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Abstract—Due to the users’ overlapping channels and the open
nature of the wireless medium, inter-user interference and malicious
jamming attacks deteriorate the performance of unmanned aerial
vehicle (UAV) communications. With this focus, this paper proposes
a novel integration of dual polarization, rate-splitting multiple
access (RSMA), and stacked reconfigurable intelligent surface (RIS)
transceiver into UAV networks, thus simultaneously mitigating the
inter-user interference and malicious interference by fully exploiting
their potentials in the power, space, and polarization domains.
Building upon this architectural framework, a generalized sum
rate maximization problem is formulated under the jammer’s
imperfect angular channel state information and unknown cross-
polarization discrimination. To efficiently tackle the challenges
posed by the intractable non-convex design problem with both
high-dimensional variables and the multiple QoS constraints, a
low-complexity optimization framework is presented, where a
discretization method combined with quadratic property, a reduced-
majorization-minimization algorithm, and two computationally ef-
ficient algorithms using block successive upper-bound minimization
are developed to obtain the semi-closed-form solutions. Finally,
numerical simulations verify the superiority and validity of our pro-
posed architecture and optimization framework over benchmarks.

Index Terms—UAV communications, RSMA, stacked RIS, dual
polarization, interference mitigation, jamming suppression.

I. INTRODUCTION

UNMANNED aerial vehicle (UAV) has emerged as indis-
pensable component of sixth-generation (6G) networks due

to its high maneuverability and low cost [1]. However, owing to
the inherent broadcast and superposition properties of wireless
media, both the inter-user interference and malicious jamming
attacks pose severe threats to UAV communications [2]. To cope
with the abovementioned issues, various conventional techniques
have been proposed in the literature, such as multiple access
techniques for interference mitigation [3], frequency hopping
technique for jamming suppression [4], and massive multiple-
input multiple-output (MIMO) technique for both [5]. Never-
theless, conventional multiple access techniques lead to either
insufficient radio resources utilization or extra spectral resources,
and MIMO technique is limited by channel state information
(CSI) imperfections and the degrees of freedom (DoFs) due to
the limited array aperture size [6].

Fortunately, rate-splitting multiple access (RSMA) and re-
configurable intelligent surface (RIS) have recently emerged as
promising paradigms for overcoming the limitations of conve-
tional multiple access schemes and facilitating the employment
of large-scale arrays, respectively, which promises to alleviate

the inter-user interference and malicious jamming issues [3], [5].
The benefits of RSMA have been investigated thoroughly, such
as delivering high spectral/energy efficiency [7], improving DoFs
[8], and enhancing the robustness to CSI imperfection/high mo-
bility/eavesdropping attacks [9]. However, the abovementioned
RSMA schemes rely on the delicate SIC technique, which limits
its applications. This fact calls for the effective strategies for
handling the adverse effects of SIC imperfections in RSMA.

Current state-of-art for RIS-aided wireless communications
can be roughly categorized into two main streams, i.e., RIS-based
passive reflector [10] and RIS-aided active transceiver [5], [11].
The former RIS architecture has been widely proposed in UAV
networks for modifying the propagation environment [12], while
the latter one has been proposed to address the dilemma of the
prohibitive hardware cost in deploying the large-scale arrays at
the transceiver [5], [11]. However, the utilization of RIS-reflector
in UAV networks suffers from the extremely severe “double
fading” effects [11] and high mobility [12]. Fortunately, RIS-
aided active transceiver has been proven to effectively overcome
the “double fading” effects and mobility [13], which includes
single-layer [13] and stacked architectures [5], [14]. Compared to
single-layer one, stacked RIS-transceiver offers a more desirable
miniaturization, and the amplitude of refracted signal though RIS
can be partially controlled in a larger range [14].

Recently, polarization has been exploited to complement the
RSMA’s SIC imperfection, and further increase the number of
RIS units without increasing the array aperture [15]. Particularly,
the dual-polarized RSMA provided a platform where all the
receivers can decode the common and private signals simul-
taneously in two completely orthogonal polarizations without
SIC, thus removing the inherent SIC imperfection in RSMA. In
addition, by stacking two single-polarized RIS in two orthogonal
polarizations together, the number of RIS units in the dual-
polarized RIS doubles that of the single-polarized one within
the same array aperture, thereby doubling the channel capacity.

