ii) The discriminant part BZ is the unique smallest Q-divisor supported on �
such that

Bv + f ú(� ≠ BZ) Æ f≠1(�).

Moreover, it depends only on f and Bv.

(iii) (Z, BZ) is log canonical if and only if (X, B) is log canonical;

(iv) if ÂBh
Ê = 0, then (Z, BZ) is klt if and only if (X, B) is klt;

(v) an irreducible divisor Bi of Z appears with negative coe�cient in BZ if and
only if f úBi ≠ f≠1(Bi) < ≠Bv.

This formula was then generalized to other types of fibrations (see for instance
[FM00], [Amb04], [Amb05], [Cor07]). In particular, the divisor BZ is described in
terms of the singularities of the fibres using log canonical thresholds.

Definition 3.2.3. Let f : X æ Z be a surjective proper morphism between normal
projective varieties and (X/Z, B) a GLC pair on it (see Definition 2.2.1). Applying
generic smoothness and Bertini-type theorems, for all but finitely many divisors ” ™

Z, the log canonical threshold (as in Definition 3.1.1) is “” = 1. The discriminant
part of the fibration f is

BZ :=
ÿ

”™Z

(1 ≠ “”)”,

where the sum is taken over all prime divisors of Z.

Definition 3.2.4. Let f : X æ Z be a surjective proper morphism between normal
projective varieties and B a Q-divisor on X such that KX + B is Q-Cartier. We
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say (X/Z, B) is generically klt if (X÷, B÷) is klt, where ÷ is the generic point of Z.
Given a GLC (resp. generically klt) sub-pair (X/Z, B), we say that f is an lc-trivial
fibration (resp. klt-trivial fibration) if:

(a) there exists a Q-Cartier divisor D on Z such that KX + B ≥Q f úD;

(b) there exists a log resolution fi : X Õ
æ X of (X, B) such that, if E := fiú(KX +

B) ≠ K Õ

X
= q

i aiEi and E<1 := q
ai<1 aiEi, then

rank(f ¶ fi)úOXÕ(Á≠E<1
Ë) = 1.

We will denote these fibrations as f : (X, B) æ Z.

Remark 3.2.5. With Ambro’s approach it is useful to include sub-pairs (X, B) with
B not e�ective. In fact, consider an lc-trivial fibration (X/Z, B) and ‹ : Z Õ

æ Z

proper birational. Let X Õ be the normalization of the main component of X ◊Z Z Õ

and let µ : X Õ
æ X be the induced morphism. Define BÕ := µú(KX + B) ≠ KXÕ .

Then the induced fibration f Õ : X Õ
æ Z Õ with sub-pair structure (X Õ/Z Õ, BÕ) is lc-

trivial as well. Note that, even if B is e�ective, BÕ needs not be. Condition (b)
in Definition 3.2.4 is then needed in order to control the singularities of a possible
negative part of the boundary B. What it is saying is that B≠ is a rigid divisor over
Z, i.e. the only global section (over Z) of B≠ is B≠ itself.

Definition 3.2.6. Let f : X æ Z with pair structure (X/Z, B) be an lc-trivial
fibration between normal projective varieties. In particular, KX + B ≥Q f úD for
some Q-Cartier divisor D on Z. Define the moduli part of f to be MZ := D ≠

(KZ + BZ). Note that this is defined only up to Q-linear equivalence.

Theorem 3.2.7 ([Amb04, §1, §2, §3]). Let f : X æ Z with pair structure (X/Z, B)
be an lc-trivial fibration between normal projective varieties, then there exists a
proper birational map Ï : Z Õ

æ Z such that, in the notation of the construction
of Remark 3.2.5:

(i) MZÕ is Q-Cartier and nef;

(ii) for every fi : Z ÕÕ
æ Z Õ birational, considering the corresponding lc-trivial fibra-

tion constructed as in Remark 3.2.5, then MZÕÕ = fiúMZÕ;

(iii) if (X, B) is klt (resp. log canonical), then (Z Õ, BZÕ) is klt (resp. log canonical).

Such Z Õ is called an Ambro model of the fibration.

Even if we still do not know whether the moduli part gives a map to some moduli
space, Ambro proved that it does give a measure of the variation of the fibres.
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Theorem 3.2.8 ([Amb05, Theorem 3.3, Proposition 4.4]). Let f : (X, B) æ Z be
a klt-trivial fibration between normal projective varieties such that B Ø 0 over the
generic point of Z. Then, there exists a diagram:

(X, B)
f

✏✏

(X+, B+)

f
+

✏✏

Z Ẑ
fl //·oo Z+,

such that:

(i) · is generically finite and fl is surjective;

(ii) f+ is klt-trivial;

(iii) (X, B) ◊Z Ẑ and (X+, B+) ◊Z+ Ẑ are isomorphic over an open subset U ™ Ẑ;

(iv) MZ+ is big and, after possibly a proper birational base change, · úMZ = flúMZ+.

Remark 3.2.9. The upshot of the above Theorem 3.2.8 is that MZ measures the
dimension of a variety (i.e. Z+) over which the fibration is a product. We call
dim(Z+) the variation of f .

3.3. An MMP approach
In the paper [ACSS21], the authors study the canonical bundle formula in charac-
teristic 0 using tools of the Minimal Model Program. In this setting it is useful to
extend our focus on more general fibrations, not only the K-trivial ones. This will
give us the necessary flexibility to perform birational transformations. In order to
do that, we need to redefine the moduli part, while the definition of the discriminant
part remains the same (see Definition 3.2.3).

In this section we consider varieties defined over a perfect field and we will specify
when we need the characteristic to be 0 or when we assume it is algebraically closed.

Definition 3.3.1. Let f : X æ Z be a fibration between normal varieties and
(X/Z, B) a GGLC pair on it. Let BZ be the discriminant of f . Suppose that f is
equidimensional or that KZ + BZ is Q-Cartier. Then, the moduli part of f is

MX := KX + B ≠ f ú(KZ + BZ).

Note that MX is defined on the total space X and only up to linear equivalence. In
general, by the Flattening lemma (see Lemma 2.0.4), there exists an equidimensional
fibration f Õ : X Õ

æ Z Õ with proper birational maps a : Z Õ
æ Z and b : X Õ

æ X.
Define BÕ := bú(KX + B) ≠ KXÕ and MXÕ on X Õ accordingly. The moduli part MX

is then defined as búMXÕ .
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Likewise the previous approach, the idea is to first find a class of fibrations for
which it is easier to get positivity properties and then we want to reduce to this
case. Instead of standard normal crossing assumptions, the authors of [ACSS21]
introduce the notion of Property (ú): when a fibration satisfies this property, the
moduli part coincides with the canonical divisor of the foliation associated with it.
At this point, we can use the birational geometry of the foliation to get the desired
positivity.

Definition 3.3.2 ([ACSS21, Definition 2.13]). Let f : X æ Z be a fibration between
normal varieties and (X/Z, B) a GGLC sub-pair on it. We say it satisfies Property
(ú) if:

(a) there exists a reduced divisor �Z on Z such that (Z, �Z) is log smooth and
Bv = f≠1(�Z);

(b) for any closed point z œ Z and any divisor � Ø �Z such that (Z, �) is log
smooth around z, then (X, B + f ú(� ≠ �Z)) is log canonical around f≠1(z).

In the next proposition, we list some useful features that Property (ú) pairs enjoy.

Proposition 3.3.3 ([ACSS21, Lemma 2.14, Proposition 2.18]). Let f : X æ Z be
a fibration between normal varieties and (X/Z, B) a GGLC pair on it satisfying
Property (ú). Then the following properties hold.

(i) The pair (X, B) is log canonical and the discriminant part BZ coincides with
�Z. Moreover,if B Ø 0, the map f is equidimensional outside �Z.

(ii) Suppose B Ø 0 and let Ï : X 99K Y is a sequence of steps of the (KX + B)-
MMP over Z. Let C := ÏúB and g : Y æ Z be the induced fibration. Then,
(Y/Z, C) satisfies Property (ú) and for any closed point z œ Z, the map Ï≠1

is an isomorphism along the generic point of any irreducible component of
g≠1(z). In particular, the discriminant part of (Y/Z, C) coincides with the
discriminant part of (X/Z, B).

Over fields of characteristic 0, it is possible to construct (ú)-modifications using
the Weak Semistable Reduction results in [AK00].

Theorem 3.3.4 (Existence of (ú)-modifications, [ACSS21, Proposition 2.17]). Let
f : X æ Z be a fibration between normal varieties over an algebraically closed field
of characteristic 0 and (X/Z, B) a GLC pair on it such that MX is f -nef. Then,
there exist a Q-factorial pair (X Õ, BÕ) satisfying Property (ú) and a commutative
diagram

X Õ b //

f
Õ

✏✏

X

f

✏✏
Z Õ a // Z,
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where a and b are projective birational morphisms and f Õ is equidimensional. More-
over,

KXÕ + BÕ + R = bú(KX + B) + G,

where G and R are e�ective Q-divisors that are vertical with respect to f Õ and b(R)
is supported on the non-log canonical locus of (X, B). The fibration f Õ together with
the pair (X Õ/Z Õ, BÕ) is called a (ú)-modification of (X/Z, B).

Definition 3.3.5. Let X be a normal variety. Let F be a foliation on X and � a
Q-divisor on X such that KF + � is Q-Cartier. We call (F , �) a foliated pair.

We say that (F , �) satisfies Property (ú) if there exists a Q-divisor B on X

such that � = Bh and (X/Z, B) satisfies Property (ú).

Proposition 3.3.6 ([ACSS21, Proposition 3.6]). Let (F , �) be a foliated pair on a
normal variety X induced by an equidimensional separable tame fibration f : X æ Z

between normal varieties. Assume that (F , �) satisfies Property (ú) and let B be
the divisor such that (X/Z, B) has Property (ú) and Bh = �. Let MX be the moduli
part of (X/Z, B). Then,

(i) KF + � ≥Q MX and

(ii) KF + � ≥Q,Z KX + B.

Given any foliated pair on a normal projective variety X, using Theorem 3.3.4,
it is possible to birationally modify it in order to get a foliated pair which satisfies
Property (ú). The existence of (ú)-modifications, together with the Cone theorem
for foliated pairs are the two main ingredients to prove positivity of the moduli part.

Definition 3.3.7. Let f : X æ Z be a fibration between normal varieties. If D is
a horizontal divisor, we define ‘(D) := 1, while, if D is a vertical divisor, we define
‘(D) := 0. Given a proper birational morphism fi : X Õ

æ X, let U be the open
subset on which fi is an isomorphism. By [CS23, Lemma 2.2], there is a unique
saturated sheaf F

Õ which extends F|U , call it the pullback of F on X Õ. Then, we
write:

KF Õ + fi≠1
ú

� = fiú(KF + �) +
ÿ

a(E, F , �)E,

where the sum is taken over all exceptional divisors. We call the foliated pair (F , �)
F-log canonical if a(E, F , �) Ø ≠‘(E) for all exceptional divisors over X. If there
exists E such that a(E, F , �) = ≠‘(E) (resp. a(E, F , �) < ≠‘(E)), then the image
of E in X is called a log canonical centre (resp. non-log canonical centre)
of (F , �). We denote by Nlc(F , �) the union of all non-log canonical centers of
(F , �).

Theorem 3.3.8 ([ACSS21, Theorem 3.9]). Let (F , �) be a foliated pair on a normal
projective variety over an algebraically closed field of characteristic 0, where F is
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induced by a fibration f : X æ Z between normal varieties and � Ø 0. Then,

NE(X) = NE(X)KF+�Ø0 + Z≠Œ +
ÿ

i

RØ0 [›i] ,

where:

(i) the sum on the RHS is countable;

(ii) the ›i’s are vertical rational curves;

(iii) for each ›i, 0 Æ ≠(KF + �) · ›i Æ 2n;

(iv) all the curves in Z≠Œ are contained in Nlc(F , �).

Definition 3.3.9. Let (X/Z, B) and (X Õ/Z Õ, BÕ) be GGLC pairs over a perfect field
of any characteristic such that the associated fibrations f : X æ Z and f Õ : X Õ

æ Z Õ

are birationally equivalent. We say that (X/Z, B) and (X Õ/Z Õ, BÕ) are crepant over
the generic point of Z if, given birational morphisms p1 : ÊX æ X and p2 : ÊX æ X Õ

which resolve the indeterminacies of X 99K X Õ, we have that

pú

1(KX + B) ≠ pú

2(KXÕ + BÕ)

is vertical with respect to the induced fibration ÊX æ Z.

Theorem 3.3.10 ([ACSS21, Theorem 1.1]). Assume termination of flips in di-
mension n. Let (X, B) be a projective log canonical pair of dimension n and let
f : X æ Z be a fibration between normal projective varieties over an algebraically
closed field of characteristic 0. Assume that KX + B is f -nef and B Ø 0. Then,
there exist a projective log canonical pair (Y, C) with C Ø 0 and a commutative
diagram

Y b //

f
Õ

✏✏

X

f

✏✏
Z Õ a // Z,

where a is a projective birational morphism and b is a birational map such that

(i) (X/Z, B) and (Y/Z Õ, C) are crepant over the generic point of Z;

(ii) the moduli part MY of (Y/Z Õ, C) is nef.

We outline the idea of the proof. Given a fibration f : X æ Z and a log canonical
pair (X, B) such that KX + B is f -nef, we take a (ú)-modification (X Õ/Z Õ, BÕ) with
induced fibration f Õ : X Õ

æ Z Õ constructed with Theorem 3.3.4. Possibly after
running an MMP, we can suppose the new moduli part MXÕ is f Õ-nef and it coincides
with the canonical bundle of the induced foliation by Proposition 3.3.6. Therefore,
by Theorem 3.3.8, we conclude that MXÕ is nef.
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In the case of a K-trivial fibration, we recover the previous canonical bundle
formula Theorem 3.2.7.

Theorem 3.3.11 ([ACSS21, Theorem 1.3]). Let f : X æ Z be a fibration between
normal projective varieties over an algebraically closed field of characteristic 0. Let
B Ø 0 be a Q-divisor on X such that (X/Z, B) is a GLC pair. Assume that MX ≥Q

f úLZ for some line bundle LZ on Z. Then, there exists a commutative diagram

X Õ b //

f
Õ

✏✏

X

f

✏✏
Z Õ a // Z,

where a and b are proper birational, such that the moduli part MXÕ of the pair induced
by crepant pullback, is nef.

3.4. Canonical bundle formula in positive charac-
teristic

3.4.1. Canonical bundle formula for fibrations of relative di-
mension 1

In [CTX15, Lemmas 6.6, Lemma 6.7] and [Wit21] the authors prove a canonical
bundle formula for fibrations of relative dimension 1 using properties of the moduli
space of curves. In fact, if f : X æ Z has relative dimension 1 with fibres of genus
0, under reasonable assumptions, there is a natural map from Z to the moduli space
of curves of genus 0. When the fibres are elliptic curves, the result is a consequence
of the subadditivity of Kodaira dimensions for fibrations of relative dimension 1 (see
[CZ15]).

In this section we consider varieties defined over fields of characteristic p > 0.

Theorem 3.4.1 ([Wit21, Proposition 3.2]). Let (X, B) be a quasi-projective log
pair over a perfect1 field of characteristic p > 0 and let f : X æ Z be a fibration
between normal varieties whose geometric generic fibre is a smooth curve. Let ÷

be the geometric generic point of Z. Assume that (X÷, B÷) is log canonical and
KX + B ≥Q f úLZ for some Q-Cartier Q-divisor LZ on Z. Then,

LZ ≥Q KZ + �Z

for some Q-e�ective divisor �Z on Z.
1
In the original paper, the result is proven over algebraically closed fields, but we can reduce

the statement to that situation with a base change.
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A similar theorem has been proven for fibrations with general fibres that are not
necessarily log canonical by allowing to take purely inseparable covers of the base.

Theorem 3.4.2 ([Wit21, Theorem 3.4], [CWZ23, Theorem 6.2]). Let (X, B) be a
quasi-projective log pair over an algebraically closed field of characteristic p > 0 and
let f : X æ Z be a separable fibration between normal varieties of relative dimension
1. Assume that (X÷, B÷) is log canonical, where ÷ is the generic point of Z, and
KX + B ≥Q f úLZ for some Q-Cartier divisor LZ on Z.

Then, there exist finite purely inseparable morphisms ·1 : T æ Z and ·2 : T Õ
æ T ,

an e�ective Q-divisor E on T Õ and rational numbers a, b, c Ø 0 such that

· ú

2 · ú

1 LZ ≥Q aKT Õ + b· ú

2 KT + c· ú

2 · ú

1 KZ + E.

3.4.2. Canonical bundle formula for F -split fibrations

Over fields of positive characteristic, a similar canonical bundle formula has been
established for K-trivial fibrations with globally F -split general fibres (see [DS17,
Theorem 5.2] and [Eji17, Theorem 3.17]). Here, we recall its statement and extend
it to morphisms with Stein degree not divisible by the characteristic p.

Throughout this section (X, B) will denote a Z(p)-sub-pair over a perfect field of
characteristic p > 0 and we will use the notation set in Section 1.3.1.

Proposition 3.4.3. Let f : X æ Z be a fibration of normal varieties and let B be
a Z(p)-divisor on X. Assume that (1 ≠ pe)(KX + B) ≥Z 0 for some e Ø 1, and that
(X

’
, B

’
) is globally F -split, where ’ œ Z is the generic point. Then there exists a

canonically defined e�ective Z(p)-divisor BZ on Z such that

(i) (1 ≠ pe)(KX + B) ≥ f ú((1 ≠ pe)(KZ + BZ));

(ii) if B Ø 0 then BZ
Ø 0;

(iii) (X, B) is globally (sub-)F -split if and only if (Z, BZ) is globally (sub-)F -split;

(iv) if � Ø 0 is a Z(p)-Cartier Z(p)-divisor on Z, then (B + f ú�)Z = BZ + �.

Proof. Point (i) follows by [DS17, Theorem 5.2]2. This boils down to the following
fact: write (1 ≠ pe)(KX + B) ≥ f úM for some Cartier divisor M on Z, so that
T e

B
: F e

ú
OX(f úM) æ k(X). By pushing forward via f and using the projection for-

mula we obtain fúT e

B
: F e

ú
OZ(M) æ k(Z). As (X

’
, B

’
) is GFS we have fúT e

B
”= 0

([Eji17, Observation 3.19]), and Proposition 1.3.7 yields a canonically defined Z(p)-
divisor BZ such that M ≥ (1 ≠ pe)(KZ + BZ) and fúT e

B
= T e

BZ . As for point (ii), if
B Ø 0 then the images of T e

B
and fúT e

B
are contained in OX and OZ , respectively,

hence by Proposition 1.3.7, the induced Q-divisor BZ is e�ective.
2
If (X÷, B÷) is GFS, then so is (X÷, B÷).
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As for point (iii), first assume (X, B) is GsFS, i.e. there is ‡ : OX æ F r

ú
L

(r)
X,B

,
a map such that T r

B
¶ ‡ = idOX , for some r Ø 1. Without loss of generality, we

may assume r is a multiple of e. In particular, we have the following commutative
diagram

fúOX fúF r

ú
L

(r)
X,B

k(Z)

OZ F r

ú
L

(r)
Z,BZ k(Z).

gú‡ fúT
r
B

·
T

r
BZ

As the vertical arrows are isomorphisms by the projection formula, then T r

BZ ¶ · =
idOZ , i.e. (Z, BZ) is GsFS. The GFS case follows by the same argument. Con-
versely, suppose (Z, BZ) is GsFS, and let · : OZ æ F r

ú
L

(r)
Z,BZ such that T r

BZ ¶ · =
idOZ . As · corresponds to a global section of L

(r)
Z,BZ and we have an isomorphism

H0(Z, L
(r)
Z,BZ ) ƒ H0(Z, L

(r)
X,B

) by the projection formula, we obtain a section ‡, which
satisfies ‡ ¶ T r

X,B
= idOX . Again, the GFS case follows by the same argument.

As for point (iv), note that the rightmost half of the above diagram can be
completed to

fúF r

ú
L

(r)
X,B+fú� fúF r

ú
L

(r)
X,B

k(Z)

F r

ú
L

(r)
Z,BZ+� F r

ú
L

(r)
Z,BZ k(Z)

fúT
r
B+fú�

T
r
B

T
r
BZ +�

T
r
BZ

where the leftmost vertical arrow is also an isomorphism by the projection formula
and fúT r

B+fú� = T r

BZ+�. Note that the latter map is non-zero, as it coincides with
H0(X

’
, T r

B
’
) at the geometric generic point of Z. We then conclude by the same

argument as in point (i). qed

Remark 3.4.4 ([DS17, Proposition 5.7]). The divisor BZ constructed in Proposi-
tion 3.4.3 can be also described in terms of the singularities of the fibration, simi-
larly to the definition of the discriminant part for K-trivial fibrations over fields of
characteristic 0. More precisely, if ” is a prime divisor of Z, let

d” := sup{t s.t. (X, B + tf ú”) is globally sub-F -split over the generic point of ”}.

Then,
BZ =

ÿ

”

(1 ≠ d”)”,

where the sum is taken over all prime divisors ” of Z.
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Definition 3.4.5. Let f : X æ Z be a fibration between normal varieties and B

a Z(p)-divisor satisfying the hypotheses of Proposition 3.4.3. The Z(p)-divisor BZ is
called the F -discriminant of the fibration.

Example 3.4.6. Let S be the projective closure of V (y2
≠ x(x ≠ 1)(x ≠ ⁄)) inside

P2
Z,[x:y:z] ◊ P1

Z,[⁄:µ] over Spec(Z) and let f : S æ C = P1
Z be the induced projection.

We will denote by f0 : S0 æ C0 the fibration over Spec(C) and by fp : Sp æ Cp the
fibration over Spec(Fp). In Example 3.1.6 we studied the canonical bundle formula
for f0. Now, let us consider what happens over Spec(Fp) for p Ø 3. In particular,
we compute BCp

p
, the F -discriminant defined as in Proposition 3.4.3.

Let X æ A1
p

:= Spec(Fp [t]) be the family of cones over elliptic curves defined
by zy2

≠ x(x ≠ z)(x ≠ tz) with a section “ : A1
p

æ X mapping to the vertices of
the cones. Call Z the image of “. Let ÊX æ X be the birational map obtained by
blowing-up Z and let E be the exceptional divisor. Note that E æ Z = A1

p
is exactly

the family fp restricted to Cp \ {Œ}. By the computations in [DS17, Example 3.2],
the F -discriminant here is given by BCp

p
|A1

p
= 1

p≠1
q

⁄œ�p
(⁄). Over Œ we know by

Example 3.1.6 that the coe�cient is 1
2 . Therefore, the F -discriminant, for p Ø 3 is

BCp
p

= 1
2(Œ) + 1

p ≠ 1
ÿ

⁄œ�p

(⁄),

where �p is the set of those ⁄’s corresponding to supersingular elliptic curves. Re-
mark that the cardinality of �p is p≠1

2 by [Sil09, Theorem 4.1(b), Chapter V], thus
giving the right degree for BCp

p
.

Proposition 3.4.7. Let h : Z æ Y be a surjective separable finite morphism of
normal varieties such that deg(h) is not divisible by p, and let B Ø 0 be a Z(p)-
divisor on Z. Assume (Z, B) is globally F -split and (1≠pe)(KZ +B) ≥Y 0 for some
e Ø 1. Then there exists a canonically defined e�ective Z(p)-divisor BY on Y such
that

(i) (1 ≠ pe)(KZ + B) ≥ hú((1 ≠ pe)(KY + BY ));

(ii) (Y, BY ) is globally F -split;

(iii) if � Ø 0 is a Z(p)-Cartier Z(p)-divisor on Y such that (Y, BY + �) is globally
F -split, then (Z, B + hú�) is globally F -split too, and (B + hú�)Y = BY + �;

(iv) if (Z, B) is globally F -regular then (Y, BY ) is globally F -regular.

Proof. Let M be a Cartier divisor such that (1 ≠ pe)(KZ + B) ≥ húM , set L :=
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OY (M) and d := deg(h). By [ST14, Corollary 4.2] we have a commutative diagram

húF e

ú
hú

L húOZ

F e

ú
L OY ,

húT
e
B

F
e
ú

1 TrZ/Y
d ¢L

2
TrZ/Y

d

ÂY

where the vertical maps are split surjective via F e

ú
(h˘

¢ L) : F e

ú
L æ húF e

ú
hú

L and
h˘ : OY æ húOZ , respectively, and ÂY := TrZ/Y

d
¶húT e

B
¶F e

ú
(h˘

¢L). As (Z, B) is GFS,
by taking global sections we obtain 1 œ Im(H0(Y, ÂY )). In particular, ÂY ”= 0, thus
Proposition 1.3.7 yields an e�ective Z(p)-divisor BY such that ÂY = T e

BY , (Y, BY ) is
GFS and (1 ≠ pe)(KZ + B) ≥ hú((1 ≠ pe)(KY + BY )), thus proving points (i) and
(ii).

