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A B S T R A C T 

Next-generation radio interferometers like the Square Kilometer Array have the potential to unlock scientific discoveries thanks 
to their unprecedented angular resolution and sensitivity. One key to unlocking their potential resides in handling the deluge 
and complexity of incoming data. This challenge requires building radio interferometric (RI) imaging methods that can cope 
with the massive data sizes and provide high-quality image reconstructions with uncertainty quantification (UQ). This work 

proposes a method coined QUANTIFAI to address UQ in RI imaging with data-driven (learned) priors for high-dimensional 
settings. Our model, rooted in the Bayesian framework, uses a physically moti v ated model for the likelihood. The model exploits 
a data-driven convex prior potential, which can encode complex information learned implicitly from simulations and guarantee 
the log-concavity of the posterior. We leverage probability concentration phenomena of high-dimensional log-concave posteriors 
to obtain information about the posterior, a v oiding MCMC sampling techniques. We rely on conv e x optimization methods to 

compute the MAP estimation, which is known to be faster and better scale with dimension than MCMC strategies. QUANTIFAI 
allows us to compute local credible intervals and perform hypothesis testing of structure on the reconstructed image. We propose 
a no v el fast method to compute pixel-wise uncertainties at different scales, which uses three and six orders of magnitude 
less likelihood e v aluations than other UQ methods like length of the credible intervals and Monte Carlo posterior sampling, 
respectively. We demonstrate our method by reconstructing RI images in a simulated setting and carrying out fast and scalable 
UQ, which we validate with MCMC sampling. Our method shows an impro v ed image quality and more meaningful uncertainties 
than the benchmark method based on a sparsity-promoting prior. 

Key words: Radio Interferometric Imaging – Machine Learning – Algorithms – Data Methods. 
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 I N T RO D U C T I O N  

adio astronomy plays a crucial role in expanding our understanding 
f the Uni verse, of fering a unique perspective on astrophysical 
nd cosmological phenomena. Among the transformative tools in 
n astronomer’s toolkit, radio interferometric (RI) imaging stands 
ut as an indispensable technique. Aperture synthesis and radio 
nterferometry (Thompson, Moran & Swenson 2017 ) allow us 
o achieve high angular resolutions providing immense power to 
esolve objects. Furthermore, radio frequency signals are only weakly 
ttenuated by our atmosphere, allowing for observations at the Earth’s 
urface. The unparalleled angular resolution, high sensitivity, and the 
ifferent phenomena emitting in the radio wav elength re gime make 
I an ideal candidate to better help us understand our Universe. 
 E-mail: tobiasliaudat@gmail.com (TIL); jason.mcewen@ucl.ac.uk (JDM) 
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rovided the original work is properly cited. 
The advent of the Square Kilometre Array (SKA; Dewdney et al.
009 ) heralds a new era in radio astronomy (Braun et al. 2015 )
panning the study from the epoch of reionization and fast radio
ursts to galaxy evolution and dark energy. SKA’s vast collecting area 
nd sensitivity promise to provide a leap forward in our observational
apabilities, opening doors to disco v eries. Ho we ver, this transforma-
ive potential comes with the formidable computational challenge 
f processing and making sense of the unprecedented volume of 
KA-generated data. Developing and implementing algorithms that 
an efficiently handle SKA’s data deluge is a challenge. In addition,
chieving the high reconstruction performance required to unlock 
KA’s full potential is a significant obstacle in the SKA’s data
rocessing requirements. 
The aperture synthesis techniques in RI probe the sky by acquiring

pecific Fourier measurements, which results in incomplete co v erage 
f the Fourier domain of the sky’s image of interest. The incomplete
 ourier co v erage makes the problem of estimating the underlying
ky image, which we know as RI imaging, an ill-posed inverse
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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roblem, which is further complexified by the observational noise.
aving a way to quantify the uncertainty in the image reconstructions
ecomes essential given the uncertainties involved in the RI imaging
roblem. To make scientifically sound inferences and informed deci-
ions, we need the ability to quantify these uncertainties rigorously.
his moti v ates the de velopment of uncertainty quantification (UQ)
ethods tailored to the complexities of radio interferometric data,
here scalability, i.e. the computational complexity with respect to

he amount of data processed, and performance play a central role.
e need to ensure that our reconstructions are not only insightful but

lso trustworthy. 
In a nutshell, we want to develop RI imaging methods that

an deliver precision with uncertainty quantification and that are
ighly scalable. Most existing methods only tackle some of these
hree requirements. The widely used CLEAN algorithm (H ̈ogbom
974 ) built its success on scalability and fast inference. CLEAN and
ts extensions (Cornwell 2008 ; Offringa et al. 2014 ; Offringa &
mirnov 2017 ) have been continuously used in many RI imaging
ipelines since its inception. Despite offering limited imaging quality
nd reconstruction artefacts compared to other approaches, CLEAN

tands out due to its scalability. More recent approaches leverage
ompressed sensing theory, relying on sparse priors (often in wavelet
epresentations) and conv e x optimization techniques (Wiaux et al.
009 ; McEwen & Wiaux 2011 ; Carrillo, McEwen & Wiaux 2012 ,
014 ; Dabbech et al. 2015 , 2018 ; Pratley et al. 2018 ). These methods
ave been shown to improve the reconstruction quality at the expense
f increased computational complexity. Considerable work has been
irected to parallelization and acceleration efforts for sparsity-based
ethods (Onose et al. 2016 ; Pratley et al. 2019a ; Pratley, Johnston-
ollitt & McEwen 2019b ; Thouvenin et al. 2022a , b ). 
The deep learning revolution has introduced a powerful way to

ncode complex image priors in neural networks, which may be
sed to solv e comple x high-dimensional inverse problems. This
ata-driven or learned paradigm has gained much traction across
maging landscape problems, including RI imaging (Allam 2016 ;
erris et al. 2022 ; Aghabiglou et al. 2023 ; Mars, Betcke & McEwen
023 ). Learned methods can impro v e the reconstruction quality
ith respect to handcrafted priors, such as sparsity-based wavelet
riors, as well as provide acceleration (Terris et al. 2022 ; Mars et al.
023 , 2024 ; Aghabiglou et al. 2024 ) to conv e x optimization-based
ethods. 
Unfortunately, none of the RI imaging methods mentioned abo v e,

earned, sparsity-based, or CLEAN -based, provide UQ tools for a
iv en model. Cai, Pere yra & McEwen ( 2018a , b ) proposed methods
or Bayesian UQ on RI imaging problems. Cai et al. ( 2018a )
ev erages proximal Marko v chain Monte Carlo (MCMC) methods
Pereyra 2016 ) to provide support for sparsity-promoting priors.
he proposed method allows them to reconstruct the image and
rovide UQ by sampling the posterior probability distribution. The
rawback of the method is the high computational cost suffered by
ll MCMC sampling techniques. The companion paper, Cai et al.
 2018b ), o v ercomes the need for posterior sampling with maximum-
-posteriori (MAP) based UQ (Pereyra 2017 ) relying on conv e x
ptimization techniques. The second method (Cai et al. 2018b )
rovides a significant speed-up with respect to the sampling-based
ethod (Cai et al. 2018a ), but its reconstruction quality is limited to

parsity-promoting priors. 
Other RI imaging methods have addressed UQ for their recon-

tructions. Dia et al. ( 2023 ) proposed to use score-based generative
odels as priors (Ho, Jain & Abbeel 2020 ; Song et al. 2020 ), which

y employing the convolved likelihood approximation (Adam et al.
022 ; Remy et al. 2023 ) are able to sample from the posterior. How-
ASTAI 3, 505–534 (2024) 
ver, the method is computationally costly, and the sampling relies
n MCMC methods. The Bayesian RI imaging method comrade
Tiede 2022 ) was developed for very-long-baseline interferometry
VLBI) aiming to image black holes and active galactic nuclei. The
omrade method relies on MCMC sampling methods like nested
ampling (Ashton et al. 2022 ) and Hamiltonian Monte Carlo (Xu
t al. 2020 ) to sample from the posterior. Posterior sampling based
n MCMC methods can be enough for VLBI but cannot yet cope
ith the dimensions of SKA-like images. 
An alternative Bayesian RI imaging algorithm is the resolve
ethod and its upgrades (Arras et al. 2018 , 2021 , 2022 ; Knollm ̈uller,
rras & Enßlin 2023 ; Roth et al. 2023 ), introduced initially in

unklewitz et al. ( 2016 ), which can produce uncertainty maps from
pproximate posterior samples. The model is based on Gaussian
andom fields with different analytical priors used to promote certain
spects of the reconstruction, like positivity and spatial and temporal
orrelations. One no v elty of the method is to approximate the true
osterior probability distribution with variational inference and,
herefore, be able to sample from the approximated distribution
ithout resorting to MCMC methods that do not scale well in very
igh dimensions. The approximated posterior follows a multivariate
aussian distribution, where their parameters are learnt by trying

o maximize the information o v erlap between the true posterior
nd the model by minimizing a Kullback-Leibler (KL-) divergence.
iven that the full covariance matrix scales with the squared of

he number of pixels, the authors exploit an approximation in the
icinity of the mean estimate. The method is based on the metric
aussian variational inference (MGVI) approach from Knollm ̈uller
 Enßlin ( 2019 ). resolve has been used for reconstructions with
LBI observations of M87 ∗ (Arras et al. 2022 ) and Sagittarius
 ∗ (Knollm ̈uller et al. 2023 ) from the Event Horizon Telescope

EHT) (Event Horizon Telescope Collaboration 2019a , b ), as well as
bservations of Cygnus A from the very large array (VLA) (Arras
t al. 2018 , 2021 ; Roth et al. 2023 ). 

In this article, we delve into the forefront of RI imaging and
ropose a method coined QUANTIFAI , based on learned conv e x priors,
apable of delivering high-quality reconstructions with uncertainty
uantification and being highly scalable. The method relies on
he mathematically principled Bayesian framework to provide an
nderstanding of the uncertainties through the posterior distribution.
y restricting our model to log-concave posteriors, we can exploit

ecent MAP-based UQ techniques (Pereyra 2017 ), providing scalable
ptimization-based UQ. We build upon recent advances in neural-
etwork-based conv e x re gularizers (Goujon et al. 2023b ), allowing
s to impro v e the reconstruction quality and obtain more meaningful
ncertainties with respect to Cai et al. ( 2018b ). On top of the
ypothesis tests of structure on the reconstructed image, we propose
 no v el fast method to estimate pix el-wise uncertainties as a function
f scale. 
The remainder of this article is organized as follows. In Sec-

ion 2 , we start by re vie wing the RI imaging and techniques for
he resulting inverse problem. Section 3 describes QUANTIFAI , the
roposed method, and the RI image reconstruction algorithm. In
ection 4 , we introduce the core of our scalable UQ and the different
Q techniques it allows. The experimental results, including the
erformance of QUANTIFAI reconstruction and its UQ techniques, are
resented in Section 5 . Section 6 presents experimental results using
ore realistic observation based on simulated ungridded visibility

atterns from the MeerKAT radio telescope. In Section 7 we provide
 discussion on some limitations and possible extensions of the
roposed methodology. We provide concluding remarks and present
ome future perspectives in Section 8 . 
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 R A D I O  IN TERFERO METRIC  IMAG ING  

n this section, we start by re vie wing the RI imaging inverse
roblem and discuss approaches to tackle it, including sparsity-based 
egularization, the CLEAN method, and learned approaches. We then 
ntroduce the Bayesian framework elements needed such as MAP 

stimation and proximal MCMC sampling algorithms that will be 
ater used as validation. 

.1 Radio interferometry 

he interferometric measurement equation for a radio telescope 
Thompson et al. 2017 ) in the monochromatic setting relates our 
bservations represented by the visibility function Y to the sky 
rightness X , which we want to reconstruct, 

Y( u, v, w) = 

“
X ( l, m ) A ( l, m ) √ 

1 − l 2 − m 

2 

× exp 
[ 
−2 π i w 

(√ 

1 − l 2 − m 

2 − 1 
)] 

exp [ −2 π i ( lu + mv ) ] d l d m, 

(1) 

here u = ( u, v, w) are the interferometer baseline coordinates with
nits depending on the observation wavelength, l = ( l, m, n ) are
osine sky coordinates restricted to the unit sphere, and A includes 
irection-dependent effects (DDEs) like the primary beam of the 
ishes. The previous general model allows us to consider different 
DEs through A and non-coplanar effects through the exponential 

erm in w. These effects become considerable when considering 
ide fields of view and long baselines. There exists a rich body of

iterature incorporating such effects, e.g. Smirnov ( 2011a , b , c , d ),
hompson et al. ( 2017 ), and there are scalable algorithms that take

hem into account, e.g. Pratley et al. ( 2019b ). 
In this article, for the sake of simplicity but without loss of

enerality, we assume the coplanar setting, where the antennas are 
ocated in the same w plane. We also assume that we observe a small
eld of view such that 1 − l 2 − m 

2 ≈ 1. Consequently, we have

xp 
[ 
−2 π i w 

(√ 

1 − l 2 − m 

2 − 1 
)] 

≈ 1, and equation ( 1 ) reduces to 

( u, v) ≈
“

X ( l , m ) A ( l , m ) exp [ −2 π i ( l u + mv ) ] d l d m . (2) 

rom the previous equation, we can notice the remarkable result of
( u, v) = F ( AX )( u, v) where F is the 2D Fourier transform. 
To further simplify the problem, we will a v oid using the continuous
 and X and work with their discrete counterparts, x and y , 

especti vely. The observ ational model we study for our RI imaging
roblem writes 

y = � x + n , (3) 

here y ∈ C 

M are the M observed complex visibilities, x ∈ R 

N is the 
iscrete sky brightness sampled on a N point grid, and � ∈ C 

M×N is
he linear measurement operator that models the acquisition process. 

ithout loss of generality, the observational and instrumental noise 
 ∈ C 

M is assumed to be independent and identically distributed (iid) 
hite Gaussian noise with zero mean and standard deviation σ . If the
oise is not white, we can incorporate a noise whitening matrix in
he � operator such that the previous white noise assumption holds. 