Motivated by these studies above, this paper proposes a
novel integration of dual-polarized RSMA and stacked RIS-
aided transceiver into the UAV networks, where dual polar-
ization can naturally remove the inherent SIC imperfection in
RSMA and enlarge the DoFs of stacked RIS without increasing
the array aperture. Besides, a worst-case sum achievable rate
maximization problem is formulated under the jammer’s imper-
fect angular CSI and unknown cross-polarization discrimination
(XPD). To handle the formulated intractable problem, a low-
complexity optimization framework is proposed by leveraging



the discretization method, properties of the quadratic function,
educed-majorization-minimization (R-MM) algorithm, and block
successive upper-bound minimization (BSUM), which admits
the semi-closed-form solutions. Finally, numerical simulations
demonstrate that the proposed architecture and optimization
framework are superior to the state-of-the-art schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Stacked RIS-Aided Dual-Polarized UAV-RSMA Networks
Fig. 1 illustrates the considered RIS-assisted UAV-RSMA

networks, where a UAV is equipped with a dual-polarized
stacked RIS-assisted transmitter, and thus assists to establish
the reliable communication links with K dual-polarized stacked
RIS-aided receivers/users in the presence of a malicious jammer.
More specifically, the UAV’s RIS-transmitter is equipped with
NL=NL1 × NL2 pairs of dual-polarized Tx antennas and A
layers of RIS having ML,a=ML,a1×ML,a2 dual-polarized units
on a-th layer, while k-th user’s RIS-receiver is equipped with
NU,k=NU,k1 × NU,k2 pairs of dual-polarized Rx antennas and
R layers of RIS having MU,kr = MU,kr1 × MU,kr2 dual-
polarized units on r-th layer. In addition, we assume that the
jammer adopts one pair of dual-polarized omnidirectional Tx
antennas to impair the users’ signal reception at both the vertical
and the horizontal polarization. To effectively mitigate the inter-
user interference, RSMA is embedded into the dual-polarized
transceiver in this paper. To simplify the presentation, we denote
the stacked RIS in the RIS-aided transmitter and receiver as the
stacked T-RIS and R-RIS, respectively. Thus, the dual-polarized
channels between UAV’s Tx antennas and the first layer T-RIS,
between the a-th layer T-RIS and the (a + 1)-th layer T-RIS,
between UAV and k-th user, between kr-th R-RIS and k(r+1)-
th R-RIS, between kR-th R-RIS and k-th user’s Rx antennas,
and between the jammer and k-th user are denoted as BL,1 ∈
C2ML,1×2NL , BL,a ∈ C2ML,a×2ML,a , DU,k ∈ C2MU,k1×2ML,A ,
BU,kr ∈ C2MU,kr×2MU,kr , BU,kR ∈ C2NU,k×2MU,kR , and
DJ,k ∈ C2MU,k1×2, respectively. Here, kr-th R-RIS denotes
the r-th layer R-RIS in the k-th user. Under the dual-polarized
settings, the involved channels can be partitioned as

D =

[
Dvv Dvh

Dhv Dhh

]
, B =

[
Bvv 0
0 Bhh

]
, (1)

where Hij is a channel coefficient from the polarization i to the
polarization j, where i, j ∈ {v,h}, with v and h denoting the
vertical and horizontal polarization, respectively. Moreover, they
can be further expressed as [15]

H=

[
Hvv Hvh

Hhv Hhh

]
=

[ √
1− αejφ

vv

Ĥ
√
αejφ

vh

Ĥ√
αejφ

hv

Ĥ
√
1− αejφ

hh

Ĥ

]
, (2)

where 0 ≤ α ≤ 1 is the inverse XPD which measures the
proportion of radiated power converted from polarization v to
polarization h and vice versa. Besides, φij are the random phase
shifts in the corresponding polarization ij. Note that due to the
extreme short distance between the adjacent layer in the stacked
RIS-transmitter/receiver, XPD does not exist in B.

B. Signal Transmission Model
Denote sC and sP,k as the common symbol for all users

and the private symbols for specific user k, respectively. Prior
to transmission, sC and sP,k are processed by the digital
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Fig. 1: System model.

precoder wC = [wv
C;0NL×1] and wP,k =

[
0NL×1;w

h
P,k

]
,

respectively, where wv
C and wh

P,k are the precoder for the
common and private symbols in the polarization v and h.
Hence, the digital beamformer transmitted to stacked T-RIS
is wCsC +

∑K
k=1 wP,ksP,k. Then, the dual-polarized phase-

shifter pairs on T-RIS can impose phase shifts to the incident
signals of vertical and horizontal polarizations, and then forward
them to the dual-polarized transmit units via the microstrip.
Here, we define the phase-shift matrix at the a-th layer T-
RIS as PL,a= Blkdiag

{
Pvv

L,a,P
hh
L,a

}
∈ C2ML,a×2ML,a , where

Pii
L,a = diag

{
ejϕ

ii
L,a1 , · · · , ejϕ

ii
L,aML,a

}
∈ CML,a×ML,a is the

phase-shift matrix on polarization i ∈ {v,h}. Thus, the hybrid
digital-analog beamformer transmitted to the users is

x =
∏A

a=1
PL,aBL,a

(
wCsC +

∑K

m=1
wP,msP,m

)
. (3)

Meanwhile, the jammer divides its total jamming power into two
parts in vertical and horizontal polarization for interrupting the
legitimate transmission, i.e., xJ = [

√
pvJs

v
J;
√
phJs

h
J].

