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ABSTRACT
In value-based decision-making there is wide behavioural variability in how individuals 
respond to uncertainty. Maladaptive responses to uncertainty have been linked to a 
vulnerability to mental illness, for example, between risk aversion and affective disorders. 
Here, we examine individual differences in risk sensitivity when subjects confront options 
drawn from different value distributions, where these embody the same or different 
means and variances. In simulations, we show that a model that learns a distribution 
using Bayes’ rule and reads out different parts of the distribution under the influence of a 
risk-sensitive parameter (Conditional Value at Risk, CVaR) predicts how likely an agent is 
to prefer a broader over a narrow distribution (pro-variance bias/risk-seeking) under the 
same overall means. Using empirical data, we show that CVaR estimates correlate with 
participants’ pro-variance biases better than a range of alternative parameters derived 
from other models. Importantly, across two independent samples, CVaR estimates and 
participants’ pro-variance bias negatively correlated with trait rumination, a common trait 
in depression and anxiety. We conclude that a Bayesian-CVaR model captures individual 
differences in sensitivity to variance in value distributions and task-independent trait 
dispositions linked to affective disorders.

mailto:wanjun.lin@ucl.ac.uk
https://doi.org/10.5334/cpsy.114
https://doi.org/10.5334/cpsy.114
https://orcid.org/0009-0003-3051-1696
https://orcid.org/0000-0001-9356-761X


143Lin and Dolan  
Computational Psychiatry  
DOI: 10.5334/cpsy.114

INTRODUCTION
Value learning is fundamental to survival and well-being, with maladaptive responses manifesting 
in excessive risk avoidance linked to anxiety or depression (Lorian, Mahoney et al. 2012). A critical 
aspect of value learning relates to how agents deal with uncertainty (Dayan and Jyu 2003). For 
example, Tsetsos et al. (Tsetsos, Chater et al. 2012) showed that when participants are presented 
with two streams of numerical values drawn from two distributions with the same overall mean 
value but different variances, they show a preference for the broader over the narrower distribution, 
a finding also reported in macaque monkeys (Cavanagh, Lam et al. 2020). This disposition to prefer 
a broader over a narrow distribution, even when the two distributions have the same means, 
is referred to as a “pro-variance bias” (Cavanagh, Lam et al. 2020). However, while it is known 
that variances induce systematic choice biases, the precise cognitive mechanism leading to these 
biases is unclear.

Moeller et al. (Moeller, Grohn et al. 2021), in a trial-by-trial decision task where participants choose 
between pairs of options which varied both in terms of mean (high or low) and variance (broad 
or narrow), showed that a pro-variance bias emerges over the course of learning. This time-
dependent emergence of a pro-variance bias was particularly marked for a set of options with 
higher-than-average means (both-high), with an opposite pattern seen when options had lower-
than-average means. Notably, in these data, there were substantial individual difference effects 
in pro-variance biases where, for example, in the both-high condition, the percentages choosing 
the broader option ranged from about 90% to about 30%. However, here the individual differences 
in pro-variance bias might be confounded by direct exploration (sampling the uncertain option to 
reduce uncertainty (Wilson, Geana et al. 2014)). For example, Moeller et al. (Moeller, Grohn et al. 
2021) used a learning paradigm in the context of a partial feedback design, wherein participants 
were provided with feedback solely on a chosen option. In the current study, we opted for a much-
simplified task design involving complete feedback, a manipulation known to mitigate exploration 
(Findling, Skvortsova et al. 2019, Jahn, Grohn et al. 2023). This enables an examination of individual 
differences in pro-variance bias that closely accords with previous studies (Tsetsos, Chater et al. 
2012, Cavanagh, Lam et al. 2020).

A candidate source of individual differences in pro-variance bias is an asymmetry in learning from 
positive and negative prediction errors, as captured in a 2-learning-rate Rescorla–Wagner model 
(2lr-RW) (Cazé and van der Meer 2013). An agent with a higher positive than negative learning rate 
(positive biased) would integrate more variances thereby increasing expectations, forming higher 
expectations with higher variances and becoming pro-variance biased, and vice versa for agents 
with negative biased learning rates. Consistent with this hypothesis, rodent data has shown that 
a negative learning bias measured in one task is associated with individual differences in risky 
choices, manifest in an entirely separate task as a preference for an option with a more variable 
amount of reward (Shabel, Murphy et al. 2014). Notably, the 2lr-RW model was the best-fitted 
model in the above-mentioned study (Moeller, Grohn et al. 2021), suggesting this class of model 
can capture the evolution of variance-induced biases.

A recent theoretical account (Gagne and Dayan 2022) has proposed a risk-sensitive parameter, 
Conditional Value at Risk (CVaR), as a novel way of modelling individual differences in risk 
sensitivity. CVaR can be defined as an outcome expectation for either a lower or upper part of a 
distribution (Filippi, Guastaroba et al. 2020). Within this framework, risk aversion originates from a 
negative read-out of possible outcomes, i.e. lower tail of a distribution (Gagne and Dayan 2022). 
The aforementioned models, namely an asymmetric learning bias and partial read-out of possible 
outcomes, provide competing hypotheses for risk-sensitive behaviours. In this study, using both 
simulation and empirical data we ask whether key parameters (relative positivity in learning rates 
and CVaR) used in such computational models relate to individual differences in pro-variance bias.