Each pair of antennas provides us with one visibility, which is
 noisy Fourier component of the intensity image. Using an array 
f n radio antennas allows us to sample 

(
n 

2 

) = ( n 2 − n ) / 2 points
n the uv-plane (or Fourier plane). The distribution of these points
epends on the configuration of the radio antenna array. If different 
ime intervals are considered, the Earth’s rotation can be exploited 
o increase the number of uv points. The uv co v erage is incomplete
n all practical cases, and the measurements are noisy. Therefore, the
inear operator � is ill-posed. If we also consider a large number of

easurements, reco v ering x from y becomes a challenging inverse 
roblem. 
The most basic reconstruction of x is often referred to as the

aturally weighted dirty image that we will denote from now on
s ˆ x dirty and call by dirty image as calibration weights are not
urrently being taken into account in this work. This estimation is
btained by applying the adjoint of � to the visibilities y . To obtain
 higher fidelity solution to the RI imaging inverse problem, we
ust regularize the problem by incorporating some prior information 

bout the desired solutions x . A broad range of methods can be
haracterized by what type of prior information is used to regularize
he inverse problem and which algorithm is used to compute the
econstructed image ˆ x . 

.2 Sparsity-based regularization 

he last two decades have brought us a great number of RI imaging
ethods based on sparse representations. The prior information 

xploited is that the solution x is known to be sparsely represented
n some bases or dictionaries. The bases are often built using
ultiscale wavelets, or a dictionary is constructed with a collection of
avelets (Mallat 2008 ). We can represent our image x in a dictionary
 ∈ C 

N×L , 

x = � a = 

L ∑ 

i= 1 

� i a i , (4) 

here a ∈ C 

L is a vector of coefficients of x weighting the corre-
ponding dictionary atoms of � . The assumption made to regularize 
he inverse problem is that a is sparse or compressible, meaning that

ost of the coefficients are zero-valued or near zero, respectively. An
rray a is called k-sparse if it has only k non-zero elements, which
an be written as ‖ a ‖ 0 = k, where ‖ · ‖ 0 denotes the � 0 pseudo-norm.

Sparsity should be ideally enforced through the � 0 pseudo-norm, 
hich is non-conv e x. Consequently, a conv e x relaxation to the � 1 
orm is used, which is a sparsity-promoting norm. The optimization 
roblem is formulated such that its solution coincides with the 
nverse problem solution. Therefore, the inverse problem can be 
ackled with an optimization algorithm. The optimization objective 
omprises two competing terms: (i) a data-fidelity term f ( ·) that
romotes consistency with the observed visibilities and depends on 
he statistics of the noise n ; and (ii) a regularization term r( ·) that
ncodes our prior knowledge of x . The optimization problem reads 

ˆ x = argmin 
x ∈ R N 

f ( x ) + 

∑ 

k 

λk r k ( x ) , (5) 

here we are using a sum of regularization terms r k , each with
ts corresponding regularization strength parameter λk . Substituting 
he RI data fidelity and sparsity-enforcing regularization in an 
 v erdetermined wav elet dictionary � terms into equation ( 3 ) we
btain 

ˆ x = argmin 
x ∈ R N 

1 

2 σ 2 
‖ y − � x ‖ 2 2 + λ

∥∥� 

† x 
∥∥

1 
, (6) 

here σ is the noise standard deviation. 
The previous formulation is referred to as unconstrained. Other 

orks consider the constrained formulation, which minimizes the � 1 
erm with respect to a hard � 2 -ball constraint o v er y with a radius of
, which is related to the noise’s σ (Carrillo et al. 2012 ; Pratley et al.
018 ). In this article, we will focus on the unconstrained formulation
RASTAI 3, 505–534 (2024) 
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s it has a natural Bayesian interpretation. Obtaining the solution
rom equation ( 6 ) involves solving a conv e x optimization problem,
here we have the sum of a differentiable and a non-differentiable

erm. Proximal algorithms (Parikh & Boyd 2014 ) are well suited to
ackle such optimization problems. Recent developments brought us
 wide collection of proximal optimization algorithms, such as the
orw ard-backw ard (FB) algorithm (Combettes & Pesquet 2009 ), the
ISTA algorithm (Beck & Teboulle 2009 ), the alternating direction
ethod of multipliers (ADMM; Boyd et al. 2011 ), and the primal-

ual forw ard-backw ard algorithm (Chambolle & Pock 2011 ; Condat
013 ), to mention a few. A rich literature exists exploiting the
forementioned concepts to tackle the RI imaging problem (Wiaux
t al. 2009 ; McEwen & Wiaux 2011 ; Carrillo et al. 2012 , 2014 ; Onose
t al. 2016 ; Pratley et al. 2018 , 2019a , b ; Cai et al. 2018b ; Pratley
 McEwen 2019 ). For example, the sparsity averaging reweighted

nalysis (SARA) family of methods (Carrillo et al. 2012 ) use an
 v ercomplete dictionary composed of a concatenation of the Dirac
asis and the first eight Daubechies wavelets (Daubechies 1992 ) and
as shown good performance in RI imaging. 

.3 CLEAN 

recursor of RI image reconstructions, the CLEAN algorithm
H ̈ogbom 1974 ) is a highly successful RI imaging method and it
s still being used (Event Horizon Telescope Collaboration 2019a ,
 ) despite various ne gativ e characteristics. The CLEAN algorithm
s a non-linear iterative method that assumes a sparse sky model.
LEAN iterativ ely remo v es the contribution of the brightest source
onvolved with the instrument’s point spread function or dirty beam.
his method can be interpreted as a matching pursuit algorithm

Wiaux et al. 2009 ), or an � 0 regularization with a basis composed
f a sum of Dirac spikes. Sev eral e xtensions of CLEAN have been
ev eloped o v er time (Bhatnagar & Cornwell 2004 ; Cornwell 2008 ;
te wart, Fenech & Muxlo w 2011 ; Of fringa et al. 2014 ; Of fringa
 Smirnov 2017 ) achieving better reconstruction performance. See
au et al. ( 2009 ) for a re vie w of CLEAN -based algorithms. 
On top of a very early introduction, the success of CLEAN resides in

ts scalability . Ho we ver, CLEAN has been sho wn to produce artefacts
hen point sources do not well describe the underlying sky model

imiting CLEAN ’s image quality and justifying the need for more
dvanced techniques, e.g. based on Section 2.2 . CLEAN often requires
anual intervention, making its use less practical. Furthermore,

LEAN and its extensions do not provide meaningful uncertainty
uantification of its reconstruction. 

.4 Learned approaches 

he advent of deep learning models has affected many imaging
pplications, and RI imaging is no exception. Handcrafted models
nd priors are limited in the information they can capture or represent
ith respect to recent, more e xpressiv e neural networks. Learned or
ata-driven methods can encode complex information existing in the
ata, e.g. astrophysical simulations, used in their training. In general,
hese approaches produce reconstructions with impro v ed quality,
 computational speed-up, or both. These reasons make learned
pproaches very rele v ant to the RI imaging reconstruction problem.
o we ver, there are issues regarding the robustness of learned meth-
ds to data distribution shifts (Hendrycks et al. 2020 ) and scalable
ethods for uncertainty quantification to the reconstruction. 
Allam ( 2016 ) proposed a learned method for RI imaging based

n convolutional neural networks (Dong et al. 2016 ) originally
onsidered for super-resolution. The approach consists of learning
ASTAI 3, 505–534 (2024) 
o post-process dirty images with variants for both, known and
nknown PSF. More recently, Gheller & Vazza ( 2021 ) proposed to
se a convolutional denoising autoencoder to learn to post-process
adio images, e.g. the dirty image or CLEAN ’s output. Connor et al.
 2022 ) proposed a residual deep neural network (DNN) coined
OLISH that works as a learned post-processing and super-resolution
etwork. The DNN is based on the architecture proposed in Yu et al.
 2018 ) and takes as input dirty images at different wavelengths and
esolutions. POLISH outputs a clean image at a higher resolution
or each wavelength and shows a better reconstruction quality than
LEAN . The proposed method has been applied to simulations from

he upcoming Deep Synoptic Array-2000 (Hallinan et al. 2019 ) and
eal data from the very large array (VLA; Perley et al. 2011 ). 

The Plug-and-Play (PnP) framework (Venkatakrishnan, Bouman
 Wohlberg 2013 ) provides a way to incorporate a deep learning
odel into a modern optimization algorithm. The central idea is to

eplace a proximal regularization term with a denoising deep neural
etwork. Ryu et al. ( 2019 ) studied conditions for the convergence
f PnP algorithms. Pesquet et al. ( 2021 ) proposed a new term for
he denoiser’s training loss that enforces the firm non-e xpansiv eness
f the denoiser, which is usually deep learning-based. This train-
ng procedure allows the denoiser to suit a PnP framework with
heoretical convergence conditions. The PnP framework with the
on-e xpansiv eness enforced to the deep learning-based denoiser has
een applied to the RI imaging problem in Terris et al. ( 2022 ), where
he approach has been called AIRI for Artificial Intelligence for
egularisation in RI imaging. The approach achieved similar or
etter performance than competing prior-based approaches whilst
roviding a significant acceleration potential. The AIRI method was
ater validated on observations from the Australian Square Kilometre
rray Pathfinder (ASKAP; Wilber et al. 2023 ). 
Two learned approaches for an interferometric-based imager

amed segmented planar imaging detector for electro-optical re-
onnaissance (SPIDER) were proposed by Mars et al. ( 2023 ). The
rst approach consists of a learned post-processing step from the
irty reconstruction based on a convolutional U-Net architecture
Ronneberger, Fischer & Brox 2015 ). The second approach consists
f a learned multiscale iterative method coined GU-Net, which
ncorporates the measurement operator to include measurement
nformation at the different steps and scales of the method. GU-Net is

ore efficient than standard unrolling methods due to its multiscale
ature. The numerical results show an impro v ed reconstruction
uality and a faster convergence than proximal optimization-based
ethods. In the following work (Mars et al. 2024 ), the GU-Net was

pplied to the RI imaging problem. The variations of the uv-co v erage
re handled by training the neural network on a broad distribution
f simulated uv-co v erages and subsequently fine-tuning the network
or a specific sampling distribution. 

Aghabiglou et al. ( 2023 ) recently proposed a series of DNNs
hat combines notions of PnP algorithms and unrolled optimization

ethods (Adler & Öktem 2018 ; Monga, Li & Eldar 2019 ). Each
NN is trained to transform a back-projected residual into an

mage residual, thus ideally improving the reconstruction of the
revious iteration. The results show a significant speed-up with
espect to AIRI or SARA-based methods while maintaining a similar
econstruction quality. Other recent approaches based on deep neural
etworks include: Wang et al. ( 2023 ) who proposed a denoising
iffusion probabilistic model conditioned on the visibilities and the
irty reconstruction; and Schmidt et al. ( 2022 ) who proposed a
onvolutional neural network based on residual blocks that intend
o inpaint the measurements, or reco v er the entire uv plane from an
ncomplete co v erage. 
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.5 Bay esian framew ork 

ayesian inference provides a principled statistical framework to 
olve the inverse problem in equation ( 3 ) with statistical guarantees.
his framework builds upon Bayes’ famous theorem, 

p( x | y ) ︸ ︷︷ ︸ 
Posterior 

= 

Likelihood ︷ ︸︸ ︷ 
p( y | x ) 

Prior ︷ ︸︸ ︷ 
p( x ) ∫ 

R N 
p ( y | x ) p ( x ) d x 

︸ ︷︷ ︸ 
Bayesian evidence 

. (7) 

Bayes’ theorem relates the posterior distribution to the likelihood 
nd prior terms that are the main constituents of a Bayesian model.
he likelihood is associated with the data-fidelity term depending on 

he observational model and the noise statistics. The prior models 
xpected properties of the solution x , for example, smoothness, and 
iecewise regularity. This prior knowledge regularizes the estimation 
roblem. 
The term in the denominator, commonly known as the Bayesian 

vidence, does not depend on x as we are marginalizing o v er
hat variable, and it describes the likelihood of the observed data 
ased on the modelling assumptions. The Bayesian evidence is 
rucial for making Bayesian model comparison (Robert 2007 ), which 
rovides us with a consistent way to compare models. Such high 
imensional integrals can be ef fecti vely estimated by, for example, 
ested sampling techniques (Skilling 2006 ; Ashton et al. 2022 ), or
he recently introduced learned harmonic mean estimator (McEwen 
t al. 2021 ; Spurio Mancini et al. 2022 ; Polanska et al. 2023 ). Recent
ev elopments hav e focused on nested sampling to compute the model 
vidence in high-dimensional imaging problems with sparsity-based 
andcrafted priors (Cai, McEwen & Pereyra 2022 ) and deep learning- 
ased priors (McEwen et al. 2023 ). Carrying out model selection is
ut of the scope of this work. 
Under the Bayesian framework, we have the posterior distribution 

( x | y ) which assigns a probability to each possible solution x 
i ven some observ ations y and a model M consisting of the
ikelihood and prior terms. In imaging settings, explaining the 
nformation contained in the posterior distribution is not trivial due 
o its high-dimensional nature. The posterior distribution is generally 
haracterized by samples computed by MCMC sampling. Efficiently 
ampling from high-dimensional posterior distributions is a current 
esearch topic, see e.g. Klatzer et al. ( 2023 ). Once p( x | y ) is defined,
e can say that the reconstruction method will be a point estimator
f the posterior that will provide us with ˆ x . There are several
hoices for point estimators (Robert 2007 ; Arridge et al. 2019 ),
ach with advantages and drawbacks. Some examples are a sample 
rom the posterior, ̂  x ∼ p( x | y ), the maximum-a-posteriori estimator, 
ˆ x = argmax x p( x | y ), or the posterior mean, ˆ x = E [ x | y ]. 

The posterior also provides us with consistent ways of quantifying 
he uncertainty of the chosen point estimate or reconstruction (Robert 
007 ). F or e xample, one way to represent uncertainty is to compute
he posterior standard deviation. The pixels with a higher standard 
eviation are less constrained by the data and the prior allowing for
ore significant fluctuations. 
One of the most significant drawbacks of Bayesian imaging 
ethods is that they are known to be computationally e xpensiv e,

ven if there is a continuous effort targetting the scalability of these
ethods (Pereyra 2016 ; Durmus, Moulines & Pereyra 2018 ; Pereyra, 
ieles & Zygalakis 2020 ; Pereyra, Vargas-Mieles & Zygalakis 2022 ; 
latzer et al. 2023 ). 
.5.1 Maximum-a-posteriori estimation 

he MAP estimator is particularly interesting in high-dimensional 
roblems like RI imaging as its formulation allows us to by-
ass the need for sampling from the posterior. Consequently, its 
omputational footprint is significantly reduced. The likelihood 
nd prior terms can be rewritten as p( y | x ) = exp [ −f ( x , y )] and
( x ) = exp [ −g( x )], respectively. The functions f and g are the

ikelihood and prior potentials. Using Bayes’ theorem in equation ( 7 ),
e can rewrite the MAP estimation as follows 

ˆ x MAP = argmax 
x ∈ R N 

p( x | y ) = argmax 
x ∈ R N 

p ( y | x ) p ( x ) . (8) 

he previous optimization problem can be reformulated using the 
onotonicity of the logarithm as follows 

ˆ x MAP = argmin 
x ∈ R N 

− log p( y | x ) − log p( x ) 

= argmin 
x ∈ R N 

f ( x , y ) + g( x ) . (9) 

One advantage of the MAP estimator is that equation ( 9 ) can be
ackled efficiently with optimization algorithms. We refer the reader 
o Pereyra ( 2019 ) for a deeper analysis of MAP estimation. 