Then, the signals x and xJ are superimposed at the k-th
stacked RIS-receiver via the far-field channels DU,k and DJ,k.
Here, the phase-shift matrix of the kr-th R-RIS is defined as
PU,kr = Blkdiag

{
Pvv

U,kr,P
hh
U,kr

}
∈ C2MU,kr×2MU,kr , and the

digital decoder is represented as Vk = Blkdiag
{
vv
k,v

h
k

}
∈

2NU,k×2, where Pii
U,kr = diag

{
ejϕ

ii
U,kr1 , · · · , ejϕ

ii
U,krMU,kr

}
∈

CMU,kr×MU,kr and vi
k is the phase-shift matrix and digital

decoder on polarization i ∈ {v,h}, respectively. Hence, the
received signal at the k-th user is given by

yk = ṼH (DU,kx+DJ,kxJ) + ñk, (4)

where ñk = [vv,H
k nv

k;v
h,H
k nh

k], n
i
k ∼ CN

(
0NU,k

, σ2INU,k

)
is

the additive white noise vector in polarization i ∈ {v,h}, and
ṼH = VH

∏R
r=1 BU,krPU,kr. Thus, the information rates to

decode sC and sP,k at the k-th user are expressed as

RC,k=log

(
1+vv,H

k Ω
vv

U,kw
v
Cw

v,H
C Ω

vv,H

U,k vv
k

(
vv,H
k Cv

U,kv
v
k

)−1
)
,

RP,k=log

(
1+vh,H

k Ω
hh

U,kw
h
P,kw

h,H
P,k Ω

hh,H

U,k vh
k

(
vh,H
k Ch

U,kv
h
k

)−1)
,

(5)



where

Cv
U,k = Cv

U1,k +Ξvv
U,k

(
pvJd

vv
J,kd

vv,H
J,k + phJd

vh
J,kd

vh,H
J,k

)
Ξvv,H

U,k ,

Ch
U,k = Ch

U1,k +Ξhh
U,k

(
phJd

hh
J,kd

hh,H
J,k + pvJd

hv
J,kd

hv,H
J,k

)
Ξhh,H

U,k ,

Cv
U1,k = Ω

vh

U,k

(∑K

m=1
wh

P,mwh,H
P,m

)
Ω

vh,H

U,k + σv,2
k INU,k

,

Ch
U1,k = Ω

hh

U,k

(∑K

m ̸=k
wh

P,mwh,H
P,m

)
Ω

hh,H

U,k +σh,2
k INU,k

+Ω
hv

U,kw
v
Cw

v,H
C Ω

hv,H

U,k ,

Ω
vh

U,k = Ξvv
U,kD

vh
U,kΩ

hh
L ,Ω

hv

U,k = Ξhh
U,kD

hv
U,kΩ

vv
L

Ω
hh

U,k = Ξhh
U,kD

hh
U,kΩ

hh
L ,Ω

vv

U,k = Ξvv
U,kD

vv
U,kΩ

vv
L .

Ωvv
L =

∏A

a=1
Pvv

L,aB
vv
L,a,Ω

hh
L =

∏A

a=1
Phh

L,aB
hh
L,a,

Ξvv
U,k =

∏R

r=1
Bvv

U,krP
vv
U,kr,Ξ

hh
U,k =

∏R

r=1
Bhh

U,krP
hh
U,kr.

Since sC is decoded by all the users, the information rate for
common message is defined as RC = min {RC,1, · · · , RC,K},
which can guarantee that all users can successfully decode the
common symbol sC [3]. As RC is shared by all users, where
the k-th user is allocated with a portion Ck corresponding to
common part MC,k, and we have RC=

∑K
k=1 Ck. Thus, the total

information rate for the k-th user is Ck +RP,k.

