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We characterized population pharmacokinetics in 42 African 
children receiving once-daily 25 mg (14 to <20 kg) or 50 mg 
(>20 kg) dolutegravir. Coadministration with emtricitabine and 
tenofovir alafenamide reduced dolutegravir bioavailability by 
19.6% (95% confidence interval: 8.13%–30.8%) compared with 
zidovudine or abacavir with lamivudine. Nevertheless, concen-
trations remained above efficacy targets, confirming current 
dosing recommendations.
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INTRODUCTION

The CHAPAS-4 trial evaluated dolutegravir pharmacokinetics 
in children weighing >14 kg taking dolutegravir with a 250-kcal 
breakfast combined with emtricitabine/tenofovir alafenamide 
(FTC/TAF) or a standard of care (SOC) backbone of either 
lamivudine/abacavir (3TC/ABC) or lamivudine/zidovudine 
(3TC/ZDV) [1]. We previously reported non-compartmental 

pharmacokinetic analysis results, confirming overall con-
centrations align with reference values of adults and children 
taking dolutegravir without food, but also showed a reduction 
in dolutegravir area under the concentration curve (AUC) in 
children receiving FTC/TAF compared with the other back-
bones [1, 2]. This did not relate to suppression rates in our study 
that were higher for TAF-based regimens than for SOC [3]. 
Previous reports have shown dolutegravir bioavailability with 
the dispersible tablet (DT) to be 76% higher than the adult film-
coated tablet (FCT) of dolutegravir [4], and that food intake fa-
cilitates bioavailability of dolutegravir leading to a 41% increase 
in dolutegravir AUC [5]. Our non-compartmental analysis had 
limited power to account for differences in body weight and fat-
free mass between children, or the overlapping effects of factors 
such as formulation between groups, leaving some questions for 
further exploration.

In this secondary analysis, we describe dolutegravir phar-
macokinetics using nonlinear mixed-effects modeling and in-
vestigate the potential interaction between backbone regimen 
and dolutegravir, as well as the use of 2 dolutegravir formula-
tions administered with food. We then simulate the probability 
of maintaining trough concentrations above target thresholds 
when accounting for covariate effects and parameter variability.

METHODS

In CHAPAS-4 (Children with HIV in Africa—Pharmacokinetics 
and Acceptability of Simple second-line antiretroviral regimens; 
#ISRCTN22964075), children received once-daily dolutegravir 
according to World Health Organization (WHO) recommenda-
tions: 25 mg as five 5-mg DT if weighing 14 to <20 kg and one 
50-mg FCT if >20 kg [6]. Children were randomized to receive 
either FTC/TAF or SOC backbone (3TC/ABC or 3TC/ZDV), 
with daily doses as per Supplementary Table 1. On the day of 
the pharmacokinetic assessment, at steady state and observed 
by study staff, dolutegravir was taken with a standardized low-
fat breakfast (250 kcal, 5% fat). Blood samples were collected 
pre-dose, and at 1, 2, 4, 6, 8, 12, and 24 hours post-dose, with 
an additional sample at 0.5 hours for children taking TAF. 
Dolutegravir samples were analyzed using a validated liquid 
chromatography with tandem mass spectrometry method with 
a lower limit of quantification (LLOQ) of 0.05 mg/L [7].

We developed a population pharmacokinetic model using 
principles of statistical significance and parsimony (more de-
tails in the Supplementary Materials) [8]. We used allometry 
with either total body weight or fat-free mass to adjust for 
clearance and disposition parameters. The effects of the 3 back-
bone drug combinations were tested both as categorical and 
continuous covariates using TAF or tenofovir (TFV) AUC. 
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Dolutegravir formulation effects on absorption parameters 
and biomarkers, including liver enzymes alanine transaminase 
and aspartate transaminase and creatine clearance (calculated 
using the Schwartz formula) on elimination were also tested. 
We used visual predictive checks (VPC) to diagnose both inter-
mediate and final models, and sampling importance resampling 
to quantify the uncertainty in parameter estimates.