Coming back to the RI imaging inverse problem from equation ( 3 ),
e can define a (white) Gaussian likelihood, 

( y | x ) ∝ exp 

[
− 1 

2 σ 2 
‖ y − � x ‖ 2 2 

]
(10) 

nd a sparsity-inducing Laplace-type prior defined as 

( x ) ∝ exp 
[−λ

∥∥� 

† x 
∥∥

1 

]
. (11) 

pon substitution of equations ( 10 ) and ( 11 ) into equation ( 9 ), the
AP optimization problem coincides with the one in equation ( 6 ).

herefore, the MAP reconstruction, ˆ x MAP , matches ˆ x from equa- 
ion ( 6 ). Hence, sparsity-based approaches are MAP estimations with
 prior based on the sparsity-promoting � 1 norm in a given dictionary,
.g. wavelets. 

.5.2 Uncertainty quantification: more than a point estimate 

omputing a good reconstruction for an inverse problem in the form
f equation ( 3 ) can itself be challenging. Moreo v er, the reconstruction
s often insufficient for many scientific applications that require 
urther quantification of the result. This demand opens the door 
o uncertainty quantification, which provides more than a point 
stimate. The Bayesian framework provides us with formidable 
ools to do uncertainty quantification. For example, if we choose 
he MAP estimator as our reconstruction following the model in 
ection 2.5.1 , we obtain the same reconstruction as in Section 2.2 ,
hich is the solution of equation ( 6 ). Ho we ver, with the Bayesian

ramework, we can sample from the posterior and estimate the 
osterior standard deviation, perform a Bayesian hypothesis test 
f some image structure (Cai et al. 2018a ; Price et al. 2021b ),
r compute other pixel-wise uncertainty measurements like local 
redible intervals (LCI; Cai et al. 2018a ; Price et al. 2019 ). 

.5.3 Bayesian inference via MCMC sampling 

ecent developments (Durmus, Moulines & Pereyra 2022 ) have con- 
iderably reduced the computational complexity of sampling high- 
imensional posterior distributions in imaging inverse problems. 
roximal MCMC sampling algorithms (Pereyra 2016 ; Durmus et al. 
018 ) extend the class of posterior distributions that can be studied
RASTAI 3, 505–534 (2024) 
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y allowing the use of non-smooth terms. Sparse regularizers have
een widely used in RI imaging (Carrillo et al. 2012 , 2014 ; Pratley
t al. 2018 ; Cai et al. 2018a ), and are usually enforced through a
on-smooth � 1 term. 
Let us note π the target probability distribution that we are

nterested in sampling from, which in our case will be the posterior
( x | y ). We consider a Langevin diffusion process on R 

N such that
ts stationary distribution is π . Assuming that π ∈ C 1 with Lipschitz
radients, we write the Langevin diffusion as the following stochastic
rocess 

 L ( t ) = 

1 

2 
∇ log π [ L ( t )]d t + d W ( t ) , L (0) = l 0 , (12) 

here W is a N -dimensional Brownian motion. A usual discrete-time
pproximation of the Lange vin dif fusion consists of a forward Euler
pproximation with a step size δ, known as the Euler-Maruyama
pproximation (Kloeden & Platen 2011 ). The resulting algorithm is
nown as the unadjusted Langevin algorithm (ULA), 

 

( m + 1) = l ( m ) + δ∇ log π
[
l ( m ) 

] + 

√ 

2 δw 

( m + 1) , (13) 

here w 

( m + 1) ∼ N (0 , I N ) is the discrete counterpart of W ( t). The
LA-based Markov chain converges to π with an asymptotic
ias due to discretization. The bias can be accounted for with a
ubsequent Metropolis-Hasting (MH) accept-reject step. Adding the

H step corrects the bias but increases the algorithm’s computational
omplexity. The ULA algorithm with the subsequent MH step is
nown as the Metropolis-adjusted Langevin algorithm (MALA). 
The ULA algorithm requires the target density π to be continu-

usly differentiable with Lipschitz gradients. Let us now consider
( x ) ∝ exp [ −f ( x ) − g( x )], where f ∈ C 1 with Lipschitz gradient

nd g is non-smooth but is a lower semicontinuous conv e x function
hat admits a proximal operator (Parikh & Boyd 2014 ). Proximal

CMC algorithms (Pereyra 2016 ) relax this assumption by approx-
mating g, a non-smooth term in π , by its Moreau-Yosida envelope
 

γ . The Moreau-Yosida approximation satisfies 

g γ ( x ) = 

1 

γ

(
x − prox g γ ( x ) 

)
, (14) 

rox g γ ( x ) : = argmin 
u ∈ R N 

{
g( u ) + 

1 

2 γ
‖ u − x ‖ 2 2 

}
, (15) 

here γ is the Moreau-Yosida approximation parameter and the
roximal operator may or may not have a closed-form expression.
onsequently, the non-smooth target density π is approximated by

he smooth πγ , which replaces the g term with its Moreau-Yosida
pproximation g γ . The Markov chain targeting πγ writes 

 

( m + 1) = 

(
1 − δ

γ

)
l ( m ) + 

δ

γ
prox g γ

(
l ( m ) 

)
−δ∇f 

(
l ( m ) 

) + 

√ 

2 δw 

( m + 1) , (16) 

nd it is known as Moreau-Yosida regularized ULA (MYULA). If we
dd an MH step targetting the non-differentiable distribution π , the
CMC algorithm is known as Proximal MALA (Px-MALA). The

roximal MCMC algorithms previously mentioned can be further
ccelerated by replacing the Euler-Maruyama approximation with
he more involved Runge-Kutta-Chebyshev approximation (Abdulle,
lmuslimani & Vilmart 2018 ), giving rise to the SK-ROCK (Pereyra

t al. 2020 ) algorithm. 
Cai et al. ( 2018a ) exploited the MYULA and Px-MALA algo-

ithms to sample from the posterior in the RI imaging problem.
he model is based on a Gaussian likelihood as in equation ( 10 )
nd a sparsity promoting prior akin to equation ( 11 ). Ho we ver, the
ASTAI 3, 505–534 (2024) 
ramework can be used with more complex noise models (Melidonis
t al. 2023 ), e.g. Poisson noise. In Cai et al. ( 2018a ), the RI image
econstruction relies on the minimum mean squared error (MMSE)
stimator based on the posterior mean, while in Cai et al. ( 2018b ),
he MAP is considered. 

 SCALABLE  BAY ESIA N  DATA -D R IV EN  

MAG I NG  WI TH  UNCERTA I NTY  

UANTI FI CATI ON  

UANTIFAI , 1 a scalable Bayesian data-driven method with uncer-
ainty quantification is moti v ated by three principles: 

(1) Scalability: The RI imaging inverse problem demands scala-
ility for a method to be useful in real astronomical data scenarios
uch as SKA. The most time-consuming operation is e v aluating the
easurement operator � in the likelihood function. It is, therefore,

ssential to minimize the number of likelihood e v aluations. For
hese reasons, we limit ourselves to the MAP estimator for our
econstruction corresponding to the solution of a conv e x optimization
roblem which converges quickly. We need to a v oid sampling-
ased approaches as they are prohibitively expensive in terms of
omputations. 

(2) High-quality reconstructions: To impro v e the quality of our
econstruction, we consider data-driven or learned priors that can
etter encode the expected image structures. In Section 2.4 , we
ave already seen that data-driven approaches can better represent
omplex imaging priors and provide reconstructions superior to
andcrafted priors, such as sparsity-promoting priors based on
avelet dictionaries. 
(3) Uncertainty quantification: There are many ways to quantify

ncertainty based on sampling the posterior distribution. Ho we ver,
sing sampling-based methods is prohibitiv ely e xpensiv e, and one
f our key criteria is computational scalability. Therefore, we need
o restrict ourselves to log-concave posteriors, which is equi v alent
o saying that the addition of our potentials f + g has to be conv e x,
nd to explicit potentials. As we will later describe in more detail
n Section 4 , the first restriction enables the use of efficient methods
elying on the concentration of probability for high-dimensional
og-conca ve distrib ution (Pereyra 2017 ). Consequently, we can use
pproximate posterior information bypassing sampling methods.
hese methods are orders of magnitude faster resulting in a scalable
ayesian UQ method. In a nutshell, we require the posterior potential

o be conv e x and e xplicit for scalable UQ. The likelihood is typically
onv e x for RI imaging problems so we will enforce the prior potential
 to be conv e x and explicit. The requirement of explicit potentials
ill be explained in Section 4 . 

We continue by introducing the data-driv en conv e x re gularizers
nd the optimization algorithm used to compute the MAP estimation
or the proposed method. 

.1 Learned convex regularizers 

s stated before, we need an e xpressiv e re gularizer that is conv e x
nd has an explicit potential. Modern regularizers based on deep
eural netw orks, lik e convolutional neural netw orks, used in RI
maging reconstruction methods satisfy neither of the two constraints.
his last constraint, i.e. with an explicit potential required by

he UQ approach, excludes a range of denoisers whose potentials

https://github.com/astro-informatics/QuantifAI
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re defined implicitly. PnP approaches (Terris et al. 2022 ) only 
equire the denoising of the image without explicitly computing the 
e gularization potential. F or e xample, a typical iteration from a PnP
lgorithm writes 

x k+ 1 = D ( x k − γ∇f ( x k )) , ( ∀ k ∈ N ) , (17) 

here D is the denoiser, f is the data-fidelity term, γ is the step size,
nd k is the iteration number . The algorithm’ s convergence can be
ssured if D and the stepsize satisfies some conditions (Ryu et al.
019 ; Pesquet et al. 2021 ). Even if the denoiser D is conv e x, we
annot use it for our approach as we must e v aluate the potential. 

Mukherjee et al. ( 2020 ) proposed a learned conv e x re gularizer
arametrized by the architecture of a deep input-conv e x neural 
etwork (ICNN; Amos, Xu & Zico Kolter 2016 ), which is conv e x
y construction. The training of the regularizer is done with an 
dversarial framework introduced by Lunz, Öktem & Sch ̈onlieb 
 2018 ). 

Very recently, a learnable conv e x-ridge re gularizer neural network 
CRR-NN; 2 Goujon et al. 2023b ) has been proposed, which comes 
ith the required properties of being conv e x and having an explicit
otential. In addition, the model focuses on being reliable and 
nterpretable while still being e xpressiv e enough to provide excellent 
econstruction quality. The CRR-NN regularizer, R θ , has the form 

 θ : R 

N �→ R , R θ ( x ) = 

N C ∑ 

i= 1 

∑ 

k 

ψ i ( ( h i ∗ x ) [ k] ) , (18) 

here h n are learnable 2D convolution kernels, ( h i ∗ x )[ k] denotes 
he k-th pixel of the resulting convolution, N C is the number of chan-
els or kernels, ψ i : R �→ R are learnable non-linear conv e x profile
unctions with a Lipschitz continuous deri v ati ve, i.e. ψ i ∈ C 

1 , 1 ( R ),
nd θ in R θ represents all learnable parameters. The conv e xity 
onstraint on the learnable acti v ation functions, ψ i , is enforced by
aking the pointwise σi : R → R monotonically increasing, with 
 

′ 
i = σi , where σi ∈ C 

0 , 1 
↑ ( R ), and C 

0 , 1 
↑ ( R ) is the set of scalar Lipschitz

ontinuous and increasing functions on R . The σi functions are 
hosen as learnable linear splines, which have been shown to be more
 xpressiv e than ReLU functions in Propositions 3.3 and 3.5 from
oujon et al. ( 2023b , section III.B). The main difference between
 prior based on the CRR-NN and a wavelet dictionary is that the
ernels (or filters) and the acti v ation (or thresholding) functions are
earnt in the first one. In the second one, they are fixed or handcrafted.

e refer the reader to Goujon et al. ( 2023b , figs 5 and 6) for examples
f learned kernels h n and acti v ation functions for two trainings with
wo different noise levels. See Bohra et al. ( 2020 ) and Goujon et al.
 2023b ), for more information on learnable splines. 

In the spirit of PnP approaches, the CRR-NN training is based on
he denoising problem that reads 

x ∗ = argmin 
x ∈ R N 

1 

2 
‖ x − y ‖ 2 2 + λR θ ( x ) , (19) 

here y is a noisy version of x , and λ is a parameter controlling
he regularization strength. The denoising problem is addressed 
hrough the fixed point of the problem, which given the conv e xity
ssumptions, is unique. A gradient step of equation ( 19 ) reads 

 R θ ,λ,α( x ) = x − α(( x − y ) + λ∇R θ ( x )) , (20) 

here α is the stepsize. Convergence can be guaranteed if the 
tepsize satisfies α ∈ (0 , 2 / (1 + λ Lip ( ∇R θ ))), where Lip ( ·) denotes
 https:// github.com/ axgoujon/ conv e x ridge regularizers 

w

1  
he Lipschitz constant. By composing t gradient descent updates of 
quation ( 20 ), i.e. a t-fold composition, we obtain a multigradient
tep denoiser that we denote T t R θ ,λ,α following the notation of Goujon
t al. ( 2023b ). 

The denoising problem in equation ( 19 ) can be formulated as a fix
oint problem for the t-step denoiser T t R θ ,λ,α as follows, 

 

t 
R θ ,λ,α( y ) ≈ x . (21) 

e build the CRR-NN training by penalizing the residual of the fix
oint problem in equation ( 21 ) with a loss function L , for a training
et of pairs of noiseless and noisy images { x ( m ) , y ( m ) } M 

m = 1 , and reads 

∗
t , λ

∗
t ∈ argmin 

θ ,λ

M ∑ 

m = 1 

L 

(
T t R θ ,λ,α( y ( m ) ) , x ( m ) 

)
. (22) 

After having trained the denoiser, we define our prior potential as 

( x ) = 

λ

μ
R θ ( μx ) , (23) 

here we have dropped the θ∗
t , λ

∗
t notation for θ , λ and added a

caling parameter, μ, to boost performance following Goujon et al. 
 2023b ). For the optimization algorithm, we need the Lipschitz
onstant of the gradient of the potential in equation ( 23 ), which
an be expressed as 

ip ( ∇g) = λ μ Lip ( ∇R θ ) ≤ λ μ ‖ W 

T � ∞ 

W ‖ , (24) 

hich is calculated in Goujon et al. ( 2023b , Prop. IV.1), and
 ∞ 

= diag ( ‖ σ ′ 
1 ‖ ∞ 

, . . . , ‖ σ ′ 
N C 

‖ ∞ 

), and W = [ w 1 · · · w N C ] 
T where

 i corresponds to the filter h i : h i ∗ x = w 

T 
i x . 