A wider relevance of decision-making under uncertainty is that increased risk aversion has been 
linked to anxiety and depression across a range of contexts, including decision questionnaires 
(Eisenberg, Baron et al. 1998), the Balloon Analogue Risk Task (Maner, Richey et al. 2007; Hevey, 
Thomas et al. 2017; Follett, Hitchcock et al. 2023) and probabilistic gambling tasks (Chandler, 
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Wakeley et al. 2009; Charpentier, Aylward et al. 2017). Moreover, in depressed patients, high risk 
aversion is linked to poorer life satisfaction (Young, Goodmann et al. 2023) and a disposition to 
suicide (Baek, Kwon et al. 2017). These associations suggest that risk-related individual differences 
may serve as a potential vulnerability marker for mood disorders. Risk aversion is generally defined 
as a disposition to prefer an option with lower uncertainty/variance (Werner 2016). A pro-variance 
bias is a form of risk-seeking (the opposite of risk aversion). This leads us to examine for an 
association between the pro-variance bias and task-independent individual trait differences that 
relate to depression and anxiety.

We conducted an online experiment where we probed how individual differences in risk sensitivity 
related to traits of anxiety and depression. To implement the experiment online, we developed 
a simple and intuitive magnitude learning task using poker cards, where we independently 
manipulated both variance and mean. Within the task, participants had to choose between card 
decks associated with different value distributions. Critically, in half of the blocks, participants 
were presented with options having the same means but different variances (the bottom four 
blocks shown in Figure 1b). This design feature enabled us to examine the effect of mean and 
variance on pro-variance biases, i.e., preference for the broader options in equal-mean blocks, 
as well as determine if computational parameters, particularly a positivity bias in learning rates 
in the 2lr-RW, and CVaR in a Bayesian CVaR model (see methods for model details), relate to 
individual differences in pro-variance bias in both simulations and empirical data. Our overarching 
hypothesis was that pro-variance bias and risk-sensitive parameters would be associated with 
traits linked to mood disorder.

RESULTS
We present findings from two independent online general population samples: a discovery (107 
participants recruited) and a replication study (117 participants were recruited). Twenty-eight 
participants from the discovery sample and 26 from the replication sample were excluded from 
analyses based on pre-specified criteria (see Methods).

EFFECT OF MEAN AND VARIANCE ON PRO-VARIANCE BIAS

First, we examined participants’ performances for the different-mean blocks (i.e., the top four 
blocks in Figure 1b, including the broad-high vs. broad-low (BHBL) block, the narrow-high vs 
narrow-low (NHNL) block, the broad-high vs narrow-low (BHNL) block, the narrow-high vs broad-
low (NHBL) block). Participants chose the options with higher mean values (option a) (see Figure 
2a&b) significantly above chance level (50%), in both the discovery (all t(78) > 16.45, p < .001) and 
replication samples (all t(90) > 16.90, p < .001). As expected, the percentage choosing the higher 
option in the BHBL block, where both options had broader distributions, was significantly lower than 
for the other three different-mean blocks (all t(78) >= –3.456, p <= .001 for the discovery sample, 
all t(90) <– 6.735, p < .001 for the replication samples.). This pattern showed that participants 
learned value differences well, and where options having broader distributions render accuracies 
in the BHBL block lower than is the case for other different-mean blocks.

Figure 1 Experimental design. 
a) task structure. Within a 
task block, participants were 
presented with the same two 
card decks for 30 trials. After 
entering a choice, a triangle is 
presented in the centre of the 
screen pointing to the chosen 
deck. Following this, a card 
from each deck was shown 
to the participants. b) Block 
types. The two card decks in 
a block could have the same 
or different means (high or 
low) and variances (narrow or 
broad). In total this entailed 
eight different blocks comprising 
broad-high vs broad-low (BHBL), 
narrow-high vs narrow-low 
(NHNL), broad-high vs narrow-
low (BHNL), narrow-high vs 
broad-low (NHBL), broad-high vs 
narrow-high (BHNH), broad-low 
vs narrow-low (BLNL), bimodal-
high vs narrow-high (BiHNH), 
and bimodal-low vs narrow-low 
(BiLNL). The two decks presented 
in the bottom four blocks have 
the same numerical means but 
different variances. To incentivize 
participants, they were 
instructed that the points they 
accumulated throughout the 
game would be converted into 
an actual monetary reward.
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Next, we examined for pro-variance biases by asking whether participants chose options with a 
broader distribution more in the same-mean blocks (the bottom four blocks in Figure 1b). For the 
discovery sample, participants chose the broader option significantly above chance level for the 
BHNH and BiHNH blocks (both t(78) > 6.34, p < .001), while choosing the narrow option significantly 
more for the BLNL block (t(78) = –4.466, p < 0.001) but not for the BiLNL block (t(78) = –.838, p = 
.405) (Figure 2c). In the replication sample, participants chose the narrower option significantly 
more in the BLNL and BiLNL block (both t(90) < –3.245, p ≤ 0.002), while choosing the broader 
option more in the BiHNH block (t(90) = 11.544, p < .001), but not for the BHNH block (t(90) = .729, 
p = .468) (Figure 2d). This response pattern suggests participants tend to be pro-variance biased in 
the both-high blocks but prefer the narrower option in the both-low mean blocks.