To show point (iii), up to replacing e with a multiple, we may assume (1 ≠ pe)�
is also Cartier. Denote by ⁄ : L((1 ≠ pe)�) æ L the natural map, and observe that
the above diagram can be completed to

húF e

ú
hú

L((1 ≠ pe)�) húF e

ú
hú

L húOZ

F e

ú
L((1 ≠ pe)�) F e

ú
L OY .

ÏZ

húF
e
ú h

ú
⁄

F
e
ú

1 TrZ/Y
d ¢L((1≠p

e)�)
2

húT
e
B

F
e
ú

1 TrZ/Y
d ¢L

2
TrZ/Y

d

ÏY

F
e
ú ⁄ ÂY

As (Y, BY + �) is GFS, we have 1 œ Im(H0(Y, ÏY )), hence 1 œ Im(H0(Z, ÏZ)). By
Proposition 1.3.7 the maps

F e

ú
hú

L((1 ≠ pe)�) F
e
ú h

ú
⁄

≠≠≠æ F e

ú
hú

L
T

e
B

≠æ OZ and F e

ú
L((1 ≠ pe)�) F

e
ú ⁄

≠≠æ F e

ú
L

ÂY
≠æ OY

correspond to the divisors B + hú� and BY + �, respectively.

As for point (iv), let D Ø 0 be a divisor on Y . By Lemma 1.3.13 it is enough
to show that (Y, BY + D/(pr

≠ 1)) is GFS whenever r is large enough. As (Z, B)
is GFR, we have that (Z, B + hú (D/(pr

≠ 1))) is GFS provided r ∫ 0, again by
Lemma 1.3.13. Arguing as in points (i) and (ii), we can pushforward the splitting
to Y via the trace map of h
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húOZ húF e

ú
L

(e)
B+hú(D/(pr≠1)) húOZ

OY F e

ú
L

(e)
BY +D/(pr≠1) OY ,

TrZ/Y
d

húT
e
B+hú(D/(pr≠1))

F
e
ú

1 TrZ/Y
d ¢L

(e)
B+hú(D/(pr≠1))

2
TrZ/Y

d

T
e
BY +D/(pr≠1)

hence (Y, BY + D/(pr
≠ 1)) is GFS. qed

Example 3.4.8. It might be tempting to try extending this result to the case of a split
finite morphism h (i.e. such that the natural map OY æ húOZ is split). However,
this fails already when Z = Y = P1 and h = F over a field of characteristic p = 2.
As explained in [ST14], this is because the splitting of OY æ húOZ is not given
by the trace map. Indeed, let h := F : P1

æ P1 be the Frobenius morphism over
a perfect field of characteristic p = 2. Then, OP1(≠KP1) = F ú

OP1(1). By a direct
calculation, FúOP1 = OP1 ü OP1(≠1). Therefore, we have a diagram:

húOP1 húFúF ú
OP1(1) húOP1

OP1 üOP1(≠1) FúOP1(1) ü FúOP1 OP1üOP1(≠1)

OP1 FúOP1(1) OP1 .0 0

Example 3.4.9 (See Example 1.3.15). On the other hand, when the splitting comes
from the trace, we then have the familiar formula B = húBY

≠ Ram(h), where
Ram(h) denotes the ramification divisor of h.

For example, consider h : E æ P1, the cyclic cover of degree 2 of P1 ramified over
four points p1, ..., p4 over an algebraically closed field of characteristic p > 2. Assume
that E is an ordinary elliptic curve (therefore it is GFS). By Proposition 3.4.7 and
the above observation, we have that

1
P1, 1

2
q4

i=1(pi)
2

is GFS.

Proposition 3.4.10. Let f : X æ Y be a surjective projective morphism of normal
varieties such that its Stein degree St.deg(f) is not divisible by p, and let B Ø 0 be
a Z(p)-divisor on X. Assume (X, B) is globally F -split and (1 ≠ pe)(KX + B) ≥Y 0.
Then, there exists a canonically determined e�ective Z(p)-divisor BY on Y such that

(i) (1 ≠ pe)(KX + B) ≥ f ú((1 ≠ pe)(KY + BY ));

(ii) (Y, BY ) is globally F -split;

(iii) if � Ø 0 is a Z(p)-Cartier Z(p)-divisor on Y such that KY + BY + � is Z(p)-
Cartier, then (B + f ú�)Y = BY + �;

(iv) (X, B + f ú�) is globally F -split if and only if (Y, BY + �) is globally F -split.
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Proof. Apply Proposition 3.4.3 and Proposition 3.4.7 to the Stein factorisation of
the morphism f : X

g

≠æ Z
h
≠æ Y . qed
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Chapter 4

On the canonical bundle formula
for GGLC morphisms

This chapter is the core of [Ben23]. We remark that the proofs have been corrected
and the methods improved compared to the original version of the paper. The aim
of the chapter is a canonical bundle formula result over perfect fields of positive
characteristic for morphisms onto curves, conjecturally to the LMMP and the ex-
istence of log resolutions. In particular, when we say “assume the LMMP in
dimension n”, we mean that:

(a) we can run a Minimal Model Program for log canonical pairs (X, B) with
B Ø 0 of dimension n and this terminates;

(b) inversion of adjunction holds for log canonical pairs (X, B) with B Ø 0 (from
dimension n ≠ 1 to dimension n).

Remark 4.0.1. If X is a normal threefold over a perfect field of characteristic p > 5,
existence of log resolutions is proven and we can run the LMMP for log canonical
pairs (see [HX15], [Bir16], [BW17] and [HNT20]). Moreover, inversion of adjunction
holds by [BMP+23, Corollary 10.1].

4.1. The problem

Following the techniques used in [ACSS21], we work with more general fibrations
than K-trivial ones. Therefore, we define the discriminant part measuring the sin-
gularities as in Definition 3.2.3 and the moduli part on the source of the fibration
as in Definition 3.3.1. However, in order to get well-defined divisors, in positive
characteristic we need to assume the GGLC condition (see Definition 2.2.1) on our
fibration.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.
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Proposition 4.1.1. Assume the LMMP and the existence of log resolutions of sin-
gularities in dimension n. Let X be a variety of dimension n. Let f : X æ Z be an
equidimensional fibration between normal varieties and (X/Z, B) a GGLC pair asso-
ciated with it with B÷ Ø 0, where ÷ is the generic point of Z. Then, the discriminant
part BZ is well-defined. Consequently, the moduli part MX is also well-defined.

Proof. By Proposition 2.2.10, the general fibre Xz is normal and the pair defined
by adjunction (Xz, Bz) is log canonical. Let U ™ Z be the dense open subset of Z

such that (Xz, Bz) is log canonical with Bz Ø 0 for all z œ U and f ú” is integral for
every ” prime divisor not contained in Z \ U . Let ” be a prime divisor in Z which
is not contained in Z \ U and let X” be the fibre over ”. We claim that “” = 1.
If this was not the case, there would exist a non-log canonical place E of (X”, B”)
such that its centre contains the generic point of ”. In particular, by adjunction,
this would imply that, for z œ ” general, there exists a non-log canonical place of
(Xz, Bz), contradiction. By inversion of adjunction, we conclude that (X, B + f ú”)
is log canonical around the generic point of ”.

In particular, “” = 1 for all, but finitely many prime divisors ” ™ Z, therefore
BZ and consequently MX are well-defined Q-divisors. qed

Remark 4.1.2. If we only assume the GLC condition, the canonical bundle formula
fails to hold, as shown in [Wit21, Example 3.5].

Recall that our objective is to study positivity properties of the moduli part. In
particular, the aim is to understand the following question in the case of fibrations
onto curves.

Question 4.1.3. Assume the LMMP and the existence of log resolutions in dimension
up to n. Let f : X æ Z be a fibration between normal projective varieties over a
perfect field of characteristic p > 0, where dim(X) = n, and (X/Z, B) a GGLC pair
associated with it with B Ø 0 and such that (X, B) is log canonical. Assume that
KX + B is f -nef. Is the moduli part MX nef up to a birational base change that is
crepant over the generic point of Z, as in Theorem 3.3.10?

Example 4.1.4. With this example we illustrate the main idea of the approach we
take to prove nefness of the moduli part in positive characteristic.

Let X be the projective closure of V (y2
≠x4

≠x2y2t≠ t) inside P2
[x:y:z] ◊P1

[s:t] over
a perfect field of characteristic p ”= 2 and let f : X æ P1 be the induced projection.
The fibration f is separable and there are no multiple fibres. Let F be the foliation
induced by f , then

KX = OP2◊P1(1, ≠1)|X and KF = OP2◊P1(1, 1)|X .

Now, let us perform a Frobenius base change as in diagram (`): the resulting variety
X(e) is the projective closure of V (y2

≠ x4
≠ x2y2· p

e
≠ · p

e) inside P2
[x:y:z] ◊ P1

[‡:· ],
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therefore
KX(e) = OP2◊P1(1, pe

≠ 2)|X .

We observe that the divisor KX is not nef, while both KF and K
X(e) are nef. When

performing a Frobenius base change, the positivity of K
X(e) somehow reflects the

positivity of KF .
Under Property (ú) assumptions, the moduli part coincides with the canonical

bundle of the foliation, up to a term supported on the wild fibres. Therefore, we
exploit the phenomenon shown in the above example to relate the positivity of the
moduli part of f : X æ Z to the positivity of the canonical divisor of the variety
X(e) obtained after a high enough Frobenius base change. The advantage of doing
so is that, although we do not have a foliated MMP in positive characteristic, we
are able to study the positivity of the moduli part using the “standard” tools of the
MMP on K

X(e) .

4.2. Property (ú) in positive characteristic

4.2.1. Moduli part

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated. We use the notation of (`) in Section 2.3.2.

For GGLC pairs, we define Property (ú) as in Definition 2.2.1. When the fibration
satisfies Property (ú), the moduli part has an easy description.

Proposition 4.2.1. Assume the LMMP and the existence of log resolutions of sin-
gularities in dimension n. Let f : X æ Z be a separable equidimensional fibration
between normal varieties, where dim(X) = n, and (X/Z, B) a GGLC pair associated
with it which satisfies Property (ú). Then

MX = KX + Bh
≠ f úKZ ≠ R(f),

where R(f) := q
”™Z(f ú” ≠ f≠1(”)) is as in Definition 2.3.5.

Proof. The proof follows [ACSS21, Proposition 3.6], which states a similar equality
over fields of characteristic 0. We need to show that, if BZ is the discriminant part,
Bv

≠ f úBZ = ≠R(f). Since (X/Z, B) has Property (ú), Bv and BZ are reduced
divisors and Bv = f≠1(BZ). Let D be a vertical divisor such that its multiplicity
with respect to f is ¸D = 1. Then, the coe�cient of D in Bv

≠ f úBZ is 0, as in
R(f). On the other hand, if ¸D > 1, its coe�cient in Bv

≠ f úBZ is 1 ≠ ¸D, as in
≠R(f). qed

Corollary 4.2.2. Assume the LMMP and the existence of log resolutions of singu-
larities in dimension n. Let f : X æ Z be an equidimensional fibration between
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normal varieties, where dim(X) = n, and (X/Z, B) a GGLC pair on it satisfying
Property (ú). For every e Ø 0:

–ú

e
K

X(e) = (pe
≠ 1)(MX ≠ Bh) + KX ≠

ÿ

D wild
wD,eD,

where wD,e Ø 0 for every wild fibre D.

Proof. Combine Theorem 2.3.27 with Proposition 4.2.1. qed

4.2.2. Existence of (ú)-modifications

Given any GLC pair in characteristic 0, we can construct a birationally equivalent
model that satisfies Property (ú) thanks to the existence of toroidal modifications
as proven in [AK00]. In characteristic p > 0 however, we cannot always use this
construction. In fact, in one of the steps, the authors consider a quotient by the
action of a group and that does not have good enough properties if the order of the
group is divisible by p ([AdJ97, Remark 0.3.2]). Nonetheless, when Z is a curve, we
construct (ú)-modifications by using log resolutions. Indeed, since in this case fibres
are divisors, we can resolve them. This is one of the key reasons why we restrict
our main results (Theorem 4.4.5, Theorem 4.4.6 and Theorem 4.4.7) to the case of
Z being a curve.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.

Theorem 4.2.3 (Existence of (ú)-modifications). Assume the LMMP and the ex-
istence of log resolutions in dimension n. Let f : X æ Z be a fibration from a
normal projective variety X of dimension n onto a normal curve Z and (X/Z, B) a
GGLC pair associated with it with B Ø 0. Then, there exists a GGLC pair (Y/Z, C)
satisfying Property (ú), with Y Q-factorial, C Ø 0, and (Y, C) dlt, together with a
commutative diagram:

Y
µ //

g
��

X

f

✏✏
Z,

where µ is a proper birational map and g is a fibration. Moreover, there exist a
vertical e�ective exceptional Q-divisor R on Y , whose image in X is supported in
the non-log canonical locus of (X, B), and a vertical e�ective Q-divisor G on Y ,
such that

KY + C + R = µú(KX + B) + G.

Additionally, the divisor KY + C is µ-nef.

Proof. Step 1. First, we take a log resolution fl : X Õ
æ X of (X, B). Then, we write

KXÕ + D = flú(KX + B) + E, where D and E are both e�ective with no common
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components and E is exceptional. If D = q
i aiDi, define BÕ := q

i min{ai, 1}Di and
RÕ := D ≠ BÕ, so that

KXÕ + BÕ + RÕ = flú(KX + B) + E.

Note that RÕ is supported on the non-log canonical locus of (X, B), thus it is a
vertical divisor. Since (X÷, B÷) is log canonical, so is (X Õ

‹

÷
, B

Õ
‹

÷
), where B

Õ
‹

÷
is defined

by restriction. In particular, the general fibre of the induced map f Õ : X Õ
æ Z is

normal and log canonical by Lemma 2.2.5 and Proposition 2.2.10.
Step 2. Let T µ Z be the finite set of points over which the fibre is not normal or not
log canonical. Consider now a further log resolution ‡ : Xú

æ X so that the strict
transform of Supp(BÕ)fif Õ≠1(T ), together with the support of the exceptional divisors
of ‡, is simple normal crossing. We can choose Xú

æ X Õ to be an isomorphism over
Z \ T . Define e�ective Q-divisors B, R, E in the same way we defined BÕ, RÕ, E

respectively, so that

KXú + B + R = ‡ú(KX + B) + E.

Let h : Xú
æ Z be the induced map, then (Xú/Z, B) is GGLC. Let

Gú :=
A

ÿ

zœT

h≠1(z)
B

≠ B
v

.

Finally, let Bú := B + Gú and let �Z be the discriminant part of (Xú/Z, Bú). Note
that �Z = q

zœT (z), where (z) denotes the divisor corresponding to the point z œ Z.
We claim that (Xú/Z, Bú) satisfies Property (ú).

• The pair is GGLC because Gú is vertical, so adding it does not a�ect the
singularities at the general fibre.

• Since Z is a curve, (Z, �Z) is log smooth.

• If z œ Z \ Supp(�Z), (Xú

z
, Bú

z
) is log canonical, where Xú

z
:= h≠1(z) is normal

and Bú

z
is defined via adjunction. Thus, by inversion of adjunction, the pair

(Xú, Bú + Xú

z
) is log canonical around Xú

z
.

• If z œ Supp(�Z), by construction, Supp(B) fi Xú

z
is simple normal crossing.

Thus, (Xú, Bú) is log canonical (around Xú

z
).

Step 3. Now, run a (KXú + Bú)-MMP over X and let Y be the resulting variety,
so that it fits in the following diagram:

Xú
Ï //

h !!

Y
µ //

g

✏✏

X

f~~
Z,



86 Chapter 4. Canonical bundle formula

where µ is the induced birational map and g := f ¶ µ is a fibration. Let C :=
ÏúBú. Note that Xú 99K Y is also a sequence of steps of the (KXú + Bú)-MMP
over Z, thus, by Proposition 3.3.3, (Y/Z, C) satisfies Property (ú). Moreover, it is
dlt and Q-factorial since these properties are preserved under the MMP. We have
KXú + Bú + R = ‡ú(KX + B) + E + Gú. Define R := ÏúR, let Q be the horizontal
part of Ïú(E + Gú) and G its vertical part. We claim that Q = 0. In fact

Q + G ≠ R = KY + C ≠ µú(KX + B)

is µ-nef, and the horizontal part of this divisor is µ-exceptional, therefore ≠µú(Q|Y÷
) =

0. By the Negativity lemma [KM98, Lemma 3.39] applied to Y÷, since R|Y÷
= 0, we

conclude that ≠Q|Y÷
Ø 0. All in all, we get:

KY + C + R = µú(KX + B) + G.

qed

4.2.3. Geometric (ú)-modifications

In order to do induction on the dimension, we will perform adjunction on log canon-
ical centres of the geometric generic fibre. For this, we need to extract divisors with
discrepancy ≠1 over them. However, this cannot always be done over the total space
X. In the next examples, we see that it may happen that X does not have any log
canonical centre, even if the geometric generic fibre does. To overcome this issue, we
base change our fibration with a high enough power of the Frobenius morphism as
in (`) in Section 2.3.2: in this way the singularities of the geometric generic fibre
appear on the total space.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated. We use the notation of (`) in Section 2.3.2.

Example 4.2.4. Let X be the projective closure of V (x3s + y3s + xyzs + v3t) inside
P3

[x:y:z:v] ◊P1
[s:t] and let f : X æ P1

[s:t] be the fibration induced by the projection onto
the second factor. On the open set where s ”= 0, v ”= 0, X is regular everywhere.
If the characteristic is ”= 3, X÷ is also smooth. Only the fibre over t = 0 has a
singularity at the origin. On the other hand, if the characteristic of the base field
is 3, the general fibre is a deformation of a cone and it has two singularities that
come together over t = 0. On the geometric generic fibre they can be described by
the equations W := V (x, z, y3 + t) and W Õ := V (y, z, x3 + t). These are canonical
centres of the geometric generic fibre. Note that f |W and f |W Õ are the Frobenius
morphism.

Now, consider the base change with the Frobenius morphism F : Z æ Z and let
X(1) be the normalisation of the fibre product. Let · be an element of k(X(1)) such
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that · 3 = t. Then, the total space X(1) is no longer regular, but has singularities at
W (1) := V (x, z, y + ·) and W Õ(1) := V (y, z, x + ·).

Example 4.2.5. Let X := P2
[x:y:z] ◊ P1

[s:t], D = V (xps ≠ ypt) µ P2
[x:y:z] ◊ P1

[s:t] and
B := 1

p
D over an algebraically closed field of characteristic p > 0. Let f : X æ P1

[s:t]
be the natural projection. Consider the base change with F : P1

æ P1, let X(1)

be the normalisation of the fibre product and —1 : X(1)
æ X. Then (X, B) is klt,

while(X(1), —ú

1B) is strictly log canonical.

Remark 4.2.6. Let f : X æ Z be a separable fibration between normal varieties with
a pair (X/Z, B). Let W µ X be a subvariety such that (W÷)red is a log canonical
centre of (X÷, B÷), where ÷ is the geometric generic point of Z. Even if f |W is
separable, it may be that W is not a log canonical centre of (X, B). This is because,
in order to extract a log canonical place over (W÷)red, we may have to blow-up
centres V defined over X÷ such that the variety V over X “corresponding” to V is
not geometrically reduced over Z.

Lemma 4.2.7. Let f : X æ Z be a separable fibration between normal varieties
such that the geometric generic fibre X÷ is normal. Let B be a Q-divisor on X such
that KX + B is Q-Cartier. Let ‡ : Z Õ

æ Z be a generically finite separable map and
consider the diagram:

X Õ s //

f
Õ

✏✏

X

f

✏✏
Z Õ ‡ // Z,

where X Õ is the normalisation of the main component of the fibre product X ◊Z Z Õ.
Define a Q-divisor BÕ on X Õ by log pullback, so that KXÕ + BÕ = sú(KX + B). Let
÷ be the generic point of Z. Then a subset W ™ X such that W÷ is non-empty, is
a log canonical centre (resp. non-log canonical centre) of (X, B) if and only if there
exists W Õ

™ X Õ, irreducible component of s≠1(W ), which is a log canonical centre
(resp. non-log canonical centre) of (X Õ, BÕ).

Proof. By Lemma 2.2.8, the conductor of X Õ is vertical, so, up to shrinking Z, we
can assume the fibre product is already normal. Moreover, up to shrinking Z further,
we can assume both ‡ and its Galois closure are étale, so s and its Galois closure
are étale as well. In particular, they do not have any (wild) ramification. Thus, the
discrepancies over the two pairs are the same ([KM98, Proposition 5.20]). qed

Definition 4.2.8. Let f : X æ Z be a separable flat fibration between normal
varieties and B a Q-divisor on X such that KX + B is Q-Cartier. Assume that
the geometric generic fibre X÷ is normal. A geometric non-klt centre (resp.
geometric log canonical centre/ geometric non-log canonical centre) of
(X, B) is a subvariety W µ X such that, if ÷ is the geometric generic point of Z,
(W÷)red is a non-klt (resp. log canonical/ non-log canonical) centre of (X÷, B÷).
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Proposition 4.2.9. Let f : X æ Z be a separable fibration between normal varieties
such that the geometric generic fibre X÷ is normal. Let B be a Q-divisor on X such
that KX + B, Bv and all the vertical divisors D whose multiplicity is ¸D > 1 are
Q-Cartier. Let W be a log canonical (resp. non-log canonical) centre of (X÷, B÷)
and let W be a subvariety of X such that an irreducible component of (W÷)red is
exactly W . Then, there exists e ∫ 0 such that W (e) is a log canonical (resp. non-log
canonical) centre of (X(e), Be), where Be := —ú

e
Bh + —≠1

e
Bv.

Proof. Since W is a log canonical (resp. non-log canonical) centre of (X÷, B÷), there
exists Y æ X÷ proper birational map that extracts an exceptional divisor E over
W with discrepancy ≠1 (resp. < ≠1).

By Lemma 2.2.9, there is a generically finite map Ï : Z Õ
æ Z such that, if X Õ

is the normalisation of the main component of X ◊Z Z Õ, there exists ‡ : Y æ X Õ

birational with Y÷ = Y . Up to possibly taking a further purely inseparable base
change, the map Ï can be decomposed as F e

¶ Â, with Â separable and e œ N, so
that we have the following diagram:

Y ‡ // X Õ
“ //

✏✏

X(e)

✏✏

—e // X

f

✏✏
Z Õ

Â // Z F
e
// Z.

Let Be := —ú

e
Bh + —≠1

e
(Bv) and define BÕ by log pullback from X(e), so KXÕ + BÕ =

“ú(K
X(e) + Be). Note that, by Theorem 2.3.27 and the Q-Cartier assumptions in

the statement, K
X(e) + Be is Q-Cartier. Since X÷ is normal, by Lemma 2.2.8,

X Õ

÷
= Y÷ = X(e)

÷
, and —e and “ are isomorphisms on the geometric generic fibre,

therefore, B÷ = Be,÷ = BÕ

÷
.

Let E µ Y be an exceptional divisor on Y such that E÷ = E. The discrepancy
of E with respect to the pair (X Õ, BÕ) can be computed at ÷, therefore it is 1 (resp.
< ≠1). Hence, ‡(E) is a log canonical (resp. non-log canonical) centre of (X Õ, BÕ)
and (—e ¶ “ ¶ ‡)(E) = W . We conclude by Lemma 4.2.7. qed

Remark 4.2.10. The above Proposition 4.2.9 says that, if W is a geometric non-
klt (resp. log canonical/ non-log canonical) centre of (X/Z, B), it is not necessarily
a non-klt (resp. log canonical/ non-log canonical) centre of (X, B). However, for
e ∫ 0, its base change W (e) inside X(e) is a non-klt (resp. log canonical/ non-log
canonical) centre of (X(e), Be), where Be := —ú

e
Bh + —≠1

e
Bv.

Moreover, since the non-klt centres of the geometric generic fibre (X÷, B÷) are
finitely many, for e ∫ 0, they all appear as (geometric) non-klt centres of (X(e), Be).
Assuming the existence of log resolutions, we can construct a birational model of
(X(e), Be) which extracts all these geometric non-klt centres. More precisely, for
e ∫ 0, there exists a birational map Y æ X(e) such that, if W is a non-klt centre
of (X÷, B÷), there is a place E µ Y that extracts W .
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Theorem 4.2.11 (Existence of geometric (ú)-modifications). Assume the LMMP
and the existence of log resolutions in dimension n. Let f : X æ Z be a fibration from
a normal variety X of dimension n onto a normal curve Z, such that the geometric
generic fibre X÷ is normal. Let B Ø 0 be a Q-divisor on X such that KX +B, Bv and
all the vertical divisors D whose multiplicity is ¸D > 1 are Q-Cartier. Assume that
the coe�cients of B and B÷ are Æ 1. Let W be a log canonical centre of (X÷, B÷)
and let W be a subvariety of X such that an irreducible component of (W÷)red is
exactly W . For e Ø 0, let Be := —ú

e
Bh + —≠1

e
Bv. Then, there exists e0 such that, for

all e Ø e0, there exists a (ú)-modification of (X(e), Be) which extracts an exceptional
divisor E over W (e) with discrepancy ≠1. More precisely, there exist a dlt GGLC
pair (Y/Z, C + E) with Y Q-factorial, C Ø 0, and a diagram:

Y
µ //

g
!!

