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Abstract

Background

The grim (<10% 5-year) survival rates for pancreatic ductal adenocarcinoma (PDAC) are

attributed to its complex intrinsic biology and most often late-stage detection. The overlap of

symptoms with benign gastrointestinal conditions in early stage further complicates timely

detection. The suboptimal diagnostic performance of carbohydrate antigen (CA) 19–9 and

elevation in benign hyperbilirubinaemia undermine its reliability, leaving a notable absence

of accurate diagnostic biomarkers. Using a selected patient cohort with benign pancreatic

and biliary tract conditions we aimed to develop a data analysis protocol leading to a bio-

marker signature capable of distinguishing patients with non-specific yet concerning clinical

presentations, from those with PDAC.

Methods

539 patient serum samples collected under the Accelerated Diagnosis of neuro Endocrine

and Pancreatic TumourS (ADEPTS) study (benign disease controls and PDACs) and the
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UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS, healthy controls) were

screened using the Olink Oncology II panel, supplemented with five in-house markers. 16

specialized base-learner classifiers were stacked to select and enhance biomarker perfor-

mances and robustness in blinded samples. Each base-learner was constructed through

cross-validation and recursive feature elimination in a discovery set comprising approxi-

mately two thirds of the ADEPTS and UKCTOCS samples and contrasted specific diagnosis

with PDAC.

Results

The signature which was developed using diagnosis-specific ensemble learning demon-

strated predictive capabilities outperforming CA19-9, the only biomarker currently accepted

by the FDA and the National Comprehensive Cancer Network guidelines for pancreatic can-

cer, and other individual biomarkers and combinations in both discovery and held-out valida-

tion sets. An AUC of 0.98 (95% CI 0.98–0.99) and sensitivity of 0.99 (95% CI 0.98–1) at

90% specificity was achieved with the ensemble method, which was significantly larger than

the AUC of 0.79 (95% CI 0.66–0.91) and sensitivity 0.67 (95% CI 0.50–0.83), also at 90%

specificity, for CA19-9, in the discovery set (p = 0.0016 and p = 0.00050, respectively). Dur-

ing ensemble signature validation in the held-out set, an AUC of 0.95 (95% CI 0.91–0.99),

sensitivity 0.86 (95% CI 0.68–1), was attained compared to an AUC of 0.80 (95% CI 0.66–

0.93), sensitivity 0.65 (95% CI 0.48–0.56) at 90% specificity for CA19-9 alone (p = 0.0082

and p = 0.024, respectively). When validated only on the benign disease controls and

PDACs collected from ADEPTS, the diagnostic-specific signature achieved an AUC of 0.96

(95% CI 0.92–0.99), sensitivity 0.82 (95% CI 0.64–0.95) at 90% specificity, which was still

significantly higher than the performance for CA19-9 taken as a single predictor, AUC of

0.79 (95% CI 0.64–0.93) and sensitivity of 0.18 (95% CI 0.03–0.69) (p = 0.013 and p =

0.0055, respectively).

Conclusion

Our ensemble modelling technique outperformed CA19-9, individual biomarkers and indices

developed with prevailing algorithms in distinguishing patients with non-specific but con-

cerning symptoms from those with PDAC, with implications for improving its early detection

in individuals at risk.

Author summary

Pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5-year survival rates

among cancers, primarily due to its complex biology and late-stage diagnosis. Early symp-

toms often mimic benign gastrointestinal conditions, complicating timely detection. The

standard biomarker, carbohydrate antigen (CA) 19–9, is not reliable due to its suboptimal

performance and elevation in benign conditions, highlighting the need for better diagnos-

tic tools. In our study, we aimed to develop a biomarker signature to distinguish between

benign pancreatic/biliary conditions and PDAC using serum samples from the Acceler-

ated Diagnosis of neuro Endocrine and Pancreatic Tumours and UK Collaborative Trial

of Ovarian Cancer Screening studies.
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We screened 539 patient serum samples with state-of-the-art biomarker panels and

developed a robust predictive signature by applying specialized machine learning meth-

ods. This new signature significantly outperformed CA19-9 and other panels reported in

the literature.

Our findings suggest that this new biomarker signature can improve early detection of

PDAC in patients with ambiguous clinical symptoms, potentially leading to better out-

comes for those at risk.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) ranks as the seventh primary cause of cancer-

related mortality [1,2]. Projections suggest that by 2030, mortality rates from PDAC will

exceed that of other prevalent cancers, a shift which is attributed to an increasing incidence of

obesity, diabetes mellitus, alcohol consumption in some regions (Europe, North America, and

Oceania), advancements in detection and institution of screening initiatives that facilitate the

timely identification of more common cancers [1–3].

The overall 5-year survival for pancreatic cancer (PC) patients is less than 10%. These fig-

ures improve in patients diagnosed with pre-invasive lesions (intraepithelial neoplasia, mucin-

ous cystic lesions) or small tumours (< 2cm) detected at a localised stage [4]. Patients with

resectable disease are only identified in less than 20% of cases and advances in early detection

strategies hold potential for improving these dismal figures [5,6]. The relatively low incidence

and lifetime risk for PC in the general population (1.3%) preclude asymptomatic, average-risk

adult (>50 age) screening, and efforts are rather focused on high-risk populations [6–8]. Inter-

nationally, screening and surveillance is therefore recommended only in high-risk individuals

(genetically predisposed, family history and high-risk pancreatic cysts), where a lifetime risk of

at least 5% justifies their surveillance [6,7,9,10]. While surveillance in these high-risk cohorts is

consensus, we also reported on symptomatic cohorts in which the increased risk could justify

investigations, as an additional risk group [6,11].

Existing evidence regarding the effect of timely diagnosis on outcomes in PDAC are lim-

ited, mostly due to the lack of randomisation, appropriate statistical considerations and

homogenisations of study populations, and the topic remains an area of strong debate [12].

Yet, it is very likely that prompt identification of PC would improve its prognosis [12–14].

The reality of the situation however is that disease rarity, the presence of non-localising

symptoms, the relatively low positive predictive values even for cancer specific ‘red-flag’ and

advanced symptoms (e.g. weight loss, painless jaundice of 4–13%) challenge timely recognition

in primary care settings, and a substantial number of PC patients are diagnosed following pro-

longed periods of clinical uncertainty [15,16]. Previous case-control primary care studies asso-

ciated various abdominal symptoms and increased frequency of primary care consultations

with PDAC, over the two years preceding its diagnosis [11,17,18]. These data suggest another

potential window of opportunity for acceleration of PC detection.

In roughly 30% of patients, PC manifests in the form of jaundice indicating tumour

induced biliary obstruction, which is more evident in pancreatic head tumours [19]. Together

with significant weight loss, these frequently represent an already advanced disease. Although

most often explained by benign aetiologies, symptoms such as back or epigastric pain, dyspep-

sia, anorexia, bloating, changes in consistency of stool, weight loss and anxiety/depression may

also indicate an underlying pancreatic malignancy [11,17–20]. Such symptoms in adults

(age > 60 years) with lifestyle factors (including heavy alcohol and tobacco consumption,

PLOS COMPUTATIONAL BIOLOGY Diagnosis specific ensemble learning for early pancreatic cancer detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012408 August 29, 2024 3 / 27

awarded to UCL. The other authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012408


obesity) and on the background of new or long-standing diabetes and chronic pancreatitis, are

worrisome [6,11,18].

To accelerate and improve cancer detection rates in the UK, ‘electronic cancer decision

support tools’ (eCDST) have been developed to support primary care clinicians in fast tracking

investigations in cases of suspected cancer [21–23]. Risk prediction algorithms such as QCan-

cer [21–23] combine symptoms data, patient risk factors and laboratory tests to predict a risk

of undiagnosed cancers of various anatomical sites (colon, pancreas, renal, gastro-oesophageal

and ovarian). These are digitally available for primary care physicians through patient record

and data management portals [21–24] and where higher risk justifies further investigations,

could be combined with blood biomarker panels for further risk stratification prior to more

invasive workup.

When suspected, establishing a diagnosis will involve measurement of the serum marker

CA19-9, cross-sectional (computed tomography or magnetic resonance) imaging and histopa-

thology (endoscopic ultrasound guided tissue biopsy; EUS-FNB). CA19-9 is most reliable as a

marker of tumour resectability, prognosis and monitoring of disease progression [25,26], but

as a diagnostic marker it performs poorly (median sensitivity and specificity of ~80%;

AUC = 0.82), particularly in stage I/II disease and in Lewis body negative patients [27,28]. The

development of reliable and accurate diagnostic biomarkers is essential for risk stratification

and prioritisation of further investigations, as well as justification of invasive interventions

where the findings on imaging are unequivocal [29].