To formally examine the effect of mean and variance on pro-variance bias, we implemented a 2 
× 2 (mean: high vs. low; variance: broad vs. bimodal) repeated ANOVA for the four same-mean 
blocks. This analysis revealed a significant main effect of mean (Figure 2c&d, discovery sample: 
F(1,78) = 118.836, p < .001; replication sample: F(1,90) = 73.384, p < .001). Post-hoc analyses 
indicated a significantly greater pro-variance bias in the BHNH block compared to the BLNL block 
(discovery sample: p < .001; replication sample: p = .019), and for the bimodal blocks (BiHNH > 
BiLNL both p < .001). Thus, we replicated the main behavioural results of Moeller et al.(Moeller, 
Grohn et al. 2021), who showed greater pro-variance bias for better-than-expected options, using 
a much-simplified task.

These analyses also revealed a significant main effect of variance (discovery sample: F(1,78) = 
8.527, p = .005; replication sample: F(1,90) = 15.894, p < .001). However, an interaction of mean 
× variance was significant in the replication sample alone (F(1,90) = 19.120, p < .001), and not in 
the discovery sample (p = .323). Post-hoc analyses showed increased pro-variance bias in bimodal 
blocks for both-high mean blocks (p = .033 for the discovery sample, p < .001 for the replication 
sample) but not both-low mean blocks (both p > .507).

The results suggest that higher variances (bimodal distributions) further boost a pro-variance bias 
for options whose means are higher than expected. The observed pattern of results indicates 
participants were more risk-seeking when the environment yielded better-than-average 
outcomes and more risk-averse when the environment yielded worse-than-average outcomes. 
Higher variance environments served to enhance risk-seeking trends. Note, in our empirical data, 
we observed substantial individual differences in expression of a pro-variance bias, akin to that 
reported in Moeller et al. (Moeller, Grohn et al. 2021). Thus, to rule out the possibility that such 
individual differences emanate from decision noise we next examined if pro-variance biases 
related to individual differences in anxiety or depression traits (Hong and Cheung 2015), including 
rumination, trait anxiety, intolerance of uncertainty, dysfunctional attitudes and self-report 
depression (see Methods for more details).

PRO-VARIANCE BIASES AND INDIVIDUAL DIFFERENCES IN ANXIETY AND 
DEPRESSION TRAITS

In the discovery sample, we found that a general pro-variance bias (mean across the four same-
mean blocks) was negatively correlated with rumination scores (Figure 2e, r(77) = –0.230, p = .041) 
as measured by the rumination response scale (Treynor, Gonzalez et al. 2003), a common trait 
in depression and anxiety (McLaughlin and Nolen-Hoeksema 2011). This suggests people with a 
higher rumination propensity were more risk averse. Further analyses, segregating different blocks, 
showed this effect was driven mainly by responses within unimodal distribution blocks (r(77) = 
0.252, p = .025), and was not evident in bimodal blocks (r(77) = –0.079, p = .486). Moreover, the 
both-high mean and both-low mean blocks showed a similar pattern of negative correlation with 
rumination scores, but these did not reach formal significance level (r(77) = –0.175, p = 0.125 for 
the BHNH block, r(77) = –0.209, p = 0.065 for the BLNL block). This suggests individual propensities 
towards a pro-variance bias/risk-seeking is consistent across the two different contexts. However, 
we caution that it is important to validate these findings because the tasks (learning and making 
choices between options that are close in value) are subject to noise.
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To validate an association between rumination and pro-variance bias, we conducted an 
independent replication experiment using the same design. Here we again found a negative 
correlation between pro-variance biases and rumination scores (Figure 2f, r(89) = –0.231, p = .027), 
again driven more by unimodal distribution (r(89) = –0.260, p = .013) as opposed to bimodal blocks 
(r(89) = –0.025, p = .817). As previously, the BHNH block and the BLNL block showed the same 
negative correlations with rumination scores, but this only reached trend-level significance (r(89) 
= –0.207, p = .049, and r(81) = –0.180, p = .088, respectively). As there was only a single testing 
block of the BHNH and BLNL block in each sample, the pro-variance bias calculated using a single 
block might have a low signal-to-noise ratio. So when we combined data from both samples, we 
found significant negative correlations between rumination scores and a preference for choosing 
the broader options in both unimodal blocks (r(168) = –0.153, p = .046 for the BHNH block (see 
Figure S2a), r(168) = –0.186, p = .015 for the BLNL block (see Figure S2b)).

COMPUTATIONAL BASIS FOR A PRO-VARIANCE BIAS

To better understand the computational mechanisms underlying pro-variance biases we conducted 
simulations using different models. To ground these models in our behavioural results, we set the 
simulations to match several benchmarks: 1) when two options presented in a given block have 
different means, the simulated agents should choose the higher value option significantly more 
often, with a lower performance if both options had broader distributions (both-broad) compared 
to narrow distributions (both-narrow); 2) when two options have the same means, the simulated 
agent should choose the broader distribution more when the means of the two options are both 
higher than a prior expectation, i.e., 7 for poker (both-high), but choose the narrower distribution 
more if the means of the two options are both lower than 7 (both-low); 3) the simulated agent 
should show a similar trend towards a pro-variance bias in the both-high and both-low conditions. 
Based on these considerations, we ran simulations across four different blocks/conditions: 1) both-
narrow: the two options have both narrow distributions but different means (see Figure 3a NHNL); 
2) both-broad: the two options have both broad distributions but different means (see Figure 
3a BHBL); 3) both-low: the two options have the same means (both lower than 7) but different 

Figure 2 Pro-variance bias 
and ruminations. a–b) The 
percentages of choosing the 
option with a higher mean for 
the different-mean blocks for 
the discovery and replication 
samples, respectively. c–d) 
The percentages of choosing 
the option with a broader 
distribution for the same-
mean blocks for the discovery 
and replication samples, 
respectively. The dots on each 
bar represent the data point 
for each participant for that 
block. e–f) the correlations 
between rumination scores and 
the mean pro-variance bias 
in the same-mean blocks for 
the discovery and replication 
samples, respectively. Error bars 
indicate standard errors (s.e.); 

*p < 0.05; **p < 0.01; ***p < 0.001.
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variances (see Figure 3a BLNL); 4) both-high: the two options have the same means (both higher 
than the prior, which is 7 in this study) but different variances (see Figure 3a BHNH).