.2 Computing our reconstruction: the MAP 

n our case, computing the MAP reduces to solving a conv e x
ptimization problem. Following equation ( 9 ), the optimization 
roblem we address is the following one, 

ˆ x MAP = argmin 
x ∈ R N 

1 

2 σ 2 
‖ y − � x ‖ 2 2 + 

λ

μ
R θ ( μx ) + ιR N ( x ) , (25) 

where in addition we include ιR N , an indicator function enforcing 
he reconstructed image to be real. The proximal operator of the
ndicator function to a conv e x set is known and it amounts to a
rojection onto that conv e x set. In the last term of equation ( 25 )
he proximal operator of the reality constraint is the projection of
he vector to the real number, which is written as Re ( ·). We have
ssumed a (white) Gaussian likelihood and the prior term is based
n a previously trained CRR-NN. The CRR-NN is smooth with 
ipschitz continuous gradients. Ho we ver, the non-smoothness of the 

eality enforcing constraint forces us to rely on proximal algorithms 
Parikh & Boyd 2014 ) instead of an accelerated gradient descent
ethod (Nesterov 2018 ). In this case, we use the FISTA algorithm

Beck & Teboulle 2009 ). 
For the optimization, we need the gradient of the likelihood and

rior terms 

∇ x f ( x , y ) = 

1 
σ 2 ( � 

† ( � x − y )) , (26) 

∇g( x ) = λ∇R θ ( μx ) , (27) 

here, in our case, ( ·) † is the complex conjugate transpose. 
To ensure the algorithm’s convergence we use the stepsize τ = 

 /L , where L = Lip ( ∇ x f ( x , y ) + ∇g( x )). We can estimate a simple
RASTAI 3, 505–534 (2024) 
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R

Figure 1. RI image reconstructions for M31. The images are shown in a log 10 scale except for subfigure (a). Top row: The first two images show the ground 
truth intensity image in linear and log 10 scales, respectively. The third image shows the dirty reconstruction, computed by applying the pseudo-inverse of the 
measurement operator on the observations. The fourth image shows the error of the dirty reconstruction with respect to the ground truth. Middle row: We show 

the results of the wavelet-based model. The first and second columns show the minimum mean squared error (MMSE) estimator and the posterior standard 
de viation, respecti vely. Both images are computed using the 5 × 10 4 generated posterior samples. The third column shows the MAP reconstruction obtained 
through an optimization algorithm. The fourth column depicts the error of the MAP reconstruction with respect to the ground truth. Bottom row: We present the 
results of the QUANTIFAI model. The columns are presented in the same order as for the wavelet reconstructions in the middle ro w. For e very reconstruction, 
we display the SNR with respect to the ground truth in the top left corner. Compared with the wavelet-based model, QUANTIFAI recovers a reconstruction with 
a higher SNR and shows more meaningful uncertainties, which can be seen by comparing the posterior standard deviation and the MAP reconstruction error. 
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Algorithm 1: FISTA (Beck & Teboulle 2009) tackling (25) 

1 Input: R θ , � , σ , μ, λ, ξ , a (1) = 1, z (1) = x (0) = Re ( � 

† y ), 
τ = 0 . 98 /L . 

2 Output: ˆ x MAP 

3 for n = 1 , . . . , N max do 
4 x ( n ) = z ( n ) − τ

(
1 
σ 2 Re ( � 

† ( � z ( n ) − y )) + λ∇R θ ( μz ( n ) ) 
)

5 a ( n + 1) = 

1 
2 (1 + 

√ 

4 a 2 ( n ) + 1 ) 

6 z ( n + 1) = x ( n ) + 

a ( n ) −1 
a ( n + 1) 

( x ( n ) − x ( n −1) ) 

7 if ‖ x ( n ) −x ( n −1) ‖ 
‖ x ( n −1) ‖ < ξ then 

8 break 
9 end 

10 end 

11 set ˆ x MAP = x ( n ) 
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ound for the Lipschitz constant as follows 

 ≤ Lip ( ∇ x f ( x , y )) + Lip ( ∇g( x )) = L likelihood + L prior-CRR-NN , 

≤ ‖ � 

† � ‖ 
σ 2 + λ μ ‖ W 

T � ∞ 

W ‖ , (28) 

here we have exploited the result from equation ( 24 ), and ‖ � 

† � ‖
enotes the spectral norm, which in the case of a linear operator
oincides with its maximum singular value. In the simplified problem
e are considering in Section 2.1 with gridded visibilities, we
ave that ‖ � 

† � ‖ = 1. If a more realistic linear operator should
e considered, the maximum singular value could be computed
teratively via the power method (Golub & van Loan 2013 ). 

We initialize the optimization with the naturally weighted dirty
mage, x (0) = Re ( � 

† y ). The optimization procedure is summarized
n Algorithm 1. We optimize for a fixed number of iterations N max , or
ntil a tolerance criterion of ξ is reached. The stepsize is computed
sing the bound from equation ( 28 ). 

 SCALA BLE  U N C E RTA I N T Y  

UANTIFIC ATION  

nforcing the posterior’s conv e xity and e xplicit potential opens the
oor to scalable UQ methodology that was unreachable otherwise.
ASTAI 3, 505–534 (2024) 
he restriction to log-concave posteriors is the price we pay to
ain great scalability. Our approach is based on the work from
ereyra ( 2017 ), which exploits concentration phenomena occurring

n high-dimensional log-concave posteriors. The Bayesian high-
osterior-density region can be approximated in log-concave models

art/rzae030_f1.eps
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Figure 2. RI image reconstructions for W28. The order of the images follows the M31 results presented in Fig. 1 . Compared with the wavelet-based model, 
QUANTIFAI reco v ers a reconstruction with a higher SNR and shows more meaningful uncertainties, which can be seen by comparing the posterior standard 
deviation and the MAP reconstruction error. 
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s the posterior probability mass tends to concentrate in particular 
egions on the parameter space. The approximation requires the 

AP estimation, ˆ x MAP , which we have already computed as it is the
hosen point estimate for our reconstruction. This result allows us to 
stimate information from the posterior probability density function 
ithout MCMC sampling. In this section, we introduce the main 

esult we exploit for UQ. We then describe the proposed scalable 
Q methods and how to validate our results with Langevin-based 
CMC sampling algorithms. 

.1 Highest posterior density regions 

et us define a posterior credible region with a credible level of
00(1 − α) per cent as a set C α ∈ R 

N satisfying 

( x ∈ C α| y ) = 

∫ 

x ∈ R N 
p( x | y ) 1 C α ( x )d x = 1 − α, (29) 

ith 1 C α being being unity if x ∈ C α and zero otherwise. There are
an y re gions satisfying the previous equation. We will focus on the

ighest posterior density region (HPD), which is defined as 

 α : = 

{
x ∈ R 

N : f ( x ) + g( x ) ≤ γα

}
, (30) 

here f and g are the potentials of our likelihood and prior terms,
nd γα is a constant that defines a level-set of the log-posterior such
hat equation ( 29 ) holds. The HPD region has the property of having

inimum volume (Section 5.5; Robert 2007 ). 
Our posterior p( x | y ) = exp [ −f ( x ) − g( x )] /Z is log-concave on
 

N , where Z is the Bayesian e vidence. Then, follo wing Pereyra
 2017 , Theorem 3.1), for an y α ∈ (4 e xp [( −N/ 3)] , 1), the HPD
egion C α from equation ( 30 ) is contained in 

ˆ 
 α = 

{
x ∈ R 

N : f ( x ) + g( x ) ≤ ˆ γα

}
, (31) 

here 

ˆ α = f ( ̂  x MAP ) + g( ̂  x MAP ) + 

√ 

N τα + N, (32) 

ith a positive constant τα = 

√ 

16 log (3 /α) independent of p( x | y ). 
Theorem 3.2 in Pereyra ( 2017 ) gives the error analysis of the

pproximation, and we see that 0 ≤ ˆ γα − γα ≤ τα

√ 

N + N . There- 
ore, the error upper bound grows linearly with the dimension N ,
aking ˆ C α a stable approximation of C α . The error lower bound

long with the conv e xity of f + g guarantees the inclusion C ⊆ ˆ C 

nd consequently the resulting approximation is a conserv ati ve one
here the errors are o v erestimated. 
After showing the main result allowing us to do UQ bypassing

osterior sampling methods, it is clear from where the constraints of
he prior come. The conv e xity is required to guarantee a log-concave
osterior, as the likelihood potential is conv e x. The prior potential g 
eeds to be explicit to compute the approximate HPD region using
quation ( 32 ). 

.2 MAP-based UQ methods 

e now explore different scalable UQ schemes based on the fast
pproximate implicit representation of the HPD re gion. F or all the
ethods presented, we assume that we have already computed the 

ˆ x MAP estimation and the approximated HPD region threshold, ˆ γα . 
RASTAI 3, 505–534 (2024) 
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R

Figure 3. RI image reconstructions for 3C288. The order of the images follows the M31 results presented in Fig. 1 . Compared with the wavelet-based model, 
QUANTIFAI reco v ers a reconstruction with a higher SNR and shows more meaningful uncertainties, which can be seen by comparing the posterior standard 
deviation and the MAP reconstruction error. 

Figure 4. RI image reconstructions for Cygnus A. The order of the images follows the M31 results presented in Fig. 1 . Compared with the wavelet-based model, 
QUANTIFAI reco v ers a reconstruction with a higher SNR and shows more meaningful uncertainties, which can be seen by comparing the posterior standard 
deviation and the MAP reconstruction error. 
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.2.1 Bayesian hypothesis testing of structure 

 useful UQ tool is to perform a knock-out hypothesis test to asses if
 surrogate image still belongs to the HPD region (Cai et al. 2018a ,
 ; Price et al. 2021b ). First, the surrogate image x sgt is constructed
y modifying the reconstruction, ˆ x MAP . Then, it suffices to check if 

 ( x sgt ) + g( x sgt ) ≤ ˆ γα . (33) 
ASTAI 3, 505–534 (2024) 

F  
If the inequality is satisfied, we cannot draw conclusions on the
est we made, as x sgt still belongs to the HPD region. Ho we ver, if the
nequality does not hold, we can conclude that x sgt is out from the
DP region with a 100(1 − α) per cent confidence level. 
This test can answer a variety of questions about our reconstructed

mage. One example is to interrogate some structure in the image
o see if it is a reconstruction artefact or is physically moti v ated.
or this question, the surrogate image would be composed of

art/rzae030_f3.eps
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Figure 5. Hypothesis test of different regions of the four QUANTIFAI MAP 
reconstructions for M31, W28, Cygnus A, and 3C288. All the images 
are shown in log 10 scale. The left column shows the respective MAP 
reconstruction with the region of interest framed in an o v erlayed rectangle. 
The right column shows the surrogate images inpainted using the QUANTIFAI 
prior. The first four rows show regions corresponding to physical structures 
present in the ground truth images. The last row corresponds to a non-physical 
region. Results of the hypothesis tests are summarized in Table 2 . 
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n image with the region of interest artificially inpainted with 
urrounding information. We need to take the inpainted image 
s our surrogate and e v aluate equation ( 33 ) to see if the test is
onclusive. 

The image inpainting algorithm is built similarly as in Cai et al.
 2018b ) but adapted to the CRR-NN-based prior. We start by
electing a region of interest �D , which is a subset of (typically
ontiguous) pixels from the image, where �D ⊆ �, where � denotes 
he set of all the image pixels. The region �D will be inpainted
ith background information. We then inpaint this region iteratively 
inimizing R θ based on the following scheme 

x sgt , ( m + 1) = 

ˆ x MAP 1 �−�D 

+ 

(
x sgt , ( m ) − αλ∇R θ

(
μ x sgt , ( m ) 

))
1 �D , (34) 

here 1 are indicator functions, and 1 �−�D is a shorthand for 1 � −
 �D . We carry out a gradient step with the CRR-NN on the surrogate

mage and only update the region of interest. The hyperparameters, 
, λ, and μ are set as in Algorithm 1. 
Alternatively, Repetti, Pereyra & Wiaux ( 2019 ) presented a more

ophisticated method to perform hypothesis testing of structure, 
hich also exploits the approximations in equations ( 31 )–( 32 ). The
ethod is dubbed Bayesian uncertainty quantification by optimiza- 

ion (BUQO), and to answer the hypothesis test, it aims to study
he intersection of two sets. The first one is defined in equation ( 31 )
hat corresponds to the MAP estimate. The second one describes 
he set of feasible inpainted images given a region of interest and
 set of constraints of desired properties. If the set intersection is
mpty, the structure of interest is considered present in the image with
onfidence α from equation ( 31 ). Tang & Repetti ( 2023 ) proposed an
xtension of the BUQO method to inpaint with data-driven models. 
o we ver, these methods involve solving an expensive optimization 
roblem that does not scale with the high-dimensional settings we 
re considering in this work. 

Another example is to interrogate the reconstruction to see if 
he fine structure of the image is physical or likely an artefact. To
onstruct the surrogate image we convolve the region of interest, �D ,
ith a Gaussian smoothing kernel G (0 , �), 

x sgt = 

ˆ x MAP 1 �−�D + ( ̂  x MAP ∗ G (0 , �) ) 1 �D , (35) 

here ∗ denotes the 2D convolution operation and test equation ( 33 ).

.2.2 Local credible intervals 

ocal credible intervals (LCIs) provide a tool to quantify spatial 
ncertainty per pixel at different resolutions. The LCIs are interpreted 
s Bayesian error bars for each pixel or superpixel, where with
uperpixel, we refer to a group of contiguous pixels. Cai et al. ( 2018a )
omputed LCIs using MCMC methods and then extended it in Cai
t al. ( 2018b ) to compute them based on the approximated HPD
egion based on the MAP. Price et al. ( 2019 ) also exploited MAP-
ased LCIs in another imaging inverse problem, mass-mapping, for 
eak gravitational lensing convergence reconstruction. 
Let us write � = { �i } M 

i= 1 the set of superpixels that partition the
omain of x . This partition is such that �i ∩ �j = ∅ , ∀ i �= j and
= ∪ i �i . We denote the indicator of the superpixel �i as ζ�i 

, that
s one if the pixel belongs to the superpixel �i and zero otherwise.
he use of smaller or bigger superpixel sizes, i.e. ‖ ζ�i 

‖ 0 , allows
s to visualize the LCIs at different scales. The calculation of the
CIs is based on computing an upper and lower bound for each
uperpixel. Each bound is defined by the constant value we need to
dd or subtract to the superpix el re gion so that the modified image
xits the approximate HPD credible region ˆ C α . In other words, we
ompute the values that saturate the HPD region for each superpixel.