Recent research has explored blood-based diagnostic biomarkers including proteins,

micro-RNAs, circulating tumor cells and DNA methylation patterns, yet remain unvalidated

in clinically representative cohorts [30,31]. Their aberrant expression in both inflammatory

and malignant processes further challenge their discriminative properties. Multi-cancer early

detection tests like CancerSEEK [32] and Galleri are emerging [33,34]. These analyse circulat-

ing DNA for genetic mutations and proteins or methylation patterns associated with cancer.

CancerSEEK has shown 67% sensitivity for 12 cancers at 99% specificity, with 72% sensitivity

for pancreatic cancer (stages I–III) and 83.7% sensitivity for pancreatic ductal adenocarcinoma

(PDAC) detection. However, sensitivity varies across cancer types and additional larger valida-

tion studies [34] are needed before considering them for widespread screening [35].

Using serum samples collected from a selected study cohort with benign pancreatic and bil-

iary tract conditions and applying robust machine learning stacked modelling, we therefore

developed a novel serum biomarker signature capable of differentiating PC patients from

healthy individuals and patients with benign abdominal conditions presenting with non-spe-

cific yet concerning symptoms for pancreatic cancer, at higher rates than CA19-9 and other

state-of-the-art biomarkers.

Results

Data set characteristics

In the full set of samples collected from the ADEPTS cohort, age at the time of sample collec-

tion, 57.44 (range from 19.00 to 93.00) for controls and 69.72 (range from 43.00 to 91.00) for

PDAC cases, emerged as a risk factor (OR = 1.06 (95% CI 1.04–1.09), p = 2.47×10−7) (Table 1).

As a predictor in a logistic regression model age achieved a ROC AUC of 0.73 (95% CI 0.66–

0.79), with a cut-off at 61.5 years (calculated using the Youden’s J statistic). This finding was

also observed in both the discovery (Fig 1 and Table A in S1 Appendix, ROC AUC 0.74 (95%

CI 0.64–0.83), cut-off at 70) and validation sets (Fig 1 and Table B in S1 Appendix, 0.74 (95%

CI 0.64–0.82), cut-off at 60), which incorporated not only ADEPTS samples but also healthy

control samples collected from UKCTOCS [36]. In our past research which was focused
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exclusively on UKCTOCS longitudinal samples, age similarly emerged as a risk factor for

PDAC [37]. Furthermore, gender (OR = 2.72 (95% CI 1.46–5.27), p = 0.0015) and ethnicity

taken as a one-hot encoded variable (OR = 2.02 (95% CI 1.34–3.03), p = 6.56×10−4) were also

confirmed as significantly associated with an increased risk of PDAC (Table 1). In the whole

set of samples collected from the ADEPTS cohort, men had a 2.72-fold risk of PDAC com-

pared to their female counterparts. Individuals of Caucasian ethnicity demonstrated a

decreased risk of PDAC in a one versus rest calculation (OR = 0.38 (95% CI 0.20–0.69),

p = 0.0018) and no significant association was found between PDAC risk and Asian or Afro-

Caribbean ethnicity in the ADEPTS dataset under the same modelling framework (Table 1).

The association of gender and PDAC was also confirmed in the discovery (OR = 4.98 (95% CI

Table 1. Cohort characteristics. The data set used to develop and test the classifiers is a combination of samples collected from ADEPTS cohort and selected controls

from the UKCTOCS cohort. BMI: Body Mass Index. See Study Design in Materials and Methods section for additional details. Odds ratio (OR) and respective 95% confi-

dence intervals are also provided in the p value column.

Variable Cases Controls p value

ADEPTS

No. samples 46 421 -

Stage I 4 -

Stage II 15 -

Stage III 10 -

Stage IV 16 -

Unknown 1 -

Mean age at sample draw (yr) (range) 69.72 (43.00–91.00) 57.44 (19.00–93.00) 2.47×10−7

OR = 1.06 (1.04–1.09)

Mean BMI (kg/m2) (range) 24.84 (12.04–41.35) 25.30 (15.22–39.45) 0.47

OR = 0.97 (0.88–1.06)

Gender

Male 31 180 0.0015

OR = 2.72 (1.46–5.27)Female 15 241

Diabetes

Yes 10 (8Type II, 1 Type I, 1 unspecified) 75 (34 Type II, 41 unspecified) 0.44

OR = 1.34 (0.62–2.70)No 36 346

Ethnicity

Caucasian 21 291 6.56×10−4

OR = 2.02 (1.34–3.03)Unknown 21 60

Asian 3 30

Other 2 18

Afro/Caribbean 0 22

UKCTOCS

No. samples - 72 -

Mean age at sample draw (yr) (range) - 62.95 (50.44–76.86) -

Mean BMI (kg/m2) (range) - 26.53 (17.91–42.19) -

Gender

Male - - -

Female - 72

Diabetes

Yes - 3 (3 Type II) -

No - 69

Ethnicity

Unknown 0 72 -

https://doi.org/10.1371/journal.pcbi.1012408.t001
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Fig 1. Characteristics of the discovery and validation sets. Number of controls across the discovery and validation sets (A), number of PDAC

cases per stage (B), and association of BMI, Age, Diabetes, Ethnicity and Gender with PDAC status (C-F). In C, D, E and F dot sizes correspond

to odds ratios and are colour coded according to their respective values, i.e., blue if OR<1 and red if OR>1. p values were calculated according to

a logistic regression model with a bias reduction method. Purple dashed lines correspond to -Log[0.05]. G Receiver Operating Curve (ROC) Area

Under the Curve (AUC), Sensitivity (Sens), Positive Predictive Value (PPV) and Negative Predictive Value (NPV) at 90% Specificity (Spec)
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2.08–13.50), p = 0.00023, Fig 1 and Table A in S1 Appendix) and validation sets (OR = 2.65

(95% CI 1.11–6.58), p = 0.028 Fig 1 and Table B in S1 Appendix), but ethnicity, taken as a one-

hot encoded variable, remained a significant predictor of PDAC only in the validation set

(OR = 2.66 (95% CI 1.42–5.17), p = 0.0020) (Fig 1 and Table B in S1 Appendix), which as was

highlighted above also includes healthy control UKCTOCS samples. Within the group of the

clinical covariates only age and gender are significant predictors of PDAC in both the discov-

ery and validation set (Fig 1), with only age achieving a significant AUC in the validation set

between these two. However, this was concomitant with remarkably low sensitivity (Sens),

positive predictive (PPV) value and negative predictive value (NPV) at 90% specificity (Spec):

AUC 0.74 (95% CI 0.64–0.82), Sens 0.13 (95% CI 0–0.39), PPV 0.16 (95% CI 0–0.36), NPV

0.88 (95% CI 0.86–0.91).

Development of a PDAC biomarker signature in the presence of

confounding conditions

To aid the early detection of this cancer in individuals at risk, we aimed to develop a biomarker

signature that could be used to differentiate between suspected PDACs and benign biliary con-

ditions that often overlap in clinical presentation. We applied a uniquely developed ensemble

learning model, with a logistic regression stacking layer (see Fig A in S1 Appendix and statisti-

cal analysis in the Methods section), to a set of 539 serum samples (493 controls and 46 PDAC

cases) which were analysed using the Olink Oncology II panel as well as four additional bio-

markers we previously reported on [37]. These included IL6ST, VWF, THBS2 and CA19-9.

The oncogenic and prognostic glycolytic enzyme PKM2 was additionally selected based on

our past report of its diagnostic utility in biliary tract cancer patients [38–40].

The application of stacked ensemble modelling as presented herein bolsters the robustness

of predictive outcomes, enhancing the performance of biomarker panels through the incorpo-

ration of serum biomarker levels and relevant clinical covariates for distinct diagnostic classes.