The final model was used to simulate (n = 3000) dolutegravir 
AUC and 24-hour post-dose plasma concentration (Ctrough) 
for children taking dolutegravir with food and with FTC/
TAF or SOC backbone, following study dosing guidelines and 
formulations.

Geometric mean (GM) AUC and Ctrough were compared with 
historical references. For AUC, GM was compared with refer-
ence values of adults taking 50 mg FCT dolutegravir with food 
(GM AUC0–24: 53.6 mg·h/L) [9]. GM Ctrough values were com-
pared with 0.32 mg/L (calculated 90% effective concentration 
[EC90] of 50 mg dolutegravir FCT obtained in a 10-day adult 
monotherapy study [10]). The minimal target value for indi-
vidual dolutegravir concentrations was the protein-adjusted 
concentration achieving 90% viral suppression in vitro (IC90: 
0.064 mg/L) [10]. The percentage of children above the efficacy 
target in each group is reported.

RESULTS

Between January 2019 and March 2021, 42 children from 
Uganda, Zambia, and Zimbabwe receiving dolutegravir contrib-
uted 358 blood samples (2 below the LLOQ). The children in the 
study were evenly distributed to receive FTC/TAF or SOC (21 
each), 10 weighing 14 to <20 kg received 25 mg dolutegravir DT, 
32 above 20 kg received a 50 mg FCT (Supplementary Table 2).

Dolutegravir pharmacokinetics was best described by a 
2-compartment model (P < .001) with first-order elimination 
and absorption, following a series of transit compartments. 
Incorporating allometric scaling on disposition parameters im-
proved the model fit, with total body weight as the best body 
size descriptor.

Backbone regimens 3TC/ABC and 3TC/ZDV were com-
bined into SOC after testing the regimens separately revealed 
no significant difference in effect on dolutegravir bioavail-
ability (Supplementary Table 4). The clearance of a typical 
child weighing 30 kg taking dolutegravir with SOC backbone, 
was 0.722 L/h. Children receiving FTC/TAF had 19.6% [95% 
confidence interval: 8.13%–30.8%] lower bioavailability (and 
therefore AUC) compared with children on SOC (P < .001). 
Including TAF or TFV AUC as a continuous covariate did not 
further improve the model compared with using the back-
bone regimen as a categorical covariate. Other backbone 
drug concentrations were not available. Dolutegravir formu-
lation (DT vs FCT) was tested on absorption parameters, in-
cluding bioavailability, but did not significantly improve the 

model fit, nor did biomarkers for liver and kidney function 
on clearance.

We found moderate between-subject variability in clearance 
(21.1%) and high between-occasion variability in dolutegravir 
absorption (98.3%). Allowing the model to estimate larger 
between-occasion variability in bioavailability when the dose 
was not observed by study staff (the dose on the day before 
pharmacokinetic assessment) significantly improved the model 
fit (P < .001), resulting in 22.1% variability for samples from 
observed doses to about 75% for the pre-dose samples coming 
from an unobserved dose.

Final model parameters are in Supplementary Table 3, 
and diagnostic plots confirming a good fit to the data are in 
Supplementary Figure 1.

The effect of the backbone combination on expected Ctrough 
and AUC was simulated using the final model (Figure 1). GM 
AUC and Ctrough values of each subgroup are in Supplementary 
Table 5. Compared with adults taking 50 mg dolutegravir 
with food, most subgroups had comparable or higher GM 
AUC values. However, children weighing 14 to <20 kg taking 
dolutegravir with FTC/TAF exhibited a 21% lower GM AUC 
than the adult reference.

In all subgroups, GM Ctrough consistently exceeded the effi-
cacy target of 0.32 mg/L, with over 99% of individuals in each 
subgroup above the predefined minimal efficacy target of 
0.064 mg/L.