We can isolate the superpix el re gion by defining the following
urrogate image 

x i,ξ = 

ˆ x MAP ( I − ζ�i 
) + ( ξ + x̄ MAP ,�i 

) ζ�i 
, (36) 

here x̄ MAP ,�i 
corresponds to the mean value of the pixels in the

uperpixel �i , and ξ ∈ R . We vary the superpixel value from its
RASTAI 3, 505–534 (2024) 
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ean by a uniform value ξ . The bounds for a superpixel �i are
omputed as 

+ ,�i 
= max ξ

{
ξ | f ( x i,ξ , y ) + g( x i,ξ ) ≤ ˆ γα, ξ ∈ [0 , +∞ ) 

}
, (37) 

−,�i 
= min ξ

{
ξ | f ( x i,ξ , y ) + g( x i,ξ ) ≤ ˆ γα, ξ ∈ ( −∞ , 0] 

}
, (38) 

here we use the threshold ˆ γα defined in equation ( 32 ). The
alculation of each bound can be recast as a problem of finding
he zero of a function. The class of root-finding algorithms is well
dapted for this root-finding problem, and, in practice, we use the
isection method (Burden & Faires 1989 ). Price, Pratley & McEwen
 2021a ) proposed a faster way to compute the superpixel bounds
y exploiting linearity that we could use to further accelerate the
omputation of ξ+ ,�i 

and ξ−,�i 
. 

Once the bounds have been computed, we can collate the results
or all superpixels and use the length of the LCIs to visualize the
econstruction uncertainty. The length of the LCI for superpixel
i is defined as l i = ξ+ ,�i 

− ξ−,�i 
, which we can visualize as an

ncertainty image 

= 

∑ 

i 

(
ξ+ ,�i 

− ξ−,�i 

)
ζ�i 

. (39) 

The choice of using the mean on x̄ MAP ,�i 
for the region of the

uperpixel that will be studied constitutes a deviation from the
riginal MAP reconstruction. We find it more physical to mo v e the
v eraged superpix el rather than mo ving the original pix els belonging
o the superpixel by a constant value. This choice constitutes another
pproximation to the proposed scheme that has already approximated
he HPD region in equation ( 31 ). Using superpixels allows us to
ain sensibility and computing time at the expense of lowering the
esolution of the LCI map, which can be a sensible trade-off for very
arge images. 

We will later validate the computed LCIs using the posterior
amples obtained from computing the posterior standard deviation at
ifferent superpixel sizes. The method requires turning each posterior
ample into an image with M superpixels. We set the value of the
uperpixel to the mean of the values of belonging pixels. 

.2.3 Fast pixel uncertainty quantification at different scales 

he MAP-based LCIs described in the previous section are orders of
agnitude faster than their MCMC-based counterparts (Cai et al.

018a , b ). Nevertheless, to compute the LCIs, we still need to
 v aluate the likelihood potential, f , several times for each superpixel.
s mentioned, e v aluating the lik elihood potential is by f ar the most

ime-consuming operation. The fact that we need to e v aluate f 
everal times for each subpixel might make the LCIs impractical
or SKA-scale problems. 

To o v ercome this issue, we propose a new approach relying on
avelet decomposition of the MAP reconstruction that reads 

ˆ x MAP = � 

ˆ a MAP = 

L ∑ 

i= 1 

� i ˆ a MAP ,i , (40) 

ith a wavelet dictionary � . We define the hard thresholding operator
or a ∈ C 

L with a threshold of ξth , 

 hard , ξth ( a ) = 

[
S hard , ξth ( a 1 ) , . . . , S hard , ξth ( a L ) 

]T 
, (41) 

s the point-wise application of the following hard-thresholding
unction 

 hard , ξth ( a i ) = 

{
0 , if | a i | ≤ ξth , 

a i , otherwise . 
(42) 
ASTAI 3, 505–534 (2024) 
et ˆ ξth be the thresholded value for which the thresholded image
aturate the HPD region as follows 

ˆ th = max 
ξth 

{ ξth | f ( ̂  x MAP , ξth , y ) + g( ̂  x MAP , ξth ) ≤ ˆ γα, 

ˆ x MAP , ξth = � S hard , ξth ( ̂ a MAP ) , ξ ∈ [0 , +∞ ) } . (43) 

We can compute the threshold bound with a root-finding method,
s was the case for the LCIs. The advantage of this formulation is
hat we are solving only one root-finding problem as opposed to one
er superpixel in the LCIs calculation. This change considerably
educes the number of likelihood e v aluations and, therefore, the
omputational complexity of the UQ method. 

By computing the difference between the MAP, ˆ x MAP , and the
hresholded surrogate, ˆ x MAP , ̂ ξth 

, we obtain an estimation of the
olution’s uncertainty and this can give us information about possible
rrors in the MAP. Furthermore, we can compare the MAP and the
hresholded surrogate image to estimate errors as a function of scale,
hus exposing the different structures of our reconstruction. 

Let us consider our wavelet transformation as a multiscale trans-
orm of level J + 1 (Mallat 2008 ; Starck, Murtagh & Fadili 2010 ).

e can rewrite equation ( 40 ) showcasing the multiscale coefficients
s follows 

ˆ x MAP = � 

ˆ a MAP = 

J ∑ 

l= 0 

� l ˆ a MAP ,l , (44) 

here ˆ a MAP ,l are the coefficients corresponding to the l-th level of
ecomposition, and the zeroth level corresponds to the coarse scale.
e can now build thresholded surrogate images at different scales by

eplacing the MAP wavelet coefficients at level l from equation ( 44 )
ith the coefficients of the thresholded surrogate image ˆ x MAP , ̂ ξth 

. Let
s write the thresholded surrogate image at level j as follows 

ˆ x MAP , ̂ ξth , j 
= 

J ∑ 

l= 0 , 
l �= j 

� l ˆ a MAP ,l + � j ̂  a MAP , ̂ ξth , j 
, (45) 

here ˆ a MAP , ̂ ξth , j 
corresponds to the wavelet coefficients of the

hresholded surrogate image ˆ x MAP , ̂ ξth 
at level j . The errors at level j 

an be approximated by the difference between ˆ x MAP and ˆ x MAP , ̂ ξth , j 
.

There are two main advantages of this approach to pixel-based UQ
ith respect to the LCIs described in Section 4.2.2 . The first one is the

educed computational complexity, as we only need to solve a single
oot-finding problem, significantly reducing the number of likelihood
 v aluations. The second is that when we saturate the HPD region, we
onsider the entire image simultaneously. In the LCI computation,
e only change a small group of pixels until it saturates the HDP

egion that corresponds to the entire image. This behaviour can be
roblematic as, for example, the LCI error bounds will be larger
f the size of the image grows and the superpixel size is kept the
ame, which is an undesirable property . Consequently , the predicted
rrors from the new pixel UQ approach are faster to compute and
onsiderably tighter than the LCIs. 

.3 MCMC sampling and UQ validation 

s stated before, MCMC sampling is not yet scalable to the
igh dimensions of the RI imaging problems we target. Ho we ver,
ampling is still helpful in validating the UQ approaches of this
aper. If we sample from the posterior distribution, we can compute
he posterior standard deviation, providing a visual representation
f the posterior, including the learned conv e x re gularizer. Sampling
rom the posterior also allows us to compare the MAP estimator
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ith another widely known estimator, the posterior mean (Arridge 
t al. 2019 ), which coincides with the minimum mean squared error
MMSE) estimator under some assumptions. 

The log-posterior distribution of the QUANTIFAI model with the 
RR-NN reads 

− log p CRR-NN ( x | y ) ∝ 

1 

2 σ 2 
‖ y − � x ‖ 2 2 + 

λ

μ
R θ ( μx ) + ιR N ( x ) , 

(46) 

ith the first two terms belonging to C 1 with Lipschitz gradients, 
e do not need to use any approximation, e.g. the MY envelope,

o sample from it. The reality constraint is enforced directly when 
 v aluating the gradient of the log-likelihood. The Langevin diffusion
ampling algorithms re vie wed in Section 2.5.3 require the gradient 
f the log-posterior distribution, which have been computed in 
quations ( 26 ) and ( 27 ). In practice, we will use the SK-ROCK
lgorithm (Pereyra et al. 2020 ) as it provides a faster convergence
han the ULA algorithm. We omit the subsequent MH step to 
ccelerate the calculations moti v ated by the consistent results from
ai et al. ( 2018a ). 
The log-posterior distribution of the analysis formulation of the 
odel from Cai et al. ( 2018a ) with a wavelet-based sparsity enforcing

rior reads 

− log p WAV ( x | y ) ∝ 

1 

2 σ 2 
‖ y − � x ‖ 2 2 + λ

∥∥� 

† x 
∥∥

1 
+ ιR N ( x ) , (47) 

hich includes the non-smooth prior term with the � 1 norm, and the
eality constraint which we again apply to the gradient of the log-
ikelihood. We resort to the MY envelope γ -approximation of the 
parsity-inducing prior term as shown in equation ( 14 ). The proximal
perator of the prior term has a closed-form solution that reads 

 soft , βth ( a ) = 

[
S soft , βth ( a 1 ) , . . . , S soft , βth ( a L ) 

]T 
, (48) 

here a = � 

† x and we have applied element-wise the soft- 
hresholding function 

 soft , βth ( a i ) = 

{
0 , if | a i | ≤ βth , 
a i 
| a i | ( | a i | − βth ) , otherwise . (49) 

The threshold βth used in practice is λγ , the product of the 
egularization strength and the parameter of the MY approximation. 
ee Cai et al. ( 2018a ) for more details on sampling the model with a
av elet-based re gularization. In practice, we again rely on the SK-
OCK algorithm for sampling and a v oid using an MH step for the

easons mentioned abo v e. 

 EX P ERIM ENTAL  RESULTS  

n this section, we demonstrate the QUANTIFAI model against the 
avelet-based model presented in Cai et al. ( 2018a , b ) as it is one
f the few RI imaging methods providing UQ capabilities. We use a
imulated setup with real reconstructed RI images considered as the 
round truth. We focus on the UQ capabilities of the methods, while
lso considering reconstruction performance. 

.1 Data set 

he base images used in our experiment are the ones from Cai et al.
 2018a ): (i) the H I region of the M31 galaxy in Fig. 1 (a), (ii) the

28 supernova remnant in Fig. 2 (a), (iii) the 3C288 radio galaxy in
ig. 3 (a), and (iv) the Cygnus A radio galaxy in Fig. 4 (a). All the

mages are 256 × 256 pix els, e xcept for the Cygnus A galaxy, which
s 256 × 512. As the ground truth images are reconstructed from
eal observations, some minor original residuals and backgrounds 
re more noticeable in the log scale images; for example, see
ig. 3 (b). The ground truth images’ values have been normalized

o a unitless range between 0 and 1, and therefore, the colour bars in
he reconstruction figures follow this range. 

The previous images correspond to x in our observational model 
rom equation ( 3 ). The complex Gaussian noise n ∈ C 

M is composed
f independent and identically distributed ( i.i.d. ) samples. Each 
ample is simulated following a complex Gaussian distribution, 
 i ∼ N C (0 , σ 2 ), which implies that Re ( n ) , Im ( n ) ∼ N (0 , σ/ 

√ 

2 )
Tse & Viswanath 2005 ). The noise is set such that we get a
pecific input signal-to-noise ratio (ISNR) on each image. For all 
he experiments, we set the ISNR to 30 dB, and the noise standard
eviation is computed as follows 

= 

‖ � x ‖ 2 √ 

M 

10 −ISNR / 20 . (50) 

To mimic the uv plane co v erage, we reuse the Fourier mask from
ai et al. ( 2018a , fig. 2) and use it to generate the visibilities

rom y . The variable sampling density profile was taken from 

uy, Vandergheynst & Wiaux ( 2011 ) and represents a 10 per cent
o v erage of the Fourier plane. In the experiments in the current
ection, we work with gridded visibilities where we have around 
 . 3 × 10 4 visibilities for Cygnus A and 6 . 5 × 10 3 visibilities for the
est of the images. The validation of the UQ techniques through

CMC sampling requires a large amount of iterations. The use 
f gridded visibilities allows us to base the forward operator �
rom equation ( 3 ) on the FFT (Cooley & Tukey 1965 ), helping us
o alleviate the computational burden of the validation. Section 6 
resents results with ungridded visibilities. 

.2 Models and experiment settings 

.2.1 RI imaging models 

he CRR-NN in the QUANTIFAI model is a pre-trained model with
 = 5, Gaussian white noise with standard deviation σ = 5, and
arameters μ = 20, λ = 5 × 10 4 . The model was trained on a set
f natural images from the BSD500 data set (Arbel ́aez et al. 2011 )
ontaining images of landscapes, people, animals, and objects among 
thers. The images are scaled to the [0,255] range, using � 1 norm as
he loss function in equation ( 22 ) with the Adam optimizer (Kingma
 Ba 2017 ). The training parameters followed Goujon et al. ( 2023b ,

ection VI.A). 
The wavelet dictionary � used in the wavelet-based model is 

omposed of Daubechies 8 wavelets (Daubechies 1992 ) with a 
ultiresolution level J = 4 following the setup from Cai et al.

 2018a , b ). The regularization parameter λWAV was set to 1 × 10 2 . 
The regularization strengths of both models, λ and λWAV , were set 

o maximize the MAP reconstruction SNR using a grid search. We
bserved that QUANTIFAI ’s reconstruction SNR is significantly more 
obust with respect to the choice of regularization strength than the
avelet-based models. 

.2.2 Optimization settings 

or QUANTIFAI , we used the optimization algorithm shown in 
lgorithm 1. The wavelet-based model also requires a proximal 

lgorithm due to its non-smooth component and to provide a fair
omparison we used the FISTA algorithm (Beck & Teboulle 2009 )
resented with more detail in Appendix A . In these experiments, we
ssumed that the noise level σ is known. If the noise level is unknown,
t may be estimated by standard techniques (Price et al. 2021b ). Both
lgorithms’ tolerance criterion ξ was set to 10 −5 , and the total number
RASTAI 3, 505–534 (2024) 
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Table 1. Reconstruction performance of the different point estimates for 
the data set images in terms of SNR with respect to the ground truth. We 
compare the MAP and the MMSE reconstruction of the wavelet-based and 
the QUANTIFAI model. We include the dirty reconstruction as a reference. 
We observe that the MAP estimation from QUANTIFAI outperforms the other 
reconstructions from the wavelet-based prior and all the MMSE estimations. 