Each base classifier within the ensemble is designed to provide a specialized distinction

between confounding diagnoses and PDAC, thereby establishing a heterogeneous set of classi-

fiers that facilitates the precise identification of PDAC (see statistical analysis section in Meth-

ods). Previous studies have attested to the beneficial role of ensemble methods in augmenting

early detection of PDAC against only healthy controls [37]. The implementation of stacked

(Stack, Fig 2), specialized classifiers, developed within the discovery set, generated a biomarker

signature capable of predicting PDAC with an AUC of 0.98 (95% CI 0.98–0.99), sensitivity of

0.99 (95% CI 0.98–1), PPV 0.92 (95% CI 0.91–0.92) and NPV 0.99 (95% CI 0.97–1) at 90%

specificity. In contrast, the predictive efficacy of CA19-9 in the discovery set taken as a single

predictor under a logistic regression model was 0.79 (95% CI 0.66–0.91) (p = 0.0016 under a

one-sided bootstrap test comparing the two AUCs), sensitivity 0.67 (95% CI 0.50–0.83), PPV

0.32 (95% CI 0.26–0.38) and NPV of 0.97 (95% CI 0.96–0.99) at 90% specificity (see Table C in

S1 Appendix). Amongst all biomarkers, CA19-9 demonstrated the most significant association

(refer to Table C and Fig B in S1 Appendix for univariate trend associations across the discov-

ery set), and one of the highest performances in the validation set (Fig B and Table D in S1

Appendix).

performance of single marker models, i.e. BMI and Age, in the validation set. H Similar to A but for Gender, Ethnicity and Diabetes.

Performances were calculated with the respective single feature models developed in the discovery set. The ROC AUC significance threshold is

also represented by a purple dashed line at 0.5. Error bars in figures corresponding to the validation set are the 95% Confidence Intervals (CI),

calculated by stratified bootstrapping 2000 times. See Statistical Analysis in Methods (main text) for further details and Tables A, B and N in S1

Appendix.

https://doi.org/10.1371/journal.pcbi.1012408.g001
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Fig 2. Performance of individual base-learner classifiers, stack ensemble and state-of-the art algorithms. A Base-learners performance

in the discovery set. Each base-learner classifier was developed by training with a recursive feature elimination technique (RFE) and logistic

regression (glm) in samples belonging to each specific diagnosis class against the same 24 PDACs in the discovery set. The performance

reported in A is, nevertheless, of each classifier in the whole discovery set. The performances reported in B correspond to the base-learners

developed in the discovery set but applied to the whole validation set. In C and D the performance of the ensemble stack based on the base-
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In the validation set, the ensemble signature predicted PDAC with an AUC of 0.95 (95% CI

0.91–0.99), sensitivity 0.86 (95% CI 0.68–1), PPV 0.54 (95% CI 0.48–0.58) and NPV of 0.98

(95% CI 0.95–1) at 90% specificity. Once again, this is an improvement with respect to CA19-9

(p = 0.0082, one-sided bootstrap test) taken as a univariate model developed in the discovery

set; this CA19-9 model predicted PDAC status with an AUC of 0.80 (95% CI 0.66–0.93), sensi-

tivity 0.65 (95% CI 0.48–0.56), PPV 0.49 (95% CI 0.41–0.56) and NPV of 0.95 (95% CI 0.92–

0.98) at 90% specificity in the validation set. If we further validate only on the benign disease

controls and PDACs collected from ADEPTS, the diagnostic-specific ensemble signature

achieved an AUC of 0.96 (95% CI 0.92–0.99), sensitivity 0.82 (95% CI 0.64–0.95) at 90% speci-

ficity. This performance is also significantly higher than the performance of CA19-9 in a uni-

variate model: AUC of 0.79 (95% CI 0.64–0.93) (p = 0.013 when compared with the full

signature, one-sided test) and sensitivity of 0.18 (95% CI 0.03–0.69).

A closer examination of the individual performances of each base-learner classifier (Fig 2A

and 2B) reveals that the logistic regression stacked ensemble approach has superior perfor-

mance in both discovery and validation sets. Despite the best base-learner being trained on

samples diagnosed as ’Gastritis/Reflux Disease’ (Fig 2A and 2B), its performance was also

superseded by the AUC computed with the stack model, the logistic regression coefficients of

which are delineated in Table E in S1 Appendix. The stack model significantly relies on the

“Healthy”, “Chronic Pancreatitis”, “IgG4 Disease”, “Irritable Bowel Syndrome”, ‘Other Biliary

Duct Disease”, “Sphincter of Oddi Dysfunction”, “No Relevant Diagnosis”, “Other Cancer”

and “Pancreatic Cyst” base-learners. Even though the remaining diagnostic class base-learners,

including "Gastritis/Reflux Disease", did not reach statistical significance (p<0.05), employing

a stack that solely resorts to significant base-learners led to a reduction in generalization capac-

ity: AUC 0.98 (95% CI 0.97–0.99), sensitivity 0.98 (95% CI 0.95–1), PPV 0.92 (95% CI 0.91–

0.92), NPV 0.97 (95% CI 0.94–0.99) in the discovery set; AUC 0.93 (95% CI 0.87–0.99), sensi-

tivity 0.82 (95% CI 0.64–0.95), PPV 0.53 (95% CI 0.47–0.57), NPV 0.97 (95% CI 0.95–0.99) in

the validation set. Although the differences are not substantial, we retain the full set of base-

learners to enhance the generalization capacity for predicting PDAC in unseen data sets and

new samples. In fact, upon following recursive base-learner elimination the best ensemble was

always proven to be the full set of 16 base classifiers.

The employment of stacked diagnosis-specialized classifiers surpassed the AUC perfor-

mance of state-of-the-art algorithms such as random forests (RRF) and extreme gradient

boosting methods (xgbTree), in terms of AUC, sensitivity, positive predictive value, and nega-

tive predictive value at 90% specificity (Fig 2C and 2D); although the performance AUC of the

stacked classifier was only marginally significantly higher than that obtained with RRF

(p = 0.040, one-sided) and not significant when compared with xgbTree (p = 0.26, one-sided),

the sensitivity values at 90% specificity obtained with the alternative methods were, in fact, sig-

nificantly lower, p = 0.028 and p = 0.045, respectively. The ensemble also outperformed a logis-

tic regression model with recursive feature elimination (Fig 2C and 2D, and Methods section)

that did not rely on ensemble modelling (p = 0.0066, one-sided), further substantiating our

choice of machine learning paradigm for facilitating the identification of PDAC cases in a clin-

ical setting where confounding diagnoses may be present, and the prevalence is low.

The results with additional subsampling algorithms, i.e., under-sampling of the majority

class and smote, further reinforce our choice (Table F in S1 Appendix). Only xgbTree benefits

learners presented in A and B, as well as of state-of-the-art algorithms (xgbTree, RRF and RFE glm) is reported in the discovery and held-

out validation sets, respectively. xgbTree, RRF and RFE glm were trained in the whole discovery set, which contrasts with the ensemble

algorithm.

https://doi.org/10.1371/journal.pcbi.1012408.g002
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from smote but the result is not consistent between the discovery and the held-out validation

sets when we evaluate the positive predictive value. Moreover, synthetic sample generation has

been proven to be less efficient in high-dimensional datasets [41]. Further alternatives with

adaptive synthetic data generation are necessary to evaluate the advantages of smote in the cur-

rent problem [42]. For the sake of simplicity, we generated all the subsequent results with the

ensemble of base-learners derived with over-sampling of the minority class, which generalises

better in the held-out validation set (Fig 2).

The comprehensive index signature, incorporating all diagnostic categories, was constituted

by 49 features, of which 44 were proteins (see Fig 3 for the importance associated with each).

Among these proteins, 21 demonstrated a significant association with PDAC in the discovery

set; ICOSLG, GPNMB, ESM-1, DLL1, VWF, ERBB2, FCRLB, CEACAM5, EGF, CTSV,

FASLG, Creatinine, CPE, CA9/CAIX, TBIL, CD207, CRP, CDKN1A, EPHA2, ITGAV, and

MUC-16 (see Fig B and Table C in S1 Appendix). The remaining 23 proteins, namely

CXCL13, ERBB3, FOLR1/FR-alpha, FADD, ERBB4, CD27, AREG/AR, ADAM-TS-15, ABL1,

ANXA1, CXCL17, CD70, CEACAM1, CD48, IL6ST, CD160, PKM/PKM2, CYR61/CCN1,

CRNN, ADAM-8, FOLR3/FRgamma, THBS2, GZMB, did not demonstrate a significant asso-

ciation with PDAC in univariate models (see Fig B and Tables C and D in S1 Appendix). Addi-

tionally, five clinical covariates—Gender, Age, Ethnicity, Diabetes, and Body Mass Index

(BMI)—were identified as important predictors following comprehensive recursive feature

elimination during cross-validation (Fig 3).