C. Problem Formulation
Due to the fact that the jammers are not expected to cooperate

with the user for the channel estimation [16], the illegitimate
XPD αJ,k and CSI d̂J,k are challenging to be obtained. To
account for the harmful effects on the system performance, we
assume that the jammer’s CSI d̂J,k belongs to a given angular
range ∆ and its XPD αJ,k belongs to an unknown set ⃝, which
is

∆ =
{
d̂J,k

∣∣∣ θ ∈ [θL, θU ] , φ ∈ [φL, φU ] ,∀k
}
,

⃝ =
{
⃝αJ,k

∣∣αJ,k ∈ [0, 1] ,∀k
}
, (6)

where ⃝α denotes α is an unknown value, θU and θL denote
the upper and lower bounds of azimuth angle, φU and φL are the
upper and lower bounds of elevation angle. Next, we formulate
a general worst-case sum achievable rate maximization problem:

max
Vk,w

v
C,wh

P,k,PL,a,c,PU,kr

min
⃝,∆

∑K

k=1
Ck +RP,k (7)

s.t. C1 : min
⃝,∆

Ck +RP,k ≥ Rk,min,∀k,

C2 : min
⃝,∆

RC,k ≥
∑K

q=1
Cq,∀k,

C3 : ∥wv
C∥

2
+
∑K

k=1

∥∥wh
P,k

∥∥2 ≤ Pmax,

C4 :
∣∣∣[PL,a]n,n

∣∣∣=1,
∣∣∣[PU,kr]n,n

∣∣∣=1,∀n, k, r, a,

where c = (C1, · · · , CK)
T .

III. EFFICIENT OPTIMIZATION FRAMEWORK FOR (7)
A. Heuristic Robust Decoder Design for Vk

First, we focus on investigating the design of Vk. According
to [11], the linear minimum-mean-square-error (MMSE) detector

is the optimal solution for Vk, which maximizes the signal-to-
interference plus-noise-ratio (SINR), which is expressed as

vv
k = Cv,−1

U,k Ω
vv

U,kw
v
C, v

h
k = Ch,−1

U,k Ω
hh

U,kw
h
P,k, (8)

where Cv
U,k, Ch

U,k, Ω
vv

U,k, and Ω
hh

U,k are given in (5). However,
due to the imperfect angular CSI ∆ and unknown XPD set
⃝, i.e., the term of DJ,k inside Cv

U,k and Ch
U,k cannot be

obtained, the solution of Vk in (12) is infeasible. To make (12)
feasible, the following propositions are proposed to handle the
CSI imperfection ∆ and unknown XPD set ⃝.

Proposition 1 (Discretization Method for ∆): After uniformly
discretizing all the angles inside ∆, i.e.,

θ(p) = θL + (i− 1)∆θ, p = 1, · · · , Q1,
φ(q) = φL + (j − 1)∆φ, q = 1, · · · , Q2,

(9)

where Q1 and Q2 are the number of samples of θ and φ,
∆θ = (θU − θL)/(Q1 − 1), and ∆φ = (φU − φL)/(Q2 − 1),
the worst-case CSI of d̂J,k inside DJ,k , i.e., d̃J,kd̃

H
J,k, is

d̃J,kd̃
H
J,k =

∑Q1

p=1

∑Q2

q=1
(1/Q1Q2) d̂

(p,q)
J,k d̂

(p,q),H
J,k , (10)

where d̂
(p,q)
J,k is the selected element of

{
θ(p), φ(q)

}
.

Proof : Please refer to [11]. ■
Proposition 2: After safely ignoring the jamming channels’

random phase shifts, i.e., ϕij
J,k, ij ∈ {vv, vh,hv,hh} inside

DJ,k, we can obtain the worst-case XPD α̃J,k insides ⃝, i.e., α̃J,k = 1/2, pvJ = phJ,

α̃J,k = argmin
αJ,k∈[0,1]

−p2α2
J,k+zkαJ,k+dk

−p2α2
J,k+z̃kαJ,k+d̃k

, pvJ ̸= phJ ,
(11)

where dk = zC,kzP,k, d̃k = z̃C,kz̃P,k,

aC,k = vv,H
k Ω

vv

U,kw
v
Cw

v,H
C Ω

vv,H

U,k vv
k,

aP,k = vh,H
k Ω

hh

U,kw
h
P,kw

h,H
P,k Ω

hh,H

U,k vh
k,

bC,k = vv,H
k Ξvv

U,kd̃J,kd̃
H
J,kΞ

vv,H
U,k vv

k,

bP,k = vh,H
k Ξhh

U,kd̃J,kd̃
H
J,kΞ

hh,H
U,k vh

k,

zC,k = vv,H
k Cv

U1,kv, zP,k = vh,H
k Ch

U1,kv
h
k,

zC,k = (zC,k + aC,k)/bC,k + pvJ, z̃C,k = zC,k/bC,k + pvJ,

zP,k = (zP,k + aP,k)/bP,k + phJ, z̃P,k = zP,k/bP,k + phJ,

p = phJ − pvJ, zk = (zP,k − zC,k) p, z̃k = (z̃P,k − z̃C,k) p.