We first simulated a simple Rescorla-Wagner(1lr-RW) agent, with two free parameters: 1) a learning 
rate (α) governing the learning process that controls the extent to which an agent incorporates 
trial-by-trial feedback into updating expected values and 2) an inverse temperature (β) for the 
decision-making process, that controls overall stochasticity in value-based choices (see Methods 
for more details). Because the decision-making process (i.e., the SoftMax function controlled by 
β) is a component shared across all our models, our prime focus for this simulation is on how the 
parameters in the learning process impact choice probabilities.

As expected, the simulated 1lr-RW agent learned the different-mean blocks well (Figure 3b), 
performing slightly better for the both-narrow (the purple line) compared to the both-broad (the 
yellow line) condition. However, the agent did not distinguish between the both-high (the blue 
line) and both-low conditions (the red line), nor did the learning rate render the agent more or 
less pro-variance biased (the probabilities of choosing the broader option stay at about 50%, i.e. 
chance level) for either of the same-mean conditions (Figure 3b). Because 1lr-RW agents always 
learn the mean of a distribution, it does not manifest any preference when two options have 
different variances but similar overall means.

Figure 3 Simulation results. 
a). The probability density 
function of the distributions 
for the 4 different conditions 
in the simulations. b-e) 
simulation results for the 
1lr-RW, 2lr-RW, PEIRS and 
the Bayesian-CVaR models 
respectively. X-axes represent 
the learning rate from the 
1lr-RW model, positive bias in 
learning rates from the 2lr-RW 
model, omega from the PEIRS 
model, and the CVaR term 
from the Bayesian-CVaR model, 
respectively. Y-axes represent 
the percentages of choosing 
the higher distribution for the 
different-mean conditions or 
the broader distribution for the 
same-mean conditions. Purple 
represents the both-narrow 
condition. Yellow represents 
the both-broad condition. Blue 
represents both the both-high 
condition. Red represents the 
both-low condition.
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To allow the simulated agents to form expected values, other than the means of the sequences, 
we enabled an RW agent to have different learning rates for positive and negative prediction errors 
(2lr-RW model). An agent with positive biased learning rates (positive learning rate > negative 
learning rate) will integrate more positive prediction errors into its expected values, forming an 
expected value higher than the actual mean. Such an agent should form an even more positively 
biased expected value when learning a broader distribution than a narrow one. Therefore, a positive 
agent should manifest a pro-variance bias, and vice versa for an agent with negatively biased 
learning rates, where a relative positivity in learning rates controls the expectile of a distribution 
the agent eventually learns (Lowet, Zheng et al. 2020).

Consequently, we simulated a 2lr-RW model using two free learning parameters: a positive 
learning rate for updating positive prediction errors and a negative learning rate for negative 
prediction errors, while the decision-making process is the same as for the 1lr-RW model. Positive 
learning rate biases were defined by the ratio of positive learning rates to overall learning rates (see 
Methods for more details). The simulation results showed a near-linear relationship between the 
percentages of choosing the broader options in the same-mean conditions and positive learning 
rate biases (Figure 3c). This is consistent with the hypothesis that risk aversion could result from 
negative learning. However, this model failed to capture the observed behavioural differences 
between the both-high and both-low conditions.

We next simulated the PEIRS model from Moeller et al. (Moeller, Grohn et al. 2021), designed 
to explain a difference in pro-variance bias between the both-high and both-low conditions. 
Essentially, this model learns both the mean (with a learning rate for updating value) and variance 
of a sequence (with a learning rate for updating the average level of surprises, i.e., absolute values 
of the prediction errors). Another term, omega, together with stimuli prediction errors of presented 
options (the both-high condition would have an overall positive stimuli error, and the both-low 
would have an overall negative prediction stimuli error), controls how the estimated variance is 
added to, or subtracted from, the learned expected values when making choices (see Methods for 
more details). For example, an agent with a positive omega should be more pro-variance biased in 
the both-high condition but, at the same time, prefer the narrow option in the both-low condition 
and vice versa for an agent with a negative omega (as shown in simulation results in Figure 3d). 
If people, in general, express a positive omega, this model should explain a relatively higher pro-
variance bias in the both-high condition compared to the both-low condition, as shown in our 
empirical studies. However, in this model, pro-variance bias in the both-high condition should 
negatively correlate with pro-variance bias in the both-low condition. But, as we found consistent 
negative correlations with rumination scales in both-high and both-low conditions across both our 
samples, this model failed our 3rd benchmark criterion, as set out above.