Gene Ontology (GO) and biological pathway enrichment (Kyoto Encyclopaedia of Genes

and Genomes; KEGG, Reactome Pathway Database; REAC and WikiPathways; WP) analysis

was performed for the selected set of features using g:Profiler (Fig C in S1 Appendix). Top sig-

nificant terms for biological processes (BP) included ‘circulatory system development’, ‘blood

vessel morphogenesis’, ‘cell adhesion’, ‘angiogenesis’, ‘blood vessel development’, ‘regulation

of cell adhesion’, ‘positive regulation of cell population proliferation’, ‘cell-cell adhesion’, and

‘regulation of developmental process’. Top relevant biological pathways included: ‘PI3K-KAT

signalling pathway’, ‘ERBB signalling pathway’, ‘pathways in cancer’, ‘proteoglycans in cancer’,

‘platinum drug resistance’, ‘prostate cancer’, ‘type I diabetes mellitus’, ‘MAPK signalling path-

way’ and ‘focal adhesion’.

The scaled importance of each feature and diagnostic class/classifier is depicted in Fig 3. It

is of significance to note that not every biomarker was selected by each individualized classi-

fier, highlighting the requirement for an array of diverse predictors, each tailored to specific

underlying conditions, to effectively identify PDAC. This is consistent with the idea that het-

erogeneous ensembles are fundamental for predictive capacity in blind datasets [37,43].

Of the five selected clinical covariates, only Age, Ethnicity, and Gender manifested as signif-

icant predictors of PDAC in the validation set, as illustrated in Fig 1 and explained in the data

set characteristics subsection (see also Tables A and B in S1 Appendix). It is worth emphasizing

that the lack of significant association between certain markers and PDAC in the discovery set

does not preclude their inclusion in the signature. These variables were selected due to their

contribution to the enhanced robustness and generalization capacity in predicting PDAC dur-

ing cross-validation with a recursive feature elimination routine (see Methods). A similar

trend was verified in prior work focussed on ensemble models for PDAC early detection

against healthy controls and further substantiates the need for extensive discovery analysis in

the data sets collected for the present project [37].

In our comprehensive analysis, we identified eight features that exhibited relatively elevated

scaled importance in distinguishing controls from patients diagnosed with PDAC. These fea-

tures, as detailed in Fig 3, include the biomarkers CA19-9, VWF, CPE, CTSV, CEACAM1,

and CD160. To rigorously assess the diagnostic utility of these selected features, we devised a
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reduced index employing the diagnosis-specific ensemble strategy previously delineated. Dia-

betes and Age were incorporated as clinicodemographic variables. This strategy facilitates a

targeted evaluation of the features’ collective performance in a clinical context. Detailed

Fig 3. Features selected per diagnosis class (base-learner classifiers). The scaled importance is calculated within each base-learner (Fig 2A). Selected features

are ranked from left to right according to the average scaled importance across base learners. See Fig 1 and Tables B, C and D in S1 Appendix for the univariate

predictive performances of each of the markers in the discovery and validation sets. See Methods section for details on model-agnostic algorithm for feature

importance calculation. See S1 Data file for the underlying data for the figure.

https://doi.org/10.1371/journal.pcbi.1012408.g003
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performance metrics and analytical outcomes of this reduced index are presented in S1

Appendix and Table 2.

In evaluating the efficacy of our ensemble modelling approach and data analysis protocol,

we benchmarked it against biomarker combinations reported in existing literature [40,44–48].

Our comparison pitted our panels and protocol against with recursive feature elimination rou-

tine presented above that did not resort to ensemble modelling (RFE glm in Fig 2); the latter

selected Diabetes, ABL1, ERBB3, ESM1, EGF, SYND1, PPY, TGFA, VEGFA as the best feature

combination. From this set the first five markers were involved in the diagnosis-specific

ensemble index (Fig 3), and from the remaining only TGFA and VEGFA are reported in the

literature as part of best performing panels [40,44–48]. Despite this overlap, given that the

starting point for RFE glm was the same as in our ensemble approach, the greater portion of

single markers reported in the literature should have arisen as the most competitive when

applied to our data set. This is not verified, performance wise, since the diagnosis-specific

ensemble modelling still outperformed any other alternative, thus confirming our protocol’s

added value in distinguishing diagnosed PDACs from benign and healthy controls (Fig 2).

Furthermore, it is critical to acknowledge that the best-performing index detailed in this

study significantly deviates from our earlier work [37]. In the previous study, the goal was to

develop a combined index that could distinguish undiagnosed PDAC cases from healthy con-

trols years before a cancer diagnosis was made. In contrast, the current study focuses on identi-

fying an analysis strategy or pipeline leading to effective biomarker panels for use in secondary

care among at-risk populations. This shift in focus reflects our ongoing efforts to refine diag-

nostic tools tailored to the specific needs of different clinical contexts.

Application of the full PDAC ensemble signature in symptomatic patients

Our subsequent aim was to explore whether specific clinical manifestations were correlated

with PDAC status in our ADEPTS patient cohort, for which such information was available

(refer to Fig D and Table G in S1 Appendix). As a similar type of data was not available for the

UKCTOCS subset (healthy controls) used in this work, we focused this section on the

ADEPTS cohort.

In our prior research, we analysed 12 "red-flag" symptoms reported by patients up to 22

months before the diagnosis of pancreatic cancer was established [17]. In this work, ‘Vomiting’

(p = 0.17), ‘Asymptomatic LFT Derangement’ (p = 0.28), ‘Back pain’ (p = 0.54), ‘Change in

Bowel Habit’ (p = 0.67) and ‘Rectal Bleeding’ (p = 0.76) were selected for PDAC (versus benign

disease controls), yet only ‘Jaundice’ (p = 3.22×10−15), and ‘Weight Loss’ (p = 1.44×10−6) were

significantly associated with PC cancer cases in the set of samples randomly selected from the

ADEPTS cohort, in which the biomarker panel was tested (Fig 4B and Table G in S1 Appen-

dix). Unsurprisingly, ‘Reflux’ (p = 0.022) and ‘Bloating’ (p = 0.048) were significantly associ-

ated with benign controls. Interestingly, ’Abdominal Pain’, ’Heartburn’, ’Anaemia’, and

’Dysphagia’ upon presentation were aligned more with the benign control cohort, albeit not

significantly (refer to Fig 4 and Table G in S1 Appendix).

Within the framework presented in preceding sections, our ensemble of classifiers was

developed independently of symptomatic data. To assess the overall efficacy of our signature

and its predictive capacity for PDAC, we scrutinized its performance on a subset of ADEPTS

patients, belonging to both discovery and validation cohorts, manifesting with ’Weight Loss’

(n = 56) and ’Jaundice’ (n = 40) (refer to Fig 4 and Table G in S1 Appendix). For each sample

within these cohorts, where symptom data was accessible, probability scores were derived

based on the ensemble model formulated above. We should emphasize that no additional

model refinement was pursued and a simple concatenations of probability outputs was done.
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Table 2. Performance summary for selected models in symptomatic patients. The probability values used to calculate the performance metrics were generated with

each model developed in the training set and reported in the main text. Probability values for symptomatic patients belonging to the training set and validation set were

concatenated to generate the ROC curves. Only ADEPTS samples had symptoms information. A. L. Derang.: Asymptomatic LFT Derangement. B. Pain: Back Pain. C. B.

Habit: Change in Bowel Habit. W. Loss: Weight Loss. 95% confidence intervals are provided in parentheses. See also Table H in S1 Appendix for the explicit performance

ranks according to model, symptom and metric and Fig 5.