X(e)

fe

✏✏
Z,

where µ is a proper birational map which extracts E over W (e) and g is a fibration.
Moreover, there exist an e�ective exceptional Q-divisor R on Y , whose image in
X(e) is supported in the non-log canonical locus of (X(e), Be), and a vertical e�ective
Q-divisor G on Y , such that

KY + C + E + R = µú(K
X(e) + Be) + G.

Additionally, (KY + C + E) is µ-nef.

Proof. Step 1. First of all note that (X÷, B÷) is not necessarily log canonical. In
this first step we find a model over (X(e), Be) that satisfies the GGLC property.

Choose e œ N big enough, so that, for all V non-log canonical centre of (X÷, B÷),
there exists Ve ™ X(e) (geometric) non-log canonical centre of (X(e), Be) such that
Ve,÷ is reduced and one of its components is V . Such e exists by Proposition 4.2.9.
Note that, by the assumptions on B, the coe�cients of Be are all Æ 1.

Let ‡ : X1 æ X(e) be a log resolution of (X(e), Be) which extracts all the geo-
metric non-log canonical centres.

Write KX1 + D1 = ‡ú(K
X(e) + Be) + T1, where T1 is e�ective and ‡-exceptional,

and D1 is e�ective and it does not have any components in common with T1. If
D1 = q

i aiDi, with Di prime divisors, let B1 := q
i min{ai, 1}Di and R1 = D1 ≠B1,

so that
KX1 + B1 + R1 = ‡ú(K

X(e) + Be) + T1.

Note that R1 is ‡-exceptional and supported on the non-log canonical places of
(X(e), Be). Moreover, (X1, B1) is log smooth and (X1,÷, B1,÷) is log canonical since
we have extracted all the non-log canonical places.
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Now, we run a (KX1 +B1)-MMP over X(e). Let Ï : X1 99K X Õ

1 and · : X Õ

1 æ X(e)

be the resulting morphisms, BÕ

1 := ÏúB1 and RÕ

1 := ÏúR1. By the Negativity lemma
[KM98, Lemma 3.39], ÏúT1 = 0. In fact, ≠RÕ

1 +ÏúT1 is · -nef and ·ú(RÕ

1 ≠ÏúT1) Ø 0,
whence ≠ÏúT1 Ø 0. All in all, we have:

KX
Õ
1

+ BÕ

1 + RÕ

1 = · ú(KX(e) + Be),

where RÕ

1 is · -exceptional and supported on the non-log canonical places of (X(e), Be).
Moreover, both (X Õ

1, BÕ

1) and (X Õ

1,÷
, BÕ

1,÷
) are log canonical and X Õ

1 is Q-factorial.
Step 2. In this step, we extract a log canonical place over W (e).

Let s : X2 æ X Õ

1 be a birational morphism extracting a log canonical place E2

over W (e). Define B2 and T2 e�ective Q-divisors with no common components so
that

KX2 + B2 + E2 = sú(KX
Õ
1

+ BÕ

1) + T2.

Note that X2 is Q-factorial. Run a (KX2 + B2 + E2)-MMP over X(e). Define
Â : X2 99K X Õ

2 and t : X Õ

2 æ X(e) to be the resulting morphisms, BÕ

2 := ÂúB2 and
E Õ

2 := ÂúE2. Note that, since (KX2 +B2 +E2) ≥Q,s T2, all the contracted (or flipped)
curves are in the support of T2; in particular, E2 is not contracted. Let sÕ : X Õ

2 æ X Õ

1

be the induced map, then, ÂúT2 is sÕ-nef and ≠sÕ

ú
ÂúT2 = 0, therefore, ≠ÂúT2 Ø 0 by

the Negativity lemma [KM98, Lemma 3.39], whence ÂúT2 = 0. All in all, we have:

KX
Õ
2

+ BÕ

2 + E Õ

2 + RÕ

2 = tú(K
X(e) + Be),

where RÕ

2 := ÂúsúRÕ

1 is t-exceptional and supported on the non-log canonical places
of (X(e), Be). Moreover, both (X Õ

2, BÕ

2 +E Õ

2) and (X Õ

2,÷
, BÕ

2,÷
+E Õ

2,÷
) are log canonical,

X Õ

2 is Q-factorial and KX
Õ
2

+ BÕ

2 + E Õ

2 is t-nef.
Step 3. In this step, we find a (ú)-modification of (X Õ

2, BÕ

2 + E Õ

2).
We apply Theorem 4.2.3 to (X Õ

2, BÕ

2+E Õ

2) to find a (ú)-modification (Y Õ/Z, C Õ + E Õ)
with ⁄ : Y Õ

æ X Õ

2 birational, where E Õ is the strict transform of E Õ

2. Let gÕ : Y Õ
æ Z

be the induced fibration. In particular,

(a) (Y Õ/Z, C Õ + E Õ) is GGLC and satisfies Property (ú);

(b) Y Õ is Q-factorial and (Y Õ, C Õ + E Õ) is dlt;

(c) there exists an e�ective Q-divisor GÕ, such that we have KY Õ + C Õ + E Õ =
⁄ú(KX

Õ
2

+ BÕ

2 + E Õ

2) + GÕ and GÕ is gÕ-vertical;

(d) KY Õ + C Õ + E Õ is ⁄-nef and, if U := Y Õ
\ Supp(GÕ), (KY Õ + C Õ + E Õ)|U is µÕ-nef,

where µÕ : Y æ X(e);

(e) let RY Õ := ⁄úRÕ

2, then KY Õ + C Õ + E Õ + RY Õ = µÕú(K
X(e) + Be) + GÕ.

Step 4. As last step, we run a (KY Õ + C Õ + E Õ)-MMP over X(e).
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By point (d) in Step 3, this MMP is an isomorphism on U , so it does not contract
E Õ. Let Y be the resulting variety, µ : Y æ X(e) the induced morphism, and C, E, R

and G the push-forward on Y of C Õ, E Õ, RY Õ and GÕ, respectively. Let g : Y æ Z be
the induced morphism. Then:

(a) (Y/Z, C + E) is GGLC and satisfies Property (ú) by Proposition 3.3.3;

(b) Y is Q-factorial and (Y, C +E) is dlt since these properties are preserved under
the MMP;

(c) KY + C + E + R = µú(K
X(e) + Be) + G by point (e) in Step 3;

(d) KY + C + E is µ-nef.

qed

4.2.4. Adjunction of the moduli part

Now, we study the restriction of the moduli part to geometric log canonical centres
for fibrations onto curves.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.

Lemma 4.2.12. Let (X, B + S) be a dlt pair, where S is a prime divisor and X

is a normal Q-factorial variety. Then, the normalisation morphism S‹
æ S is an

isomorphism in codimension 1. Moreover, if either

(a) X has dimension Æ 3 and is defined over a perfect field of characteristic p > 5,
or

(b) S satisfies the S2 property;

then, S is normal.

Proof. The pair (S‹ , BS‹ ) induced on S‹ by adjunction is log canonical. Moreover,
by [HW23, Lemma 2.1], S‹

æ S is a universal homeomorphism, therefore the sin-
gularities in codimension 1 are worse than nodal. Thus, if S‹

æ S was not an
isomorphism in codimension 1, the conductor would have coe�cients > 1, leading
to a contradiction.

If X is a threefold over an algebraically closed field of characteristic p > 5, the
claim is proven in [Bir16, Lemma 5.2]. If X is defined over a perfect field k of
characteristic p > 5, by the same argument, we conclude that S := S ◊k k is normal,
which means that S is geometrically normal, whence normal. On the other hand, if
S satisfies the S2 property, the pair (S, BS) induced on S by adjunction is slc and,
since S‹

æ S is a universal homeomorphism, there cannot be nodal singularities in
codimension 1, thus S is normal. qed
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Remark 4.2.13. If X has dimension > 3, or the characteristic of the base field is
p Æ 5, then it is no longer true in general that plt centres are normal (see [Ber19]
and [CT19]).

We now set some notation that we will use in the following results.

Set-up(6)

(i) Let f : X æ Z be an equidimensional fibration between normal varieties,
where Z is a curve. Let (X/Z, B + S) be a GGLC pair associated with it,
where S is a prime horizontal divisor.

(ii) Assume that X is Q-factorial and (X, B + S) is dlt. Then, by Lemma 4.2.12,
S is normal in codimension 1. For the sake of the computations we are going
to do, we can suppose S = S‹ . In fact, we will only be interested in working
around codimension 1 points.

(iii) Let (S‹ , BS‹ ) be the pair induced on S‹ by adjunction.

(iv) Assume the LMMP and the existence of log resolutions in dimension up to
n := dim(X). Suppose that (X/Z, B + S) satisfies Property (ú).

(v) Let f |S‹ = g¶Ï, be the Stein factorisation of f |S‹ ; in particular g is a fibration
and Ï : Z Õ

æ Z is a finite morphism.

Remark 4.2.14. In the above Set-up (6), since (X/Z, B + S) is GGLC, if ÷ is the
geometric generic point of Z, S÷ is reduced, therefore, by Proposition 2.1.2, Ï is
separable.

Moreover, we have some control over the ramification of Ï. More precisely, if
” ™ Z is a prime divisor and Ïú” = q

i mi”Õ

i
, then mi divides the multiplicities with

respect to f of all the vertical divisors over ” intersecting S non-trivially. Indeed,
without loss of generality, we can suppose S = S‹ . Since (X/Z, B +S) has Property
(ú), (S, f≠1(”)|S) is log canonical around f≠1(”)|S, whence f≠1(”)|S is reduced. Then

f ú”|S =
ÿ

j

¸jDj|S =
ÿ

j

¸j

A
ÿ

l

DS

l

B

= gúÏú” =
ÿ

i

mig
ú”Õ

i
.

The same computation shows that, if D is a prime vertical divisor in X and DS

is a prime component of D|S,the multiplicity of DS with respect to g divides the
multiplicity of D with respect to f . All in all, if we work around a general point of
DS and we let ”Õ := g(DS) and ” := f(D), we can write Ïú” = m”Õ, gú”Õ = nDS and
f ú” = ¸D. Then, ¸ = mn.
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Remark 4.2.15. Recall that, if ”Õ
™ Z Õ is a prime divisor such that its multiplicity

with respect to Ï is divisible by p, ”Õ is called a divisor of wild ramification. If the
multiplicity is Ø 2 and coprime with p, ”Õ is a divisor of tame ramification. If D

is a wild fibre for f , then ”Õ := g(D) may be a divisor of wild ramification for Ï. On
the other hand, if D is tame, then ”Õ is either unramified or of tame ramification.

Proposition 4.2.16. In the above Set-up (6), the pair (S‹/Z Õ, BS‹ ) associated to
the fibration g : S‹

æ Z Õ is GGLC and satisfies Property (ú). Moreover, (BS‹ )v =
Bv

|S‹ .

Proof. First of all, note that the geometric generic points of Z and Z Õ coincide.
Since S÷ is a log canonical centre of (X÷, B÷), the pair (S‹

÷
, BS

‹
÷
) is log canonical.

By the universal properties of the normalisation, (S‹)‹

÷
= S‹

÷
. Thus, (S‹/Z Õ, BS‹ ) is

GGLC.
Since S‹

æ S is an isomorphism in codimension 1, for the purpose of the proof,
we can assume S is normal. Let us verify that (S/Z Õ, BS) satisfies Property (ú). Let
�Z be the discriminant part of (X/Z, B + S). Since X is Q-factorial, we define Bh

S

by adjunction, so that (KX +Bh +S)|S = KS +Bh

S
and KS +BS = KS +Bh

S
+Bv

|S.

(a) We claim that Bh

S
does not contain any vertical component. In particular,

(BS)v = Bv
|S and (BS)h = Bh

S
. Indeed, if this was not the case, let DS be

a vertical divisor contained in Supp(Bh

S
) and z := f |S(DS). Since (X, Bh +

S + f≠1(z)) is log canonical, (S, Bh

S
+ DS) is log canonical as well. Therefore,

the coe�cient of DS in Bh

S
must be 0, contradiction. To conclude, note that

(Bv)|S Æ (BS)v since S is horizontal.

(b) Let �ZÕ := Ï≠1(�Z). Then Bv

S
= f |

≠1
S

(�Z) = g≠1(�ZÕ) and, since Z Õ is a
normal curve, (Z Õ, �ZÕ) is log smooth.

(c) Let zÕ
œ Z Õ

\ Supp(�ZÕ) be a closed point and z := Ï(zÕ) œ Z \ Supp(�Z).
In particular, f is unramified at z, therefore, by the computations in Re-
mark 4.2.15, both Ï and g are unramified at zÕ. Since (X, B + S + f úz) is log
canonical around f≠1(z), (S, BS + f |

ú

S
z) = (S, BS + gúzÕ + D) is log canonical

around g≠1(zÕ) by adjunction, where f |
ú

S
z = gúzÕ + D.

The “moreover” part follows from point (a). qed

Proposition 4.2.17. In Set-up (6), let MX and MS‹ be the moduli parts of
(X/Z, B + S) and (S‹/Z Õ, BS‹ ), respectively. Then,

MS‹ = MX |S‹ ≠
ÿ

DS

vDS DS,

where the sum is on those divisors DS that lie over points of wild ramification of Ï

and the coe�cients vDS are positive integers.
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Proof. For the sake of the proof, we can assume S = S‹ . By Proposition 4.2.16,
(S/Z Õ, BS) satisfies Property (ú) and (BS)v = Bv

|S, therefore, by Proposition 4.2.1,

MX = KX + Bh
≠ f úKZ ≠ R(f) and MS = KS + Bh

S
≠ gúKZÕ ≠ R(g),

where Bh

S
satisfies (KX + Bh)|S = KS + Bh

S
. By the Hurwitz formula [Har77,

Proposition 2.3, Chapter IV],

KZÕ = ÏúKZ +
ÿ

i

(mi ≠ 1)zÕ

i
+

ÿ

j

(aj + 1)zÕ

j
,

where the first sum is taken over all ramified point of Ï (wild and tame), with mi

being their multiplicity, and the second sum only over the wildly ramified points of
Ï, with aj being a non-negative integer. Now, let us do the computations locally
around a vertical prime divisor DS ™ S. Let D ™ X be a vertical prime divisor such
that DS Æ D|S, z := f(D) and zÕ := g(DS). We can suppose f úz = ¸D, Ïúz = mzÕ,
gúzÕ = nDS and ¸ = mn. If Ï is tamely ramified at zÕ, locally we have:

MS = KS + Bh

S
≠ gúKZÕ ≠ (n ≠ 1)DS

= KS + Bh

S
≠ f |

ú

S
KZ ≠ (m ≠ 1)gúzÕ

≠ (n ≠ 1)DS

= (KX + Bh
≠ f úKZ ≠ (mn ≠ 1)D)|S = MX |S.

If Ï is wildly ramified at zÕ, locally we have:

MS = KS + Bh

S
≠ gúKZÕ ≠ (n ≠ 1)DS

= KS + Bh

S
≠ f |

ú

S
KZ ≠ gú(m + a)zÕ

≠ (n ≠ 1)DS

= (KX ≠ f úKZ ≠ (mn ≠ 1)D)|S ≠ (an + n)DS = MX |S ≠ (an + n)DS,

for some a Ø 0. Set vDS := an + n to conclude. qed

Remark 4.2.18. In Set-up (6), let �Z be the discriminant part of (X/Z, B + S).
Define �ZÕ := Ï≠1(�Z). If Z is not a curve, then (Z Õ, �ZÕ) may be even not log
canonical, due to the possible presence of wild ramification in Ï. Therefore, we may
not be able to describe the moduli part MS‹ as KS‹ + Bh

S‹ ≠ gúKZÕ ≠ R(gÕ) and we
cannot conclude a formula similar to the one in Proposition 4.2.17 for adjunction of
the moduli part.

4.3. Bend and Break theorem for the moduli divi-
sor

A crucial step in the proof of positivity of the moduli part in characteristic 0 is the
Cone theorem for foliations [ACSS21, Theorem 3.9]. If the canonical bundle of a
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foliation is not nef, we can find rational curves that are tangent to the foliation. The
idea is to find them by applying Miyaoka–Mori’s Bend and Break theorem [MM86]
to the variety reduced modulo a big enough prime (see [SB92]). If our setting is
in positive characteristic to start with, we do not have the possibility of changing
the prime. However, for fibrations under Property (ú) conditions, we can relate
the moduli part to the canonical divisor of the variety obtained after a Frobenius
base change using Theorem 2.3.27. This is a key ingredient for our strategy and it
constitutes one of the main di�erences between the situation in characteristic 0 and
over fields of positive characteristic.

In this section we consider varieties defined over an algebraically closed field,
unless otherwise stated. We will specify the characteristic in each result. We use
the notation of (`) in Section 2.3.2.

We will use the following version of the Bend and Break theorem.

Theorem 4.3.1 (Bend and Break theorem, [Kol96, Theorem II.5.8]). Let X be a
normal projective variety of dimension n over an algebraically closed field of any
characteristic and let › be a smooth curve such that X is smooth around ›. Let
x œ › be a general point and G a nef divisor on X. If KX · › < 0, there exists a
rational curve ’x such that x œ ’x and

G · ’x Æ 2n
G · ›

≠KX · ›
.

The next result is a direct consequence of the Bend and Break theorem; the proof
is inspired by [KMM94, Theorem 6.1] and [Spi20, Corollary 2.28].

Corollary 4.3.2. Let X be a normal projective variety of dimension n over an
algebraically closed field of any characteristic and let D1, ..., Dn, G be nef divisors on
X. Assume that

(a) D1 · ... · Dn = 0;

(b) KX · D2 · ... · Dn < 0.

Then, for x œ X general point, there is a rational curve ’x ™ X containing x such
that

(i) G · ’x Æ 2n G·D2·...·Dn
≠KX ·D2·...·Dn

;

(ii) D1 · ’x = 0.

Proof. Let H be an ample divisor and 0 Æ Á π 1 small enough such that, if
Hi := Di +ÁH for i = 2, ..., n, we have that KX ·H2 · ... ·Hn < 0. Now, choose mi œ N
such that miHi are very ample for i = 2, ..., n and let › be a curve in the intersection
of the linear systems |miHi|, passing through a general point of X and such that ›
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is smooth and contained in the regular locus of X. Let GÁ,k := kD1 + G + ÁH. By
Theorem 4.3.1, there exists ’Á,k through a general point of › such that

(E) GÁ,k · ’Á,k Æ 2n
GÁ,k · ›

≠KX · ›
.

Since D1·D2·...·Dn = 0, there exists a constant c Ø 0 with the following property.
For every k > 0, there exists Ák > 0 such that the RHS of the equation (E) is Æ c

for every Á Æ Ák. Therefore the family {’Ák,k}k is bounded. Since bounded integral
points in the cone of curves are finitely many, up to passing to a sub-sequence, we
can assume ’Ák,k = ’ is constant.

Now, letting k approach +Œ, we get that (kD1 +G+ÁkH) ·’ is bounded, whence
D1 · ’ = 0. Therefore, (E) becomes

(G + ÁH) · ’ Æ 2n
(kD1 + G + ÁH) · H2 · ... · Hn

≠KX · H2 · ... · Hn

.

Finally, letting Á go to 0, we get the conclusion. qed

The next proposition is one of the key steps for the proof of the main result
of this chapter, Theorem 4.4.6. Roughly it says that, when the fibration satisfies
Property (ú) and the boundary divisor is vertical, if the moduli part is f -nef, it is
non-negative on curves that are general enough.

Proposition 4.3.3. Assume the LMMP and the existence of log resolutions in di-
mension n. Let f : X æ Z be a fibration between normal projective varieties and
(X/Z, B) a GGLC pair of dimension n associated with it over an algebraically closed
field of characteristic p > 0. Assume that (X/Z, B) satisfies Property (ú) with X Q-
factorial and let MX be the moduli part of (X/Z, B). Assume there exist D2, ..., Dn

nef Q-divisors, k œ Q>0 and A ample Q-divisor such that:

(a) (MX + kA) · D2 · ... · Dn = 0;

(b) MX · D2 · ... · Dn < 0;

(c) (MX + kA) is nef.

Then, through a general point x œ X, there exists a vertical rational curve ’ such
that MX · ’ < 0.

Proof. By Corollary 4.2.2,

–ú

e
K

X(e) ·D2 ·...·Dn = (pe
≠1)(MX ≠Bh)·D2 ·...·Dn +KX ·D2 ·...·Dn ≠We ·D2 ·...·Dn,

where We := q
D wild wD,eD, for some wD,e Ø 0.

We claim that for each e�ective Q-divisor E, E · D2 · ... · Dn Ø 0. Indeed, let
H be an ample divisor, Á > 0 and define Hi := Di + ÁH for i = 2, ..., n. Let ›Á be
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a curve not contained in Supp(D), taken in the intersection of the linear systems
|miHi|, where mi > 0 is chosen so that miHi are very ample. Then, E · ›Á > 0, and,
letting Á go to 0, we get the claim.

Therefore, Bh
· D2 · ... · Dn Ø 0 and D · D2 · ... · Dn Ø 0 for every wild fibre D.

All in all, for e ∫ 0, we have –ú

e
K

X(e) · D2 · ... · Dn < 0.
Let D1 := MX + kA and Di,e := —ú

e
Di for i = 1, ..., n. Note that –ú

e
Di,e = peDi.

Then,
–ú

e
K

X(e) · peD2 · ... · peDn = deg(–e)KX(e) · D2,e · ... · Dn,e < 0.

Therefore, for e ∫ 0,

(a) D1,e · D2,e · ... · Dn,e = deg(—e)D1 · ... · Dn = 0;

(b) K
X(e) · D2,e · ... · Dn,e < 0.

Let Ge := —ú

e
G, for some ample Cartier divisor G on X. We apply Corollary 4.3.2

on X(e), D1,e, ..., Dn,e, Ge to find, through a general point of X(e), a rational curve
’e such that:

(i) Ge · ’e Æ 2n Ge·D2,e·...·Dn,e

≠K
X(e) ·D2,e·...·Dn,e

;

(ii) D1,e · ’e = 0.

Let ’X

e
be the image of ’e in X. By point (ii) and since A is ample,

MX · ’X

e
< 0.

To conclude, we show that there exists e such that ’X

e
is vertical. Assume, for the

sake of a contradiction, that this was not the case. Let pÏ(e) be the minimum between
the purely inseparable degree of f |’X

e
and pe. Remark that, by Lemma 2.3.15, the

degree of —e|’e is pe≠Ï(e). We claim that Ï(e) = e ≠ O(1), where O(1) Ø 0 is a
bounded function. Indeed,

peG · peD2 · ... · peDn = –ú

e
Ge · –ú

e
D2,e · ... · –ú

e
Dn,e

= deg(–e)Ge · D2,e · ... · Dn,e.

Therefore:

pe≠Ï(e)
Æ pe≠Ï(e)G · ’X

e
= Ge · ’e Æ 2n

Ge · D2,e · ... · Dn,e

≠K
X(e) · D2,e · ... · Dn,e

= 2n
peG · D2 · ... · Dn

≠(pe ≠ 1)(MX ≠ Bh) · D2 · ... · Dn ≠ KX · D2 · ... · Dn + We · D2 · ... · Dn

Æ 2n
peG · D2 · ... · Dn

≠(pe ≠ 1)(MX ≠ Bh) · D2 · ... · Dn ≠ KX · D2 · ... · Dn

,

where the equality on the second line is given by Corollary 4.2.2. The last line is
bounded as e grows, whence the claim.
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From the above chain of inequalities, we also infer that G · ’X

e
Æ pe≠Ï(e)G · ’X

e

is bounded. Therefore, {’X

e
}e is a bounded family of curves. Since the integral

points in the cone of curves that are bounded are finitely many, up to considering
a sub-sequence of indices, ’X

e
is eventually constant. However, this contradicts the

fact that Ï(e) = e ≠ O(1). qed

Remark 4.3.4. The Bend and Break theorem needs the base field to be algebraically
closed. If the base field k is only perfect, the rational curves we find may be defined
over an extension of k. However, if f : X æ Z is defined only over a perfect field k

and we find a rational curve over an extension of k, then its Galois orbit descends
to a curve over k which satisfies similar inequalities.