Proof : By utilizing dual-polarized channel model in (2), we
can obtain the value of received jamming power at the different
polarizations. Then, after analyzing the abovementioned values,
we can easily obtain (11), which is omitted here for brevity. ■

B. Reduced Minorization-Maximization for c, wv
C, and wh

P,k

In this subsection, the optimization of the common rate portion
vector c and digital precoder wv

C, wh
P,k are investigated, whose

corresponding subproblem can be formulated as

max
Vk,w

v
C,wh

P,k

min
⃝,∆

∑K

k=1
Ck +RP,k s.t. C1,C2,C3. (12)

However, as discussed before, problem (12) is challenging to
solve due to the term min⃝,∆, the non-convex expression of
RC,k and RP,k, the high-dimensional variables, and the multiple



constraints. Thus, in the following, we tackle the foregoing four
challenges step by step. As for the term min⃝,∆ inside (12), it
can be removed by substituting Proposition 1 and 2 into problem
(12), resulting in the worst-case optimization subproblem (12).

Then, we propose the following detailed propositions for
handling the high-dimensional variables.

Proposition 3 (Low-Dimensional Subspace Property for
Dual-Polarized Networks): For any nontrivial stationary points
wv,⋆

C and wh,⋆
P,k in problem (12), they must lie in the range space

spanned by their respective polarized channel’s base Mh,H and
Mv,H , i.e., wv,⋆

C =Mv,Hxv
C and wh,⋆

P,k = Mh,Hxh
P,k with the

unique xv
C ∈ CNU×1 and xh

P,k ∈ CNU×1, where the full row-
rank channel subspaces are given by

Mv =
[
Ω

vv,T

U,1 , · · · ,Ωvv,T

U,K

]T
∈ CNU×NL , (13)

Mh =
[
Ω

hh,T

U,1 , · · · ,Ωhh,T

U,K

]T
∈ CNU×NL . (14)

Here, NU =
∑K

k=1 NU,k.
Proof : The detailed proof is similar to those of [17] and thus

is omitted in this paper for brevity. ■
By using Proposition 3, the dimension of wv

C and wh
P,k

((K + 1)NL) can be greatly reduced to that of xv
C and xh

P,k

((K + 1)NU). Hence, (12) can be equivalently converted into

max
c,xv

C,xh
P,k

∑K

k=1
Ck + R̃P,k s.t. C̃1, C̃2, (15)

C̃3 :
∥∥Mv,Hxv

C

∥∥2 +∑K

k=1

∥∥Mh,Hxh
P,k

∥∥2 ≤ Pmax,

where C̃ denotes the modified constraint C with xv
C and xh

P,k.
Although Proposition 3 significantly reduces the dimensions of
the optimization variables, problem (15) is challenging to solve
due to the multiple constraints. Fortunately, we can find another
important property to eliminate the power constraint C̃3.

Proposition 4 (Full Power Property): For the optimal point
of (12), the total power constraint C̃3 must hold with equality.

Proof : The proposition can be proven immediately by using
the power slackness condition of problem (12). ■

Building upon Proposition 4, we can recast problem (15) as
the following problem with reduced constraints:

max
c,xv

C,xh
P,k

∑K

k=1
Ck +RP,k s.t. C1,C2, (16)

where C is the modified version of C̃ by replacing INU,k
by(

Pmax

/
Pmax

)
INU,k

. Here, Pmax is given by

Pmax=Tr
(
M

v
xv
C(x

v
C)

H
)
+
∑K

k=1
Tr

(
M

h
xh
P,k

(
xh
P,k

)H)
, (17)

where M
v
=MvMv,H and M

h
= MhMh,H . As such, ac-

cording to [17], after solving optimal xv,⋆
C , xh,⋆

P,k in problem
(16), we can obtain wv,⋆

C and wh,⋆
P,k in (14) by calculating

wv,⋆
C =

√
κMv,Hxv,⋆

C and wh,⋆
P,k =

√
κMh,Hxh,⋆

P,k, where

κ=Pmax

/
P

⋆

max is a scaling factor.
Proposition 3 and Proposition 4 suggest that problem (12)

can be solved by handling problem (16) with reduced variables
and constraints. However, the expressions for RC,k and RP,k are

non-convex. Thus, the MM technique is adopted to convert RC,k

and RP,k into solvable forms. Firstly, their lower bound are [11]