Models Metric Symptom (Yes)

A.L.Derang. A. Pain A. B. Habit W.Loss Jaundice

CA19-9 ROC 0.85 (0.62–1) 0.81 (0.65–0.96) 0.82 (0.57–1) 0.74 (0.58–0.90) 0.70 (0.53–0.86)

Sens90 0.75 (0.38–1) 0.69 (0.44–0.94) 0.71 (0.42–1) 0.53 (0.24–0.76) 0.41 (0.14–0.73)

PPV90 0.54 (0.37–0.61) 0.36 (0.26–0.43) 0.46 (0.34–0.55) 0.70 (0.50–0.77) 0.83 (0.64–0.90)

NPV90 0.96 (0.90–1) 0.97 (0.95–0.99) 0.96 (0.93–1) 0.81 (0.73–0.90) 0.55 (0.46–0.73)

Index signature ROC 0.98 (0.95–1) 0.98 (0.97–1) 0.97 (0.92–1) 0.95 (0.90–1) 0.89 (0.79–0.99)

Sens90 1 (0.62–1) 0.94 (0.81–1) 0.86 (0.56–1) 0.94 (0.29–1) 0.73 (0.36–0.91)

PPV90 0.61 (0.49–0.61) 0.43 (0.40–0.45) 0.51 (0.41–0.55) 0.8 (0.56–0.81) 0.90 (0.82–0.92)

NPV90 1 (0.94–1) 0.99 (0.98–1) 0.98 (0.95–1) 0.97 (0.75–1) 0.73 (0.54–0.89)

Reduced signature ROC 0.97 (0.93–1) 0.92 (0.88–0.99) 0.91 (0.83–0.98) 0.92 (0.85–0.99) 0.82 (0.67–0.97)

Sens90 1 (0.63–1) 0.81 (0.38–1) 0.57 (0.14–1) 0.71 (0.35–0.94) 0.77 (0–0.95)

PPV90 0.61 (0.49–0.94) 0.40 (0.23–0.45) 0.41 (0.15–0.55) 0.75 (0.6–0.8) 0.90 (0–0.92)

NPV90 1(0.94–1) 0.98 (0.95–1) 0.95 (0.9–1) 0.88 (0.76–0.97) 0.76 (0.42–0.94)

https://doi.org/10.1371/journal.pcbi.1012408.t002

Fig 4. Association between symptoms and PDAC. A Number of subjects with each symptom according to PDAC status, case or control. B Association of

symptoms with PDAC status, p values were calculated according to a logistic regression model with a bias reduction method. Purple dashed lines correspond to

-Log [0.05]. In B dot sizes correspond to odds ratios and are colour coded according to their respective values, i.e., blue if OR<1 and red if OR>1. See also

Table I in S1 Appendix. Only samples belonging to the ADEPS cohort were used as no information about symptoms was available for the UKCTOCS set of

samples.

https://doi.org/10.1371/journal.pcbi.1012408.g004
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The decision to aggregate these probability scores is further rationalized by the relatively lim-

ited patient count exhibiting ’Weight Loss’ and ’Jaundice’ within the individual discovery and

validation datasets (Table G in S1 Appendix). In the ADEPTS subset of samples presenting

with ’Weight Loss’, an AUC of 0.95 (95% CI 0.90–0.1), a sensitivity of 0.94 (95% CI 0.29–1), a

PPV of 0.80 (95% CI 0.56–0.81), and a NPV of 0.97 (95% CI 0.74–1) at 90% specificity were

achieved (Fig 5 and Table 2). In patients presenting with ’Jaundice’, an AUC of 0.89 (95% CI

0.79–0.99), a sensitivity of 0.73 (95% CI 0.36–0.91), a PPV of 0.90 (95% CI 0.82–0.92), and a

NPV of 0.73 (95% CI 0.54–0.89), at 90% specificity, were observed (Fig 5 and Table 2). Com-

pared with the AUC obtained with a simple CA19-9 logistic regression model developed in the

discovery set and by concatenating the probability scores in the discovery and validation as

done above, a significantly lower AUC of 0.74 (95% CI 0.58–0.90) is achieved (p = 1.29×10−11,

one-sided bootstrap test), with a sensitivity of 0.53 (95% CI 0.24–0.76), a PPV of 0.70 (95% CI

0.50–0.77), and a NPV of 0.81 (95% CI 0.73–0.90), at 90% specificity, for patients presenting

with ’Weight Loss’. For patients presenting with ‘Jaundice’ an AUC of 0.70 (95% CI 0.53–0.86)

is reached, also significantly inferior (p = 1.94×10−7), with a sensitivity of 0.41 (95% CI 0.14–

0.73), a PPV of 0.83 (95% CI 0.64–0.90), and a NPV of 0.55 (95% CI 0.46–0.73), at 90% speci-

ficity, for CA19-9 as the single predictor.

With respect to other non-localising symptoms of note (Fig 5 and Tables 2 and H in S1

Appendix), the best predictive performance was noted for the full index signature where it was

able to differentiate patients presenting with ‘abdominal pain’ due to benign conditions vs.

PDAC with an AUC of 0.98 (95% CI 0.97–1), sensitivity of 0.94 (95% CI 0.81–1), PPV 0.43

(95% CI 0.40–0.45) and a NPV of 0.99 (95% CI 0.98–1), at 90% specificity. In those presenting

with ‘change in bowel habit’, an AUC of 0.97 (95% CI 0.92–1), sensitivity 0.86 (95% CI 0.81–

1), PPV of 0.51 (95% CI 0.41–0.55) and NPV of 0.98 (95% CI 0.95–1) was obtained. Both the

full ensemble index and the 8-marker signature showed superior predictive performance to

CA19-9 as a single marker (see Table I for the respective p-values, in S1 Appendix).

Fig 5. Receiver operating curves for selected models in symptomatic patients. A Only CA19-9. B Full index signature. C Reduced index signature. The

probability values used to calculate the performance metrics were generated with each model developed in the discovery set and reported in the main text.

Probability values for symptomatic patients belonging to the discovery set and validation set were concatenated to generate the ROC curves. Only ADEPTS

samples had symptoms information. A. L. Derang.: Asymptomatic LFT Derangement. B. Pain: Back Pain. C. B. Habit: Change in Bowel Habit. W. Loss: Weight

Loss. See also Table 2 for numerical values for area under the curve and other metrics.

https://doi.org/10.1371/journal.pcbi.1012408.g005
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Correlation of the full PDAC ensemble signature with QCancer pancreatic

score

In our final analysis, we juxtaposed the performance of our full ensemble classifier PDAC

index against the QCancer risk prediction index, a clinical decision support tool available for

primary care physicians, that integrates a myriad of individual-specific risk factors including

age, sex, ethnicity, clinical measurements, diagnoses, and patient-reported symptoms into a

risk stratifying point of care questionnaire [21]. The ‘Today’s QCancer’ index evaluates an

individual’s current risk of having an undiagnosed cancer as well as the specific risk for 9 dis-

tinct underlying cancer types, including pancreatic (‘pancreatic’ score) [49,50]. The aim was to

determine whether in combination, the QCancer eCDST and our biomarker index signature

would be able to better discriminate PDAC patients in a symptomatic (ADEPTS) cohort or

whether it would be redundant. As the current risk threshold set by the NICE is at 3% for trig-

gering specialist referrals [51], we opted to assess the combined performance of our index sig-

nature and the eCDST at a same or lower cut-off values.

The number of samples for which a QCancer score was computed is illustrated in Fig 6C.

Using the diagnostic-specific ensemble model delineated previously, probability scores for

samples in both discovery and validation cohorts were used to ascertain the combined ROC

AUC for those samples possessing a QCancer score. This amalgamation was imperative,

Fig 6. Prediction of PDAC in patients with specific symptoms and according to QCancer score values. The ensemble stack was selected as the best model

according to Fig 2. A Performance of the stack in participants for which a Qscore had been calculated or above a specific threshold, bigger than 2, 2.5 or 3.0. B

Performance of the Qscore taken as the predictor of PDAC risk in participants for which a Qscore had been calculated or above a specific threshold, bigger

than 2, 2.5 or 3.0. C Number of subjects that had a calculated Qscore or are above a specific threshold, bigger than 2, 2.5 or 3.0. D Correlation between QCancer

score and odds ratio of PDAC according to the stacked ensemble. D is in log scale and R stands for the Person correlation coefficient and p for the p-value

calculated with a t-test. The QCancer score is identified as Qscore in the figure panels.

https://doi.org/10.1371/journal.pcbi.1012408.g006
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considering the reduced number of samples with an associated QCancer score (Fig 6C). It

should be emphasized that no subsequent refinements or training of the algorithm were con-

ducted. The ensemble stack index demonstrated a remarkable performance, achieving an

AUC of 0.98 (95% CI 0.97–0.99), a sensitivity of 0.99 (95% CI 0.97–1), a PPV of 0.91 (95% CI

0.90–0.91), and a NPV of 0.99 (95% CI 0.96–1), at 90% specificity. Interestingly, when consid-

ering only samples with a QCancer risk above 2 or 2.5, the biomarker and clinical covariate

ensemble index exhibited comparatively lower performance (Fig 6A). For a QCancer risk

above 3.0, the performance of the index decreases minimally once again, which is expected as

the difficulty of correctly singling out cases from confounding controls is increased (Fig 6A).