Remark 4.3.5. If f : X æ Z is a separable equidimensional tame fibration between
normal projective varieties, a similar proof shows a “generic” Bend and Break the-
orem for KF , the canonical divisor of the foliation induced by f . However, if f is
not tame, the proof does not go through for KF due to the correction term given
by the wild fibres.

4.4. The canonical bundle formula

In this section, we prove positivity of the moduli part. First, we prove that, for pairs
satisfying Property (ú), the moduli part is nef. Then, we use (ú)-modifications to
recover this situation.

4.4.1. Property (ú) case

In this section we consider varieties defined over a perfect field k of characteristic
p > 0, unless otherwise stated. We use the notation of (`) in Section 2.3.2.

Before stating the theorem, we prove that we can assume the field k to be
algebraically closed.

Definition 4.4.1. Let X be a variety defined over a perfect field k and k the
algebraic closure of k. Define X := X ◊k k. If W ™ X is a subvariety, let k ™ kÕ

be a normal finite extension of k over which W is defined. Let G := Gal(k/k) and
GÕ := Gal(kÕ/k). Then q

gœGÕ g(W ) descends to a cycle C on X defined over k. Let
C := q

aiCi be the decomposition of C into irreducible components defined over k,
then we define W G := q

Ci. Note that an integral component of W G
◊k k is exactly

W .

Lemma 4.4.2. Let f : X æ Z be a fibration between normal projective varieties
over a perfect field k and D a Q-Cartier Q-divisor on it. Let k be the algebraic
closure of k, f : X æ Z the base change of f with k, and D := D ◊k k. Then, D is
f -nef if and only if D is f -nef.
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Proof. Let G := Gal(k/k) and › µ X a curve. Note that f(›) has dimension 0 if
and only if f(›G) has dimension 0. Since D · ›G is a positive multiple of D · ›, if D

is f -nef, then D is f -nef as well. The converse is trivial. qed

Lemma 4.4.3. Let (X, B) be a pair over a perfect field k and (X, B) its base change
to the algebraic closure k. Then (X, B) is log canonical if and only if (X, B) is.

Proof. Note that, since k is perfect, X is normal by [Sta22, Tag 0C3M]. Moreover,
by [Sta22, Tag 01V0], K

X
= KX ◊k k.

If (X, B) is log canonical, then (X, B) is log canonical. Indeed, let Y æ X be
a birational map over X and E an exceptional divisor. Consider the base change
with k, Y æ X, E ™ Y . Since k is perfect, E is reduced, thus the discrepancy of E

over X coincides with the discrepancy of E over X.
Conversely, assume for the sake of a contradiction that there exists a non-log

canonical place E Õ
™ Y Õ ‡

≠æ X over X with discrepancy aÕ < ≠1. Without loss of
generality, we can assume E Õ, Y Õ and ‡ are defined over kÕ, a finite Galois extension
of k. Let R := OY Õ,÷EÕ , where ÷EÕ is the generic point of E Õ, let mR := (t), where
t œ kÕ(Y Õ) is a local equation for E Õ, and let vÕ be the valuation induced by E Õ on
kÕ(Y Õ). Let t0 = t, t1, ..., td be the Galois conjugates of t. Note that, since kÕ(Y Õ)
is a separable extension of k(X), ti ”= tj for every i ”= j. Then v := vÕ

|k(X) is a
valuation on k(X) whose associated DVR is (S := R fl k(X),mS := (r

i=1,...,d ti)).
By [KM98, Lemma 2.45], there exists a proper birational map ÊX æ X extracting a
divisor ÂE with induced valuation v. Let a be its discrepancy and ÊX Õ

æ X Õ, ÂE Õ
™ ÊX Õ

be the base change to kÕ. Then, ÂE Õ is locally the zero locus of r
i=1,...,d ti and it is

reduced. Moreover, its discrepancy Âa coincides with a. Let E0 be the zero locus of
t0. Since the local ring around E0 is exactly (R,mR), by [KM98, Remark 2.23], its
discrepancy coincides with aÕ. Therefore, a = Âa = aÕ < ≠1, contradiction. qed

Corollary 4.4.4. Assume the LMMP and the existence of log resolutions in dimen-
sion n. Let f : X æ Z be a fibration between normal varieties, where dim(X) = n,
and (X/Z, B) a GGLC pair associated with it. Suppose that (X/Z, B) satisfies Prop-
erty (ú). Let k be the algebraic closure of k, f : X æ Z the base change of f with
k, B := B ◊k k. Then (X/Z, B) is GGLC, it satisfies Property (ú), B

Z
= BZ ◊k k

and M
X

= MX ◊k k.

Proof. If Y is a variety over k, we denote by Y := Y ◊k k. Similarly, if D is a divisor
on Y , we denote by D := D ◊k k. Let G := Gal(k/k).

By Lemma 4.4.3, given t œ RØ0 and ” ™ Z prime divisor, if (X, B + tf ú”) is log
canonical around ”, then (X, B + tf

ú

”) is log canonical around ”.
Conversely, given t œ RØ0, ” ™ Z prime divisor, if (X, B + tf

ú

”) is log canonical
around ”, then (X, B + tf ú”G) is log canonical around ”G. Indeed, let Y æ X be a
birational map over X and E a place over f ú”G. Consider the base change with k,
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Y æ X, E ™ Y . Since k is perfect, E is reduced, thus the discrepancy of E over X

coincides with the discrepancy of E over X.
To conclude the proof, note that it is enough to show that B

Z
= BZ ◊k k, which

follows from the above discussion. qed

We are now ready to prove that the moduli part is nef for fibrations satisfying
Property (ú).

Theorem 4.4.5. Assume the LMMP and the existence of log resolutions in dimen-
sion up to n. Let f : X æ Z be a fibration from a normal projective variety X of
dimension n onto a normal projective curve Z and (X/Z, B) a GGLC pair asso-
ciated with it. Suppose that (X/Z, B) satisfies Property (ú) and X is Q-factorial.
Assume that KX + B is f -nef, then the moduli part MX is nef.

Proof. The strategy to prove Theorem 4.4.5 is inspired by the proof of [ACSS21,
Lemma 3.12]. First of all, if k is not algebraically closed, let k be its algebraic closure,
f : X æ Z the base change of f with k and B := B ◊k k. By Corollary 4.4.4 and
Lemma 4.4.2, (X/Z, B) is GGLC, it satisfies Property (ú) and M

X
= MX ◊k k is

f -nef. If we prove nefness of M
X

, by Lemma 4.4.2, this implies that MX is nef as
well. Therefore, we can assume k is algebraically closed.

If MX was not nef, there would exist fl, extremal ray whose support dominates
Z, such that MX · fl < 0. Let A be an ample divisor on X such that Hfl := MX + A

is a supporting hyperplane for fl. In particular, Hfl is nef.
Outline of the proof
Non big case. The idea when Hfl is not big is that we can find a negative curve that
is general enough on which MX is negative. Then we apply Proposition 4.3.3.
Big case. If Hfl is big, we produce a geometric log canonical centre containing fl.
Thanks to Theorem 4.2.11, we extract this centre over X(e), i.e. after a base change
of f with a high enough power of the Frobenius morphism. The aim is to prove nef-
ness of the moduli part by induction on the dimension, thus we perform adjunction
using Proposition 4.2.17. Note that the case dim(X) = 1 is trivial.

Non big case.
Let d be the numerical dimension of Hfl. Since Hfl is not big, d < n. Define

Di := Hfl for 2 Æ i Æ d + 1 and Di := A for d + 1 < i Æ n. Since Hd+1
fl

· An≠d≠1 = 0,
MX · Hd

fl
· An≠d≠1 = (Hfl ≠ A) · Hd

fl
· An≠d≠1 < 0. Then,

(a) (MX + A) · D2 · ... · Dn = 0;

(b) MX · D2 · ... · Dn < 0;

(c) MX + A is nef.
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Therefore, by Proposition 4.3.3, there exists a vertical curve ’ such that MX · ’ < 0,
contradiction.
Big case.
Step 1. In this step, we produce a log canonical centre on the geometric generic
fibre of f , containing a curve that is negative on the moduli part. More precisely,
we find a horizontal curve › ™ X and an e�ective Q-divisor � on X such that:

(a) MX · › < 0;

(b) � · › Æ 0;

(c) ›|X÷
is a log canonical centre of (X÷, B÷ + �÷);

(d) all non-log canonical centres of (X÷, B÷ + �÷) are disjoint from ›|X÷
.

By [CMM14, Theorem 1.1], if Á > 0 is small enough and m ∫ 0 is divisible
enough, then Bs(m(Hfl ≠ ÁA)) is supported on those subvarieties W ™ X such that
Hfl|W is not big. Let q

r

i=1 ai’i be a representative of the ray fl, where ai > 0 and ’i

are irreducible curves on X. Since Hfl is nef, Hfl ·’i = 0, therefore Bs(m(Hfl ≠ ÁA)) =
t

r

i=1 ’i. Consider the restriction maps

rm : H0(X, m(Hfl ≠ ÁA)) æ H0(X÷, m(Hfl ≠ ÁA)|X÷
).

Define the sub-linear system |V•| := (|m(Hfl ≠ ÁA)|÷)mœN on X÷, then, for some
m > 0 su�ciently divisible, Bs(Vm) = t

r

i=1 ’i|X÷
. Let Vm(k) be the image of rm and

let {s1, ..., s¸} be a choice of basis of Vm(k), considered as a k-vector space. Since MX

is f -nef and Hfl ≠ ÁA ≥Q MX + (1 ≠ Á)A, there exists a horizontal curve › ™
t

r

i=1 ’i

such that (Hfl ≠ ÁA) · › < 0 and MX · › < 0. Let fl÷ be the ray corresponding to
fl in X÷ and ›÷ := ›|X÷

. By Corollary 1.2.10, there exists an e�ective Q-divisor
� œ |Vmm| such that (X÷, B÷ + 1

m
�) is log canonical outside t

r

i=1 ’i|X÷
and has a non-

klt centre at ›÷. Moreover, � has a decomposition as q
m

i=1 Di with Di œ |Vm(k)|;
in particular, � belongs to the image of rmm. Assume there is 0 < ⁄ Æ

1
m

such
that (X÷, B÷ + ⁄�) has a log canonical centre at ›÷ and is log canonical outside
t

r

i=1 ’i|X÷
. Let �Õ

œ |mm(Hfl ≠ ÁA)| be a lift of � to X and let � := ⁄�Õh, we claim
that it satisfies the required properties. Indeed, points (a), (c) and (d) follow by
construction and point (b) because � · › = ⁄mm(Hfl ≠ ÁA) · › ≠ ⁄�Õv

· › < 0.
If such ⁄ does not exist, it means that (X÷, B÷) has already a log canonical centre

at ›÷ and we define � := 0.
Step 2. In this step, we perform a Frobenius base change on the base of the fibration
in order to find a curve ›e ™ X(e), that is a log canonical centre of (X(e), Be + �e),
where Be := —ú

e
Bh + —≠1

e
Bv and �e := —ú

e
�.

Let � := Bh + � and �e := —ú

e
�. By choosing e ∫ 0, by Corollary 2.3.23, we

can suppose fe is tame. Now, we want to compare the moduli part MX of (X/Z, B)
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to K
X(e) . By Theorem 2.3.27, we have:

–ú

e
K

X(e) = (pe
≠ 1)(KX ≠ f úKZ ≠ R(f)) + KX ≠

ÿ

D wild
wD,eD,

where wD,e Ø 0 for every D wild fibre. Since fe is tame, by Theorem 2.3.6:

–ú

e
(KFe + �e) = –ú

e
(KX(e) ≠ f ú

e
KZ ≠ R(fe) + �e)

= (pe
≠ 1)(KX ≠ f úKZ ≠ R(f)) + KX ≠

ÿ

D wild
wD,eD ≠ f úKZ ≠ –ú

e
R(fe) + pe�.

Now, if D is a vertical prime divisor in X, let ¸D = nDpeD be its multiplicity with
respect to f , where eD Ø 0 and nD is coprime with p. By Lemma 2.3.25:

–ú

e
R(fe) = R(f) ≠

ÿ

D wild
(peD ≠ 1)D.

Bringing everything together:

–ú

e
(KFe + �e) =

(pe
≠ 1)(KX ≠ f úKZ ≠ R(f)) + KX ≠ f úKZ ≠ R(f) + pe�

≠
ÿ

D wild
wD,eD +

ÿ

D wild
(peD ≠ 1)D =

pe(MX + �) ≠
ÿ

D wild
wD,eD +

ÿ

D wild
(peD ≠ 1)D.

Let ›e be a curve corresponding to › in X(e). Note that q
D wild(peD ≠ 1)D · › is

independent of e for e ∫ 0. Therefore, up to choosing a bigger e Ø 0:

(KFe + �e) · ›e < 0.

Step 3. In this step, we construct a geometric (ú)-modification that extracts a log
canonical place over › and we compute its moduli part.

Up to possibly choosing an even bigger e Ø 0, by Theorem 4.2.11, there exists a
dlt GGLC pair (Y/Z, C + E) with Y Q-factorial, and a diagram:

Y
µ //

g
!!

X(e)

fe

✏✏
Z,

where µ is a birational map and the centre of E is ›e. The induced fibration E æ Z

is separable. Moreover, there exist an e�ective exceptional Q-divisor R, whose image
in X(e) is supported on the non-log canonical locus of (X(e), �e +Bv

e
), and a vertical
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e�ective Q-divisor G, such that

KY + C + E + R = µú(KX(e) + �e + Bv

e
) + G,

where KY + C + E is µ-nef.
Now, we want to compare the moduli part MX of (X/Z, B) to the moduli part

MY of (Y/Z, C + E). Recall that fe is tame and all the vertical divisors with mul-
tiplicity > 1 lie over the discriminant part BZ of (X/Z, B), which is reduced by
Property (ú). Thus, by Theorem 2.3.6:

KFe + �e = K
X(e) + �e + Bv

e
≠ f ú

e
(KZ + BZ).

Therefore:

µú(KFe + �e) =

KY + C + E ≠ gú(KZ + CZ) + R + gú(CZ ≠ BZ) ≠ G =

MY + R + gú(CZ ≠ BZ) ≠ G,

where CZ is the discriminant part of (Y/Z, C + E).
Now, we study more closely the Q-divisor gú(CZ ≠ BZ) ≠ G. Let z œ Z and bz

and cz be its coe�cients in BZ and CZ , respectively. If bz = 1, then the fibre over z

is contained in Bv, so cz = 1 as well by construction. If bz = 0, it may happen that
cz = 1. Let D be a non µ-exceptional vertical prime divisor contained in g≠1(z). By
abuse of notation, call D also —e(µ(D)). Then, by construction, the coe�cient of D

in G is 1 and, since (X/Z, B) has Property (ú) and bz = 0, the coe�cient of D in
f ú(z) must be 1, hence its coe�cient in gú(z) is 1 as well (µ is an isomorphism at
the generic point of D). All in all, we get that gú(CZ ≠ BZ) ≠ G is µ-exceptional.
Then, applying the Negativity lemma ([KM98, Lemma 3.39]), we conclude that
R + gú(CZ ≠ BZ) ≠ G is e�ective. By abuse of notation, let › ™ Supp(E) be a
curve mapping to ›e. Then, since › is horizontal, (Rv + gú(CZ ≠ BZ) ≠ G) · › Ø 0.
Moreover, Rh

· › Ø 0 by point (d) in Step 1. Thus,

MY · › < 0.

Step 4. In this step we do adjunction on E and we conclude by induction on the
dimension.

Since (Y, C+E) is Q-factorial and dlt, the normalisation morphism ‹ : E‹
æ E is

an isomorphism in codimension 1 by Lemma 4.2.12. Define CE‹ on E‹ by adjunction,
so that we have (KY + C + E)|E‹ = KE‹ + CE‹ , and let E‹ gE

≠æ Z Õ Ï

≠æ Z be the Stein
factorisation of g|E‹ . By Proposition 4.2.16, (E‹/Z Õ, CE‹ ) is GGLC and satisfies
Property (ú). Moreover, by Proposition 4.2.17, there exists a vertical e�ective divisor
V on E‹ such that MY |E‹ ≠ V = ME‹ , the moduli part of (E‹/Z Õ, CE‹ ). By abuse
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of notation, let › be a curve in E‹ mapping onto ›. Then, ME‹ · › < 0.

If dim(X) = 2, E‹
æ Z Õ is the identity, whence ME‹ = 0, giving a contra-

diction. Assume then that dim(X) Ø 3. Note that, if ’ ™ Supp(E‹) is verti-
cal over Z Õ, ‹(µ(’)) is a point because µ(E) is supported on a horizontal curve.
Therefore, (KY + C + E)|E‹ · ’ Ø 0. If E‹ is not Q-factorial, substitute it with a
(ú)-modification (E Õ/Z Õ, C Õ) constructed with Theorem 4.2.3. Let µÕ : E Õ

æ E‹ be
the resulting map, gÕ : E Õ

æ Z Õ the induced fibration, and let CE‹ ,ZÕ , C Õ

ZÕ be the
discriminant parts of (E‹/Z Õ, CE‹ ) and (E Õ/Z Õ, C Õ), respectively. By construction,
there is a vertical e�ective Q-divisor DÕ such that KEÕ + C Õ = µÕú(KE‹ + CE‹ ) + DÕ

and KEÕ +C Õ is µÕ-nef. Note also that KEÕ +C Õ is gÕ-nef over U := Z Õ
\gÕ(Supp(DÕ)).

With computations similar to the ones in Step 3, we find that

µÕúME‹ = MEÕ + gÕú(C Õ

ZÕ ≠ CE‹ ,ZÕ) ≠ DÕ,

where gÕú(C Õ

ZÕ ≠ CE‹ ,ZÕ) ≠ DÕ is e�ective and MEÕ is the moduli part of (E Õ/Z Õ, C Õ).
Let ›Õ be a curve mapping to ›, then MEÕ · ›Õ < 0.

If MEÕ is not gÕ-nef, run a (KEÕ + CEÕ)-MMP over Z Õ and let (E ÕÕ/Z Õ, C ÕÕ) be the
resulting pair with associated fibration gÕÕ : E ÕÕ

æ Z Õ. Since KEÕ + C Õ is gÕ-nef over
U , E Õ and E ÕÕ are isomorphic on gÕ≠1(U). In particular, ›Õ is not contracted and
the MMP does not terminate with a Mori fibre space. Let ›ÕÕ be the image of ›Õ

in E ÕÕ. Let p1 : ÂE æ E Õ and p2 : ÂE æ E ÕÕ be the projections from a resolution of
E Õ 99K E ÕÕ. Then, pú

2(KEÕÕ + C ÕÕ) = pú

1(KEÕ + C Õ) ≠ DÕÕ, where DÕÕ is an e�ective p2-
exceptional Q-divisor. We can choose p2 to be an isomorphism on gÕ≠1(U), therefore
DÕÕ is vertical over Z Õ. By Proposition 3.3.3, (E ÕÕ/Z Õ, C ÕÕ) satisfies Property (ú) and
its discriminant part coincides with the discriminant part of (E Õ/Z Õ, C Õ), whence:

MEÕÕ · ›ÕÕ = MEÕ · ›Õ
≠ DÕÕ

· Â› < 0,

where MEÕÕ is the moduli part of (E ÕÕ/Z Õ, C ÕÕ) and Â› is a lift of ›Õ to ÂE.
To sum up, (E ÕÕ/Z Õ, C ÕÕ) satisfies Property (ú), E ÕÕ is Q-factorial, MEÕÕ is gÕÕ-nef

and there is a horizontal curve ›ÕÕ
™ E ÕÕ such that MEÕÕ · ›ÕÕ < 0. By the inductive

assumption MEÕÕ is nef, contradiction. qed

4.4.2. General case

In the general case, we may need to go to a higher model of X to achieve positivity
of the moduli part.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.

Theorem 4.4.6. Assume the LMMP and the existence of log resolutions in dimen-
sion up to n. Let f : X æ Z be a fibration from a normal projective variety X of
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dimension n onto a normal projective curve Z and (X/Z, B) a GGLC pair associ-
ated with it such that B Ø 0 and (X, B) is log canonical. Suppose that KX + B is
f -nef. Then, there exist a projective pair (Y, C) satisfying Property (ú), with C Ø 0,
and a commutative diagram

Y b //

g
��

X

f

✏✏
Z,

with b birational and such that:

(i) the pairs (X/Z, B) and (Y/Z, C) are crepant over the generic point of Z (as
in Definition 3.3.9);

(ii) the moduli part MY of (Y/Z, C) is nef.

Proof. By Theorem 4.2.3, there exists (X Õ, BÕ) a Q-factorial dlt pair satisfying Prop-
erty (ú) with BÕ

Ø 0 and a commutative diagram

X Õ
µ //

f
Õ
  

X

f

✏✏
Z,

where µ is projective birational and KXÕ + BÕ = µú(KX + B) + G with G a vertical
e�ective Q-divisor. The two pairs are crepant over ÷, the generic point of Z, thus
(X Õ

÷
, BÕ

÷
) is log canonical. The divisor KXÕ + BÕ may be not f Õ-nef anymore. In

this case, we run a (KXÕ + BÕ)-MMP over Z. Let (Y, C) be the resulting pair,
b : Y 99K X the induced birational map and g : Y æ Z the induced fibration. Note
that the MMP only contracts (or flips) curves inside the support of G and it is
an isomorphism elsewhere, so the MMP cannot end with a Mori fibre space and
(KXÕ + BÕ)|XÕ

÷
= (KY + C)|XÕ

÷
, whence (Y/Z, C) and (X/Z, B) are crepant over the

generic point of Z. Moreover, (Y/Z, C) satisfies Property (ú) by Proposition 3.3.3
and KY + C is g-nef. Thus, we conclude by applying Theorem 4.4.5. qed

4.4.3. The K-trivial case

As a corollary of the previous results we get the canonical bundle formula in the
classical setting, i.e. when the fibration is K-trivial. The proof is very similar to the
one in the characteristic 0 case ([ACSS21, Theorem 1.3]).

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.

Theorem 4.4.7. Assume the LMMP and the existence of log resolutions in dimen-
sion up to n. Let f : X æ Z be a fibration from a normal projective variety X of
dimension n onto a normal projective curve Z and (X/Z, B) a GGLC pair associated
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with it such that B Ø 0 and (X, B) is log canonical. Assume that KX + B ≥Q f úLZ

for some Q-Cartier Q-divisor LZ on Z. Then, MX = f úMZ is nef.

Proof. First, let µ : X Õ
æ X be a (ú)-modification as in Theorem 4.2.3. Let

f Õ : X Õ
æ Z be the induced morphism and BÕ

Ø 0 defined so that KXÕ + BÕ =
µú(KX + B). Let BÕ

Z
and M Õ be respectively the discriminant and the moduli parts

of (X Õ/Z, BÕ). Then M Õ = µúMX ≥Q f ÕúLÕ

Z
, for some Q-Cartier Q-divisor LÕ

Z
on Z,

so it is enough to show that M Õ is nef. There exists an e�ective vertical Q-divisor
G such that, if Bú := BÕ + G, (X Õ/Z, Bú) satisfies Property (ú) and Bú

Ø 0. Let �Z

be the discriminant part of (X Õ/Z, Bú) and Mú its moduli part. Let “ú

z
be the log

canonical threshold of f Õú(z) with respect to (X Õ/Z, Bú) and “Õ

z
the one with respect

to (X Õ/Z, BÕ), for z œ Z. Note that “ú

z
Æ “Õ

z
. In particular, �Z Ø BÕ

Z
.

Now, define BÕÕ := BÕ +f Õú(�Z ≠BÕ

Z
), so that KXÕ +BÕÕ

≥Q,Z 0, the discriminant
part of (X Õ/Z, BÕÕ) is �Z and its moduli part is M Õ. Note that BÕÕ

Æ Bú and the
di�erence is vertical.

It is possible that KXÕ +Bú is not f Õ-nef, in which case we perform a (KXÕ +Bú)-
MMP over Z. Let Ï : X Õ 99K Y be the result of this MMP and (Y, C) the resulting
pair, where C := ÏúBú. Note that this MMP cannot end with a Mori fibre space since
KXÕ + BÕ is f Õ-nef. Call g : Y æ Z the induced fibration and MY the moduli part
of (Y/Z, C). Since (X, Bú) is log canonical, so is (Y, C) and, by Proposition 3.3.3,
(Y/Z, C) satisfies Property (ú) and its discriminant part is �Z . Let C ÕÕ := ÏúBÕÕ.
Since KXÕ + BÕÕ

≥Q,Z 0, the divisor (KY + C) ≠ (KY + C ÕÕ) is g-nef. Moreover, by
construction, it is e�ective and supported on a vertical Q-divisor � which does not
contain any fibre. Let � be an e�ective vertical Q-divisor such that � + � ≥Q,Z 0.
Then, (KY + C) ≠ (KY + C ÕÕ) ≥Q,Z ≠� is g-nef, whence � = 0 = � and C = C ÕÕ.
The pair (Y/Z, C) satisfies Property (ú) and MY is g-nef by construction. Therefore,
MY is nef by Theorem 4.4.5.