RC,k≥ log det
(
SHO

(id),−1
C,k S

)
−Tr

(
R

(id)
C,k

(
OC,k−O

(id)
C,k

))
,

RP,k≥ log det
(
SHO

(id),−1
P,k S

)
−Tr

(
R

(id)
P,k

(
OP,k−O

(id)
P,k

))
,

(18)

where

OC,k=

[
1 xv,H

C MvΩ
vv,H

U,k

Ω
vv

U,kM
v,Hxv

C Ω
vv

U,kM
v,Hxv

Cx
v,H
C MvΩ

vv,H

U,k +C̃
v
U,k

]
,

OP,k=

[
1 xh,H

P,k M
hΩ

hh,H

U,k

Ω
hh

U,kM
h,Hxh

P,k Ω
hh

U,kM
h,Hxh

P,kx
h,H
P,k M

hΩ
hh,H

U,k +C̃h
U,k

]
,

RC,k = O−1
C,kS

(
SHO−1

C,kS
)−1

SHO−1
C,k,S =

[
INU,k

0NU,k×1

]T
,

RP,k = O−1
P,kS

(
SHO−1

P,kS
)−1

SHO−1
P,k,

and s(id) is the solution obtained in the iteration id. Next,
denoting eC,k = log det

(
SHO

(id),−1
C,k S

)
+ Tr

(
R

(id)
C,kO

(id)
C,k

)
and eP,k = log det

(
SHO

(id),−1
P,k S

)
+ Tr

(
R

(id)
P,kO

(id)
P,k

)
, we

obtain RC,k ≥ eC,k − Tr
(
R

(id)
C,kOC,k

)
and RP,k ≥ eP,k −

Tr
(
R

(id)
P,kOP,k

)
. Furthermore, R(id)

C,k and R
(id)
P,k can be recast as

R
(id)
C,k =

[
R

(id),11
C,k R

(id),12
C,k

R
(id),21
C,k R

(id),22
C,k

]
,R

(id)
P,k =

[
R

(id),11
P,k R

(id),12
P,k

R
(id),21
P,k R

(id),22
P,k

]
,

(19)

where

R
(id),11
C,k =1+x

v,(id),H
C MvΩ

vv,(id),H

U,k C̃
v,(id),−1
U,k Ω

vv,(id)

U,k Mv,Hx
v,(id)
C ,

R
(id),11
P,k =1+x

h,(id),H
P,k MhΩ

hh,(id),H

U,k C̃
h,(id),−1
U,k Ω

hh,(id)

U,k Mh,Hx
h,(id)
P,k ,

R
(id),12
C,k = −x

v,(id),H
C MvΩ

vv,(id),H

U,k C̃
v,(id),−1
U,k ,

R
(id),12
P,k = −x

h,(id),H
P,k MhΩ

hh,(id),H

U,k C̃
h,(id),−1
U,k ,

R
(id),21
C,k = R

(id),12,H
C,k ,R

(id),22
C,k = R

(id),11,−1
C,k R

(id),21
C,k R

(id),12
C,k ,

R
(id),21
P,k = R

(id),12,H
P,k ,R

(id),22
P,k = R

(id),11,−1
P,k R

(id),21
P,k R

(id),12
P,k .

Hence, Tr
(
R

(id)
C,kOC,k

)
and Tr

(
R

(id)
P,kOP,k

)
in RC,k and RP,k

are transformed into

Tr
(
R

(id)
C,kOC,k

)
= R

(id),11
C,k + 2ℜ

(
R

(id),12
C,k Ω

vv

U,kM
v,Hxv

C

)
+Tr

(
R
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C,k

(
Ω
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v,Hxv

Cx
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C MvΩ

vv,H

U,k +C̃v
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))
, (20)

Tr
(
R

(id)
P,kOP,k

)
=R

(id),11
P,k + 2ℜ

(
R

(id),12
P,k Ω

hh

U,kM
h,Hxh

P,k

)
+Tr

(
R
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P,k

(
Ω

hh

U,kM
h,Hxh

P,kx
h,H
P,k M

hΩ
hh,H

U,k +C̃h
U,k

))
. (21)



By substituting (18)-(21) into problem (16) and dropping the
constant terms, we can rewrite problem (16) as

min
c,xv

C,xh
P,k

−C +
∑K

k=1

(
2ℜ

(
R

(id),12
P,k Ω

hh

U,kM
h,Hxh

P,k

)
+
∑M

m=1
xh,H
P,mMhΩ

hh,H

U,k R
(id),22
P,k Ω

hh

U,kM
h,Hxh

P,m

+xv,H
C MvΩ

hv,H

U,k R
(id),22
P,k Ω

hv

U,kM
v,Hxv

C

)
(22)

s.t. C1 :
∑M

m=1
xh,H
P,mMhΩ

hh,H

U,k R
(id),22
P,k Ω

hh

U,kM
h,Hxh

P,m

+ xv,H
C MvΩ

hv,H

U,k R
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v,Hxv

C

+ 2ℜ
(
R
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hh
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P,k

)
≤ R̃k,∀k,

C2 : xv,H
C MvΩ

vv,H

U,k R
(id),22
C,k Ω

vv

U,kM
v,Hxv

C

+
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h,Hxh
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+ 2ℜ
(
R
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C,k Ω

vv
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C

)
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where C =
∑K

k=1 Ck,

C̃k=−Tr
(
R

(id),22
C,k

(
σv,2
k INU,k

+ C̃v
J,k

))
−C+eC,k−R

(id),11
C,k ,

R̃k=−Tr
(
R

(id),22
P,k

(
σh,2
k INU,k

+C̃h
J,k

))
−Rk,min+eP,k−R(id),11

P,k .