Images Reconstruction SNR (dB) 
Dirty Wavelet-based prior QUANTIFAI 

MMSE MAP MMSE MAP 

W28 3.39 18.17 23.04 23.38 26 . 85 
M31 5.01 23.78 25.52 24.61 27 . 48 
3C288 7.02 14.31 14.15 23.23 24 . 10 
Cygnus A 4.60 20.52 17.53 25.36 30 . 25 
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f iterations to 1 . 5 × 10 4 . Nevertheless, both optimization algorithms
onverged before the total number of iterations was reached. 

.2.3 MCMC sampling settings 

e generate 5 × 10 4 samples from each posterior distribution, with
 × 10 4 burn-in iterations and a thinning factor of 10. The burn-in
terations consist of generating several samples that will be discarded
o that the chain passes its transient period. The thinning factor
orresponds to the number of samples that need to be generated
etween two samples so that they can be considered independently
rawn from the target distribution. The sampling algorithm produced
 total of 5 . 5 × 10 5 samples for each model. We have set to 10
he number of stages for the SK-ROCK algorithm (Pereyra et al.
020 ), which is one of its main hyperparameters. The sampling
f the posterior probability distributions is used as a validation,
nd therefore we set the sampling parameters focusing on good
econstructions and posterior samples rather than speed. 

The wavelet-based model requires the MY envelope approxi-
ation to guarantee the chain’s convergence, as described in Sec-

ion 2.5.3 and Section 4.3 . The MY approximation parameter γ was
et to the inverse of the likelihood gradient’s Lipschitz constant,
.f. the first term of equation ( 28 ). 

The choice of the step sizes is critical to ensure the chains’
onvergence to the target distribution in a reasonable amount of
ime. The step size is chosen as a function of each posterior gradient’s
ipschitz constant. The step sizes δQ and δW 

, corresponding to the
UANTIFAI and wav elet-based models, respectiv ely, are computed as
ollows 

Q = 

κQ 

L likelihood + L prior-CRR-NN 
, δW 

= 

κW 

L likelihood + γ −1 
, (51) 

here the Lipschitz constant bounds are shown in equation ( 28 ), and
Q and κW 

, are two positive constants smaller than one, here set to
.98. We have followed the advise from Durmus et al. ( 2018 ) and
ai et al. ( 2018a ) to set the sampling parameters. 

.2.4 UQ settings 

e set α = 0 . 01 in all the UQ methods, so the confidence level is
9 per cent . We used the bisection algorithm to compute the LCIs
nd the fast pixel UQ at different scales, with tolerance 10 −4 and
aximum number of iterations 200, for both models. We used the

ame wavelet dictionary as in the wavelet-based model for the fast
ixel UQ at different scales. 
The inpainting algorithm uses the same stopping criterion as

lgorithm 1. In this case, the tolerance is set to 5 × 10 −6 , and the
otal number of iterations to 1 . 5 × 10 4 . The CRR-NN used for the
npainting is the same one used in the QUANTIFAI model. 

The Gaussian blurring kernel G (0 , �) from equation ( 35 ) is set
sing � = σ 2 

G 

I 2 ×2 , with σG 

being 3.5 pixels and a truncation radius
f 7 pixels, giving a kernel G ∈ R 

15 ×15 . 

.3 Image reconstruction 

e present the RI image reconstructions of the four ground truth
est images in Figs 1 , 2 , 3 , and 4 . In each figure, we compare the
avelet-based and QUANTIFAI models, and we include the dirty

econstruction as a reference. The metric used to compare the RI
mage reconstruction is the SNR expressed in dB defined as follows 

NR ( x , x gt ) = −20 log 10 

(‖ x gt − x ‖ 2 
‖ x gt ‖ 2 

)
, (52) 
ASTAI 3, 505–534 (2024) 
here x gt corresponds to the reference or ground truth, and x to the
stimation, and ‖ · ‖ 2 is the usual � 2 norm. 

The quantitative reconstruction performance results are presented
n Table 1 . The MAP reconstruction from QUANTIFAI performs
ignificantly better than the wavelet-based counterpart in every
mage from our data set. The performance gain lies between 1.9
nd 12.7 dB, with an average gain of 7 dB. It is difficult to see
he QUANTIFAI impro v ements by e ye when inspecting reconstructed
mages. Ho we ver, when observing the errors in the fourth column, the
mpro v ed quality of QUANTIFAI ’s reconstructions becomes evident.
hifting towards the sampling results, we observe a similar behaviour
f the MMSE reconstruction in fa v our of QUANTIFAI ’s images. The
AP is considerably faster than the MMSE, relying on optimization

ather than posterior sampling. Recall that the MMSE is built as a ver -
ging posterior samples. In addition, the MAP consistently provides
mpro v ed reconstruction performance with respect to the MMSE. 

The posterior standard deviation provides a qualitative way to
alidate the posterior model and its uncertainties. The comparison
f the posterior standard deviation with the MAP reconstruction
rror shows a higher correlation for the QUANTIFAI model than the
avelet-based model. In addition, the posterior standard deviation of
UANTIFAI sho ws lo wer v ariance than its wavelet-based counterpart,
hich is in agreement with QUANTIFAI ’s smaller reconstruction error.
 or e xample, in image W28 in Fig. 2 , we observe in sub-Fig. 2 (j) that

he posterior standard deviation value is large near the edges of the
round truth image. It is reassuring that QUANTIFAI ’s reconstruction
rror also shows the same behaviour. 

The performance results showcase the e xpressiv e power of the
RR-NN-based prior even if the regularizer is constrained to be con-
 e x. The results also confirm the generalization power of the CRR-
N-based prior. Even if trained on natural images, the CRR-NN can
rovide remarkable reconstruction performances for astronomical
mages and meaningful posterior standard deviations. 

The reconstructions using the wavelet-based prior model do
xhibit some low-intensity artefacts in the Cygnus A and 3C288
mages, as shown in Figs 4 (h) and 3 (h). These artefacts are due to
he patterns in the ground truth images, which originate from real
bservations, and the thresholding of the orthogonal wavelet basis.
uch patterns are absent in the M31 and W28 images because the
oise was remo v ed in a pre-processing step, as seen in Figs 1 (b)
nd 2 (b) in comparison to Figs 4 (b) and 3 (b). The regularization
trength for the wavelet-prior model was selected to maximize the
econstruction SNR. This chosen value is lower than in Cai et al.
 2018b ), explaining the observed patterns and the finer details in
ur reconstructions. Employing a wavelet dictionary instead of an
rthogonal wavelet basis and adding a positivity-enforcing constraint
ould mitigate the appearance of these artefacts. 
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Figure 6. Hypothesis test of the fine structure in the four QUANTIFAI MAP 
reconstructions for M31, W28, Cygnus A, and 3C288. All the images are 
shown in log 10 scale. The fine structure is blurred using a Gaussian kernel 
with a standard deviation of 3.5 pixels and a radius of 7 pixels. The blurred 
surrogate images in the second column are constructed by blurring the MAP 
reconstruction shown in the first column. The hypothesis tests are done with 
the QUANTIFAI model. 
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.4 Hypothesis testing of image structure 

e start by carrying out hypothesis tests of image structure, which 
re the most scalable UQ techniques we will study. First, a surrogate
mage is created by modifying one region of interest. It only takes one
urther e v aluation of the likelihood and prior potential to carry out the
ypothesis test. The test helps us to quantitatively answer a scientific 
uestion with a 100(1 − α) per cent confidence level. The scientific 
uestion targeted depends on the constructed surrogate image, and 
n this work, we consider two scenarios. 

In the first scenario, we consider a particular structure in the 
econstructed intensity image. We can query whether the structure’s 
rigin is physical or not. For example, the structure could be a
econstruction artefact or a physical process. Fig. 5 shows this option, 
here we have analysed different regions of the four images. The first

our inpainted regions correspond to physical structures, and the fifth 
e gion, i.e. re gion number 2 of image 3C288, does not correspond
o a physical structure. The surrogate images are produced with an 
npainting algorithm using QUANTIFAI ’s prior so that the inpainted 
egion agrees with the prior. 

The second scenario is to blur the finer structure in the recon-
tructed image and perform a hypothesis test to elucidate the question 
f whether the blurred structure is physical or not. The test is
llustrated in Fig. 6 . In this case, all four blurred images represent
hysical structures. 
In both cases, we compare the hypothesis test using a MAP-based 

pproach described in this work and a sampling-based approach for 
alidation. In the MAP-based approach, we build the HPD region 
n equation ( 31 ) with the approximation in equation ( 32 ) and use
he MAP estimation as our reconstruction. In the sampling-based 
pproach, we use the MMSE as the reconstruction, i.e. the mean of
he posterior samples, and compute the threshold defining the HPD 

egion using the quantile function on the potentials of the posterior
amples following Cai et al. ( 2018a , Section 5.2). 

Table 2 presents the results for the inpainting hypothesis test, 
here the inpainted surrogates are shown in Fig. 5 . The MAP- and

ampling-based results are consistent in all the images studied, where 
he threshold computed with the posterior samples is slightly tighter 
han the MAP-based approximation. The hypothesis tests correctly 
lassify the structure in images M31, W28, and 3C288, including 
he two cases of the latter image. The UQ methods cannot make
 strong statistical statement about the structures in the Cygnus A 

mage. In this image, where the inpainted region has a tiny physical
tructure, the potentials of the inpainted surrogate image rest close to 
he MAP and MMSE estimators. We include the hypothesis test 
esults of the same inpainting experiment for the wavelet-based 
odel in Appendix B1 to provide a comparison between the models. 
e used the wavelet prior to inpaint the region of interest to allow

or a fair comparison. All results from the wavelet-based model are 
n agreement with QUANTIFAI . 

The results from the blurred surrogates of Fig. 6 are presented 
n Table 3 . In all the images, the hypothesis test concludes that the
lurred fine structure is physical as the potential falls out of the HPD
egion. The MAP- and sampling-based results are consistent with 
ach other. 

The different hypothesis tests have shown consistent results 
etween the sampling-based and highly scalable MAP-based results. 
n addition, the results from the hypothesis tests are coherent 
etween the QUANTIFAI and wavelet-based model. We remark that 
he approach based on the MAP requires one further measurement 
perator e v aluation to carry out the hypothesis test. The test provides
 highly scalable way to answer scientific questions about the 
ncertainty of the RI imaging reconstructions. 
.5 Local credible inter v als 

e have exploited the approximation of the HPD region from 

ection 4.1 based on the MAP estimations and a credible level
f 99 per cent . The approximate HPD regions were then used to
ompute the LCIs, whose lengths per pixel are visualized as an
mage, c.f. Fig. 7 . The LCI lengths are displayed after subtracting the
ean LCI length o v erall superpix els in the image, which is shown in

he top left corner of the image. The UQ results for QUANTIFAI are
resented for two superpixel sizes, 4 × 4 and 8 × 8. We have omitted
CIs from the wavelet-based prior for conciseness. The posterior 
tandard deviations at the two superpixel sizes are included for 
omparison with the significantly faster MAP-based UQ technique 
f the LCIs. We find a reasonable agreement between the structure
n the LCI plots and the posterior standard deviation. F or e xample,
he 3C288 image with superpixel size 8 × 8 yields tighter LCIs in
he two elliptical regions and in the small connecting structure in the
entre of the image. The corresponding posterior standard deviation 
s smaller in the aforementioned regions, which is expected as most
RASTAI 3, 505–534 (2024) 
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Table 2. Hypothesis test results for the inpainted surrogates in Fig. 5 using the QUANTIFAI model. The function ( f + g)( ·) 
corresponds to the combined potential of the likelihood and the prior. The reconstruction ˆ x ∗ represents the point estimate 
used in the sampling or optimization scenarios, which are the MMSE and the MAP, respectively. The SK-ROCK method 
corresponds to the posterior sampling techniques. The image ˆ x ∗, sgt corresponds to the surrogate image, where the areas of 
interest shown in Fig. 5 have been inpainted. The isocontours, ˆ γ0 . 01 , or thresholds, are calculated with an α of 0.01 giving 
a credible set of 99 per cent. In the MAP row, the threshold is computed following the approximation in equation ( 32 ). 
In the SK-ROCK row, the threshold is computed from the posterior samples following Cai et al. ( 2018a ). The symbols 
� and � in the Ground truth column indicate if the inpainted region contains a physical structure from the ground truth 
or not, respectively. In the last column, the � indicates that the hypothesis test is conclusive. All values are scaled with 
10 5 . QUANTIFAI is able to correctly reject the hypothesis for all images where the tested structure is physical except for the 
Cygnus A image. In all cases, the MAP-based and MCMC sampling-based results agree with each other. 

Images Test Ground Method Point estimate Surrogate Isocontour Hypothesis 
area truth ( f + g)( ̂ x ∗) ( f + g)( ̂ x ∗, sgt ) ˆ γ0 . 01 test 

M31 1 � SK-ROCK 0.340 1 . 159 0.742 � 

MAP 0.310 1 . 161 0.990 � 

Cygnus A 1 � SK-ROCK 0.125 0.182 0 . 848 � 

MAP 0.105 0.169 1 . 450 � 

W28 1 � SK-ROCK 0.222 4 . 649 0.612 � 

MAP 0.196 4 . 699 0.876 � 

3C288 1 � SK-ROCK 0.257 1 . 918 0.659 � 

MAP 0.229 1 . 908 0.908 � 

2 � SK-ROCK 0.257 0.257 0 . 659 � 

MAP 0.229 0.229 0 . 908 � 

Table 3. Hypothesis test results for the blurred surrogates of Fig. 6 using the QUANTIFAI model. 
The description of Fig. 6 holds in this table. All values are scaled with 10 5 . QUANTIFAI is able to 
correctly reject the hypothesis in all cases, and the MAP-based outcome agrees with its MCMC 

sampling-based counterpart. 

Images Method Initial Surrogate Isocontour Hypothesis 
( f + g)( ̂ x ∗) ( f + g)( ̂ x ∗, sgt ) ˆ γ0 . 01 test 

M31 SK-ROCK 0.340 1 . 905 0.742 � 

MAP 0.310 1 . 906 0.990 � 

Cygnus A SK-ROCK 0.125 9 . 642 0.848 � 

MAP 0.105 9 . 643 1.450 � 

W28 SK-ROCK 0.222 8 . 389 0.612 � 

MAP 0.196 8 . 387 0.876 � 

3C288 SK-ROCK 0.257 0 . 920 0.659 � 

MAP 0.229 0 . 922 0.908 � 
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f the observed signal concentrates there. The LCIs and the posterior
tandard deviation represent different quantiles, so we would not
xpect an exact agreement even without any approximation in the
omputation of the LCIs. 