Finally, we implemented a newly described model, a Bayesian-CVaR model, which learns a 
probability density function of the possible values using Bayes’ rule (Figure 4a–d), and then applies 
a CVaR term (η), which reads out the expectations of either the lower part (η <0) or upper part (η > 
0) of a distribution (Figure 4e), thereby controlling the overall risk level of an agent (see Methods for 
more details). The simulation results using this model met all three benchmarks: 1) the simulated 
agent performing well across the different-mean blocks; 2) The CVaR term controls a general 
propensity of pro-variance bias in both the same-mean conditions, consistent with a hypothesis 
that risk aversion could result from a negative interpretation bias; 3)At the same time, the agent 
showed consistently higher pro-variance biases in the both-high condition than in the both-low 
condition (Figure 3e).

To sum, both negative bias models, the negative learning model (2lr-RW model) and the negative 
interpretation model (the Bayesian-CVaR model), generated different propensities in terms of pro-
variance biases in our simulations. However, the negative interpretation model (the Bayesian-CVaR 
model) best captured the behavioural characteristics observed in our empirical data.
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MODEL FITTING AND MODEL COMPARISONS

Next, we fitted simulated models to the empirical data. For completeness, we also included the 
utility models from Moeller et al (Moeller, Grohn et al. 2021) and the Upper Confidence Bound (UCB) 
model (Auer 2002)(see supplement). We found across both independent samples that the Bayesian-
CVaR model fitted better than all other models, based on the Bayesian information criterion (BIC) 
(Figure 5a&b) and the exceedance probabilities (Fig S6). According to the simulation results above, 
we expected both the CVaR term from the Bayesian-CVaR model, and the positive bias in learning 
rates calculated from the 2lr-RW model, to capture individual differences in pro-variance bias in 
general. Indeed, we found that the CVaR estimates correlated with the pro-variance bias, showing 
the highest correlations across both samples compared to other models (Figure 5c&d, r(77) = 
0.813, p < .001 for the discovery sample, and r(89) = 0.811, p < .001 for the replication sample). 
The positive bias in learning rates from the 2lr-RW model also showed strong correlations with pro-
variance bias (Figure 5g&h, r(77) = 0.700, p < .001 for the discovery sample, and r(89) = 0.769, p 
< .001 for the replication sample). However, other models failed to capture the pro-variance bias: 
for the learning rate (α) estimates from the 1lr-RW model (discovery sample: r(77) = –0.279, p = 
.013; replication sample: r(89) = –0.125, p = .240), for the omega estimates from the PEIRS model 
(discovery sample: r(77) = –0.079, p = .491; replication sample: r(89) = –0.061, p = .567).

Figure 4 The Bayesian-CVaR 
model and simulations. 
a–d) Bayesian updating of 
the two card desks across 4 
example blocks (a: BHBL, b: 
NHNL, c: BHNH, d: BLNL). The 
blue represents the higher 
or broader distributions. The 
red represents the lower or 
narrower distributions. Darker 
colours indicate more recently 
updated value distributions. e) 
the CVaR term controls which 
part of the distribution is read 
out for decision-making. The 
higher the CVaR level, the 
more risk-seeking/positive-
bias an agent is. The black 
indicates which portion of the 
distribution is read out by the 
exemplar CVaR levels.



We next asked whether model estimates correlated with rumination response scales. We found 
that the CVaR term alone, from the Bayesian-CVaR model, correlated with rumination scale scores 
(Figure 5e&f, r(77) = –0.218, p = .053 for the discovery sample, and r(89) = 0.242, p = .021 for 
the replication sample). In contrast, key estimates from other models did not show significant 
correlations with rumination scores. For the positive bias in learning rates from the 2lr-RW model 
(Figure 5i&j, discovery sample: r(77) = –0.163, p = .150; replication sample: r(89) = –0.093, p = 
.383), the learning rate (α) estimates from the 1lr-RW model (discovery sample: r(77) = –0.130, p = 
.254; replication sample: r(89) = –0.011, p = .9204); for the omega estimates from the PEIRS model 
(discovery sample: r(77) = 0.144, p = .206; replication sample: r(89) = –0.067, p = .531).

DISCUSSION
Using a newly designed task, we provide evidence that participants’ choices under uncertainty 
manifest an enhanced pro-variance bias in good environments (when both options are better than 
expected) compared to choices in less good ones (when both options are worse than expected). 
Regardless of the environment, a pro-variance bias correlated negatively with participants’ 
rumination scores, indicating people who score high on this trait are less pro-variance biased or 
more risk averse in general. Based on these findings, we propose a new model, i.e., a Bayesian-CVaR 
model, that captures individual differences in pro-variance risk-seeking. In simulations, we show this 
model generates a range of risk-seeking and risk-averse behaviours. Modelling fitting and simulations 
indicated that a Bayesian-CVaR model best accounted for subjects’ behaviours, outperforming other 
models in both a discovery and replication study. Across both studies the risk-sensitive parameter 
CVaR correlated with individual differences in pro-variance bias and rumination scores.

In model-free analyses, we replicated an enhanced pro-variance bias when choice options were 
higher than the overall mean, as reported previously by Moeller et al. (Moeller, Grohn et al. 2021), 
an effect that depends on the establishment of the overall mean. Our task took advantage of 
the fact that, for poker playing cards, the range and mean are generally known to participants. 
Furthermore, a blocked-based presentation (resulting in less working memory demand) with full 
feedback (requiring fewer trials to learn and eliminate uncertainty-directed exploration) rendered 
the task shorter, easier, and more intuitive for online participants. This task design difference is one 
possible reason why the PEIRS model, which calculates an overall expectation, did not perform 
as well in this task version. Nevertheless, it is striking that for both Moeller et al.’s study and ours, 
although very different in design, both show a similar option mean modulation of pro-variance bias.