Now, we want to compare MY and M Õ. Let ÊX be a common resolution of
X Õ 99K Y with p : ÊX æ X Õ, q : ÊX æ Y the induced projections. We have that both
púM Õ

≠qúMY and qúMY ≠púM Õ are q-nef since M Õ is f Õ-trivial. Moreover, qú(púM Õ
≠

qúMY ) = ÏúBÕÕ
≠ C = 0 = qú(qúMY ≠ púM Õ). Therefore, by the Negativity lemma

([KM98, Lemma 3.39]), púM Õ = qúMY , and it is nef, whence the conclusion. qed

4.4.4. The canonical bundle formula in dimension 3

For threefolds over perfect fields of characteristic p > 5, the LMMP and existence
of log resolutions are known to hold, so our results hold unconditionally.

Corollary 4.4.8. Let f : X æ Z be a fibration from a normal projective variety X

of dimension 3 onto a normal projective curve Z over a perfect field of characteristic
p > 5, and (X/Z, B) a GGLC pair associated with it such that B Ø 0 and (X, B)
is log canonical. Let B be an e�ective Q-divisor on X such that (X, B) is a log
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canonical pair. Suppose that KX + B is f -nef. Then, there exist a pair (Y, C)
satisfying Property (ú), with C Ø 0, and a commutative diagram

Y b //

g
��

X

f

✏✏
Z,

with b birational and

(i) (X/Z, B) and (Y/Z, C) are crepant over the generic point of Z;

(ii) the moduli part MY of (Y/Z, C) is nef.

Moreover, if KX +B ≥Q f úLZ for some Q-Cartier Q-divisor LZ on Z, MX = f úMZ

is nef.

Proof. By Remark 4.0.1, we can conclude that Theorem 4.4.5, Theorem 4.4.6 and
Theorem 4.4.7 hold unconditionally for threefolds over a perfect field of characteristic
p > 5. qed
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Chapter 5

Iitaka conjectures

One of the most important invariants in the birational classification of varieties is
the Kodaira dimension Ÿ(X, KX); it measures the growth of pluricanonical sections.
A fundamental problem is to relate Kodaira dimensions in fibrations: the Iitaka
conjecture. In this chapter, we recall the definition of Iitaka dimension, alongside
with some of its properties. Then, we present a variant of the Iitaka conjecture for
the anticanonical Iitaka dimension.

5.1. Iitaka dimension

In this section we consider varieties defined over any field.

Definition 5.1.1 ([Laz04a, 2.1.A]). Let X be a normal projective variety and L a
Q-divisor on it. For every m > 0 such that mL is integral and the linear system |mL|

is not empty, |mL| defines a rational map „|mL| : X 99K PNm ƒ P(H0(X, mL)ú). For
m ∫ 0 and su�ciently divisible, dim(„|mL|(X)) stabilises. The Iitaka dimension
of L is defined as:

Ÿ(X, L) :=

Y
_]

_[

≠Œ if |mL| = ÿ for all m Ø 0;

maxmØ1 dim(„|mL|(X)) otherwise.

Remark 5.1.2. Sometimes it is useful to work with di�erent characterisations of the
Iitaka dimension. We recall a couple of them here. Fix X a normal projective
variety over a field k and L a Q-divisor on it.

Define the section ring of L as R(X, L) := m
Œ

m=0 H0(X, mL), if R(X, L) ”= 0,
it is an integral domain. If |L|Q ”= 0, then

Ÿ(X, L) = tr.deg
k
R(X, L) ≠ 1,

the transcendence degree of R(X, L) over k. For more details, we refer to [Mor87,
1.3].
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When |L|Q ”= ÿ the Iitaka dimension can be characterised also as

Ÿ(X, L) = sup
I

d Ø 0 s.t. lim sup
mæŒ

dim(H0(X, mL))
md

”= 0
J

.

For more details, we refer to [Laz04a, Chapter 2].

Remark 5.1.3. Let X be a normal projective variety over a field k, L a Q-divisor,
and kÕ

´ k a field extension. Denote by X Õ and LÕ the base change of X and L,
and suppose that X Õ is normal. Then Ÿ(X, L) = Ÿ(X Õ, LÕ) by flat base change. Note
that, if k is perfect, X is geometrically normal by [Sta22, Tag 038N], therefore X Õ

is always normal.

Theorem 5.1.4 ([Laz04a, Theorem 2.1.3.3]). Let X be a normal projective variety
and let L be a Cartier Q-divisor such that |L|Q ”= ÿ. Then there exists a fibration
of normal projective varieties „Œ : XŒ æ ZŒ fitting in the following commutative
diagram for all su�ciently divisible m:

XŒ X

ZŒ Zm,

u

„Œ „|mL|

v

where the maps u, v are birational, Zm is the closure of the image of „|mL|, and, for
z œ ZŒ very general, Ÿ(XŒ,z, (uúL)|XŒ,z) = 0. In particular, dim(ZŒ) = Ÿ(X, L).

Remark 5.1.5. Let X be a normal projective variety over a field k, and let L be a
semiample Cartier divisor; i.e. „|mL| is a morphism for some m Ø 1.

Moreover, suppose that |V | ™ |mL| is a base point free linear subsystem so that,
in particular, L is semiample. Consider the Stein factorisation

„|V | : X
g

≠æ Y
h
≠æ Z.

Then g = „|mL| for all m Ø 1 su�ciently divisible. In other words, the Stein
factorization of „|V | recovers the Iitaka fibration of L. Indeed, if this was not the case,
let h1 ¶h2 be the Stein factorisation of h. Since V is base point free, there are ample
divisors H and H Õ such that H0(X, mL) = H0(X, gúH) and V ´ H0(X, (h2 ¶g)úH Õ).
In particular, the inclusion map V ™ H0(X, mL) is given by multiplication by an
element in H0(X, (h2 ¶ g)úH Õ

≠ gúH). Since V is base point free, this element is a
constant and h2 is an isomorphism. We will make use of this fact repeatedly. Such
„|mL| will also be called the semiample contraction of L.

Lemma 5.1.6. Let Ï : X Õ
æ X be a surjective morphism between normal projec-

tive varieties and let L be a Cartier divisor on X. Then Ÿ(X Õ, ÏúL) = Ÿ(X, L).
Moreover, if Ï is equidimensional and L is Weil, then the equality still holds.
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Proof. Since Ï is surjective we have Ÿ(X, L) Æ Ÿ(X Õ, ÏúL). If Ï is a fibration then
the result follows by the projection formula. By considering the Stein factorisation
of Ï we can thus reduce to the case where Ï is finite.

If Ï is purely inseparable, there exists Â : X æ X Õ such that Ï ¶ Â = F e, for
some e Ø 0. Then:

Ÿ(X, L) Æ Ÿ(X Õ, ÏúL) Æ Ÿ(X, Âú„úL) = Ÿ(X, L).

If Ï is a Galois cover, the result is proven in [Mor87, Proposition 1.5]1. If Ï is
separable, there exists Â : X ÕÕ

æ X Õ such that Ï ¶ Â is Galois. Thus:

Ÿ(X, L) Æ Ÿ(X Õ, ÏúL) Æ Ÿ(X ÕÕ, Âú„úL) = Ÿ(X, L).

As for the general case, we can decompose „ = Â1 ¶ Â2, where Â1 : X ÕÕ
æ X is

separable and Â2 : X Õ
æ X ÕÕ is purely inseparable. Then, by the discussion above

applied to Â1 and Â2, we have:

Ÿ(X, L) = Ÿ(X ÕÕ, Âú

1L) = Ÿ(X Õ, Âú

2Âú

1L).

The “moreover” part follows from the same argument, after observing that f úL is
well-defined by Remark 2.0.3, and replacing the projection formula by Lemma 2.0.6.

qed

5.2. Easy Additivity theorems

Let f : X æ Z be a fibration between normal projective varieties. Some inequalities
between the Kodaira dimensions of X, Z and the general fibre Xz have been known
for a long time in any characteristic. They are the so-called “Easy Additivity”
theorems.

In this section we consider varieties defined over a perfect field of any character-
istic. However, by Remark 5.1.3, for the proofs we can assume the field of definition
is algebraically closed.

Theorem 5.2.1 (Easy Additivity, [Uen75, Theorem 6.12], [Fuj20, Lemma 2.3.31]).
Let f : X æ Z be a separable fibration between normal projective varieties. Let L be
a Q-divisor on X, then:

Ÿ(X, L) Æ Ÿ(X‹

z
, L|X‹

z
) + dim(Z),

where Xz is a general fibre of f and X‹

z
is its normalisation.

1
In loc.cit. this is proven over fields of characteristic 0, but the same proof works in positive

characteristic.
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Proof. We follow the proof in [Fuj20, Lemma 2.3.31]. By possibly substituting L

with mL for m ∫ 0, we may suppose that L is integral. The inequality is obvious
if Ÿ(X, L) = ≠Œ. If Ÿ(X, L) = 0, then Ÿ(X‹

z
, L|X‹

z
) Ø 0, proving the inequality.

If Ÿ(X, L) > 0, consider the rational map „|mL| : X 99K PN = P(H0(X, mL)ú)
induced by the linear system |mL|, for some m ∫ 0 computing Ÿ(X, L). Define a
morphism Ï := „|mL| ◊ f , so that we have the following diagram:

X
Ï //

f

✏✏

PN
◊ Z

p1 //

p2
{{

PN

Z,

where p1 and p2 are the projections onto the two factors. Let Y be the image of Ï

and note that, for a general point z of Z, Yz := Y fl p≠1
2 (z) = Ï(f≠1(z)). Hence, we

have:

Ÿ(X, L) = dim(p1(Y )) Æ dim(Y ) = dim(Yz) + dim(Z) Æ Ÿ(X‹

z
, L|X‹

z
) + dim(Z).

The last inequality follows from H0(X‹

z
, mL|X‹

z
) ´ H0(X, mL)|X‹

z
. qed

Theorem 5.2.2 (Easy Additivity 2, [Fuj77, Proposition 1]). Let f : X æ Z be a
fibration between normal projective varieties. Assume the general fibre Xz is normal.
Let L be an e�ective Q-Cartier Q-divisor on X and H a big Q-Cartier Q-divisor on
Z. Then,

Ÿ(X, L + f úH) Ø Ÿ(Xz, L|Xz) + dim(Z).

Remark 5.2.3. With similar arguments, it is possible to prove the inequalities in
Theorem 5.2.1 and Theorem 5.2.2 for X÷, the generic fibre of f , instead of the
general one. For the proof, see [Fuj20, Remark 2.3.32] and [BCZ18, Lemma 2.20].

Lemma 5.2.4. Let f : X æ Z be a fibration between normal projective varieties.
Assume that a very general fibre Xz is reduced and normal. Let ÷ be the generic
point of Z and L be a Q-Cartier Q-divisor on X. Then,

Ÿ(X÷, L÷) = Ÿ(X÷, L÷) = Ÿ(Xz, Lz).

Moreover, if Ÿ(X÷, L÷) Ø 0, the above equalities hold also for a general fibre Xz.

Proof. The first equality is a consequence of the flat base change theorem. As for
the second, we can assume that f is flat without loss of generality, hence we conclude
by [Har13, Theorem 12.8, Chapter III].

Now, suppose Ÿ(X÷, L÷) Ø 0. Let H be an ample enough Cartier divisor on Z

such that L + f úH is Q-e�ective. By the Easy Additivity theorems (Theorem 5.2.1,
Theorem 5.2.2 and Remark 5.2.3), for a general fibre Xz we have:

Ÿ(X, L + f úH) = Ÿ(Xz, Lz) + dim(Z) and Ÿ(X, L + f úH) = Ÿ(X÷, L÷) + dim(Z).
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Thus, Ÿ(Xz, Lz) = Ÿ(X÷, L÷). qed

Remark 5.2.5. With notation as in Lemma 5.2.4, when Ÿ(X÷, L÷) = ≠Œ and z œ Z

is general, the equality Ÿ(Xz, Lz) = ≠Œ may fail. Let A be an Abelian variety, let
Z denote its dual, and consider the second projection f : X := A ◊ Z æ Z. Then
the Poincaré line bundle L on X gives a counterexample, as Ÿ(Xz, Lz) = 0 for all
torsion points z œ Z.

Proposition 5.2.6. Let f : X æ Z be a fibration of normal projective varieties with
general fibre Xz. Let L be a Q-divisor such that there exists an integer m Ø 1 for
which Bs(mL) does not dominate Z. Then

Ÿ(X, L) Ø Ÿ(Xz, Lz).

Proof. For all n Ø 1 let Vn := H0(X, nmL) and rn be the dimension of Vn,z for a
general point z œ Z. Define Fn := fúOX(nmL). A choice of basis for Vn yields a
map

O
ürn
Z

Òæ Fn.

By taking global sections we obtain dim(H0(X, nmL)) Ø rn. By letting n go to
infinity and considering the respective rates of growth, we conclude Ÿ(X, L) Ø

Ÿ(Xz, Lz). qed

5.3. The Iitaka conjecture

The Iitaka conjecture complements the Easy Additivity theorems. It is also called
Cn,m conjecture, where the C stands for “contractions”, another name for fibrations,
and n, m are the dimensions of the source and the target of the fibration, respectively.

Although still open in general, over fields of characteristic 0 this conjecture
is proven for many important classes of fibrations ([Vie77, Vie82, Vie83, Kaw82,
Kaw81, Kaw85, Fuj03, HPS18, Bir09, Cao18, CP17, CH11]). In particular, Cn,m

holds when dim(Z) Æ 2, and when Xz admits a good minimal model.
It is then natural to ask whether the same inequality holds over fields of posi-

tive characteristic. Given the substantial di�erence between the generic fibre and
the geometric generic fibre, in positive characteristic, we have two versions of the
conjecture.

Questions 5.3.1 ([Zha19, Conjecture 1.2, Conjecture 1.4]). Let f : X æ Z be a fibra-
tion between normal projective varieties over a perfect field of positive characteristic
and let ÷ be the generic point of Z. Assume that X÷ admits a smooth birational
model Y .

(1) (Strong form) Is it true that Ÿ(X, KX) Ø Ÿ(X÷, KX÷) + Ÿ(Z, KZ)?
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(2) (Weak form) Is it true that Ÿ(X, KX) Ø Ÿ(Y , K
Y

) + Ÿ(Z, KZ)?

In [CZ15, Theorem 1.2] the conjecture is proven when the general fibre of f

is a curve and f is separable. The papers [Eji17], [BCZ18], [EZ18] show that the
conjecture does hold when dim(X) = 3, the characteristic of the base field is p > 5
and the geometric generic fibre is smooth. In [Zha19], the author proves C3,m when
the base of the fibration is of general type and the relative canonical divisor is
relatively big, but they relax the assumptions on the smoothness of the generic fibre.
However, it is known that over fields of positive characteristic the Iitaka conjecture
does not hold in general. The paper [CEKZ21] gives some counterexamples using
the construction of Tango–Raynaud surfaces.

5.4. The anticanonical Iitaka conjecture

Recently, an Iitaka-type statement for the anticanonical divisor has been proven in
characteristic 0 by Chang in [Cha23]. We call C≠

n,m
this version of the Iitaka conjec-

ture. In this section, first we recall the theorem and then we explain a heuristic on
why we should expect such an inequality to hold. We conclude with some counterex-
amples to the inequality over fields of positive characteristic, where the geometric
generic fibre is not normal. In the next Chapter 6, we discuss some positive results,
assuming that the general fibres have “nice” F -singularities.

5.4.1. Results in characteristic 0

In this section we consider varieties defined over a perfect field, we specify the
characteristic if needed.

Theorem 5.4.1 ([Cha23, Theorem 1.1]). Let f : X æ Z be a fibration between
normal projective Q-Gorenstein varieties over a field2 of characteristic 0 and let Xz

be a general fibre of f . Suppose X has at worst klt singularities, ≠KX is e�ective
and there exists an integer m Ø 1 such that Bs(≠mKX) does not dominate Z, then:

Ÿ(X, ≠KX) Æ Ÿ(Xz, ≠KXz) + Ÿ(Z, ≠KZ).

The result is generalised also to pairs (X, B) with similar assumptions (see
[Cha23, Theorem 4.1]).

Counterexamples for C≠

n,m
, in any characteristic, removing the hypothesis on the

anticanonical base locus, are easy to obtain already for ruled surfaces.

2
In the original paper, the result is stated over an algebraically closed field, but, by Re-

mark 5.1.3, the same proof gives the inequality over perfect fields.
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Example 5.4.2 ([Cha23, Example 1.7]). Let Z be a smooth projective curve of genus
g Ø 2 and let D be a divisor of degree d > 2g ≠ 2. Consider the ruled surface

f : X := P(OZ ü OZ(≠KZ ≠ D)) æ Z.

Let Z0 be the fixed section of f . Then, ≠KX = 2Z0 + f úD Ø Z0 + f úD. We claim
that the divisor Z0 + f úD is big. Using the Riemann–Roch Theorem, we get:

h0(X, n(Z0 + f úD)) Ø
1
2n(f úD + Z0) · (n(f úD + Z0) + 2Z0 + f úD) + O(n).

Given our choice of d, it is immediate to see that the coe�cient of n2 on the RHS
is strictly positive, whence the claim.
Note that ≠KX ·Z0 = 2≠2g < 0. This tells us that Z0 is contained in the base locus
of ≠nKX for every integer n Ø 1, which, therefore, surjects onto Z. In conclusion, we
have Ÿ(X, ≠KX) = 2, Ÿ(Z, ≠KZ) = ≠Œ, thus C≠

n,m
does not hold for this example.

We expect a more general version of Theorem 5.4.1 to hold: more precisely we
expect one should be able to relax the condition on Bs(≠KX) being f -vertical.

Definition 5.4.3. Let (X, B) be a projective sub-pair over a field of characteristic
0 and V• = {Vm}mœN a graded linear subsystem. Let J (X, B; V•) be the asymptotic
multiplier ideal of V• (for the definition see [Laz04b, §11.1]). We define the non-klt
locus of (X, B, V•) as

Nklt(X, B, V•) := {x œ X s.t. J (X, B; V•)x ™ mx}.

When V• is the full graded linear series associated to some Q-divisor L, we write
Nklt(X, B, ||L||) := Nklt(X, B, V•)

Remark 5.4.4. If Z ”™ Nklt(X, B, V•), for m ∫ 0 and D1, ..., Dk general elements
in Vm, then Z ”™ Nklt

1
X, B + 1

mk
(D1 + ... + Dk)

2
, by [Laz04b, Proposition 9.2.26,

Definition 9.3.9].

Remark 5.4.5. We state a generalisation of [Cha23, Theorem 4.1] (see Theorem 5.4.1).
Let f : X æ Z be a fibration between normal projective varieties over a field of

characteristic 0, where Z is Q-Gorenstein. Let B be an e�ective Q-divisor on X and
let D be a Q-Cartier Q-divisor on Z. Let L := ≠KX ≠ B ≠ f úD, and assume that
L is Q-e�ective and Nklt(X, B, ||L||) does not dominate Z. Then

Ÿ(X, L) Æ Ÿ(Xz, Lz) + Ÿ(Z, ≠KZ ≠ D).

Furthermore, if Ÿ(Z, ≠KZ ≠ D) = 0, equality holds.
Instead of asking Bs(mL) to not dominate Z for some integer m Ø 1, it is enough

to ask for Nklt(X, B, ||L||) to not dominate Z. Indeed, the way the hypothesis on
Bs(mL) is used is to find a Q-divisor � œ |L|Q such that (Xz, Bz + �z) is still klt.
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This is clearly true when Bs(mL) is vertical, since in this case |mL|z will be base
point free. However, Remark 5.4.4 shows that the same is true under the weaker
assumption on Nklt(X, B, ||L||). Using this, it is possible to prove the above version
of [Cha23, Theorem 4.1].

We give an example showing that C≠

n,m
can fail when Nklt(X, B, L) is horizontal.

Example 5.4.6. Let Z be an elliptic curve and D a divisor on Z of degree d > 0.
Define X := P(OZüOZ(≠D)) and let f : X æ Z be the structure map. Let B := Z0,
where Z0 is the section of f corresponding to the surjection OZ ü OZ(≠D) æ

OZ(≠D), so that OX(Z0) = OX(1). Then, ≠KX ≠ B ≥ Z0 + dXz, where z is a
general point of Z. In this case, (X, B) is strictly log canonical and the non-klt
locus dominates the base. We have

2 = Ÿ(X, ≠KX ≠ B) > Ÿ(Xz, ≠KXz ≠ Bz) + Ÿ(Z, ≠KZ) = 1.

In this case we even have Bs(≠KX ≠ B) = ÿ.

5.4.2. Heuristic

Let f : X æ Y be a fibration between normal projective varieties over an alge-
braically closed field. The first step to prove C≠

n,m
is a positivity descent result,

showing that, if ≠KX is Q-e�ective, then so is ≠KY . In characteristic zero this is
done by picking a su�ciently general � œ | ≠ KX |Q, so that f : X æ Y with the
pair structure (X, �) is a Calabi–Yau fibration. By the canonical bundle formula we
then write

KX + � ≥Q f ú(KY + MY + BY ) ≥Q 0,

where MY + BY is Q-e�ective, from which we conclude. In positive characteristic
we do not have a canonical bundle formula in such generality, but we do have it in
some cases (see Section 3.4). Hence, we conclude by the same argument as above,
once we show that there exists � œ | ≠ KX |Q such that (Xy, �y) has “controlled”
singularities.

Suppose now that we have a fibration f : X æ Y where both ≠KX and ≠KY

have sections; for simplicity, let us assume that they are both semiample. Then we
can think of X as being “built from” Calabi–Yau and Fano varieties: more precisely,
letting X æ XFano := Proj

1m
mØ0 H0(X, ≠KX)

2
be the semiample contraction of

≠KX (see Remark 5.1.5), by the canonical bundle formula we have that XFano is
a Fano-type variety with Ÿ(X, ≠KX) = dim(XFano), and a general fibre XCY is a
Calabi–Yau variety. Analogous descriptions hold for Y and Xy. Then we have the
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following commutative diagram

X V XFano

Y

YFano,

f

h
hFano

g

where V := Proj
YFano

1m
mØ0 húOX(≠mKX)

2
. In particular, for z œ YFano general,

we have Vz = (Xz)Fano. Consider the induced fibration fz : Xz æ Yz: the base is a
Calabi–Yau variety.

For such fibrations we prove an injectivity theorem which implies C≠

n,m
for fz.

The idea of this result can be easily explained when dim(Yz) = 1 and Xz is normal.
We want to prove that the restriction map H0(Xz, ≠mKXz) æ H0(Xy, ≠mKXy) is
injective for y œ Yz general and m ∫ 0. If this was not the case, there would exist
an e�ective Q-divisor N ≥Q ≠KXz containing Xy in its support. This implies that,
for a positive constant c œ Q, ≠KXz ≠cXy is Q-e�ective. With the canonical bundle
formula we can descend this e�ectivity to Yz, proving that ≠KYz ≠ Áy is e�ective for
some Á > 0 small enough, contradicting the fact that Yz is Calabi–Yau.

We then conclude:

Ÿ(X, ≠KX) = dim(XFano)

Æ dim(V )

= dim(Xz)Fano + dim(YFano)

= Ÿ(Xz, ≠KXz) + Ÿ(Y, ≠KY )

Æ Ÿ(Xy, ≠KXy) + Ÿ(Y, ≠KY ).

5.4.3. Counterexamples in positive characteristic

The next examples, studied in [Ben22, §5], show that in positive characteristic we
cannot expect the result in Remark 5.4.5 to hold in such generality. They are con-
structed from Tango–Raynaud surfaces. Analysing them, in the paper [CEKZ21],
the authors found counterexamples to Cn,m in characteristic p, for any p > 0. A sim-
ilar construction gives counterexamples to C≠

7,6 in characteristics 2 and 3. Roughly
speaking, they are based on the failure of generic smoothness.

In this section, we consider varieties defined over an algebraically closed field of
characteristic p > 0.

Definition 5.4.7. Let C be a smooth projective curve of genus gC Ø 2. Define the



118 Chapter 5. Iitaka conjectures

Tango invariant:

n(C) := max
I

deg
AE

(df)
p

FB

s.t. f œ k(C)
J

,

where (df) denotes the divisor of zeroes and poles of the di�erential df . Note that
pn(C) Æ 2gC ≠ 2. We say that C is a Tango curve if n(C) > 0 and that it is a
Tango–Raynaud curve if, moreover, pn(C) = 2gC ≠ 2.