DISCUSSION

In this secondary analysis, we characterized dolutegravir’s pop-
ulation pharmacokinetics when taken with food and report that 
children with FTC/TAF backbone had 19.6% reduced bioavail-
ability (8.13%–30.8% 95% confidence interval) compared with 
SOC backbone regimens. Simulations showed that the current 
dosing regimen achieves effective concentrations, with more 
than 99% of individual Ctrough values exceeding the minimal ef-
ficacy target of 0.064 mg/L, also in children taking FTC/TAF. 
These results align with the main trial results of CHAPAS-4, 
which showed over 90% viral suppression with dolutegravir, re-
gardless of backbone combination, and better viral suppression 
of children on FTC/TAF compared with children on SOC (89% 
vs 83%) [3].

The cause of decreased dolutegravir bioavailability in com-
bination with FTC/TAF is unclear. Both TAF and dolutegravir 
are substrates of the transporter P-glycoprotein, with intes-
tinal expression, but this is unlikely to play a role, as TAF is 
not reported to induce P-glycoprotein and high membrane 
permeability to dolutegravir should limit the effect trans-
porters have on its intestinal absorption [11]. Moreover, 
previous studies combining dolutegravir and FTC/TAF in 
adults didn’t observe reduced dolutegravir exposures [9, 12]. 
Reduced absorption due to a chemical interaction between 
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the drugs or excipients in the formulation at the absorption 
site cannot be ruled out.

We observed no difference in bioavailability between the 
FCT and the DT. Chandasana et al reported higher bioavaila-
bility of DT compared with FCT in a cohort of young children 
who mostly took dolutegravir without food [13]. This aligns 
with the 76% increased DT bioavailability compared with FCT 
in children without food in the ODYSSEY trial [4]. In our 
analysis, this formulation effect was not observed. We hypoth-
esize that food intake may be 1 potential explanation for this 
observation, since children in our study all took dolutegravir 
with breakfast. While food might facilitate the dissolution of 
the FCT, enhancing absorption, DT might fully dissolve even 
without food, possibly negating any difference seen between the 
formulation taken on an empty stomach. Our values of CL/F for 
dolutegravir in combination with SOC (0.722 L/h) were similar 
to those of Chandasana’s 1-compartment model (0.700 L/h at 
30 kg), despite our model structure identifying 2-compartment 
disposition. The difference in model structure may be due to 
differences in the sampling schedule between the studies and or 
our handling of the additional uncertainty in the pre-dose sam-
ples. These samples, after an unobserved dose, may suffer from 
additional uncertainty and variability arising from imprecisely 
reported dosing times and varying dosing conditions at home 
(eg, food intake). By including extra variability for the pre-dose 

sample in our model, we were able to better characterize the 
kinetics based on the more “reliable” samples collected after the 
observed dose. Furthermore, 2-compartment kinetics has been 
reported in adult dolutegravir models [12].

CONCLUSION

In this analysis, we characterized dolutegravir population phar-
macokinetics in children weighing >14 kg taking dolutegravir 
with food. We report a modest decrease in dolutegravir bioa-
vailability when combined with a backbone of FTC/TAF vs 
SOC, but concentrations remain in the therapeutic range. Of 
note, we did not observe the large reduction in bioavailability 
previously observed for the FCT compared with DT, possibly 
due to dosing with food. Our results support the current recom-
mendations on dolutegravir use in children.
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Figure 1. Simulated dolutegravir exposure, area under the concentration curve 0–24 hours (AUC0–24 h, left panel) and concentration at 24 hours (Ctrough, right 
panel) for children taking dolutegravir with standard of care (SOC; white boxes) or emtricitabine/tenofovir alafenamide (FTC/TAF; gray boxes) in dose and 
formulation 25 mg dispersible tablet for children 14 to <20 kg and 50 mg film-coated tablet for children weighing more than 20 kg. The boxes represent the 
25th, 50th, and 75th percentiles, while the whiskers show the 5th and 95th percentiles. The dashed line in the AUC panel indicates the adult geometric mean 
AUC0–24 h of adults taking 50 mg dolutegravir film-coated tablet with food of 53.6 h·mg/L [8]. The dashed line in the Ctrough panel indicates the reported 90% 
effective concentration (EC90) of 0.32 mg/L [9]. The dotted line in the Ctrough panel indicates the in vitro protein-adjusted dolutegravir IC90 of 0.064 mg/L, the 
minimal target for efficacy.
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