When we investigated individual differences in pro-variances bias, we found significant negative 
correlations, across both samples, between the pro-variance bias and rumination a common 
trait in anxiety and depression (McLaughlin and Nolen-Hoeksema 2011). However, we did not 
find clear evidence for an effect of means on the association between the pro-variance bias and 
rumination. Indeed, a similar pattern of negative association in the both-high and both-low blocks 
suggests that individual differences in risk sensitivity are more trait-like than context-dependent. 
Furthermore, our results indicate that being in a less favourable environment (available options 

Figure 5 Model estimates. a–b) 
relative BICs for discovery and 
replication samples, respectively. 
c–d) correlations between 
the mean pro-variance bias 
and the CVaR estimates from 
the Bayesian-CVaR model 
for discovery and replication 
samples. e–f) correlations 
between the CVaR estimates 
and rumination response scales 
for discovery and replication 
samples. g–h) correlations 
between the positive bias in 
learning rates from the 2lr-
RW model and mean pro-
variance bias for the discovery 
and replication samples i–j) 
correlation between the positive 
bias in learning rates and 
rumination response scales 
for discovery and replication 
samples.
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having lower means) can increase the expression of risk aversion over time, as was also shown in 
Moeller et al. (Moeller, Grohn et al. 2021). One implication is that if people, for example, those with 
higher depression and anxiety traits, believe that rewards in their environment are scarce, then 
this might contribute to an explanation for their risk aversion propensity.

Our simulations and empirical findings were best accounted for by a Bayesian-CVaR model. Here 
an agent uses Bayes’ rule to update its beliefs regarding value distribution and then uses CVaR, 
a risk-sensitive term, to control how the learned distribution is utilized during decision-making. 
Combining Bayesian learning and CVaR has previously been implemented in Finance (Bodnar, 
Lindholm et al. 2022) and Artificial intelligence (Rigter, Lacerda et al. 2021, Lin, Ren et al. 2022). 
It is of interest that a theoretical paper that proposed using CVaR in modelling risk-sensitivity 
behavior in sequential tasks suggested a likely association with rumination (Gagne and Dayan 
2022). Albeit using a much-simplified task, to the best of our knowledge, ours is the first study 
testing this class of model in human empirical data. Importantly, we show that CVaR estimates 
best capture individual differences in pro-variance bias and correlate with task-independent 
individual differences in trait rumination.

The Bayesian-CVaR model, combining a risk-sensitive term with a distributional representation, 
has two principal advantages. First, the CVaR term allows for greater flexibility in dealing with 
uncertainties. Indeed, the CVaR term in Bayes-adaptive Markov decision processes (MDPs) 
outperforms other models in stochastic environments (Rigter, Lacerda et al. 2021). Second, the 
Bayesian learner enables a richer representation of the distributions than the expected value. The 
advantage of distributional coding is evident in an observation that artificial agents with such 
coding outperform single expected value tracking agents (Dabney, Rowland et al. 2018).

A notable finding was a boosting of a pro-variance bias in extremely high variance (bimodal blocks) 
environments, which we speculate reflects the adoption of more varied learning strategies when 
values were bimodal. For example, participants might treat this context more like a probability 
learning task, i.e., treating big numbers (as winning) and small numbers (as losing) as two states 
with different probabilities. At the same time, correlations between pro-variance bias and rumination 
scores were primarily driven by unimodal blocks than the bimodal block, a finding consistent across 
the two samples. We note the bimodal block in our study has some resemblance to the Iowa 
gambling task (IGT) (Bechara, Damasio et al. 1994), where value distributions are also very bimodal, 
leading to winning a frequent small amount and occasional loss of a large amount. Indeed, 
studies using IGT find different behaviour patterns in people with depression compared to controls, 
however IGT behaviour correlation with depression scores is not well replicated (Buelow and Suhr 
2009; Siqueira, Flaks et al. 2018; Arias, Patrick et al. 2022). Based on our findings, we surmise that 
unimodal distribution learning would show more consistent results in measuring individual pro-
variance bias/risk-sensitivity, despite a limitation that for each participant we only have one each of 
the two unimodal blocks, one for the both-high block and one for the both-low block.

In summary, using a newly developed distribution learning task, we show that a Bayesian-CVaR 
model can generate risk-sensitive behaviour, as observed in our empirical data and capture 
individual differences in pro-variance bias. We suggest the task and the model provide a framework 
to study individual differences under uncertainty, offering a tool to further probe a disposition to 
depression and anxiety.

METHODS
PARTICIPANTS AND PROCEDURES

For our first study, we recruited 107 participants from the general population via Prolific for the 
discovery sample. Of these, 18 were excluded from the analyses because their mean accuracies 
for the different-means blocks were less than 60%; another 10 were excluded because they chose 
the same option for all the trials in at least one of the four same-mean blocks. Therefore, this left 
us with a final sample of 79 (38 females) participants aged 38.00 (±11.50).
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For our replication study, we recruited 117 participants via Prolific. Of these, 21 were excluded 
from the analyses because their mean accuracies for the different-means blocks were less than 
60%, 5 were excluded because they chose the same option for all the trials in at least one of the 
four same-mean blocks. The final replication sample consists of 91 (22 females) participants aged 
30.72 (±10.15).