Note that (22) is a QCQP with low-dimensional variables and
reduced constraints, which can be solved using the CVX opti-
mization toolbox efficiently. The R-MM algorithm can converge
to stationary points, where the final solutions are calculated as
wv

C =
√
κMv,Hxv

C and wh
P,k =

√
κMh,Hxh

P,k.

C. CCD-Based K-Bisection BSUM for PL,a and PU,kr

This subsection first describes the design of the T-RIS’s phase-
shift matrix PL,a. Denoting Wv

C = wv
Cw

v,H
C and Wh

P =∑M
m=1 w

h
P,mwh,H

P,m, the subproblem for PL,a is given by

min
PL,a

∑K

k=1

(
2ℜ

(
R

(id),12
P,k Ω

hh
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h
P,k

)
(23)

+Tr
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(
Ω
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s.t. C1 : Tr
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Ω
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Ω
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(
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U,kw
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)
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By using Lemma in [11] and some matrix transformations, the
subproblem to pL,a can be recast as

min
pL,a

∑K

k=1

(
pH
L,aU

h

L,kapL,a + 2ℜ
(
pH
L,ae

h
L,ka

))
(24)

s.t. C1 : g1,k (pL,a) = pH
L,aU

h

L,kapL,a

+ 2ℜ
(
pH
L,ae

h
L,ka

)
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Nevertheless, problem (24) is also intractable due to the
high-dimensional dual-polarized variables, and the multiple QoS
constraints with UMC. Thus, the K-bisection BSUM is proposed
for handling the above two challenges. Specifically, by adding
C1 and C2 into the objective function in (24) with non-negative
Lagrange dual variables, the BSUM in [5] is first adopted to solve
pL,a, and then K-bisection is proposed to obtain the optimal
Lagrange dual variables, as detailed next.

Firstly, by introducing ϖk and ςk, the Lagrange dual problem
of problem (24) can be expressed as

min
pL,a

h (pL,a) = pH
L,aŨL,apL,a + 2ℜ

(
pH
L,aẽL,a

)
s.t. C4 :

∣∣[pL,a]n
∣∣ = 1,∀n, a, (25)

where ŨL,a =
∑K

k=1 (1 +ϖk)U
h

L,ka + ςkU
v

L,ka and ẽL,a =∑K
k=1 (1 +ϖk) e

h
L,ka + ςke

v
L,ka. Then, BSUM using the cyclic

coordinate descent (CCD) algorithm is proposed, where the
optimization variables pL,a are divided into ML,a = 2ML,a



(a) (b)

Fig. 2: (a) The private beampattern in polarization h; (b) The
common beampattern in polarization v.

subproblems, and then addressed in a block-by-block manner.
To elaborate, we only solve the subproblem w.r.t. pL,ai in each
block, while the the remaining variables are updated block-wise
such that the closed-form solutions can be obtained, i.e., [5]

pL,ai = e

{
j arg

(
−

∑j<i
j=1 Ũ

(i,j)
L,a p

(id)
L,aj−

∑ML,a
j>1 Ũ

(i,j)
L,a p

(id)
L,aj−2ẽL,ai

)}
.

(26)

However, the proposed BSUM is executed with the fixed La-
grange dual variables ϖk and ςk. Thus, the K-bisection method
is adopted to search for the optimal ϖk and ςk [5]. Under the
iterative framework, pL,a, ϖk, and ςk can be optimized until
converging to stationary points.

Next, we turn to the optimization of PU,kr. Note that CCD-
Based K-Bisection BSUM is also applicable to the design of
PU,kr by using the similar matrix transformations, and thus is
omitted here due to the space limit.

IV. SIMULATION RESULTS

This section provides numerical results to evaluate the validity
and superiority of our proposed architecture and optimization
framework. We consider a scenario where UAV equipped with
NL = 6 × 6 Tx antennas and A layers of T-RIS serves K = 3
users with R = 2 layers of R-RIS and NU,k = 2 × 2 Rx
antennas, in the presence of one jammer, where the altitudes
of UAV and jammer are set as 60 m and 30 m, respectively. The
noise powers at the user’s the vertical and horizontal polarization
are set as σv,2

k = σh,2
k = −60 dBm, the carrier frequency is 5.8

GHz, and the maximum transmit power of UAV is Pmax = 40
dBm. In addition, the total jamming power is set as PJ,max =
Pmax + 10 log (SJNR) [dBm] and the jammer divides the total
power into two parts in vertical and horizontal polarization ran-
domly, where SJNR denotes the signal-to-jamming plus noise-
ratio (SJNR). The achievable rate target is set as Rk,min = 1
bps/Hz, and the XPD is αU,k = αJ,k = 0.1. Moreover, the CSI
uncertainty is defined as ∆ = θU − θL = φU − φL.