We observ e, as e xpected, that the larger superpix els hav e tighter
CIs, as seen in the mean LCIs shown on the top left corner of the
ubfigures in Fig. 7 . The reconstructions are naturally less uncertain
n the larger scales due to the properties of our measurement
perator, as the visibilities are generally concentrated towards the
ow frequencies. In addition, varying the value of a larger superpixel
aturates the HPD region faster than for a small superpixel. We have
lso computed the LCIs for the superpixels of size 16 × 16, which
e have not included for conciseness. The corresponding mean LCI
alues are 0.20, 0.08, 0.24, and 0.07 for the images in the same order
s in Fig. 7 . 

When comparing the mean value of the LCIs from the four recon-
tructions from Fig. 7 we notice that two of them, M31 and 3C288,
ave higher uncertainty than the rest. The higher the uncertainty,
he larger the mean value of the LCI gets, as the superpixel values
eed larger changes before they saturate the HPD region. Image
ASTAI 3, 505–534 (2024) 
C288, with a superpixel size of 4 × 4, is an example where the
CIs have saturated as the mean is close to unity; 3 therefore, the LCI

mage’s detailed structure is lost due to the saturation. This saturation
ighlights the need for superpixel sizes to be selected appropriately,
epending on the case at hand. 

.6 Fast pixel uncertainty quantification at different scales 

he fast pixel UQ method results for the images M31 and W28 are
eported in Fig. 8 . We use the error between the MAP estimation
nd the ground truth image, i.e. true error, to validate the predicted
ncertainty of the fast UQ method. The true error at different scales
an be computed following equation ( 45 ), 

ˆ x GT , j = 

J ∑ 

l= 0 , 
l �= j 

� l a GT ,l + � j ̂  a MAP , j , (53) 
n.b. The images are scaled in the range [0,1]. 
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Figure 7. Length of the local credible intervals (LCIs), c.f. Bayesian error bars, computed with a 99 per cent credible level using superpixel sizes of 4 × 4 and 
8 × 8. Each column represents one of the four images in our data set. The first row shows the MAP estimation of each image at its original resolution. The second 
row displays the variation of the LCIs around their mean, recorded in a box in the upper left corners. This display choice allows us to visualize the structure of 
the LCIs better while keeping the LCIs mean information. The third row presents the posterior standard deviation computed with the same superpixel size. The 
fourth and fifth rows present the equi v alent information for the superpixel size of 8 × 8. There is reasonable agreement between the uncertainty captured by the 
LCI and the posterior standard deviation. 
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here a GT ,l are the wavelet decomposition coefficients of the ground 
ruth image at multi-resolution level l. We have replaced the ground 
ruth image’s wavelet coefficient at a single level with the coefficients 
rom the MAP reconstruction. 

We observe a good agreement between the predicted and ground 
ruth errors at the different multi-resolution levels. There is an 
 v erestimation of the errors, which can come from two sources. First,
he approximation of the HPD region is conserv ati ve, as it has been
iscussed in Pereyra ( 2017 ). Secondly, the MAP estimation is already
issing some of the fine or high-frequency structures in the ground

ruth images. This fact can be seen in the MAP reconstruction errors
n subFigs 1 (h) and 2 (h). The missing high-frequency structure is
RASTAI 3, 505–534 (2024) 
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Figure 8. F ast pix el uncertainty quantification (UQ) with the QUANTIFAI model on the images M31 and W28. The first two columns correspond to M31, while 
the last two columns to W28. The first row displays the pairs of the thresholded MAP reconstruction that saturates the HPD region versus the original MAP 
reconstruction. The follo wing ro ws compare the predicted error of the thresholded MAP computed with the fast pixel UQ method against the MAP reconstruction 
error using ground truth images at each wavelet scale. The last row shows the cumulative error when considering all scales. 
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Table 4. Computation wall-clock times for the W28 image in seconds for 
both models being compared. 

Models MAP Posterior LCIs Fast 
optim. sampling 8 × 8 pixel UQ 

Wavelet-based 0.94 36 . 0 × 10 3 149.7 –
QUANTIFAI 0.64 6 . 44 × 10 3 108.2 0.17 

Table 5. The number of measurement operator e v aluations used by the QUAN- 
TIFAI for the W28 image. We do not distinguish between the measurement 
operator and its adjoint. Therefore, e v aluating the log-likelihood gradient 
counts as two e v aluations of the measurement operator. The fast pixel UQ is 
three and six orders of magnitude faster than the MCMC sampling and LCIs, 
respectively. 

MCMC LCIs LCIs Fast 
sampling 8 × 8 16 × 16 pixel UQ 

11 × 10 6 81 . 5 × 10 3 21 . 2 × 10 3 28 
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5 https:// github.com/ ratt-ru/ simms 

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/3/1/505/7727811 by C

atherine Sharp user on 06 Septem
ber 2024
xpected due to the properties of the measurement operator discussed 
n Section 2.1 . 

The structure from the chosen wavelet representation, � , under- 
inning the UQ method can be observed in the predicted errors. This
tructure is visible mainly in the higher frequencies of the W28, 
here point sources are in the image. The wavelet structure should 
e taken into account when analysing the reconstruction errors. 
This fast pixel UQ method allows us to approximate the re-

onstruction errors made at different scales for a fraction of the 
omputational cost of the LCI pixel UQ method. The e v aluations of
he measurement operators are reduced by three orders of magnitude, 
esulting in an ultra-fast and truly scalable pixel UQ method. 
urthermore, a single non-linear equation solve, e.g. root finding 
roblem, of the new pixel UQ method suffices to predict the errors
t all scales, while with LCIs, we are required to repeat the process
or each superpixel size. 

.7 Computation time 

he computation wall-clock time for both models, QUANTIFAI and 
he wavelet-based, are summarized in T able 4 . W e include the results
or only the W28 image in Tables 4 and 5 as they are representative
f the other images. All the computations for both models were done
sing an Nvidia-A100 40GB GPU using PYTORCH (Paszke et al. 
019 ). We observe a lower computation time for the QUANTIFAI 
odel with respect to its wavelet-based counterpart. One reason is 

he lightweight CRR-NN model that quickly e v aluates its gradient 
nd potential. Note that the regularization strength has an impact on 
he number of iterations and it could be changed to fa v our a faster
onv ergence. The re gularization strength was chosen to optimize 
AP reconstruction quality. 
The results shown in Table 4 highlight the importance of relying on

ptimization-based rather than sampling-based reconstructions when 
ocusing on the scalability of the method. There is a difference of
pproximately four orders of magnitude in the computation time 
f the MAP and the MMSE which relies on MCMC sampling 
echniques. Focusing on UQ, the posterior sampling is 60 times 
lower than the computation of the LCIs with 8 × 8 superpixels and
ore than 37 500 times slower than the fast pixel UQ proposed in this
ork. The new fast pixel UQ provides an extremely rapid approach to
ro viding pix el-based UQ, o v er 630 times faster than the 8 × 8 LCIs.
The e v aluation of the measurement operator is the most time-
onsuming operation in a real large-scale RI imaging scenario. 
f we target scalability, we need to monitor the number of mea-
urement operator e v aluations. Table 5 summarizes the number of
easurement operator e v aluations required for the UQ techniques. 
he results are only shown for the QUANTIFAI model as they are

epresentative of the wavelet-based model. As mentioned before, 
e note the reduction of e v aluations between optimization and

ampling-based reconstructions. We remark on the reduction in the 
umber of e v aluations for the UQ tasks, approximately three orders of
agnitude between the sampling and the LCIs, and three subsequent 

rders of magnitude between the LCIs and the fast pixel UQ. These
esults make the fast pixel UQ six orders of magnitude faster than

CMC sampling. The MAP estimation for the CRR required 1082 
easurement operator e v aluations. Ho we ver, the algorithm’s settings
ere chosen to maximize the reconstruction SNR. By modifying the 

egularization parameter of the CRR-based prior, we can reduce 
he number of e v aluations by an order of magnitude. Recent de-
elopments in code parallelization for RI imaging reconstruction 
lgorithms 4 (Pratley et al. 2019a ; Pratley & McEwen 2019 ) could be
ntegrated to push the scalability of the method further. 

 EXPERI MENTAL  RESULTS  WI TH  

N G R I D D E D  VISIBILITIES  

n the previous section, we have validated the proposed UQ methods
rom QUANTIFAI in a simple setting with gridded visibilities. This 
hoice lets us use the FFT algorithm for the forward model, which
llows us to run MCMC algorithms for UQ validation in a sensible
mount of time. In this section, we showcase QUANTIFAI in an
xperiment using simulated visibility patterns from the MeerKAT 

adio telescope (Jonas & MeerKAT Team 2016 ). The main difference
s that the visibility patterns are ungridded following a realistic 
istribution, which obliges us to rely on the Non-Uniform FFT 

NUFFT) for the forward model. We remark that in this experiment,
e are not addressing many of the challenges of dealing with real
ata, which are beyond the scope of this article. 

.1 Data set and experiment settings 

e have simulated four single-frequency ungridded visibility pat- 
erns of differing synthesis times for MeerKAT. The start frequency 
s set to 1400 MHz with a channel width of 10 MHz. The pointing
osition has been randomly selected and set to (13h18m54.86s, 
15d36m04.25s) in the J2000 reference, and it was maintained 

or the four generated data sets. We have used a publicly available
ode 5 that is based on the CASA simulation software (The CASA
eam 2022 ). The synthesis times used are 1, 2, 4, and 8 h, with a
onstant integration time of 240 s. Each data set has a field of view
f approximately 1 deg 2 . The number of visibilities of each data
et is 3 × 10 4 , 6 × 10 4 , 1 . 2 × 10 5 , and 2 . 4 × 10 5 , correspondingly.
ig. 9 presents the simulated visibility patterns. We reuse the images
escribed in Section 5.1 as the ground truth, keeping their original
imensions, which are unrealistically small to be representative of a 
eerKAT observation grid size. 
To cope with the ungridded visibilities, we have to change the

orward operator � from equation ( 3 ) that before was based on the
FT. We rely on the PYTORCH -based NUFFT implementation from 
RASTAI 3, 505–534 (2024) 
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Figure 9. The four sets of simulated ungridded visibilities for the MeerKAT radio telescope with synthesis times of 1, 2, 4, and 8 h. 
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uckley et al. ( 2020 ) 6 based on Kaiser-Bessel gridding (Fessler
 Sutton 2003 ). We have used the same images, Gaussian noise
odel presented in Section 5.1 , and trained CRR-NN in QUANTIFAI .
e have reused the previously introduced hyperparameter values

f QUANTIFAI except for λ, which we have tuned to maximize the
econstruction’s SNR for the four data sets to 10 4 , 1 . 4 × 10 4 , 1 . 9 ×
0 4 , and 2 . 25 × 10 4 , respectively. 

.2 Results 

he reconstructions and the fast pixel UQ maps for the image
31 are shown in Fig. 10 . Each column corresponds to each of

he four data sets. The results for the other images are postponed
o Appendix C . Table 6 presents quantitative results regarding
econstruction SNR, measurement operator e v aluations, and wall-
lock computing time. The reconstructions present good quality in
erms of SNR, which increases with longer synthesis times, which
as expected as the Fourier coverage increases, as seen in Fig. 9 . The
all-clock reconstruction time increases with the longer synthesis

imes as the time for each e v aluation of the measurement operator
ecomes longer due to the larger number of visibilities. 
Even in this more challenging setting, we find a good correlation

etween the predicted and the oracle error. The pixel UQ maps
till show some patterns characteristic of the multiscale wavelet
epresentation used and should, therefore, be considered in the
nalysis of the pixel UQ maps. The fast pixel UQ represents a fraction
f the time and number of measurement operator e v aluations required
or the MAP reconstruction. 

 DISCUSSION  

n this work, we have worked with synthetic data sets, starting with
ridded visibilities and ending with realistic ungridded visibility
atterns. The handling of real or realistic data is beyond the scope
f this work, which focuses on the methodology presented and
he validation of the UQ techniques. Some problems faced while
andling large-scale observation include the calibration of direction-
ndependent and direction-dependent effects. Further studies of the
erformance of QUANTIFAI to more realistic images with differing
arge dynamic ranges and bright point sources are left for the future.
he extension of QUANTIFAI to incorporate a frequency axis in the

econstruction to cope with multi-frequency observations is also left
or further study. Even if QUANTIFAI could reconstruct images with
Q maps with ∼ 10 5 visibilities in less than two minutes, there is
ngoing work to e xploit e xisting C ++ parallelization capabilities
o scale the method further. A detailed performance and computing
ime benchmark is expected for the future implementation. 
ASTAI 3, 505–534 (2024) 

 https:// github.com/ mmuckley/ torchkbnufft

W  

r  

r  
The current approach to set the regularization strength of the
RR-NN, λ, with a grid search is not compatible with real data
s we require access to the ground truth. There are several ways
o circumvent this problem in the large-scale setting. One way
orward is to consider a subset of the observations to alleviate the
omputational burden and rely on the empirical Bayesian approach
rom Vidal et al. ( 2020 ) and De Bortoli et al. ( 2020 ) to estimate the
egularization parameter directly from the observed data. Another
 ay forw ard is to follow a heuristic approach similar to Terris et al.

 2022 ). The study of the best strategy for QUANTIFAI is left for further
tudy. 

We have not included a positivity constraint in the QUANTIFAI
odel, as is the case for Cai et al. ( 2018b ), which we use for

omparison. Ho we ver, there is no impediment to adding a positivity
onstraint to QUANTIFAI ; it amounts to changing the indicator
unction from equation ( 25 ) to an indicator function of the real
ositive orthant. The proximal operator associated with this indicator
unction has a closed form: the projection to the positive orthant.
onsequently, we can compute the corresponding MAP solution and
 v aluate the potential using the modified indicator function. 

The fast pixel UQ proposed in this article impro v ed the tightness
f the UQ bounds with respect to the LCIs by considering the entire
mage when saturating the HPD re gion. Nev ertheless, these pix el-
evel UQ maps are intended to be shared as visual aids accompanying
he reconstructions. The pixel UQ maps can drive the astronomer’s
ttention to a specific region in the image where a consequent
ypothesis test can be carried out using the techniques described
n this work. The choice of wavelet basis impacts the fast pixel UQ
aps produced, so it should be considered when analysing the maps.
 way to impro v e the fast pixel UQ maps would be to replace the
rthogonal wavelet basis used with a more performant dictionary as
n SARA (Carrillo et al. 2012 ), which has shown to be well adapted
or RI images. 

