UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Image2Flow: A proof-of-concept hybrid image and graph convolutional neural network for rapid patient-specific pulmonary artery segmentation and CFD flow field calculation from 3D cardiac MRI data

Yao, Tina; Pajaziti, Endrit; Quail, Michael; Schievano, Silvia; Steeden, Jennifer; Muthurangu, Vivek; (2024) Image2Flow: A proof-of-concept hybrid image and graph convolutional neural network for rapid patient-specific pulmonary artery segmentation and CFD flow field calculation from 3D cardiac MRI data. PLoS Computational Biology , 20 (6) , Article e1012231. 10.1371/journal.pcbi.1012231. Green open access

[thumbnail of Image2Flow A proof-of-concept hybrid image and graph convolutional neural network for rapid patient-specific pulmonary arter.pdf]
Preview
PDF
Image2Flow A proof-of-concept hybrid image and graph convolutional neural network for rapid patient-specific pulmonary arter.pdf - Other

Download (3MB) | Preview

Abstract

Computational fluid dynamics (CFD) can be used for non-invasive evaluation of hemodynamics. However, its routine use is limited by labor-intensive manual segmentation, CFD mesh creation, and time-consuming simulation. This study aims to train a deep learning model to both generate patient-specific volume-meshes of the pulmonary artery from 3D cardiac MRI data and directly estimate CFD flow fields. This proof-of-concept study used 135 3D cardiac MRIs from both a public and private dataset. The pulmonary arteries in the MRIs were manually segmented and converted into volume-meshes. CFD simulations were performed on ground truth meshes and interpolated onto point-point correspondent meshes to create the ground truth dataset. The dataset was split 110/10/15 for training, validation, and testing. Image2Flow, a hybrid image and graph convolutional neural network, was trained to transform a pulmonary artery template to patient-specific anatomy and CFD values, taking a specific inlet velocity as an additional input. Image2Flow was evaluated in terms of segmentation, and the accuracy of predicted CFD was assessed using node-wise comparisons. In addition, the ability of Image2Flow to respond to increasing inlet velocities was also evaluated. Image2Flow achieved excellent segmentation accuracy with a median Dice score of 0.91 (IQR: 0.86-0.92). The median node-wise normalized absolute error for pressure and velocity magnitude was 11.75% (IQR: 9.60-15.30%) and 9.90% (IQR: 8.47- 11.90), respectively. Image2Flow also showed an expected response to increased inlet velocities with increasing pressure and velocity values. This proof-of-concept study has shown that it is possible to simultaneously perform patient-specific volume-mesh based segmentation and pressure and flow field estimation using Image2Flow. Image2Flow completes segmentation and CFD in ∼330ms, which is ∼5000 times faster than manual methods, making it more feasible in a clinical environment.

Type: Article
Title: Image2Flow: A proof-of-concept hybrid image and graph convolutional neural network for rapid patient-specific pulmonary artery segmentation and CFD flow field calculation from 3D cardiac MRI data
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pcbi.1012231
Publisher version: http://dx.doi.org/10.1371/journal.pcbi.1012231
Language: English
Additional information: © 2024 Yao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Childrens Cardiovascular Disease
URI: https://discovery.ucl.ac.uk/id/eprint/10196663
Downloads since deposit
11Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item