Fig. 2 illustrates the normalized beampattern in different
polarizations, where ∆ = 4◦ and SJNR = −30 dB. We observe
that the private beampatterns in polarization h can accurately
align their mainlobes with the desired target (i.e., user 1), even
with ∆. However, due to users’ overlapping channel angular
sectors, the nulls can only be generated at the region of undesired
user having non-overlapping sectors (user 3), which results in
severe multi-user interference for the remaining user (user 2).
Fortunately, by utilization of dual-polarized RSMA, the common

6 6.5 7 7.5 8 8.5 9 9.5 10

Number of RIS units at each layer, M
1/2

4

5

6

7

8

9

10

11

12

13

S
u

m
 a

c
h

ie
v
a

b
le

 r
a

te
 (

b
p

s
/H

z
)

Prop. Stacked RIS-DP-RSMA Arch.

SCA-CCP Scheme

Sing.-Layer RIS-DP-RSMA Arch.

Sing.-Side Stacked RIS-DP-RSMA Arch.

Stacked RIS-SP-SDMA Arch.

MIMO-DP-RSMA Arch.

Fig. 3: Sum achievable rate versus number of RIS units
√
M .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

XPD, 

2

4

6

8

10

12

14

16

S
u

m
 a

c
h

ie
v
a

b
le

 r
a

te
 (

b
p

s
/H

z
)

Prop. Stacked RIS-DP-RSMA Arch.

SCA-CCP Scheme

Sing.-Layer RIS-DP-RSMA Arch.

Sing.-Side Stacked RIS-DP-RSMA Arch.

Stacked RIS-SP-SDMA Arch.

MIMO-DP-RSMA Arch.

Fig. 4: Sum achievable rate versus XPD α.

beampatterns in polarization v can align their mainlobes with all
the users for transmitting the common message, leading to the
effective suppression of the multi-user interference.

Fig. 3 illustrates the sum achievable rate versus the number of
RIS units at each layer

√
M . Here, we set ML,a = MU,kr = M

and SJNR= −10 dB. It can be observed that for all these
architectures and schemes, the sum achievable rate increases
with M due to the increasing aperture gain of the transceiver.
In addition, the proposed stacked RIS-DP-RSMA architecture
achieves the highest achievable rate. The reason is the fact that
the amplitudes of the desired and jamming signals impinging
on the stacked RIS-aided transceiver can be enhanced construc-
tively and weakened destructively in a larger range, respectively,
than the benchmark architectures. Besides, by using the dual-
polarized RSMA, not only the inherent cross-polarization inter-
ference between the common message and private one but also
the inter-user interference can be mitigated in the power and
polarization domains, resulting in the significant performance
enhancement of our proposed architecture compared to the
stacked RIS-SP-SDMA architecture.

Fig. 4 presents the impact of XPD on the sum achievable rate.
Clearly, due to the increased cross-polarization interference, the
sum achievable rate of all DP-RSMA architectures decreases
sharply with the increasing α, especially when 0 ≤ α ≤ 0.2.
More specifically, as α → 0, the user can recover com-
mon/private messages without interference of private/common
messages, i.e., in ideal conditions, resulting in the performance
enhancement. In addition, the SP-SDMA only experiences the
fading effects of α on one specific polarization instead of the
cross-polarization interference, and thus its sum achievable rate



is not sensitive to α, which leads to the higher sum achievable
rate than that of MIMO-DP-RSMA when α ≥ 0.2.

V. CONCLUSIONS

This paper proposed a novel architecture of stacked RIS-aided
dual-polarized UAV-RSMA networks, which can fully unleash
the potentials of dual polarization, RSMA, and stacked RIS-
transceiver in the power, space, and polarization domains to
mitigate the inter-user interference and suppress the malicious
jamming attacks. Besides, we formulated a general sum rate
maximization problem with the jammer’s imperfect CSI and
unknown XPD. To handle the formulated intractable problem,
a novel low-complexity optimization framework was developed
by using quadratic property, R-MM algorithm, and CCD-based
K-bisection BSUM, which provides semi-closed-form solutions.
The simulation results confirmed the superiority of our proposed
architecture and framework in comparison with the existing ones.
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