Example 5.4.8 ([Muk13, Example 1.3]). Let e œ N and let C be the plane curve
defined by the equation Y pe

≠Y Xpe≠1 = Zpe≠1X in P2
Fp

with coordinates [X : Y : Z].
It is smooth and, by adjunction, if gC is its genus, 2gC ≠ 2 = pe(pe ≠ 3). Consider
the di�erential form d

1
Z

X

2
and denote by Œ the point [0 : 0 : 1] œ C. Then,

1
d

1
Z

X

22
= pe(pe ≠ 3)(Œ) = (2gC ≠ 2)(Œ), showing that C is a Tango–Raynaud

curve.

Let C be a normal projective curve and consider the Frobenius map F : C æ C.
Denote by B the cokernel of the induced map, OC æ FúOC . Thus, for any Cartier
divisor D, we have the exact sequence:

0 æ OC(≠D) æ Fú(OC(≠pD)) æ B(≠D) æ 0.

Lemma 5.4.9 ([Xie10, Lemma 2.5]). With the same notation as above,

H0(C, B(≠D)) = {df s.t. f œ k(C), (df) Ø pD}.

Note that H0(C, B(≠D)) is the kernel of F ú : H1(C, OC(≠D)) æ H1(C, OC(≠pD))
when D is e�ective.

Now, let C be a Tango–Raynaud curve equipped with an e�ective divisor D

and a non-zero element df in H0(C, B(≠D)) such that (df) = pD. This determines
a non-zero element of H1(C, OC(≠D)) which is mapped to zero by the Frobenius
morphism. Notice that df determines a (non-split) short exact sequence:

([) 0 æ OC(≠D) æ E æ OC æ 0,

where E is a rank two vector bundle on C. After applying the Frobenius morphism,
the above exact sequence becomes split, thus we also get:

(L) 0 æ OC æ F ú
E æ OC(≠pD) æ 0.

Let g : P := P(E) æ C and g1 : P1 := P(F ú
E) æ C. Thus, we have a commutative
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diagram:

P P1 P

C C,

g

FP/C

FP

Ï

g1 g

FC

where the rightmost square is a fibre product diagram and FP/C is the relative
Frobenius.
Let T be a divisor on P such that OP (T ) ƒ OP (1). The short exact sequence
([) defines a section of g, A ≥ T + gúD. On the other hand, the short exact
sequence (L), defines a section of g1, B1 ≥ ÏúA ≠ pgú

1D. Let B := F ú

P/C
B1, then

B ≥ pA ≠ pgúD ≥ pT . Computing the arithmetic genus of A and B using the
adjunction formula and the fact that deg(D) = 2gC≠2

p
, we see that the curves A and

B are smooth of genus gC and they are disjoint.
If there exists l > 0 such that l divides p + 1 and D = lDÕ for an e�ective divisor

DÕ, then:
A + B ≥ (p + 1)T + gúD = l(rT + gúDÕ) = lM,

where r = p+1
l

and M := rT + gúDÕ. Explicit cases where we can find such l are
the curves of Example 5.4.8, by choosing an appropriate e. Since the support of the
divisor A + B is smooth, the l-cyclic cover defined by the above equivalence yields
a smooth surface S. Call fi : S æ P the cover and f := g ¶ fi : S æ C.
The last step in this construction consists in taking m-times the fibre product of S

over C: Xm := S ◊C S · · · ◊C S. Let pi : Xm æ S be the projection to the ith factor
and fm : Xm æ C the composition of f with any of these projections.

Theorem 5.4.10. Let {p, l} = {2, 3} and consider the fibration

X6 æ X5.

The stable base locus of the anticanonical divisor of X6 is empty and its non-klt locus
does not dominate X5. Moreover, Ÿ(X6, ≠KX6) = 0, while Ÿ(X5, ≠KX5) = ≠Œ.
Therefore, this fibration gives counterexamples in characteristics 2 and 3 to C≠

7,6 as
stated in Remark 5.4.5.

Proof. The relative anticanonical divisors of g and f , for our choices of p and l are:

KP/C = ≠2T ≠ pgúD;

KS/C = fiú(KP/C + (l ≠ 1)M) = ≠f úDÕ.

Then, the anticanonical sheaf of Xm is:

Ê≠1
Xm

=
A

mŸ

i=1
pú

i
Ê≠1

S/C

B

¢ Ê≠1
C

.
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Therefore, for any positive integer n we have ≠nKXm = f ú

m
((nm ≠ 6n)DÕ), whence:

Ÿ(Xm, ≠KXm) =

Y
____]

____[

1 for m > 6

0 for m = 6

≠Œ for m < 6

.

Note that the base locus is empty for m Ø 6.
Studying local equations, it is easy to see that the varieties Xm are normal and

their singular locus is the union of Supp(Ti) fl Supp(Tj) for i ”= j, where Ti :=
(fi ¶ pi)úT . In particular, for the chosen fibration X6 æ X5 the non-smooth locus
does not dominate the base. Indeed, let s be a local parameter on the fibres of g such
that locally A = {s = Œ} and B = {sp = 0}. First we look at what happens away
from A. Let (x1, ..., xr) = x be local a�ne coordinates on C, then, as showed in
[Muk13, §2] there is f(x) such that S a�ne locally has equation tl = sp

≠f(x) inside
A1

◊ A1
◊ C. In a similar way, a�ne locally, we can see Xm ™ Am

◊ Am
◊ C with

coordinates t1, ...., tm, s1, ..., sm, x and equations tl

i
= sp

i
≠ f(x) for i = 1, ..., m. The

derivatives along the variables si are all 0, therefore, applying the Jacobi criterion
we get that Xm is singular where the rank of the matrix

Q

cccccca

tl≠1
1 0 ... 0
0 tl≠1

2 ... 0
... ... ... ...

0 0 ... tl≠1
m

R

ddddddb

is strictly less than m≠1, whence the claim. On the other hand, if ‡ = 1/s is a local
parameter defining A on P , an a�ne local equation for S away from B is · l = ‡.
Therefore, Xm is smooth in this open subset. qed

Remark 5.4.11. The above computations also show that the fibres of X6 æ X5 are
not normal.

Corollary 5.4.12. Let p = 2 or p = 3 and assume the existence of resolutions of
singularities and that we can run the birational Minimal Model Program for smooth
varieties of dimension 7 in characteristic p. Let {p, l} = {2, 3}, then, there exists
a projective klt variety Y of dimension 7, with a fibration Y æ X5 for which C≠

7,6

does not hold. In particular, the base locus of ≠nKY does not dominate X5 for any
n œ N.

Proof. For simplicity of notation, let X := X6. Let U ™ X be the regular locus
of X and µ : X Õ

æ X a resolution which is an isomorphism over U . Write KXÕ =
µú(KX) + E, where E is an exceptional Q-divisor. Run a KXÕ-MMP over X and
let Ï : X Õ 99K Y and ‡ : Y æ X be the resulting birational maps. Note that Y

is klt. Then, by the Negativity lemma ([KM98, Lemma 3.39]), ≠ÏúE Ø 0. Thus
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≠KY = ≠‡úKX ≠ ÏúE Ø ≠‡úKX . Since µ(Supp(E)) is disjoint from U , the base
locus of ≠nKY does not dominate X5 for any n œ N. Furthermore, Ÿ(Y, ≠KY ) Ø

Ÿ(X, ≠KX) = 0, while Ÿ(X5, ≠KX5) = ≠Œ. qed
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Chapter 6

Iitaka conjecture for anticanonical
divisors

In this chapter we present the main results in [Ben22] and [BBC23]. In particular,
we prove the C≠

n,m
inequality over perfect fields of positive characteristic, assuming

that the general fibres have “nice” F -singularities. In low dimension, it is enough to
make local assumptions on the singularities (strongly F -regular), whereas to prove
the result in any dimension, we assume global conditions (K-globally F -regular).

6.1. C≠
n,m in low dimension

In this section we present the results proven in [Ben22]. In particular, we conclude
that C≠

n,m
holds when the source of the fibration is a threefold or when the target

is a curve, the general fibre is regular and the pair induced on it from the ambient
space is strongly F -regular.

6.1.1. Weakly positive sheaves

The main property studied in [EG19] is weak positivity of sheaves. We recall here
what we need to use in the following.

In this section we consider varieties defined over a perfect field of any character-
istic, unless otherwise stated.

Definition 6.1.1. Let X be a normal quasi-projective variety and G a coherent
sheaf on it. We say that G is generically globally generated if the map

H0(X, G) ¢ OX æ G

is surjective over the generic point of X.
The sheaf G is called weakly positive if, given any ample divisor A on X and any
natural number –, there exists an integer — > 0 such that (Sym–—(G))úú

¢ OX(—A)
is generically globally generated, where the double star indicates the double dual.
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Lemma 6.1.2. Let X be a normal quasi-projective variety and G a coherent sheaf
on it. Fix an integer n Ø 2. If there exists a generically globally generated invertible
sheaf H with the property that for all – > 0, – œ Z \ nZ, there is an integer — > 0
such that (Sym–—(G))úú

¢OX(—H) is generically globally generated, then G is weakly
positive.

Proof. By [Vie83, Remark 1.3(ii)], it is enough to check the condition of Defini-
tion 6.1.1 for one invertible sheaf, not necessarily ample, and all – œ Z>0. Fix H

invertible sheaf that is generically globally generated. Assume that for all – > 0,
– œ Z\nZ, there is an integer — > 0 such that (Sym–—(G))úú

¢OX(—H) is generically
globally generated. Let –Õ

œ nZ>0. By the above assumption, there is an integer
— > 0 such that (Sym(–Õ+1)—(G))úú

¢ OX(—H) is generically globally generated. Let
—Õ := (–Õ + 1)—. Then,

(Sym–
Õ
—

Õ(G))úú
¢ OX(—ÕH) = (Sym–

Õ((Sym(–Õ+1)—
G)úú

¢ OX(—H)))úú
¢ OX(—H)

is generically globally generated, whence the conclusion. qed

Lemma 6.1.3. Let X be a normal quasi-projective variety and G a coherent sheaf
on it. Assume G = OX(D) is an invertible sheaf, then it is generically globally
generated if and only if D is linearly equivalent to an e�ective divisor. Moreover, it
is weakly positive if and only if D is pseudoe�ective.

Proof. The first claim follows directly from the definition. Indeed in this case G is
generically globally generated if and only if H0(X, G) ”= 0. Let us prove the second
claim. The condition of being weakly positive translates to the fact that, for any A

ample and any n œ Z>0, D + 1
n
A is Q-e�ective. But then, D = limnæŒ

1
D + 1

n
A

2

is a limit of Q-e�ective divisors, thus it is pseudoe�ective. On the other hand, if
D is pseudoe�ective, then it is in the closure of the Q-e�ective cone. Consider the
line defined by D + tA. For t œ Q>0, each of these divisors is Q-e�ective, thus D is
weakly positive. qed

We state the next result in the assumptions in which we need to use it later. In
the original paper it is proven in greater generality.

Theorem 6.1.4 ([Eji17, Theorem 5.1, Example 3.11]). Let f : X æ Z be a surjec-
tive morphism between normal projective varieties over an algebraically closed field
of characteristic p > 0. Let B be an e�ective Weil divisor on X such that aB is
integral for some a œ Z>0, not divisible by p. Let ÷ be the geometric generic point
of Z. Suppose that:

(a) the geometric generic fibre X÷ is normal;

(b) KX÷̄ + B÷̄ is Z(p)-Cartier and ample;
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(c) (X÷, B÷) is sharply F-pure.

Then,
(fúOX(am(KX + B))) ¢ Ê¢≠am

Z

is weakly positive for every m ∫ 0.

6.1.2. Proof of C≠
n,1

In this section, we use a variation of the results in [EG19, §3, §4] to prove C≠

n,1 in
positive characteristic. The authors of [EG19] assume that the relative anticanonical
divisor is nef. We weaken a bit the assumption with (iii) in Set-up (9) below.

Set-up(9)

Let f : X æ Z be a fibration between normal projective varieties over an al-
gebraically closed field of characteristic p > 0. Consider Q-divisors B and D on
X and Z respectively such that KX + B is Q-Cartier and D is Z(p)-Cartier. Let
B = B+

≠ B≠ and L := ≠(KX + B) ≠ f úD. Suppose that:

(i) f is equidimensional and KZ is Z(p)-Cartier;

(ii) the general fibre Xz is regular and (Xz, B+
z

) is strongly F-regular, where B+
z

is defined by (KX + B+)|Xz = KXz + B+
z

(this restriction is well-defined since
Xz is normal);

(iii) there exists m œ Z>0 not divisible by p such that Bs(mL) does not dominate
Z (in particular, L is Z(p)-e�ective);

(iv) Supp(B≠) does not dominate Z;

(v) B is a Z(p)-divisor.

Theorem 6.1.5. In Set-up (9), for all l ∫ 0 and su�ciently divisible such that l

is not divisible by p,
OX(l(≠f ú(KZ + D) + B≠))

is weakly positive.

Proof. First of all, note that we can assume that KX + B is Z(p)-Cartier. In fact,
if KX + B is not Z(p)-Cartier, let µ, e be the minimal positive integers, with µ not
divisible by p, such that µpe(KX + B) is Cartier and let � Ø 0 be a Z(p)-divisor
such that � ≥Z(p) L. Define BÕ := B + 1

peeÕ +1�, with eÕ
∫ 0. Since D is Z(p)-Cartier,

KX + BÕ is Z(p)-Cartier and all the other assumptions in Set-up (9) are satisfied if
we replace B with BÕ. In particular, (ii) holds by Remark 1.3.25 if we choose eÕ big
enough.
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Let l be any positive integer not divisible by p such that l(KX + B), l(KZ + D)
are Cartier and lB is integral.

We follow the proof of [EG19, Theorem 3.1], highlighting the small di�erences.
First, we prove the statement when f is equidimensional. Set F := OX(l(≠f ú(KZ +
D) + B≠)) and let A be a very ample Cartier divisor on X. We need to show
weak positivity of F , in particular, by Lemma 6.1.2, it is enough to see that for any
– œ Z>0 \ pZ>0, there is some — œ Z>0 such that F

[–—](—lA) is weakly positive.
The Q-divisor L + –≠1A is Z(p)-e�ective since both L and A are. In particular,
there exists n œ Z>0 \ pZ>0 such that |n(L + –≠1A)| ”= ÿ. Since Bs(mL) does
not dominate Z and m is not divisible by p, the graded linear system {|Vm| :=
|mn(L + –≠1A)|z}mœN is Z(p)-semiample for a general fibre Xz. By Corollary 1.3.28,
there exists an e�ective Z(p)-divisor � ≥Z(p) (L + –≠1A), such that (Xz, B+

z
+ �z) is

still sharply F-pure. By Theorem 2.2.13, this implies that (X÷, (B+ +�)÷) is sharply
F-pure. Note that (KX + B+ + �)÷ ≥Z(p) –≠1A÷ is ample. Thus, Theorem 6.1.4
proves weak positivity of the sheaf

(fúOX(llÕm(KX + B+ + �))) ¢ Ê¢≠ll
Õ
m

Z
,

for any m ∫ 0, where lÕ is a positive integer not divisible by p such that llÕ(B+ + �)
is integral. Then, as shown in [EG19, Theorem 3.1], for — ∫ 0 su�ciently divisible,
there is a generically surjective morphism

f ú((fúOX(–—l(KX + B+ + �))) ¢ Ê¢≠–—l

Z
) æ F

[–—]
¢ OX(—lA),

therefore the latter sheaf is weakly positive as well. qed

Set-up(?)

Let f : X æ Z be a fibration between normal projective varieties over an alge-
braically closed field of characteristic p > 0, let B be an e�ective Z(p)-divisor
on X such that KX + B is Q-Cartier and D a Z(p)-Cartier divisor on Z. Let
L := ≠(KX + B) ≠ f úD. Suppose that:

(i) f is equidimensional and KZ is Z(p)-Cartier;

(ii) the general fibre Xz is regular and the pair induced on it (Xz, Bz) is strongly
F -regular, where Bz is defined by (KX + B)|Xz = KXz + Bz;

(iii) there exists m œ Z>0 not divisible by p such that Bs(mL) does not dominate
Z (in particular, L is Z(p)-e�ective).

All results in [EG19, §4] hold with almost the same proofs in this Set-up (?)
using Theorem 6.1.5 instead of [EG19, Theorem 3.1].
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Proposition 6.1.6. In Set-up (?), let E be a Z(p)-Cartier divisor on Z. Assume
there exists a Q-Cartier Z(p)-divisor � Ø 0 on X such that � ≥Z(p) L ≠ f úE. Then,
for Á œ Z(p)>0 small enough, OX(≠mf ú(KZ + D + ÁE)) is weakly positive for any
su�ciently divisible m œ Z>0 not divisible by p.

Proof. This proof follows [EG19, Proposition 4.4]. For any Á œ [0, 1) fl Z(p), fix:

BÁ := B + Á�; DÁ := D + ÁE; LÁ := ≠(KX + BÁ) ≠ f úDÁ.

Note that BÁ is a Z(p)-divisor, KX+BÁ is Q-Cartier and DÁ is Z(p)-Cartier. Moreover,
there exists n œ Z>0 not divisible by p such that n(1 ≠ Á) œ Z, nLÁ

≥ (1 ≠ Á)L and
Bs(nmLÁ) does not dominate Z.

Take a general fibre Xz of f ; since (Xz, Bz) is SFR, so is (Xz, BÁ

z
) for Á small

enough by Remark 1.3.25, where BÁ

z
is defined by (KX + BÁ)|Xz = KXz + BÁ

z
. We

apply Theorem 6.1.5 to f : X æ Z, BÁ, DÁ to get that OX(≠mf ú(KY + DÁ)) is
weakly positive for any su�ciently divisible m œ Z>0 \ pZ>0. qed

Corollary 6.1.7. In Set-up (?), assume there is an e�ective Z(p)-Cartier divisor
E on Z such that L ≠ f úE is Z(p)-equivalent to an e�ective Q-Cartier divisor on X.
Then E = 0.

Proof. Fix an ample Cartier divisor A on X. Applying Proposition 6.1.6 with D =
≠KZ , we see that OX(≠mf úE) is weakly positive, for some m œ Z>0 \ pZ>0. We
want to show mf úE = 0. This is proven in the same way as in [EG19, Corollary
4.5]. qed

Theorem 6.1.8. In Set-up (?), let D = ≠KZ. Let Xz be a closed fibre of f over
a regular point z œ Z. Suppose the following conditions hold:

(i) f is flat at every point of Xz;

(ii) Supp(B) does not contain Xz;

(iii) Xz is normal.

Then the support of every e�ective Z(p)-divisor � such that there exists an integer
m0 Ø 1 not divisible by p with m0� ≥ m0L, does not contain Xz.

Proof. This proof follows [EG19, Theorem 4.2]. First of all, note that, by the same
considerations as in the proof of Theorem 6.1.5, we can assume KX + B is Z(p)-
Cartier. Assume there exists � such that � ≥Z(p) L and Supp(�) contains Xz.
Consider the diagram:

H ™ X Õ

f
Õ

✏✏

fi // X ´ Xz

f

✏✏
E ™ Z Õ

µ // Z – z

where
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• µ : Z Õ
æ Z is the blow-up at z;

• fi : X Õ
æ X is the blow-up at Xz := f≠1(z), note that, by flatness of f near z

and normality of the fibres, X Õ is normal and it coincides with X ◊Z Z Õ;

• H := Exc(fi) ≥= Xz ◊ E = f ÕúE, with E := Exc(µ).

Let LÕ := ≠fiú(KX + B) + f úKZÕ = fiúL, then LÕ is Z(p)-e�ective and Bs(mLÕ)
does not dominate Z Õ. Let c œ Z(p) be the coe�cient of H in fiú�, by assumption
it is > 0. Then LÕ

≠ f Õú(cE) ≥Z(p) fiú� ≠ cH Ø 0. By Corollary 6.1.7, cE = 0,
contradiction. qed

Corollary 6.1.9. In Set-up (?), let D = ≠KZ, then the restriction map

– :
n

mœN\pN
H0(X, mlL) æ

n

mœN\pN
H0(Xz, mlLz)

is injective, where l is a positive integer not divisible by p such that H0(X, lL) ”= 0.
In particular,

Ÿ(X, L) = Ÿ(Xz, Lz).

Proof. This proof follows [EG19, Corollary 4.7]. If – was not injective, there would
be a section of m

mœN\pN H0(X, mlL) whose zero locus contains the fibre Xz in its
support. So, it su�ces to show that for every e�ective divisor � ≥Z(p) L, Supp(�)
does not contain Xz. Therefore, we conclude by Theorem 6.1.8.

Now, let m œ Z>0 such that mL computes the Iitaka dimension. If p|m, since L

is Z(p)-e�ective, there is n coprime with p such that H0(X, nL) ”= 0. Thus (m + n)L
computes the Iitaka dimension as well and m + n is not divisible by p. Therefore,
we conclude by the first part and Proposition 5.2.6. qed

With this last result it is straightforward to prove C≠

n,1.

Theorem 6.1.10 (C≠

n,1). Let f : X æ Z be a fibration from a normal projective
variety onto a smooth projective curve over a perfect field of characteristic p > 0.
Let B be an e�ective Z(p)-divisor on X such that KX + B is Q-Cartier. Suppose
that the general fibre Xz is regular and the pair (Xz, Bz) is strongly F -regular, where
Bz is defined by (KX + B)|Xz = KXz + Bz. Assume moreover that there exists an
integer m Ø 1 not divisible by p such that Bs(≠m(KX + B)) does not dominate Z.
Then:

Ÿ(X, ≠(KX + B)) Æ Ÿ(Xz, ≠(KXz + Bz)) + Ÿ(Z, ≠KZ).

Moreover, if Ÿ(Z, ≠KZ) = 0, equality holds.

Proof. First of all, by Remark 5.1.3, we can assume that the base field k is alge-
braically closed.

Then, note that we can assume Ÿ(X, ≠(KX + B)) Ø 0. We distinguish three
cases according to the genus of Z.
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(1) Let Z be a curve of genus 0.
The result follows immediately from the Easy Additivity theorem (see Theo-
rem 5.2.1).

(2) Let Z be a curve of genus 1.
Then, KZ ≥ 0, so Corollary 6.1.9 gives the desired inequality.

(3) Let Z be a curve of genus Ø 2.
By the Riemann-Roch Theorem on curves, since KZ is ample, it is also Z(p)-
e�ective, thus ≠(KX +B)+f úKZ is Z(p)-e�ective. This also implies that there
exists mÕ

œ Z>0, not divisible by p such that Bs(≠mÕ(KX + B) + mÕf úKZ) ™

Bs(≠mÕ(KX + B)) does not dominate Z. Thus, we apply Theorem 5.2.2 and
Corollary 6.1.9 to get:

Ÿ(Xz, ≠(KXz+Bz))+dim(Z) Æ Ÿ(X, ≠(KX+B)+f úKZ) Æ Ÿ(Xz, ≠(KXz+Bz)).

Contradiction. Such case never happens.

For the “moreover” part, apply Proposition 5.2.6 with L := ≠(KX + B) qed

6.1.3. Partial results on C≠
n,n≠1

The goal of this section is the proof of C≠

n,n≠1 in positive characteristic when the
relative dimension of the fibration is one and the target has zero anticanonical Iitaka
dimension. In particular, the main result is an injectivity theorem similar to Corol-
lary 6.1.9 for fibrations of relative dimension 1 and it is an analogue of [Cha23,
Theorem 3.8]. In order to prove it in characteristic 0, the techniques involve the use
of some canonical bundle formula results as in [Amb05]. Here, we use the canonical
bundle formula Theorem 3.4.1, instead.

In this section, we work in the following setting.

Set-up(])

Let f : X æ Z be a fibration between normal projective varieties over an alge-
braically closed field of characteristic p > 0. Suppose that f is of relative dimension
one. Let B be an e�ective Z(p)-divisor on X such that KX + B is Q-Cartier and let
D be a Q-Cartier divisor on Z. Let L := ≠(KX + B) ≠ f úD and assume that:

(i) Z is Q-Gorenstein;

(ii) the general fibre Xz is regular and the pair (Xz, Bz) is strongly F-regular,
where Bz is defined by (KX + B)|Xz = KXz + Bz;

(iii) there exists m œ Z>0 not divisible by p such that Bs(mL) does not dominate
Z (in particular, L is Z(p)-e�ective).
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Proposition 6.1.11. In Set-up (]), ≠KZ ≠ D is Q-e�ective.

Proof. Pick a general fibre Xz. By condition (iii) in Set-up (]), the graded lin-
ear system (Vm)mœN, with |Vm| := |mL|z ™ |mLz| is Z(p)-semiample. By Corol-
lary 1.3.28, there exists an e�ective Z(p)-divisor � ≥Z(p) L on X such that (Xz, Bz +
�z) is sharply F-pure. Note that, since Xz is a regular curve, (Xz, Bz + �z) is log
smooth. Moreover, KX + B + � ≥Z(p) ≠f úD. Let X÷ be the geometric generic fibre
of f . By Theorem 2.2.13, (X÷, B÷ + �÷) is sharply F-pure as well. Since sharply
F -pure singularities are in particular log canonical, we can apply Theorem 3.4.1 to
find an e�ective Q-divisor �Z on Z, such that ≠KZ ≠ D ≥Q �Z . qed

Remark 6.1.12. Applying the above Proposition 6.1.11 to the case D = 0, we
conclude that, in the assumptions of Set-up (]), ≠KZ is Q-e�ective whenever
≠(KX + B) is.