 C O N C L U S I O N S  

n this work, we propose a new method coined QUANTIFAI that
ddresses uncertainty quantification in radio-interferometric (RI)
maging with data-driven (learned) priors in very high-dimensional
ettings. We have focused on three fundamental points in the RI
maging pipeline: scalability, estimation performance, and uncer-
ainty quantification (UQ). 

Our model builds upon a principled Bayesian framework for the
Q analysis, which is known to be computationally e xpensiv e when

xploiting MCMC sampling methods. Ho we ver, in this work, we
ev erage conv e x optimization techniques to estimate the MAP, the
oint estimate of the posterior distribution we use as reconstruction.
e restrict our model to a log-concave posterior distribution to

emain highly scalable and have Bayesian UQ techniques. This
estriction is equi v alent to having conv e x potentials for our likelihood

art/rzae030_f9.eps
https://github.com/mmuckley/torchkbnufft
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Figure 10. Reconstructions and fast pixel uncertainty quantification (UQ) with the QUANTIFAI model for the M31 image with the four sets of simulated 
MeerKAT ungridded visibilities. Each column corresponds to the four data sets with synthesis times of 1, 2, 4, and 8 h for a field of view of approximately 
1 deg 2 . The first row represents the dirty reconstruction. The MAP reconstruction is presented in the second row, while the oracle error, which we do not have 
access to with real data, is shown in the third row. The different decomposition levels of pixel UQ are shown in the last four rows. 
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Table 6. Main results of QUANTIFAI for the M31 image with the realistic ungridded MeerKAT visibility 
patterns with differing synthesis times. As the number of visibilities grows with the synthesis timer, so does 
the reconstruction SNR. The number of visibilities increases proportionally to the synthesis times. 

Metrics Data sets 
1 h 2 h 4 h 8 h 

Number of visibilities 3 × 10 4 6 × 10 4 1 . 2 × 10 5 2 . 4 × 10 5 

MAP reconstruction SNR (dB) 25.29 28.39 31.94 34.42 
Reconstruction Measurement op. e v aluations 3288 2916 3006 3114 

Wall-clock time (s) 17.01 28.19 53.24 105.25 
UQ Measurement op. e v aluations 26 28 30 30 

Wall-clock time (s) 0.28 0.44 0.73 1.26 
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found in the aforementioned repository. 

7 https:// github.com/ astro-informatics/ purify 
8 https:// github.com/ astro-informatics/ sopt
9 ht tps://github.com/ast ro-informatics/Quant ifAI 
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nd prior. In this scenario, we can exploit an approximation of the
PD region, which only requires the MAP estimation (Pereyra 2017 )

nd bypasses e xpensiv e sampling techniques. 
We want to include data-driven priors that can encode complex

nformation learned implicitly from training data making them more
 xpressiv e. Consequently, the learned priors allow us to impro v e
erformance with respect to previous models based on handcrafted
riors (Cai et al. 2018b ), e.g. wavelet-based sparsity-promoting
riors. To support fast UQ techniques, our models must be conv e x,
ence we adopt the recently introduced learnable conv e x-ridge
egularizer neural network (CRR-NN; Goujon et al. 2023b ). The
RR-NN-based prior is performant, reliable, and has shown to
e robust to data distribution shifts. The QUANTIFAI model uses
n analytic physically moti v ated model for the likelihood and the
earned CRR-NN-based prior. In this work, we are focusing on the

ethodology, which is why we have only considered small problems,
.e. images of 256 × 256. Nevertheless, QUANTIFAI can be integrated
nto the distributed frameworks (Pratley et al. 2019a ; Pratley &

cEwen 2019 ), which is the focus of ongoing work. 
Numerical experiments are conducted with four images

epresentative of RI imaging. We compare the QUANTIFAI model
ith the model containing a wavelet-based prior of Cai et al. ( 2018b ).
ur results show a considerable impro v ement in the reconstruction
erformance for QUANTIFAI . We validate our results against
osterior samples from MCMC sampling algorithms and compute
he posterior standard deviation. We found that QUANTIFAI produced

ore meaningful posterior standard deviations in comparison to
he wavelet-based model. We also included numerical experiments
ith simulated MeerKAT ungridded visibilities, where we present
UANTIFAI ’s performance and computing times going up to ∼ 10 5 

isibilities. 
We explore several MAP-based UQ techniques that rely on the

pproximate HPD region. We carry out hypothesis tests of image
tructure to asses if some structures observed in the reconstructions
re physical. We then computed LCIs (c.f. Bayesian error bars)
o measure the pixel-wise uncertainty. These two approaches were
roposed by Cai et al. ( 2018b ), and in this work, we validated them
ith MCMC posterior sampling results. Even if LCIs represent an

lready scalable alternative to sampling-based methods to provide
ix el-wise UQ, the y remain e xpensiv e for SKA-size data. Therefore,
e proposed a no v el pix el-wise UQ technique to approximate pix el

rrors at different scales that is three orders of magnitude faster than
he LCIs. The new approach is based on thresholding the coefficients
f a wavelet representation of the reconstruction until the HPD region
aturates and is six orders of magnitude faster than sampling-based
echniques. 

QUANTIFAI proposed an approach with the potential to be highly
calable and performant to address UQ in RI imaging. In this work,
ASTAI 3, 505–534 (2024) 
e have compared QUANTIFAI to a wavelet-based model using
umerical experiments and a variety of metrics. However, as both
odels rely on the Bayesian framework, we could make a Bayesian
odel comparison, a principled approach to model selection and

etermine which model the data fa v ours. Recent developments in
cEwen et al. ( 2023 ) extend the model comparison to the learnt

etting, with data-driven priors. The focus of ongoing work is
o implement the proposed methodology in existing RI imaging
rameworks PURIFY 

7 (Carrillo et al. 2014 ; Pratley et al. 2018 , 2019b )
nd SOPT 8 (Carrillo et al. 2012 ; Onose et al. 2016 ) to exploit massively
arallelized computing environment (Pratley et al. 2019a ; Pratley &
cEwen 2019 ) and to realize the potential of scalability. In the near

uture, we plan to benchmark the speed and scalability of QUANTIFAI
n a highly realistic setting. 

A new perspective is to relax the convexity constraint of the prior
y exploiting the fact that the posterior potential needs to be conv e x
rather than the prior) and that the RI imaging likelihood is already
trongly conv e x. The relaxation of the CRR regularizer has been
tudied in a very recent work (Goujon, Neumayer & Unser 2023a ),
here a weakly-conv e x-ridge-re gularizer neural network (WCRR-
N) has been proposed. If the WCRR-NN is adopted, it could further

nhance the e xpressiv eness of the regularizer and the reconstruction
erformance of QUANTIFAI in the RI imaging problem. 
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PPENDI X  A :  M A P  C A L C U L AT I O N  F O R  T H E  

AVELET-BASED  P R I O R  M O D E L  

he MAP estimation for the wavelet-based model can recasted as
he following optimization problem 

ˆ x MAP = argmin 
x ∈ R N 

1 

2 σ 2 
‖ y − � x ‖ 2 2 + λwav 

∥∥� 

† x 
∥∥

1 
+ ιR N ( x ) , (A1) 

here λwav corresponds to the regularization strength of the wavelet-
ased prior. The FISTA algorithm to estimate the MAP is presented
n Algorithm 2 where we use the soft thresholding operator, soft ( ·),
efined in equation ( 49 ). The Lipschitz constant used to define the
tep size can be set as L wav = ‖ � 

† � ‖ /σ 2 . 

Algorithm 2: FISTA (Beck & Teboulle 2009) tackling (25) 

1 Input: �, � , σ , λwav , ξ , a (1) = 1, z (1) = x (0) = Re ( � 

† y ), 
τwav = 0 . 98 /L wav . 

2 Output: ˆ x MAP 

3 for n = 1 , . . . , N max do 
4 ˜ z ( n ) = z ( n ) − τwav 

σ 2 Re ( � 

† ( � z ( n ) − y )) 
5 x ( n ) = ˜ z ( n ) + � 

(
soft λwav τ ( � 

† ˜ z ( n ) ) − � 

† ˜ z ( n ) 
)

6 a ( n + 1) = 

1 
2 (1 + 

√ 

4 a 2 ( n ) + 1 ) 

7 z ( n + 1) = x ( n ) + 

a ( n ) −1 
a ( n + 1) 

( x ( n ) − x ( n −1) ) 

8 if ‖ x ( n ) −x ( n −1) ‖ 
‖ x ( n −1) ‖ < ξ then 

9 break 
0 end 

1 end 

2 set ˆ x MAP = x ( n ) 

PPENDI X  B:  WAVELET-BASED  BAY ESIA N  

N C E RTA I N T Y  QUANTI FI CATI ON  

1 Hypothesis testing of image structure 

ig. B1 and Table B1 present the results of the hypothesis testing of
tructure for the model with the sparsity-promoting prior. 
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Table B1. Hypothesis test results for the inpainted surrogates from Fig. B1 generated with the wavelet-based model. All 
values are in units 10 4 . The description of Table 2 applies in this table. 

Images Test Ground Method Initial Surrogate Isocontour Hypothesis 
area truth ( f + g)( ̂ x ∗) ( f + g)( ̂ x ∗, sgt ) ˆ γ0 . 01 test 

M31 1 � SK-ROCK 0.448 1 . 396 1.105 � 

MAP 0.359 1 . 335 1.039 � 

Cygnus A 1 � SK-ROCK 0.480 0.533 1 . 639 � 

MAP 0.444 0.514 1 . 789 � 

W28 1 � SK-ROCK 0.353 5 . 190 0.879 � 

MAP 0.284 5 . 204 0.964 � 

3C288 1 � SK-ROCK 0.729 2 . 487 1.398 � 

MAP 0.654 2 . 409 1.333 � 

2 � SK-ROCK 0.729 0.729 1 . 398 � 

MAP 0.654 0.654 1 . 333 � 
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Figure B1. Hypothesis test of different regions of the four images, M31, 
W28, Cygnus A, and 3C288. All the images are shown in log 10 scale. The 
figure is similar to Fig. 5 , but the wavelet-based model has been used to 
generate the MAP. The wavelet prior was used to inpaint the surrogate image. 
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PPENDI X  C :  M O R E  REALISTIC  

XPERI MENT  RESULTS  

igs C1 , C2 , and C3 present the results using the realistic MeerKAT
ngridded visibility pattern of the images W28, Cygnus A, and
C288, correspondingly. Tables C1 , C2 , and C3 sho w the quantitati ve
esults of the experiment. 
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Figure C1. Reconstructions and fast pixel uncertainty quantification (UQ) with the QUANTIFAI model for the W28 image with the four sets of simulated 
MeerKAT ungridded visibilities with a field of view of approximately 1 deg 2 . Each column corresponds to the four data sets with synthesis times of 1, 2, 4, 
and 8 h. The first row represents the dirty reconstruction. The MAP reconstruction is presented in the second row, while the oracle error, which we do not have 
access to with real data, is shown in the third row. The different decomposition levels of pixel UQ are shown in the last four rows. 
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Figure C2. Reconstructions and fast pixel uncertainty quantification (UQ) with the QUANTIFAI model for the Cygnus A image with the four sets of simulated 
MeerKAT ungridded visibilities with a field of view of approximately 1 deg 2 . Each column corresponds to the four data sets with synthesis times of 1, 2, 4, 
and 8 h. The first row represents the dirty reconstruction. The MAP reconstruction is presented in the second row, while the oracle error, which we do not have 
access to with real data, is shown in the third row. The different decomposition levels of pixel UQ are shown in the last four rows. 
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Figure C3. Reconstructions and fast pixel uncertainty quantification (UQ) with the QUANTIFAI model for the 3C288 image with the four sets of simulated 
MeerKAT ungridded visibilities with a field of view of approximately 1 deg 2 . Each column corresponds to the four data sets with synthesis times of 1, 2, 4, 
and 8 h. The first row represents the dirty reconstruction. The MAP reconstruction is presented in the second row, while the oracle error, which we do not have 
access to with real data, is shown in the third row. The different decomposition levels of pixel UQ are shown in the last four rows. 
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Table C1. Main results of QUANTIFAI for the W28 image with the realistic ungridded MeerKAT visibility 
patterns with differing synthesis times. As the number of visibilities grows with the synthesis timer, so does the 
reconstruction SNR. The number of visibilities increases proportionally to the synthesis times. 

Metrics Data sets 
1 h 2 h 4 h 8 h 

Number of visibilities 3 × 10 4 6 × 10 4 1 . 2 × 10 5 2 . 4 × 10 5 

MAP reconstruction SNR (dB) 23.88 25.89 27.40 28.56 
Reconstruction Measurement op. e v aluations 6976 6124 5270 4062 

Wall-clock time (s) 34.83 59.25 93.61 137.2 
UQ Measurement op. e v aluations 30 30 32 32 

Wall-clock time (s) 0.31 0.47 0.78 1.35 

Table C2. Main results of QUANTIFAI for the Cygnus A image with the realistic ungridded MeerKAT visibility 
patterns with differing synthesis times. As the number of visibilities grows with the synthesis timer, so does the 
reconstruction SNR. The number of visibilities increases proportionally to the synthesis times. 

Metrics Data sets 
1 h 2 h 4 h 8 h 

Number of visibilities 3 × 10 4 6 × 10 4 1 . 2 × 10 5 2 . 4 × 10 5 

MAP reconstruction SNR (dB) 25.72 27.84 28.40 28.74 
Reconstruction Measurement op. e v aluations 6482 5172 3686 2692 

Wall-clock time (s) 36.17 51.71 66.79 91.79 
UQ Measurement op. e v aluations 30 30 30 32 

Wall-clock time (s) 0.35 0.50 0.77 1.36 

Table C3. Main results of QUANTIFAI for the 3C288 image with the realistic ungridded MeerKAT visibility 
patterns with differing synthesis times. As the number of visibilities grows with the synthesis timer, so does the 
reconstruction SNR. The number of visibilities increases proportionally to the synthesis times. 

Metrics Data sets 
1 h 2 h 4 h 8 h 

Number of visibilities 3 × 10 4 6 × 10 4 1 . 2 × 10 5 2 . 4 × 10 5 

MAP reconstruction SNR (dB) 25.01 27.00 29.62 33.02 
Reconstruction Measurement op. e v aluations 2730 2198 1976 1856 

Wall-clock time (s) 13.93 21.22 34.99 62.68 
UQ Measurement op. e v aluations 26 28 32 32 

Wall-clock time (s) 0.28 0.44 0.78 1.33 
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