Participants were directed to pavlovia.org for the testing. The experiment was implemented using the 
software PsychoPy (v2021.1.4) (Peirce, Gray et al.). All participants also completed 5 questionnaires 
measuring different cognitive traits associated with anxiety and depression (Hong and Cheung 
2015): 1) the rumination response scale (RRS) (Treynor, Gonzalez et al.). The RRS consists of 22 
items each with a scale of 1(almost never) to 4 (almost always) from which participants choose. 
All item scores were summed to obtain a total RRS score. 2) the trait anxiety component from the 
state-trait anxiety inventory (tSTAI) (Spielberger 1983); 3) the Zung self-rating depression scale 
(SDS) (Zung 1965); 4) the intolerance of uncertainty scale (IUS) (Buhr and Dugas 2002); 5) the 17-
item Dysfunctional Attitude Scale form A (DAS-A) (De Graaf, Roelofs et al. 2009) for the discovery 
sample, and a brief version of the Hypomanic Attitudes and Positive Predictions Inventory (Brief-
HAPPI) (Mansell and Jones 2006) for the replication sample. The questionnaires were added as part 
of our online testing (after the main experiment) using a webpage-based tool (Morys-Carter 2021).

All participants provided informed consent before starting the task and were reimbursed a base 
rate and a bonus they earned during the learning task. This study was approved by the UCL 
Research Ethics Committee (16639/001) and is in accordance with the Declaration of Helsinki 
(Ashcroft 2008).

EXPERIMENTAL DESIGN

Participants performed the magnitude learning task described in the Introduction section (Figure 
1a). The underlying value distributions for each option differ in mean (high vs low) and variance 
(broad vs narrow). The mean of the high distributions is 8 (higher than the overall mean of 7) and 
6 for the low distributions (see supplementary method for detailed descriptions). The task was 
composed of eight block types (Figure 1b): four different-mean blocks: broad-high vs broad-low 
(BHBL), narrow-high vs narrow-low (NHNL), broad-high vs narrow-low (BHNL), and narrow-high vs 
broad-low (NHBL); and four same-mean blocks: broad-high vs narrow-high (BHNH), broad-low vs 
narrow-low (BLNL), bimodal-high vs narrow-high (BiHNH), and bimodal-low vs narrow-low (BiLNL). 
Participants completed one block of each block type with each block containing 30 trials. The block 
order was randomized across participants.

At the beginning of every trial, participants had to choose between two card desks, cued by the 
different colours and/or patterns of the back of the poker cards. The same two card desks were shown 
throughout the block. Two new card desks (different colours and/or patterns from the ones shown 
before) were assigned to each new block. The positions (left or right side) of the two card desks were 
randomized from trial to trial. Participants made their choices by clicking on the cards. Participants 
were not limited in time to respond. One to two seconds after they made the choices, the card values 
drawn from each distribution would be shown simultaneously for three seconds, followed by 1–2 
seconds of inter-trial intervals (ITI). If the chosen card number were higher than the unchosen card 
number, then participants would gain the points that were equal to the value differences between 
the two numbers for that trial; if the chosen card number were lower than the unchosen one, 
participants would lose the points that equal to the value differences between the two cards. The 
points wouldn’t change for that trial if the two card numbers were equal. Participants were told their 
won points would be added to their final reimbursement to encourage better performances.

STATISTICAL ANALYSES

The percentages of choosing option a (the higher or broader option) were calculated for each 
block. The mean pro-variance biases were calculated by averaging the percentages of choosing 
the broader options for the 4 same-mean blocks, i.e., the BHNH block, the BLNL block, the BiHNH 
block, and the BiLNL block for each participant.

https://pavlovia.org
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The statistical analyses were performed in IBM SPSS Statistics, version 26.0.0.0®. Using one-
sample T-tests, we first examined whether participants’ preference for the higher option, for the 
different-mean block, or the broader option in the same-mean block, exceeded chance levels 
(50%) for each block. Then we ran a 2 × 2 repeated ANOVA analysis for the 4 same-mean blocks. 
The two factors were 1) overall means: high, i.e., the BHNH block and the BiHNH block, vs. low, 
i.e., the BLNL block and the BiLNL block; 2) variances of the options A: broad, i.e., the BHNH block 
and the BLNL block, vs. bimodal, i.e., the BiHNH block and the BiLNL block. Post hoc analyses were 
conducted using Bonferroni confidence interval adjustment. All correlation analyses in this paper 
were performed using Pearson’s Correlation two-tailed.

COMPUTATIONAL ANALYSES

All model simulations and model fittings were performed using Matlab R2020b. Expect for the 
Bayesian-CVaR model, the other models used in this paper are all variants of the RW model 
(Rescorla 1971) which share key features and terms. In these models, expected values Vt are 
updated trial by trial using a proportion (controlled by learning rates α) of prediction errors δ, which 
is the deviation of reward outcome Rt and expected values Vt. The outcome values (i.e. 1–13) were 
rescaled to 0.01–0.99. The prior expected value was set to 0.5. All models used apply a standard 
softmax function for decision-making processes (Daw 2011). In a two-arm bandit choice task, the 
probabilities of choosing an option (Pa) are linked to the differences between the learned expected 
values for the two options (see Equation 1). Inverse temperature β controls how stochastic the 
association is. Prior for β is log(β) ~ –3 – 3 for all models.

	
( )

1
1 a b

a V V
P

e β− ⋅ −=
+

� Equation 1

MODELS

1lr-RW

In this model, there is only one free parameter during the learning process, i.e., α, which controls 
how much the prediction errors (δ) are updated into the expected values (see Equation 2). 
Prediction errors are the differences between the outcome and the expected value for a given 
option. logit(α) ~ –4.6 ~ 4.6.