Following the proofs of [Cha23, Proposition 4.2, Proposition 4.3], we get the
same results in positive characteristic in the more restrictive Set-up (]).

Proposition 6.1.13. In Set-up (]), let E be a Q-Cartier divisor on Z. Assume
there exists �, e�ective Q-divisor on X, such that L ≠ f úE ≥Z(p) �. Then, for
0 < Á π 1, ≠KZ ≠ D ≠ ÁE is Q-e�ective.

Proof. The proof follows the one of [Cha23, Proposition 4.2]. By Remark 1.3.25,
we can choose 0 < Á π 1 such that Á� is a Z(p)-divisor and (Xz, Bz + Á�z) is SFR.
Choose Á œ Q, with denominator not divisible by p and define

BÁ := B + Á�, DÁ := D + ÁE, LÁ := ≠(KX + BÁ) ≠ f úDÁ.

Note that BÁ is an e�ective Z(p)-divisor and there exists n œ Z>0 not divisible by
p such that Bs(nmLÁ) does not dominate Z. Now, apply Proposition 6.1.11 to
(X, BÁ), DÁ, LÁ. qed

Theorem 6.1.14. In Set-up (]), assume that Ÿ(Z, ≠KZ ≠D) = 0. Then, the map
defined by restriction on a general fibre Xz,

– :
n

mœN\pN
H0(X, mlL) æ

n

mœN\pN
H0(Xz, mlLz)

is injective, where l is a positive integer not divisible by p such that H0(X, lL) ”= 0.

Proof. If the theorem did not hold, there would exist s, non-zero section, in the
kernel of –. Then, s defines an e�ective Z(p)-divisor N ≥Z(p) ≠(KX + B) ≠ f úD

containing Xz in its support. Since Ÿ(Z, ≠KZ ≠ D) = 0, there exists a unique
e�ective Q-divisor M ≥Q ≠KZ ≠ D. Suppose that f(Xz) = z œ Z is such that:

(i) f is flat in a neighbourhood of z;
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(ii) z is a regular point of Z;

(iii) z /œ Supp(M);

(iv) Xz ”™ Supp(B).

Note that all the conditions above are open on Z, therefore a general point z œ Z

does satisfy them. Consider the diagram:

H ™ X Õ

f
Õ

✏✏

fi // X ´ Xz

f

✏✏
E ™ Z Õ

µ // Z – z,

where

• µ : Z Õ
æ Z is the blow-up at z;

• fi : X Õ
æ X is the blow-up at Xz := f≠1(z), note that, by flatness of f near z

and normality of the fibres, X Õ is normal and it coincides with X ◊Z Z Õ;

• H := Exc(fi) ≥= Xz ◊ E = f ÕúE, with E := Exc(µ).

Let DÕ := µúD and let BÕ be the strict transform of B, then:

≠ KZÕ = µú(≠KZ) ≠ aE, a = dim(Z) ≠ 1;

≠ (KXÕ + BÕ) = fiú(≠(KX + B)) ≠ bH, b = codim(Xz) ≠ 1 = a.

By assumption, Bs(mfiúL) does not dominate Z Õ and

fiúL = fiú(≠(KX + B) ≠ f úD) = ≠(KXÕ + BÕ) + bf ÕúE ≠ f ÕúDÕ.

Let c be the coe�cient of H = f ÕúE in fiúN . Since Xz is in the support of N ,
c > 0 and since N is a Z(p)-divisor, c œ Z(p). The Z(p)-divisor fiúN ≠ cf ÕúE Ø 0 is
e�ective, thus, by Proposition 6.1.13, there exists an e�ective Q-divisor �ZÕ which
is Q-linearly equivalent to ≠KZÕ + bE ≠ DÕ

≠ ÁcE, for some 0 < Á π 1. But then
we would have:

�ZÕ + ÁcE ≥Q µú(≠KZ ≠ D) ≥Q µúM.

Both sides of the above equation are e�ective, the LHS has E in its support, while
the RHS does not. However, Ÿ(Z Õ, µúM) = 0, contradiction. qed

Corollary 6.1.15 (C≠

n,n≠1). In the above Set-up (]), assume that the varieties are
defined over a perfect field of characteristic p > 0 and that Ÿ(Z, ≠KZ) = 0. Then:

Ÿ(X, ≠(KX + B)) = Ÿ(Xz, ≠(KXz + Bz)).
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Proof. First of all note that, by Remark 5.1.3, we can assume the varieties are
defined over an algebraically closed field of characteristic p > 0.

Let m œ Z>0 such that mL computes the Iitaka dimension. If p|m, since L is
Z(p)-e�ective, there is n coprime with p such that H0(X, nL) ”= 0. Thus (m + n)L
computes the Iitaka dimension as well and m + n is not divisible by p. Therefore,
we conclude by Theorem 6.1.14 and Proposition 5.2.6. qed

6.1.4. Proof of C≠
3,m

Here we use the results of the previous sections to prove C≠

3,m over fields of positive
characteristic.

One of the main technical di�culties in extending the proof of [Cha23, Theorem
4.1] in positive characteristic is that it is hard to control the singularities of the
fibres of a fibration. The next lemma is needed to tackle this problem.

In this section we consider varieties defined over a perfect field, where we specify
the characteristic for each result.

Lemma 6.1.16. Let S be a normal projective Q-factorial surface over a perfect field
of any characteristic, such that Ÿ(S, ≠KS) = 1 and let g : S 99K C be the rational
map induced by the linear system | ≠ mKS| for m ∫ 0. Write | ≠ mKS| = |M | + B,
where |M | is the movable part (i.e. its base locus has codimension Ø 2) and B is the
fixed divisor.
Then g is a morphism well-defined everywhere, it coincides with the Iitaka fibration
of ≠KS and it is a (quasi-)elliptic fibration. Moreover, M ≥Q gúA for an ample
Q-divisor A on C and the support of B does not dominate C.

Proof. Since the base locus of M has dimension 0, M is semiample by Zariski–
Fujita’s Theorem [Fuj80, Theorem 2.8]. By possibly substituting it with a multiple,
it is then linearly equivalent to gúA, for an ample divisor A on C. Let Bh and
Bv be e�ective divisors decomposing B into its horizontal and vertical components,
respectively. We need to show that Bh = 0. Suppose this was not true. Then, the
divisor Bh would be relatively big, thus there exist Q-divisors H and E such that
H is e�ective and relatively ample, E is e�ective and Bh

≥Q H + E. Indeed, for AÕ

e�ective and relatively ample, we have the exact sequence

0 æ gúOS(mBh
≠ AÕ) æ gúOS(mBh) æ gúOS(mBh)|AÕ .

For m æ Œ, if Bh was relatively big, the rank of gúOS(mBh) would grow as
m, while the rank of gúOS(mBh)|AÕ is bounded, therefore the map gúOS(mBh) æ

gúOS(mBh)|AÕ cannot be injective for m ∫ 0, whence gúOS(mBh
≠ AÕ) ”= 0. Now

write, for 0 < Á π 1,

≠mKS ≥Q (gúA + ÁH) + (1 ≠ Á)H + E + Bv.



6.1. Low dimension 133

By the Nakai–Moishezon criterion, gúA + ÁH is ample and (1 ≠ Á)H + E + Bv

is e�ective, showing that ≠KS is big. Contradiction.
Therefore, g can be extended everywhere and it coincides with the Iitaka fibration
of ≠KS. Since B is vertical, the general fibre of g has arithmetic genus 1. qed

Theorem 6.1.17 (C≠

3,m). Let f : X æ Z be a fibration from a normal projective
threefold X to a normal projective Q-factorial variety Z, over a perfect field of
characteristic p Ø 5. Let B be an e�ective Z(p)-divisor on X such that KX +B is Q-
Cartier. Suppose that the general fibre Xz is regular and the pair (Xz, Bz) is strongly
F -regular, where Bz is defined by (KX + B)|Xz = KXz + Bz. Assume moreover that
there exists an integer m Ø 1 not divisible by p such that Bs(≠m(KX +B)) does not
dominate Z. Then,

Ÿ(X, ≠(KX + B)) Æ Ÿ(Xz, ≠(KXz + Bz)) + Ÿ(Z, ≠KZ).

Moreover, if Ÿ(Z, ≠KZ) = 0, equality holds.

Proof. First of all, by Remark 5.1.3 we can assume that the base field k is alge-
braically closed.

Then, note that we can also assume Ÿ(X, ≠(KX + B)) Ø 0. If Z is a curve, the
result holds by Theorem 6.1.10. Thus, we only need to consider what happens when
Z is a surface. By Proposition 6.1.11, ≠KZ is Q-e�ective. If Ÿ(Z, ≠KZ) = 0, we
conclude by Corollary 6.1.15. If Ÿ(Z, ≠KZ) = 2, the Easy Additivity theorem gives
the conclusion. We are therefore only left with the case Ÿ(Z, ≠KZ) = 1. We want to
reduce to a situation where we can apply Corollary 6.1.15. To do this, we consider
the Iitaka fibration of Z following the ideas of [Cha23, Theorem 4.1].

Fix an m ∫ 0 and let g : Z æ C be the Iitaka fibration induced by |≠mKZ |. By
Lemma 6.1.16, this is well-defined everywhere. Write ≠mKZ ≥ gúA+B, where B is
the fixed vertical divisor and A is ample on C. Call Xc the general fibre of h := g¶f ,
it is reduced by Proposition 2.1.2 since h is a fibration to a curve, hence separable
by Theorem 2.1.4. Let ‹ : X‹

c
æ Xc ™ X be its normalisation and Ï : X‹

c
æ Zc the

induced morphism obtained via restriction from f , where Zc is a general fibre of g.
By the Easy Additivity theorem:

Ÿ(X, ≠(KX + B)) Æ Ÿ(X‹

c
, ≠‹ú(KX + B)) + dim(C)

= Ÿ(X‹

c
, ≠‹ú(KX + B)) + Ÿ(Z, ≠KZ).

To conclude, it is enough to prove that Ÿ(X‹

c
, ≠‹ú(KX + B)) Æ Ÿ(Xz, ≠(KXz + Bz))

for a general fibre Xz of f . By the above Lemma 6.1.16, the arithmetic genus
of a general fibre of g is 1, so, since the characteristic of the base field is Ø 5 by
assumption, it is smooth because quasi-elliptic fibrations exist only in characteristics
2 and 3 by [Tat52, Corollary 1]. Moreover, since the general fibre of f is smooth,
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there exists U ™ Zc such that f≠1(U) ™ Xc is smooth. In particular, X‹

c
æ Xc is

an isomorphism over U . Therefore, if we define a Q-divisor BX‹
c

by KX‹
c

+ BX‹
c

=
(KX + B)|X‹

c
, then

(KX‹
c

+ BX‹
c
)|Xz = KXz + Bz,

where Xz is a fibre of Ï over a point in U . By [PW22, Corollary 1.3], there exists
an e�ective Weil divisor C such that

KX‹
c

+ C = KX |X‹
c
,

thus BX‹
c

= ‹úB + C is a Z(p)-divisor. Note that, since Xc is S2, the restriction of
a Q-Weil divisor on Xc is well-defined. Indeed, if Xsm is the regular locus of X,
Xsm

fl Xc has still complement of codimension Ø 2 for Xc general. Let us study
the base locus of ≠m(KX‹

c
+ BX‹

c
). Note that a general fibre of g is not contained

in f(Bs(≠m(KX + B))). Indeed, fix one of these fibres, say Zc, and let Xc be the
fibre of h over Zc. There exist e�ective divisors D1, ..., D¸ ≥ ≠m(KX + B), such
that Zc ”™ f(Supp(D1) fl ... fl Supp(D¸)). Since 0 Æ ‹úDi ≥ ≠m(KX‹

c
+ BX‹

c
), we

conclude that the base locus of ≠m(KX‹
c

+ BX‹
c
) does not dominate Zc. Thus, the

fibration Ï satisfies:

• BX‹
c

is an e�ective Z(p)-divisor;

• the general fibre Xz of Ï is regular and (Xz, Bz) is SFR;

• there exists an integer m Ø 1 not divisible by p such that Bs(≠m(KX‹
c

+BX‹
c
))

does not dominate Zc;

• Zc is smooth and Ÿ(Zc, ≠KZc) = 0.

We are in the right setting to apply Corollary 6.1.15, whence:

Ÿ(X‹

c
, ≠‹ú(KX + B)) Æ Ÿ(Xz, ≠(KXz + Bz)).

As for the “moreover” part, apply Proposition 5.2.6 to L := ≠(KX + B). qed

6.2. C≠
n,m for F -split fibrations

6.2.1. K-globally F -regular varieties and a Weak Ordinarity
conjecture

In [BBC23], we introduce a new class of F -singularities, namely K-globally F -regular
varieties, that interpolates between globally F -split and globally F -regular varieties.
The advantage of these singularities is that they are stable under small perturba-
tions of the boundary by elements of the anticanonical Q-linear system (Proposi-
tion 6.2.2) and that, for fibrations with K-globally F -regular fibres, a canonical
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bundle formula applies. We conjecture that K-globally F -regular varieties satisfy
a Weak Ordinarity statement, namely, that klt pairs with semiample anticanonical
bundle are K-globally F -regular when reduced modulo a dense set of primes.

In this section we consider varieties defined over a perfect field of characteristic
p > 0, unless otherwise stated.

Definition 6.2.1. A projective Z(p)-pair (X, B) is said to be K-globally F-regular
or KGFR if

(a) ≠KX ≠ B is semiample, with induced fibration f : X æ Z;

(b) (X÷, B÷) is globally F -split, where ÷ œ Z is the generic point;

(c) KX + B ≥Z(p),Z 0;

(d) (Z, BZ) is globally F -regular, where BZ is the F -discriminant, as in Defini-
tion 3.4.5.

Note that (X, B) is globally F -split a posteriori thanks to Proposition 3.4.3(iii).

Proposition 6.2.2. Let (X, B) be a projective K-globally F -regular Z(p)-pair and
let � be an element of | ≠ KX ≠ B|Z(p). Then (X, B + Á�) is K-globally F -regular
for all su�ciently small positive Á œ Z(p).

Proof. Let f : X æ Z be the semiample contraction of ≠KX ≠ B. Let BZ be the
divisor induced on Z by Proposition 3.4.3. Note that � = f ú�Õ for some Z(p)-divisor
�Õ

Ø 0 on Z and (B+Á�)Z = BZ+Á�Õ by Proposition 3.4.3(iv). We conclude because
≠(KX + B + Á�) ≥Z(p) ≠(1 ≠ Á)(KX + B) is semiample with induced fibration f ,
the pair (X÷, (B +Á�)÷ = B÷) is GFS and, for all su�ciently small positive Á œ Z(p),
(Z, BZ + Á�Õ) is GFR by Lemma 1.3.12 qed

This is an analogue of Proposition 3.4.10 for K-globally F -regular singularities.

Proposition 6.2.3. Let f : X æ Y be a surjective projective morphism of normal
varieties, such that St.deg(f) is not divisible by p (see Definition 2.1.5), and let B Ø

0 be a Z(p)-divisor on X. Assume (X, B) is globally F -split and (1≠pe)(KX + B) ≥Y

0. Then there exists a canonically determined e�ective Z(p)-divisor BY on Y such
that, if (X, B) is K-globally F -regular, then (Y, BY ) is globally F -regular.

Proof. It is enough to apply Proposition 3.4.3 and Proposition 3.4.7 to the Stein
factorisation f : X

g

≠æ Z
h
≠æ Y . qed

Now, we give examples of K-globally F -regular pairs.

Example 6.2.4. Let C be a smooth projective curve. Then C is KGFR if and only
if either C = P1 or C is an ordinary elliptic curve.

Example 6.2.5. Let S be a normal projective surface such that ≠KS is semiample.



136 Chapter 6. Anticanonical Iitaka conjecture

(1) If Ÿ(S, ≠KS) = 0, then S is KGFR if and only if it is GFS.

(2) If Ÿ(S, ≠KS) = 1, let f : S æ C be the fibration induced by ≠KS. Then S is
KGFR if and only if the following conditions hold.

• The general fibre is an ordinary elliptic curve; this is always the case if f

is an elliptic non-isotrivial fibration.

• The base C = P1; this is automatically satisfied since ≠KC is big by the
canonical bundle formula Proposition 3.4.3.

• The pair (C, BC), induced with Proposition 3.4.3 for B = 0, is GFR;
in general this condition is hard to control. However, below we will see
two examples (Proposition 6.2.7 and Example 6.2.9) where we check it
explicitly.

(3) If Ÿ(S, ≠KS) = 2, then S is KGFR if and only if it is the crepant blow-up of
some GFR surface.

The following is an analogue of Conjecture 1.3.20 for K-globally F -regular sin-
gularities.

Conjecture 6.2.6 (Relative Weak Ordinarity). Let (X, B) be a projective klt pair
over C such that ≠(KX + B) is semiample. Let A be a finitely generated Z-algebra.
Then, for every model (X , B) æ Spec(A) of (X, B), the set of primes p ™ A such
that (Xp, Bp) is K-globally F -regular, is dense in Spec(A).

The heuristic behind this conjecture is that, given a fibration f : X æ Z such
that KX + B ≥Q f úL for some Q-Cartier divisor L, we can apply the canonical
bundle formula in characteristic 0 to write L = KZ + BZ + MZ , where BZ is the
discriminant part, MZ is the moduli part, and (Z, BZ) is log Fano [Amb04, Theorem
3.1]. If fp : Xp æ Zp is the reduction of f modulo p, we compute the F -discriminant
BZp with Proposition 3.4.3. Now, we compare BZp with the reduction of BZ modulo
p, call it BZ,p. The di�erence between BZ,p and BZp is controlled by the reduction
modulo p of the moduli part MZ . Assuming Conjecture 1.3.20, by [DS17, Theorem
6.2], for every prime divisor ” ™ Z, there exist infinitely many primes p > 0 such that
BZ,p coincides with BZp around ”. This is saying that the moduli part is somehow
semiample “for a general prime”.

Now, we give some evidence for the conjecture. First, we prove that, if ≠(KX+B)
induces an isotrivial fibration onto P1, Conjecture 6.2.6 holds assuming Conjec-
ture 1.3.20.

Proposition 6.2.7. Assume Conjecture 1.3.20. Let (X, B) be a projective klt pair
over C such that ≠(KX + B) is semiample. Let f : X æ Z be the induced fibration
and write KX + B ≥Q f ú(KZ + BZ + MZ) where BZ is the discriminant part and
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MZ the moduli part in the canonical bundle formula as in Definition 3.2.6. Assume
Z = P1 and MZ = 0. Then, for every model (X , B) æ Spec(A) of (X, B), the set
of primes p ™ A such that (Xp, Bp) is K-globally F -regular is dense in Spec(A).

Proof. By construction, there exists H ample divisor on Z such that KX + B ≥Q

≠f úH. By [Amb04, Theorem 3.1], (Z, BZ) is klt and log Fano. Let Ï : X æ Z

be a model of f over Spec(A) and denote by fp : Xp æ Zp its reduction modulo a
prime p of Spec(A). If D is a divisor on X or on Z, we can assume we can lift it to
the corresponding model and we denote by Dp its reduction modulo p. For a dense
open set of primes p, fp is a separable fibration between normal projective varieties
and there is ep such that (1 ≠ pep)(KXp

+ Bp) ≥Zp
0, where p is the characteristic

of the residue field at p. Up to possibly replacing A with AÕ, a finite extension of
the localisation of A at finitely many primes, we can assume there exists a section
Spec(AÕ) æ Z. Let XAÕ æ Spec(AÕ) be the induced model of a fibre, where XAÕ :=
X ◊Z Spec(AÕ). By Conjecture 1.3.20, XAÕ,p is GFS for a dense set of primes of
Spec(AÕ). Applying Lemma 2.2.12, we conclude that the geometric generic fibre of
fp is GFS for a dense set of primes P of Spec(A).

Moreover, by Theorem 1.3.19 there exists p0 œ N such that (Zp, BZ,p) is GFR for
all p with residue field of characteristic p Ø p0. Thus, we can apply Proposition 3.4.3
to get an e�ective Q-divisor B

Zp

p on Zp such that KXp
+ Bp ≥Q f ú

p (KZp
+ B

Zp

p ).
By [DS17, Proposition 5.7] we have B

Zp

p Ø BZ,p. As B
Zp

p ≥Q BZ,p, we conclude
B

Zp

p = BZ,p. This implies that (Xp, Bp) is KGFR for all p œ P such that the
characteristic of the residue field is p Ø p0. qed

Remark 6.2.8. If B = 0 and the induced fibration f : X æ Z has elliptic fibres, the
above Proposition 6.2.7 holds unconditionally. In fact, Conjecture 1.3.20 is known
to hold for elliptic curves ([Har77, Remark 4.23.4, Chapter IV]).

Example 6.2.9. In this example we check that Conjecture 6.2.6 holds for the Legendre
family.

Let S be the projective closure of V (y2
≠x(x≠1)(x≠⁄)) inside P2

Z,[x:y:z] ◊P1
Z,[⁄:µ]

over Spec(Z) and let f : S æ C = P1
Z be the induced projection. We will denote

by f0 : S0 æ C0 the fibration over Spec(C) and by fp : Sp æ Cp the fibration over
Spec(Fp). The canonical bundle of S0 is OP2

0◊P1
0
(0, ≠1)|S0 , and the same formula

holds for the canonical bundle of Sp. In particular, f0 and fp are the fibrations
induced by the anticanonical divisors.

By Example 3.1.6, the discriminant part of f0 is 1
2(Œ). Now, let us consider what

happens over Spec(Fp) for p Ø 3. By Example 3.4.6, if BCp
p

is the F -discriminant
computed with the canonical bundle formula as in Proposition 3.4.3,

BCp
p

= 1
2(Œ) + 1

p ≠ 1
ÿ

⁄œ�p

(⁄),
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where �p is the set of those ⁄’s corresponding to supersingular elliptic curves.
By [HW02, Lemma 3.1], the pairs (P1

p
, BCp

p
) are GFR, whence Sp is KGFR.

With the help of [GS], we can actually compute explicitly which ⁄’s belong
to �p by looking at the j-invariant of the corresponding elliptic curve since there
is a classification of the j-invariants corresponding to supersingular elliptic curves
in characteristic p (see [BK06, Table 6]). Note that, if j = 0, we will have two
corresponding ⁄’s, if j = 1728, there are three of them and if j ”= 0, 1728, there are
six of them. Recall that a pair (X, B) is GFR if and only if the a�ne cone over it with
the corresponding Q-divisor (CX , CB) is GFR around the vertex [SS10, Proposition
5.3]. In our case this amounts to checking whether (A2

p
, L) is GFR around the origin,

where L is the Q-divisor of lines passing through the origin corresponding to BCp
p

.
Let N := p≠1

2 and define the ideal

Ip :=
Q

ayN
·

Ÿ

⁄œ�p

(x ≠ ⁄y)
R

b .

At this point, we can check with [GS] whether (k[x, y], I
1

2N ) is GFR, where k is an
appropriate extension of Fp where all ⁄ œ �p are defined. Here the script for p = 5
and a table with the results for 3 Æ p Æ 23.

i1: needsPackage "RationalPoints2"; needsPackage "TestIdeals";
i3: k=GF 25; R=k[t];
i5: k[x]; rationalPoints(ideal(x^2-x+1))
o6: {{-2a-1}, {2a+2}}
i7: f= t^4*((t-2*a-2)^3)*((t+2*a+1)^3);
i8: isFRegular(1/12,f)
o8: true

p Supersingular j-invariants N isFRegular
3 1728 1 true
5 0 2 true
7 1728 3 true
11 0, 1728 5 true
13 5 6 true
17 0,8 8 true
19 7, 1728 9 true
23 0, 19, 1728 11 true

6.2.2. F -complements

We introduce a positive characteristic analogue of the notion of complement (see
[Sho93, §5]). When X is a normal projective variety, a complement is an e�ective
Q-divisor � œ | ≠ KX |Q such that (X, �) is log canonical.



6.2. F -split fibrations 139

In this section we consider varieties defined over an algebraically closed field k

of characteristic p > 0.

Definition 6.2.10. Let f : X æ Z be a fibration of normal projective varieties, and
let B be a Z(p)-divisor such that Supp(B≠) does not dominate Z and the geometric
generic fibre (X÷, B÷) is globally F -split. Let L be a Z(p)-divisor on X such that
KX + B + L ≥Z(p),Z 0. We say L admits an F -complement for (X/Z, B) if
there exists � œ |L|Z(p) such that (X÷, B÷ + �÷) is globally F -split. We then say
� is an F-complement for (X/Z, B). When Z = Spec(k) we refer to � as an
F -complement for (X, B).