However, the QCancer pancreatic score did exhibit a correlation with the odds of PDAC as

determined by the ensemble classifier (R = 0.36, p = 3.4×10−8, Fig 6D) which highlights an

important link between the purely clinical variables recorded for this cohort and the PDAC

signature. Most importantly, the stacked index succeeded in attributing higher odds ratios

above 1 to several PDAC cases that would have otherwise escaped detection had a QCancer

score above 3 been taken as the risk predictor (Fig 6D). Contrarily, when depending exclu-

sively on the QCancer score, and using it to calculate the ROC AUC, the predictive capacity

for PDAC in the ADEPTS samples is noticeably diminished in comparison to the performance

of the ensemble index (Fig 6B); this was verified in all samples with a Qcancer score

(p = 1.56×10−18, one-sided bootstrap test comparing AUCs), with a score above 2

(p = 1.24×10−10), above 2.5 (p = 3.68×10−13) and above 3 (p = 2.33×10−8). This justifies the

PDAC signature as a useful complementary resource for enhanced and accelerated diagnosis

in the clinic.

Discussion

Our objective was to derive a data analysis strategy and construct a multi-biomarker signature

that could effectively differentiate individuals with non-specific yet concerning symptoms

attributable to both benign abdominal pathologies and PDAC. CA19-9 tumour marker blood

levels are currently used clinically to help confirm PDAC diagnosis in a clinical context (posi-

tive findings on imaging, histopathology), prognosticate and monitor recurrence following

tumour resections [31]. Its absent expression in Lewis body negative blood group individuals,

an overall limited predictive capacity (79–81% test sensitivity and 82–90% specificity at best),

especially in the presence of certain inflammatory pancreatico-biliary conditions, have driven

researchers to rather combine it in multi-marker panels to enhance its predictive performance

[26,27,31]. In an evolving multi-omics area, reported panels have included proteins, circulat-

ing nucleic acids (micro-RNA, cfDNA) or tumours cells, metabolites, and products of alterna-

tive DNA splicing and methylations [31,52], developed to differentiate PDAC from healthy

and those with benign pathologies. Yet, the role of such diagnostic and screening panels in

symptomatic cohorts remains unestablished.

The majority of the sampled population in our study is an enriched, symptomatic, second-

ary care cohort where the prevalence of PDAC was close to 8%, representing figures observed

in our hepatobiliary specialised referral centres. By using this target population and their

unique set of serum samples provided by the ADEPTS study [44], we were able to develop a

biomarker signature in a cohort of patients who were referred to our participating centres

(University College London Hospitals, London UK and the Royal Free Hospital, London UK)

with various abdominal and hepatobiliary conditions which in symptomatic presentation

might overlap with PDAC [17]. Moreover, we included samples from patients with known

risk factors for PC (chronic pancreatitis, those with family history of PDAC and cystic lesions

of the pancreas, CLPs) and with biliary conditions that are known confounders of CA19-9 (i.e.

PLOS COMPUTATIONAL BIOLOGY Diagnosis specific ensemble learning for early pancreatic cancer detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012408 August 29, 2024 16 / 27

https://doi.org/10.1371/journal.pcbi.1012408


biliary tract inflammation/obstruction, pancreatitis, CLPs)—the only tumour marker clinically

applied in the workup and management [26,48,53] of PDAC.

We employed ensemble learning methods, which have achieved impressive accuracy in

numerous complex classification tasks [37,43,54,55]. Specifically, we utilized stacking—a form

of meta-learning [43]—to create a superior-level predictive model based on the predictions of

diagnosis-specific base classifiers. These classifiers leveraged a diverse set of features, highlight-

ing the fundamental importance of heterogeneity arising from specific diagnoses when com-

pared against PDAC, an approach previously demonstrated to be effective [37,54]. Moreover,

this study enabled us to evaluate the specificity of our general early detection machine learning

approach [37] within a relevant symptomatic population, thereby allowing us to address con-

founding factors that may impact their performance. The use of such diagnostic specialized

base-learners was further justified by the data asymmetry between PDAC cases and controls

observed in both the discovery and held-out validation datasets.

Across all diagnosis classes (base learners) the ensemble index signature which comprised

44 clinical and serum protein covariates predicted PDAC (all stages) with an AUC of 0.98

(95% CI 0.98–0.99); at 90% specificity, a sensitivity of 0.99 (95% CI 0.98–1), PPV 0.92 (95% CI

0.91–0.92) and NPV 0.99 (95% CI 0.97–1) was reached, in contrast to CA19-9 as a single pre-

dictor under a logistic regression model—AUC 0.79 (95% CI 0.66–0.91), sensitivity 0.67 (95%

CI 0.50–0.83), PPV 0.32 (95% CI 0.26–0.38) and NPV of 0.97 (95% CI 0.96–0.99). On valida-

tion, an AUC of 0.95 (95% CI 0.91–0.99), sensitivity 0.86 (95% CI 0.68–1), PPV 0.54 (95% CI

0.48–0.58) and NPV of 0.98 (95% CI 0.95–1) was achieved by the signature, compared to an

AUC of 0.80 (95% CI 0.66–0.93), sensitivity 0.65 (95% CI 0.48–0.56), PPV 0.49 (95% CI 0.41–

0.56) and NPV of 0.95 (95% CI 0.92–0.98), for CA19-9. The ensemble panel also outperformed

other state-of-the-art methods. Since these alternative methods also rely on the same starting

set of features and follow standard approaches that led to previously reported panels by other

researchers, we must conclude that our proposed index also showed better performances in

our data than other published combinations of biomarkers.

The performance of this index panel and model development methodology must be appre-

ciated within the context of the complex biology associated with each of the ensembled diag-

nostic classes, i.e., the challenges associated with biomarker alterations on the background of

pancreatico-biliary inflammatory and obstructive pathologies. When applying a redacted,

8-marker signature (CA19-9, VWF, CPE, CTSV, CEACAM1,CD160, Diabetes and Age)—fea-

tures that were selected with relatively high importance across most base learners, the perfor-

mance was naturally reduced, yet still performed significantly better against CA19-9 as a single

marker during discovery. Using the general linear model stack as was done in the case of the

full index, the reduced signature predicted PDAC with AUC of 0.97 (95% CI 0.95–0.98), sensi-

tivity 0.98 (95% CI 0.95–1), PPV 0.92 (95% CI 0.91–0.92) and NPV of 0.98 (95% CI 0.94–1), at

90% specificity (Fig EC in S1 Appendix), values comparable to the full index. During valida-

tion, however, the predictive capacity of the reduced signature was significantly reduced com-

pared to the full stacked model (Fig ED in S1 Appendix) and only marginally superior to

CA19-9 alone across the cohort. In contrast, it still outperformed CA19-9 by a significant mar-

gin when predicting PDAC against healthy controls.

As validation of its performance, we also applied the full ensemble index signature to the

cohort when re-stratified based on presenting symptoms, with no further model refinement.

Since the ensemble of classifiers were developed independently of symptomatic data, the aim

was to test the signature performance in differentiating PDAC cases from controls by account-

ing for presenting symptoms which have been linked with repeated primary care consultations

up to two-years prior to PDAC diagnosis [17] (Fig 4). Enriched by fulfilling certain sociode-

mographic, clinical and attributable suspicious symptoms (identified using CDSTs such as
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QCancer tool), symptomatic patients would form an ideal cohort for further risk stratification

by minimally invasive blood biomarker testing for prioritisation of more invasive (and costly)

investigations. Yet, contrary to the full ensemble index, in the cohort used in the current work

the QCancer score used as the sole predictor of PDAC did not achieve significant perfor-

mances in samples above the threshold of 3%. This further motivates the recourse to combined

strategies where complementary biomarker panels such as those identified by ensemble

modelling approaches could improve early detection when used in conjunction with CDSTs.

In our test subjects, however, only ‘Jaundice’ (p = 3.22×10−15), and ‘Weight Loss’

(p = 1.44×10−6) were significantly associated with PDAC. When testing the diagnostic perfor-

mance of the full index signature in all symptomatic patients presenting with ‘Weight Loss’,

the signature significantly outperformed CA19-9: AUCsignature of 0.95 (95% CI 0.90–0.1) vs.