	 1t tV V α δ+ = + ⋅ � Equation 2

	 t tR Vδ = − � Equation 3

2lr-RW

In this model, two free parameters α+ and α– are used to control how much the positive and 
negative prediction errors are integrated into the expected values, respectively (Equation 4 & 
Equation 5). Positive bias in learning rates (LRpos-bias) is defined as the ratio of the positive learning 
rate to the sum of the two learning rates (Equation 6). logit(α+/α–) ~ –4.6 ~ 4.6.
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PEIRS

In the PEIRS model, the expected values V and expected spread S of the outcomes are learned 
simultaneously using Equation 7 and Equation 8, respectively. The estimated spread St is combined 
with the overall prediction errors of the options δoption to determine the value V’ (see Equation 10) 
used for the decision process (Equation 11). δt

option is the overall prediction of mean values of the 
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two options offered compared to a global mean, which is 0.5 in this task (Equation 9). For example, 
for the both-high blocks, δt

options would be overall positive, δt
options for the both-low blocks, would be 

overall negative. ω in the Equation 10 controls the direction and how much the estimated spread 
would influence the decision-making process. logit(αQ/αs) ~ –4.6 – 4.6. ω ~ –10 – 10. log(S0) ~ –4.6 – 0.

	 1t t Q outcomeV V α δ+ = + ⋅ � Equation 7

	 ( )1 | | –t t s outcome tS S Sα δ+ = + ⋅ � Equation 8

	 – 0.5
2

t t
t a b
options

V Vδ +
= � Equation 9

	 ' ( )t
t t toptionsV V tanh Sω δ= + ⋅ ⋅ � Equation 10
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Bayesian-CVaR

In this model, a probability density function θ of the value distribution for each option is learned 
using Bayes’ rules. The posterior belief P(θt+1) of the value distribution is updated trial by trial by the 
combination of the prior belief P(θt) and probability density function of the evidence for that trial 
P(Rt) using Equation 12. The initial belief P(θ0) is set as a flat distribution using a Beta distribution 
Beta (1,1), assuming the probability of seeing each number is equally likely at the beginning 
of a block. The probability density function of the evidence is a Beta distribution Beta (eventαt, 
eventβt) with a mean of Rt and the same variance (denoted as updatevar), as shown in Equation 
14 & Equation 15, respectively. This means a new belief is a combination of a prior belief and a 
probability density function centering the recently shown number with a variance controlled by 
updatevar (set as a hyperparameter to 0.009 for this study). Eventαt and eventβt can be calculated 
using Equation 16 & Equation 17 respectively (these two equations were derived using the solve 
equation function on Equation 14 and Equation 15 in MATLAB).
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Now that we have the trial-by-trial estimated value distributions (Z), we apply CVaR to read out 
values as input to the softmax decision-making function. CVaR can be used to read out a part of 
either the lower (Gagne and Dayan 2022) or the upper end (Rockafellar and Uryasev 2000) of a 
distribution. Reading out the lowest generates the lowest value while reading out the highest end 
gives the highest value. Here we set the CVaR levels η from –0.95 to 0.95, with –0.95 reading out 
5% lower end of a distribution and 0.95 reading out the top 5% of a distribution, while 0 reading 
out the mean of the whole distribution (see Figure 4e). CVaR level η = 0 means the agent makes 
decisions based on the unbiased mean of the estimated distributions. Positive η means the agent 
makes decisions based on a positively biased readout of the estimated distribution, and therefore 

is risk-seeking. Vice versa for negative η being risk averse. logit 1
2

η+ 
 
 

 ~ –7 – 7.
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To do this, we first calculated the cumulative distribution function (CDF) of a distribution (Z) (Equation 
18) and then find the corresponding percentile of the distribution, denoted as Value at Risk (VaR) 
(Equation 19). The CVaR is derived as either the mean of the distribution below the VaR (if η ≤ 0) or 
the mean of the distribution higher than the VaR (if η > 0) (Equation 20). CVaRs for the two options 
were put into a softmax function (Equation 1) to estimate the probability of choosing option a.
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MODEL FITTING

All models were fitted in MATLAB using a variational Bayes’ approach. Only behaviour data from 
the four same-mean blocks were used for the model fitting. Because the different-mean blocks 
were very simple, many participants always chose the higher ones in these blocks. All trials from 
the same-mean blocks were used in the modelling fitting. Bayesian information criterion (BIC) 
was calculated for each model using the best-fitted parameters for each participant (Equation 
21 & Equation 22). L̂ denotes the maximized value of the likelihood function of the model M, x: 
the observed data, n: the number of observations, k: the number of free parameters in the model. 
BICs for a random model were calculated with each decision probability set as 0.5 and k = 0. BIC 
scores were summed across participants, with lower sum BIC indicating better model fit. Delta BIC 
(plotted in Figure 5a&b) for each model was calculated by subtracting the BIC score of the best-
fitting model in each experiment.

	 ˆln( )–2ln( )BIC k n L= � Equation 21

	 ˆ ˆ( , )L p x Mθ= ∣ � Equation 22

MODEL SIMULATION ANALYSES

We simulated 4 task conditions: both-high, both-low, both-broad and both-narrow. Five hundred 
blocks of 30 trials were generated for each task condition for the agents to learn. The same events 
were used in the simulations for each model. We sampled evenly from each free parameter space 
for each model. The simulation result for a particular parameter was averaged across all other free 
parameters in the same model.
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