By results of Schwede and Smith we have that globally F -split couples admit
F -complements.

Theorem 6.2.11 ([SS10, Theorem 4.3(ii)]). Let (X, B) be a projective Z(p)-couple.
If (X, B) is globally F -split, then it admits an F -complement.

We give a su�cient condition for the existence of F -complements on fibrations
with K-globally F -regular fibres.

Theorem 6.2.12. Let f : X æ Z be a fibration of normal projective varieties with
general fibre Xz, and let B be a Z(p)-divisor on X such that Supp(B≠) does not
dominate Z. Let D be a Z(p)-Cartier Z(p)-divisor on Z, set L := ≠KX ≠ B ≠ f úD.
Assume

(a) (Xz, Bz) is K-globally F -regular;

(b) there exists an integer m Ø 1 not divisible by p such that mL is integral and
mLz is Cartier;

(c) there exists |V | ™ |mL| such that „|V |z is a morphism;

(d) p does not divide St.deg(„|V |z) (see Definition 2.1.5).

Then L admits an F -complement for (X/Z, B).

Before we give a proof, we need the following result.

Proposition 6.2.13. Let G be a non-normal projective variety, let A be an ample
Z(p)-Cartier Z(p)-divisor on G, let ‹ : G‹

æ G be the normalisation morphism, and
let �‹

Ø 0 be a Z(p)-divisor on G‹ such that

(a) (G‹ , �‹) is a globally F -regular pair;

(b) ≠KG‹ ≠ �‹
≥Z(p) ‹úA.

Then there exists an F -complement �‹ for (G‹ , �‹) such that �‹ = ‹ú� for some
� œ |A|Z(p).
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Proof. Let m = pe
≠ 1 for e Ø 1 divisible enough, so that L := mA and L‹ :=

m(≠KG‹ ≠ �‹) ≥ ‹úL are both Cartier. Let C := AnnOG(‹úOG‹ /OG) ™ OG be
the conductor ideal, and let C

‹ := OG‹ · C ™ OG‹ so that, for all l Ø 0, we have
isomorphisms induced by pullback

(2) ‹˘
¢ OG(lL) : OG(lL) ¢ C æ ‹ú(OG‹ (lL‹) ¢ C

‹).

Let now R be an e�ective Cartier divisor on G‹ such that OG‹ (≠R) ™ C
‹ . For all

l = pd
≠ 1 with d Ø 1 su�ciently divisible, we have that (G‹ , �‹ + R/l) is still

GFR by Lemma 1.3.12, thus we have an F -complement �‹ for (G‹ , �‹ + R/l) by
Theorem 6.2.11. In particular, �‹ := �‹ + R/l is an F -complement for (G‹ , �‹).
For some n Ø 1 not divisible by p we have that lmn�‹ is the divisor of a sec-
tion “‹

œ H0(G‹ , OG‹ (lnL‹) ¢ C
‹), and (2) shows that “‹ = ‹ú“ for some “ œ

H0(G, OG(lnL)¢C). We conclude by setting � := (“)/lmn, where (“) is the divisor
defined by “. qed

Proof of Theorem 6.2.12. Up to replacing m with a multiple we may assume m =
pe

≠ 1 for some e Ø 1. Throughout the rest of the proof we will freely implicitly
replace m with md, where d is not divisible by p (equivalently, replace e with a
multiple). Consider the following diagram

(G)

G‹

Xz G

PV ú

X W

‹Ï

„|V |z

„|V |

where ‹ is the normalisation and Ï is the natural morphism. Since (Xz, Bz) is KGFR,
by Proposition 6.2.3 there is an e�ective Z(p)-divisor BG

‹

z
on G‹ , such that (G‹ , BG

‹

z
)

is GFR and ≠m(KXz + Bz) ≥ Ïú(≠m(KG‹ + BG
‹

z
)). By Proposition 6.2.13 there

is an F -complement �G‹ œ | ≠ (KG‹ + BG
‹

z
)|Z(p) for (G‹ , BG

‹

z
) such that �G‹ =

‹ú�G for some �G œ |OG(1)/m|Z(p) . Letting �z := (‹ ¶ Ï)ú�G we then have that
(Xz, Bz + �z) is GFS and KXz + Bz + �z ≥Z(p) 0, by Proposition 3.4.10. Then (G)
induces the following diagram on global sections for all l Ø 0:
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H0(Xz, OXz(mlLz)) H0(G, OG(l))

H0(PV ú, OPV ú(l))

H0(X, OX(mlL)) H0(W, OW (l)).

„
ú
|V |z

„
ú
|V |

As the two rightmost maps are surjective for all l ∫ 0 by Serre Vanishing, we
conclude we can lift �z to � œ |L|Z(p) . As (Xz, Bz + �z) is GFS, we have that
(X÷, B÷ + �÷) is also GFS by Lemma 2.2.12. qed

Thanks to the K-globally F -regular condition on the fibres, we are able to find
F -complements even after a small perturbation of the boundary.

Corollary 6.2.14. Let f : X æ Z be an equidimensional fibration of normal projec-
tive varieties with general fibre Xz. Let B be a Z(p)-divisor on X such that Supp(B≠)
does not dominate Z. Let D be a Z(p)-divisor on Z, set L := ≠KX ≠ B ≠ f úD. As-
sume

(a) (Xz, Bz) is K-globally F -regular,

(b) there exists an integer m Ø 1 not divisible by p such that mL is integral and
mLz is Cartier,

(c) there exists |V | ™ |mL| such that „|V |z is a morphism,

(d) p does not divide St.deg(„|V |z).

Let E be a Z(p)-divisor on Z and suppose there exists a Z(p)-divisor 0 Æ � ≥Z(p)

L≠f úE. Then (1≠Á)L admits an F -complement for (X/Z, B+Á�) for all su�ciently
small positive Á œ Z(p).

Proof. Let

BÁ := B + Á�, DÁ := D + ÁE, LÁ := ≠KX ≠ BÁ ≠ f úDÁ

so that LÁ ≥Z(p) (1 ≠ Á)L. The corollary will follow from Theorem 6.2.12 as soon as
we verify that

(A) (Xz, BÁ,z) is KGFR,

(B) there is n Ø 1 not divisible by p such that nLÁ is integral and nLÁ,z is Cartier,

(C) there exists |VÁ| ™ |nLÁ| such that „|VÁ|z is a morphism,

(D) p does not divide St.deg(„|VÁ|z).
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Let Â : Xz æ H be the semiample fibration of ≠KXz ≠ Bz. Then Proposition 3.4.3
yields an e�ective Z(p)-divisor BH

z
such that (H, BH

z
) is GFR. Let �H be an element

of | ≠ KH ≠ BH

z
|Z(p) such that �z = Âú�H . Since (H, BH

z
) is GFR, by Lemma 1.3.12

we have (H, BH

z
+ Á�H) is GFR for all su�ciently small positive Á œ Z(p) such that

BH

z
+Á�H is a Z(p)-divisor, and KH +BH

z
+Á�H is Z(p)-Cartier, hence (Xz, Bz +Á�z)

is also KGFR by Proposition 3.4.3, proving (A). To show (B), let l be a positive
integer not divisible by p, and such that (1 ≠ Á)lm is an integer, and let n := lm. As
for (C), let VÁ := Im

1
V ¢(1≠Á)l

æ H0(X, nLÁ)
2

™ H0(X, nLÁ). Lastly, (D) follows
from the fact that „|VÁ|z and „|V |z agree up to a Veronese embedding. qed

6.2.3. Proof of C≠
n,m

Now we have all the ingredients to prove the inequality C≠

n,m
in all dimensions for

fibrations with K-globally F -regular fibres.

Calabi–Yau base

The following theorem is an analogue of [Cha23, Theorem 4.3] in positive charac-
teristic.

In this section we consider varieties defined over an algebraically closed field of
characteristic p > 0.

Theorem 6.2.15 (Injectivity Theorem). Let f : X æ Z be an equidimensional
fibration between normal projective varieties, with normal general fibre Xz. Let B be
a Z(p)-divisor on X such that Supp(B≠) does not dominate Z, let D be a Z(p)-divisor
on Z, and set L := ≠KX ≠ B ≠ f úD. Assume

(a) (Xz, Bz) is K-globally F -regular,

(b) there exists an integer m Ø 1 not divisible by p such that mL is integral and
mLz is Cartier,

(c) there is |V | ™ |mL| such that „|V |z is a morphism,

(d) p does not divide the Stein degree of „|V |z ,

(e) Ÿ(X, f ú(≠KZ ≠ D) + P ) = 0, for some Z(p)-Cartier Z(p)-divisor P Ø B≠.

Then the restriction map H0(X, nL) æ H0(Xz, nLz) is injective for all n Ø 0. In
particular, the inequality Ÿ(X, L) Æ Ÿ(Xz, Lz) holds.

Provided that L admits F -complements for (X/Z, B), we can follow the same
proof as in [Cha23, Theorem 3.8, Proposition 4.2].

Proposition 6.2.16. Let f : X æ Z be a fibration of normal projective varieties,
and let B be a Z(p)-divisor such that Supp(B≠) does not dominate Z. Let D be a
Z(p)-Cartier Z(p)-divisor on Z, and let L := ≠KX ≠ B ≠ f úD. Assume
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(a) L admits an F -complement for (X/Z, B), and either

(b) f is equidimensional, or

(b’) B Ø 0 and Z is Z(p)-Gorenstein.

Then, f ú(≠KZ ≠ D) + B≠ is Z(p)-e�ective.

Proof. Let � œ |L|Z(p) be an F -complement for (X/Z, B) and consider � := B + �,
so that (X÷, �÷) is globally F -split and KX + � ≥Z(p),Z 0. By Proposition 3.4.3,
there is a canonically defined Z(p)-divisor �Z such that

KX + � ≥Z(p) f ú(KZ + �Z) ≥Z(p) f ú(≠D).

Hence it is enough to show that f ú�Z + B≠ is an e�ective Z(p)-divisor. If B Ø 0
then �Z is e�ective by Proposition 3.4.3(ii). Suppose now f is equidimensional:
then every component P of Supp(�v) is mapped to a prime divisor ” of Z, hence
f ú�Z

Ø �v. Indeed, Remark 3.4.4 yields coe�”(�Z) = 1 ≠ d”, where

d” := sup{t s.t. (X, � + f ú(t”)) is globally sub F -split over the generic point of ”}.

As globally sub-F -split sub-couples are sub-log canonical in codimension one ([DS17,
Lemma 2.14]), we have:

coe�P (�v) Æ 1 ≠ d” coe�P (f ú(”))

Æ coe�P (f ú(”))(1 ≠ d”)

= coe�P (f ú(�Z)).

Since �v + B≠
Ø 0, we conclude that f ú�Z + B≠

Ø 0. qed

Corollary 6.2.17. Let f : X æ Z be a fibration of normal projective varieties, and
let B be a Z(p)-divisor on X such that Supp(B≠) does not dominate Z. Let D, E be
Z(p)-Cartier Z(p)-divisors on Z, set L := ≠KX ≠ B ≠ f úD, and assume that

(a) there exists 0 Æ � ≥Z(p) L ≠ f úE;

(b) (1 ≠ Á)L admits an F -complement for (X, B + Á�), for Á œ [0, 1) fl Z(p), and
either

(c) f is equidimensional, or

(c’) B Ø 0 and Z is Z(p)-Gorenstein.

Then, f ú(≠KZ ≠ D ≠ ÁE) + B≠ is Z(p)-e�ective.
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Proof. Let

BÁ := B + Á�, DÁ := D + ÁE, LÁ = ≠KX ≠ BÁ ≠ f úDÁ

so that LÁ ≥Z(p) (1 ≠ Á)L and all the hypotheses of Proposition 6.2.16 are satisfied
with respect to f : (X, BÁ) æ Z, LÁ, and DÁ. Then Proposition 6.2.16 yields that
f ú(≠KZ ≠ DÁ) + B≠

Á
= f ú(≠KZ ≠ D ≠ ÁE) + B≠ is Z(p)-e�ective. qed

We are now ready to prove our injectivity theorem.

Proof of Theorem 6.2.15. Let Xz := f≠1(z) for a general z œ Z. We may assume
that around z the variety Z is smooth, the morphism f is flat, and Supp(B≠)
does not contain Xz. Let n > 0, by contradiction suppose the map H0(X, nL) æ

H0(Xz, nLz) is not injective. Then, there exists a divisor 0 Æ � ≥ nL such that
Xz ™ Supp(�). As L is Z(p)-e�ective, after possibly replacing � with � + �Õ for
some �Õ

≥ mL, we may assume n is not divisible by p. Set N := 1
n
� so that

0 Æ N ≥Z(p) L. Note that, by hypothesis, there exists a unique e�ective Q-divisor
M ≥Q f ú(≠KZ ≠ D) + P , hence we may assume Xz ”™ Supp(M). Consider now the
diagram

(X Õ, BÕ) (X, B)

Z Õ Z,

fi

f
Õ

f

µ

where notation is as follows:

• Z Õ is the blowup of Z at z with exceptional divisor E, so that KZÕ = µúKZ+aE,
with a = dim(Z) ≠ 1;

• X Õ is the fibre product (hence it is also the blowup of X at Xz with exceptional
divisor G, since blowup and flat base change commute);

• f Õ is the induced morphism (since f is equidimensional, so is f Õ);

• BÕ is the strict transform of B, so that KXÕ + BÕ = fiú(KX + B) + aG.

Let also DÕ := µúD ≠ aE and LÕ := ≠KXÕ ≠ BÕ
≠ f ÕúDÕ

≥Z(p) fiúL. Note that µú� is
well-defined for all Q-divisors �, since they are all Q-Cartier in a neighbourhood of z.
Similarly, fiú(KX +B) is well-defined since KX +B is Q-Cartier in a neighbourhood of
the fibre Xz. As Supp(N) ´ Xz we have Supp(fiúN) ´ G. Thus, letting N Õ := fiúN ,
we have Supp(N Õ) ´ G too. In particular, for su�ciently small positive ” œ Z(p), we
have an e�ective divisor

0 Æ �Õ := N Õ
≠ ”G ≥Z(p) LÕ

≠ f ÕúE Õ, E Õ := ”E.
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The data f Õ : X Õ
æ Z Õ, BÕ, DÕ, LÕ, E Õ, �Õ satisfy the hypotheses of Corollary 6.2.14, so

LÕ admits an F -complement for (X Õ/Z Õ, BÕ + Á�Õ). By Corollary 6.2.17 there exists
a Z(p)-divisor � such that

0 Æ � ≥Z(p) f Õú(≠KZÕ ≠ DÕ
≠ ÁE Õ) + (BÕ)≠

= f Õú(µú(≠KZ ≠ D) ≠ ÁE Õ) + (BÕ)≠

Æ f Õú(µú(≠KZ ≠ D) ≠ ÁE Õ) + fiúP

= fiú(f ú(≠KZ ≠ D) + P ) ≠ Á”G

≥Q fiúM ≠ Á”G,

contradicting the assumption Xz ”™ Supp(M). qed

Remark 6.2.18. Under the assumptions of Theorem 6.2.15 with B Ø 0, by combining
Theorem 6.2.15 and Proposition 5.2.6, we get that

Ÿ(X, L) = Ÿ(Xz, Lz).

Note that we cannot expect an equality when B is not e�ective. Indeed, let E be an
ordinary elliptic curve, and f : X := E ◊E æ Z := E be the second projection. Let
z œ E be a closed point and B := ≠f úz. Then, f : X æ Z satisfies the assumptions
of Theorem 6.2.15, whereas f : X æ Z with the pair structure (X, B) does not. We
can check that:

1 = Ÿ(X, ≠KX ≠ B) > Ÿ(Xz, ≠KXz) = 0.

General case

We are now ready to prove the main result of [BBC23].
In this section we consider varieties defined over a perfect field of characteristic

p > 0.

Theorem 6.2.19 (Tame C≠

n,m
). Let f : X æ Y be a fibration of normal projective

varieties with general fibre Xy. Let B be an e�ective Z(p)-divisor on X, let D be a
Z(p)-Cartier Z(p)-divisor on Y , and set L := ≠KX ≠ B ≠ f úD. Assume

(a) Y is Z(p)-Gorenstein,

(b) (Xy, By) is K-globally F -regular,

(c) there exists an integer m Ø 1 not divisible p such that mL is Cartier,

(d) there is |V | ™ |mL| such that „|V |y is a morphism,

(e) p does not divide the Stein degree of „|V |y .
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Then
Ÿ(X, L) Æ Ÿ(Xy, Ly) + Ÿ(Y, ≠KY ≠ D).

Furthermore, if Ÿ(Y, ≠KY ≠ D) = 0, equality holds.

Proof. By Remark 5.1.3 we can assume that k is uncountable, and by Theorem 6.2.12
and Proposition 6.2.16 that ≠KY ≠ D is Z(p)-e�ective. Let d Ø 1 be su�ciently
divisible so that „|d(≠KY ≠D)| is (birational to) the Iitaka fibration of ≠KY ≠ D.
Consider now the following commutative diagram:

(K)

X(e) X Õ XŒ X

Y (e) Y Õ YŒ Y

Ze Z Z Zd,

b

fe f
Õ

fi

fŒ
f

ge

a

g
Õ

u
Õ

µ

„Œ

u

„|d(≠KY ≠D)|

F
e =

where the notation is as follows.

(I) The lower rightmost diagram is constructed using Theorem 5.1.4 and „Œ is
the Iitaka fibration of ≠KY ≠ D.

(II) The variety XŒ is the normalisation of the main component of X ◊Y YŒ, and
fŒ is the induced morphism.

(III) We construct uÕ as a flattening of fŒ and f Õ as the normalisation of the proper
transform of fŒ as in Lemma 2.0.4. In particular f Õ is equidimensional. After
possibly replacing uÕ with its pre-composition with some blowups along non-
Cartier Weil divisors on Y Õ, and X Õ by the corresponding normalised base
change, we may further assume that there exists an e�ective Cartier divisor
�Õ on Y Õ such that Exc(µ) = Supp(�Õ) and Exc(fi) ™ Supp(f Õú�Õ), where
Exc(fi) and Exc(µ) are the exceptional divisors of fi and µ, respectively.

(IV) We define Y (e) and X(e) to be respectively the normalisations of the varieties
(Y Õ

◊Z Ze)red and (X Õ
◊Z Ze)red, and a, b, ge, fe the naturally induced mor-

phisms.

(V) We will denote by he and hÕ the compositions ge ¶ fe and gÕ
¶ f Õ, respectively.

By the projection formula and Theorem 5.1.4, we have

Ÿ(Y Õ

z
, (µú(≠KY ≠ D))|Y Õ

z
) = Ÿ(YŒ,z, (uú(≠KY ≠ D))|YŒ,z) = 0.
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By Lemma 2.3.30 we can pick e so that, for general z œ Ze, the fibres X(e)
z

, Y (e)
z

are reduced and normal. Since f Õ is equidimensional, we apply Corollary 2.3.32:
there exist Weil divisors DX , DY on X(e) and Y (e) respectively, and an e�ective
Weil divisor C on X(e), such that

(1) K
X(e)/XÕ ≥ DX and K

Y (e)/Y Õ ≥ DY ;

(2) K
X(e)/XÕ ≠ f ú

e
K

Y (e)/Y Õ ≥ ≠C;

(3) (f ú

e
DY ≠ DX)|

X
(e)
z

≥ C|
X

(e)
z

Ø 0.

Note that, by construction of diagram (K), the general fibres of fe, f Õ and f are
isomorphic to each other via the restrictions of the morphisms b and fi, respectively.
In particular, they are all normal. Combining this with point (1) we obtain:

(4) DX |
X

(e)
y

≥ 0, whence C|
X

(e)
y

= 0.

By the Easy Additivity Theorem 5.2.1 applied to he, we obtain

Ÿ(X(e), (fi ¶ b)úL) Æ Ÿ(X(e)
z

, ((fi ¶ b)úL)|
X

(e)
z

) + dim(Z)

= Ÿ(X(e)
z

, ((fi ¶ b)úL)|
X

(e)
z

) + Ÿ(Y, ≠KY ≠ D).

Since Lemma 5.1.6 implies Ÿ(X(e), (fi ¶ b)úL) = Ÿ(X, L), it is then enough to
show

Ÿ(X(e)
z

, ((fi ¶ b)úL)|
X

(e)
z

) Æ Ÿ(Xy, Ly).

The goal now is to apply Theorem 6.2.15 to the fibration fe,z given by the
Cartesian diagrams

Xy X(e)
z

X(e)

{y} Y (e)
z

Y (e)

{z} Ze,

fe,z fe

ge

where z is a very general point of Ze and y is a general point of Y (e)
z

. We now
introduce appropriate divisors to which we apply Theorem 6.2.15.

(A) KXÕ + BÕ := fiú(KX + B); note that BÕ is a Z(p)-divisor, and Supp(BÕ,≠) is
fi-exceptional.

(B) KY Õ + �Õ := µúKY ; note that �Õ is a µ-exceptional Z(p)-divisor.

(C) KY Õ + DÕ := µú(KY + D); note that DÕ is still a Z(p)-divisor, possibly non
Q-Cartier.
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(D) LÕ := fiúL and BÕ := BÕ
≠ f Õú�Õ, so that LÕ = ≠KXÕ ≠ BÕ

≠ f ÕúDÕ. Note that,
as fi is an isomorphism over the generic point of Y , conditions (b), (d), and
(e) of Theorem 6.2.19 hold on X Õ with respect to LÕ and BÕ. Moreover, mLÕ

is integral and mLÕ

y
is Cartier.

(E) Be := búBÕ + C and De := aúDÕ
≠ DY ; note that Cz is fe,z-vertical by point

(4), and aúµú(KY + D) ≥Z(p) aú(KY Õ + DÕ) ≥Z(p) KY (e) + De.

(F) For any µ-exceptional prime divisor E, we write E = Eb in the case that
Supp(E) ™ u≠1(Supp(G)), for all G œ | ≠ KY Õ ≠ DÕ

|Q = µú
| ≠ KY ≠ D|Q, and

E = Ef otherwise. Thus, when E Õ is any µ-exceptional Q-divisor, we obtain
an induced decomposition E Õ = E Õ

b + E Õ

f, where E Õ

b and E Õ

f have no common
components.

(G) P := f ú

e
(aúE), where E Ø 0 is a µ-exceptional Cartier divisor, such that P Ø

B≠

e
; note that such an E exists, since Supp(B≠

e
) ™ f≠1

e
(a≠1(Exc(µ))) by points

(III), (A), (B), and (D). Note also that Ÿ(X(e)
z

, fú

e
(≠K

Y
(e)

z
≠ De,z) + Pz) = 0.

Indeed

aú

z
((µú(≠KY ≠ D))|Y Õ

z
) ≥Q ≠K

Y
(e)

z
≠ De,z

ÆQ ≠K
Y

(e)
z

≠ De,z + Pz

= aú((µú(≠KY ≠ D))|Y Õ
z
) + aú

z
(Eb|Y Õ

z
) + aú

z
(Ef |Y Õ

z
)

ÆQ aú((µú((1 + –)(≠KY ≠ D)))|Y Õ
z
) + aú

z
(Ef |Y Õ

z
),

where – is some positive rational number. As aú

z
(Ef)z is (µz ¶ az)-exceptional,

we conclude by taking global sections in the above chain of inequalities, and
applying the projection formula combined with Theorem 5.1.4.

(H) Le := búLÕ, so that Le ≥Z(p) ≠KX(e) ≠ Be ≠ f ú

e
De. Note that, by point (D),

mLe is integral and mLe,y is Cartier.

Consider now the fibration fe,z : X(e)
z

æ Y (e)
z

, with pair structure (X(e), Be,z) and
the Z(p)-divisors De,z, Le,z, Pz. Conditions (a), (c), and (d) of Theorem 6.2.15 hold
since, by points (D) and (H) above, we have injective pullback maps

H0(X, mL) (fi¶b)ú
≠≠≠æ H0(X(e), mLe)

for all su�ciently divisible m Ø 0, which restrict to isomorphisms on general fibres
of fe and f . Condition (b) of Theorem 6.2.15 holds by point (H), and condition (e)
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by point (G). Then we conclude, since we have

Ÿ(X(e)
z

, ((fi ¶ b)úL)|
X

(e)
z

) = Ÿ(X(e)
z

, Le,z) by points (e),(g) and Lemma 5.1.6

Æ Ÿ(Xy, Le,z|Xy) by Theorem 6.2.15

= Ÿ(Xy, Ly) as fi ¶ b is an isomorphism over Xy.

To conclude the first part of the proof, note that, by Lemma 5.2.4, we can take
y œ Y to be general, rather than very general.

As for the “furthermore” part, apply Proposition 5.2.6 to get the opposite in-
equality. qed
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