AUCCA19-9 of 0.74 (95% CI 0.58–0.90) (Fig 5A and Tables 2 and I in S1 Appendix). ‘Weight

loss’ has previously been reported to have the longest diagnostic interval in a prospective pri-

mary cohort study (SYMPTOM pancreatic study), assessing symptom trends and associated

diagnostic intervals in PC [11]. Attesting to the full index signature’s capacity as a rule out test

in such patients, is its outstanding negative predictive value compared to that of CA19-9 (0.97

95% CI 0.75–1 vs. 0.81 95% CI 0.73–0.9, respectively) (Table 2). Similarly, the index signature

performed superiorly to CA19-9 in jaundiced patients (AUC of 0.89 (95% CI 0.79–0.99) vs.

CA19-9 AUC of 0.70 (95% CI 0.53–0.86), see also Table I in S1 Appendix), which underscores

once again the increased capacity of the ensemble index to better identify PDAC in the pres-

ence of a known confounder of CA19-9 [26,48].

While our study provides valuable insights, it is not without limitations. While the observed

prevalence of PDAC in this study aligns with secondary care population trends, enhanced

specificity and positive predictive value would necessitate larger cohorts with an increased

number of cases. Moreover, the sample set representing the ’Healthy’ control class warrants

expansion to incorporate a more diverse population of both men and women. This control

class, derived from the UKCTOCS samples used in a previous study [37], was exclusively com-

prised of women. Given its superior performance in predicting PDAC, as depicted in Fig 2,

the inclusion of male samples within this class could further enhance the breadth of the panel

of markers identified in this study. Lastly, although diabetes emerged both as a risk factor and

a central clinical covariate in our signature (including in the reduced panel), we must empha-

size and recognise the lack of complete (type, duration) data in the UKCTOCS cohort [37].

Nevertheless, diabetes mellitus (and in particularly of new onset) is an established risk factor

and therefore its inclusion as a relevant feature in the signature is of no surprise [6].

While our index was superior in its predictive performance to CA19-9 alone and other bio-

marker combinations reported in the literature, in addition to compensating for asymmetric

binary classes by creating a diagnostic-specific ensemble, its complexity challenges its utilisa-

tion in clinic. Yet, in the current era of rapidly evolving assay technologies, the utilization of a

complex biomarker signature comprising numerous variables has gained significant relevance.

While the complexity of these biomarker signatures may pose analytical challenges, the evolv-

ing assay technologies offer the means to effectively harness their potential.

Future enhancements however, will naturally necessitate the study of larger cohorts and

multi-modal data, potentially incorporating a biomarker-contextualized machine learning

perspective that accounts for sample-specific aspects related to diagnosis, a strategy employed

in other cancer research domains [56]. The utilization of disease trajectory tracking and clini-

cal history analysis [57] may also facilitate the application of advanced deep learning tech-

niques and electronic health data. When combined with ensemble biomarker signatures taken

for example in a longitudinal context [37,58], these approaches could enhance the estimation

of PDAC risk within an enriched symptomatic population.
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Materials and methods

Ethics statement

For the Accelerated Diagnosis of neuro Endocrine and Pancreatic TumourS (ADEPTS) study,

University College London (UCL)/ University College London Hospital (UCLH) Research

Ethics Committee reference 06/Q0512/106, IRAS Number 234637, NIHR portfolio no. 7343,

patients were recruited at gastroenterology/hepatobiliary and surgical clinics at UCLH and the

Royal Free Hospitals (RFH), London, UK. All patients recruited to the ADEPTS study pro-

vided written informed consent and no data allowing identification of patients was used.

For the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS), Joint UCL/

UCLH Research Ethics Committee A (Ref. 05/Q0505/57), written informed consent for the

use of samples in the trial and secondary ethically approved studies was obtained from donors

and no data allowing identification of patients was used.

Study design

As our cohort, we used serum samples from the Accelerated Diagnosis of neuro Endocrine

and Pancreatic TumourS (ADEPTS) study [44]—an early detection study aimed at detecting

pancreatic cancer in patients at an earlier stage. As part of the Early Diagnosis Research Alli-

ance, the ADEPTS study (previously referred to as TRANSlational research in BILiary tract

and pancreatic diseases study), commenced in 2018 and included a multicentre prospective

blood sample collection from patients with non-specific but concerning symptoms associated

with PDAC. Patients were recruited at gastroenterology/hepatobiliary and surgical clinics at

UCLH and the Royal Free Hospitals (RFH), London, UK. Blood samples were collected from

subjects with benign hepatobiliary conditions as well as those with PDAC (stages I-IV).

For PDAC patients, tumour staging was performed according to the AJCC 8th edition

(TNM) based on cross-sectional imaging and for those undergoing surgery, based on multi-

disciplinary team recordings. All included PDAC cases were histologically confirmed by

UCLH and RFH local pathologists based on tissue analysis obtained by endoscopic ultrasound

guided fine needle biopsies or specimens obtained during surgical resection.

For benign disease controls, patients were selected to include the following diagnoses:

chronic pancreatitis, intraductal papillary mucinous neoplasms (IPMN), or benign pancreatic

diseases (e.g., serous cystadenomas and pancreatic heterotopia). Patients with acute and

chronic pancreatitis, pancreatic cysts, benign biliary duct diseases (e.g., IgG4 disease), liver dis-

ease, gastritis/reflux disease, gallstones as well as those with familial history of pancreatic can-

cer, were also used. Samples also included those collected from patients presenting with non-

specific symptoms which were not otherwise explained by an underlying gastrointestinal

pathology (such as non-specific abdominal pain and irritable bowel syndrome) as well as other

malignancies. Medical history and confirmation of diagnosis was obtained from hospital med-

ical records and included GP and secondary clinic referral letters. For 45 patients, a QCancer

score was available at time of specialist centre consultations. QCancer calculates the probability

of an individual as harbouring an existing, yet undiagnosed cancer, by considering their spe-

cific risk factors and presenting symptoms. These are digitally available for primary care physi-

cians through patient record and data management portals such as EMIS Web and INPS and

designed as clinical decision support tools to aid in assessment of need for specialist referrals

[21–24].

To further represent the healthy population we also used samples from 72 healthy control

UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) [36] samples that were col-

lected from a nested case control discovery study part of UKCTOCS reported before [37]. The
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original UKCTOCS dataset from which data was used here was derived from serum samples

collected from post-menopausal women, aged between 50 and 74 years, who were recruited

between the years 2001 and 2005 [36]. The collection of these samples was conducted in accor-

dance with a specific Standard Operating Procedure (SOP) [59,60]. For the current work our

interest lies only with the UKCTOCS matched non-cancer controls, i.e., with no cancer regis-

try code, from individual women selected based on collection date, age, and centre to mini-

mize variation due to handling and storage. Comprehensive information regarding diabetes

status for the selected UKCTOCS participants was either unavailable or incomplete. In addi-

tion, data on disease duration was not accessible. Consequently, it was not feasible to stratify

samples to discovery and validation sets based on the type of diabetes they may have had. For

the purposes of this study, only healthy controls that were matched to PDAC cases, with less

than one year to diagnosis, were utilized.

A total of 539 serum samples (493 controls and 46 PDAC cases, see Table 1) were analysed

using the Olink multiplex immunoassay Oncology II panel in addition to five in-house mark-

ers: Carbohydrate antigen 19–9 (CA19-9), Interleukin 6 Cytokine Family Signal Transducer

(IL6ST/IL6RB), von Willebrand factor (VWF), Pyruvate kinase isozymes M1/M2 (PKM/

PKM2) and Thrombospondin 2 (THBS2/TSP2). The selection of additional markers, beyond

CA19-9, was informed by our preceding research in early detection of PDAC [37,48]. In those

studies, a panel of markers was identified due to its demonstrated ability to facilitate the early

detection of pancreatic cancer, with a lead time of up to two years prior to diagnosis.

Serum analyte measurements

All ADEPTS [44] samples were randomized for testing. Table J in S1 Appendix summarizes

dilution factors and coefficients of variation. CA19-9 was measured using the Mucin PC/

CA19-9 ELISA Kit (Alpha Diagnostic International) according to the manufacturer, using a

1:4 serum dilution. For VWF, we resorted to the Von Willebrand Factor Human ELISA Kit

(abcam) at a 1:100 serum dilution. IL6ST/IL6RB by Quantikine human soluble gp130 (R&D

Systems), according to manufacturer recommendations, at a 1:100 serum dilution. THBS2/

TSP2 was measured using the Quantikine Human Thrombospondin-2 Immunoassay (R&D

Systems) at a 1:10 serum dilution. Pyruvate kinase M2 (PKM2) was measured with an ELISA

(Cloud-Clone Corp) at a 1:10 dilution.

We outsourced tests using the multiplex immunoassay Oncology II panel from Olink on all

samples. This Olink panel measured known cancer antigens, growth factors, receptors, angio-

genic factors, and adhesion regulators (as detailed in Table K in S1 Appendix). Identical assays

were performed on a subset of samples derived from the UKCTOCS study [59,60].

To bridge the normalized protein expression values from Olink between the UKCTOCS

and ADEPTS datasets, we selected a representative sample set of 16 from each cohort and

plated them together. Subsequently, a correction was applied to the datasets using the statisti-

cal algorithms recommended in the Olink data normalization white paper [61]. This method

ensured that the data from different batches and studies were comparable, thereby enhancing

the robustness and validity of the findings.

Statistical analysis

The selected set of ADEPTS samples used in this work was partitioned into two distinct sets: a

discovery subset, comprising two-thirds of the total sample size, and a held-out validation sub-

set, encompassing the remaining one-third. All algorithms were trained in the discovery sub-

set. Allocation into each subset was performed by stratifying for specific age ranges, diabetes

status, PDAC status and control diagnosis class. For the PDAC cases, tumour stage was also
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used. The age stratification ranges were the following: 18<Age�28; 29<Age�38;

39<Age�48; 49<Age�58; 59<Age�68; 69<Age�78; Age�79. The samples assigned to the

control class were made of benign conditions such as: Sphincter of Oddi dysfunction, Pancre-

atic Cyst, Other Cancer, Other Biliary Duct Disease, No Relevant Diagnosis, Liver Disease,

Irritable Bowel Syndrome, IgG4 Disease, Gastritis/Reflux Disease, Gallstone Disease, Familial

Pancreatic Cancer, Chronic Pancreatitis, Acute Pancreatitis, Isolated LFT Derangement and

Non-specific Abdominal Pain. We also added an additional set of healthy control samples col-

lected from a nested study done in UKCTOCS samples used in a previous paper [62]. The con-

trols matched by age to the PDAC cases in the UKCTOCS cohort that had a time to diagnosis

below up to one year were selected. The allocation of these controls to the discovery or held-

out validation sets was done according to the division used in our previous work [62]. The

number of controls and cases collected for this study can be visualized in Fig 1. UKCTOCS

controls are identified as ‘Healthy’.

The discovery held-out validation final split, i.e., with ADEPTS and UKCTOCS samples,

put the prevalence of PDAC in the discovery set at close to 8%. The prevalence of PDAC in the

resulting validation was approximately 14%. The held-out validation set was isolated and not

used in any stage of model and biomarker signature development. This is akin to having a

blinded dataset.

Receiver operating characteristic (ROC) curves were constructed for each model to assess

diagnostic performance. The area under the curve (AUC) for the ROC curves was used as the

metric. ROC curves were generated with the pROC R package (version 1.18.0, https://cran.r-

project.org/web/packages/pROC/index.html). 95% CI for AUCs were determined by stratified

bootstrapping. All AUC confidence intervals crossing 0.5 were considered to be non-signifi-

cant. P values comparing ROC curves were also calculated using the pROC package, under a

one-sided bootstrap approach with 10000 runs.

In order to evaluate the association between each of the single markers available for this

work, including clinical covariates (see Fig 1 and Table 1), and PDAC status, we created uni-

variate models using a logistic regression model implemented in the logistf R package (https://

cran.r-project.org/web/packages/logistf/index.html, version 1.24.1). This approach fits a logis-

tic regression model using Firth’s bias reduction method. The reported confidence intervals

for odds ratios and tests were based on the profile penalized log likelihood and incorporate the

ability to perform tests where contingency tables are asymmetric or contain zeros. The perfor-

mance of single marker models was also verified in the discovery and held-out validation sets

(see Fig B and Tables C and D in S1 Appendix). The same package was also used to verify the

association of the presence of symptoms and PDAC status (see Fig 4).

A comprehensive multi-dimensional examination of the collated data was conducted by

employing two distinct analytical frameworks. The first was a stacked ensemble algorithm

where base-learners were developed according to the same algorithm but in subsets of the dis-

covery set where samples belonging to a specific control diagnosis class were contrasted against

the same 24 PDAC cases (see the proportions in Fig 1). The resulting base-learners were then

stacked by a logistic regression model, (see Table E for the resulting coefficients and Fig A for

the stacking procedures, in S1 Appendix). This approach aimed to leverage the predictive

power of multiple models, thereby enhancing the robustness and potentially leading to more

precise predictive outcomes [37,43,54]. For each base-learner classifier we resorted to a Recur-

sive Feature Elimination (RFE) routine with logistic regression as the fitting algorithm avail-

able through caret (version 6.0–93, https://cran.r-project.org/web/packages/caret/index.html).

Due to the prevalence of PDAC cases in the whole dataset being low, random under sampling

of the majority class, here benign and healthy controls, if the PDACs are pitted against the

whole set of controls, would pose a challenge for most algorithms. Therefore, creating an
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ensemble of classifiers specialised in contrasting a specific diagnostic class against PDAC

allowed us more balanced subsets leading to increased performance (Fig 2). For the samples

collected from UKCTOCS no symptoms information was available and, therefore, we created

a separate classifier associated with this subset of individuals.

Selection of type and number of base-learners has been studied before in other areas

[37,43]. Different approaches to this problem have been put forward that either focus on a

greedy search for the best ensemble, or rely on diversity based metrics to ensure robustness in

external datasets [43]. Here, we have chosen to enforce the diagnosis-specific design to ensure

that we relied on clinically relevant features and respected the underlying question of ADEPTS

[44]. Nevertheless, we also tested ensemble selection by recursively eliminating base-learners

and the best ensemble performer was always the full set of 16 reported above, each contrasting

the same PDACs against diagnosis-specific controls.

The second analytical framework followed a more traditional application of state-of-the-art

algorithms to the whole discovery set. We tested 3 different algorithms under this framework:

random forests (RRF, version 1.9.4, https://cran.r-project.org/web/packages/RRF/index.html);

extreme gradient boosting trees (xgbTree, version 1.6.0.1, https://cran.r-project.org/web/

packages/xgboost/index.html); and a generalized linear model with RFE (RFE glm). It is

important to clearly stress the differences between this RFE glm model and the stacked ensem-

ble model reported above. The additional RFE glm model, despite using similar techniques to

each base-learner in the ensemble approach, was applied to the whole discovery data set, with-

out division of the control samples into diagnosis classes. This resulted in one model only as

opposed to 16, and therefore there is no need for stacking under this additional approach.

All ensemble base-models as well as all the additional state-of-the-art algorithms mentioned

above, i.e., xgbTree, RRF and RFE glm, were trained in the discovery subset with leave-one-

out cross validation (LOOCV) in order to find the optimal set of input features or the opti-

mum hyperparameters (see Table M in S1 Appendix). 1000 random parameter combinations

were tested to achieved optimum performance.

We tested 3 subsampling algorithms combined with each of the models: oversampling of

the minority class, the Synthetic Minority Oversampling Technique (SMOTE) [41,63] algo-

rithm and under sampling of the majority class (see Table F in S1 Appendix). The sub-sam-

pling routines were performed within the cross-validation procedure to avoid overfitting [64–

66].

The RFE associated with 2 of the algorithms mentioned above was also performed within

the cross-validation folds. This reduces data leakage and overfitting due to the fact that feature

selection is performed for each training fold and a rank of potential feature groups is created

based on their cross-validation performance [64–67], thus leading to the most robust option.

To verify if the PDAC index developed with the ensemble stacked approach had any associ-

ation with metrics used in the clinic but not taken into account in any stage of algorithm train-

ing, we also gathered the QCancer score [21] for individuals in the ADEPTS study (see Fig 6).

This allowed us further validation of the diagnosis-based ensemble index and a view of its

potential as a complementary measure.

The procedure for assessing feature importance in each base learner was a model-agnostic

method based on a simple feature importance ranking measure [68], implemented in the R

package vip (version 0.3.2, https://cran.r-project.org/web/packages/vip/index.html). The

model-agnostic interpretability, by decoupling the interpretation from the model itself, intro-

duces a level of flexibility that enables its application across any supervised learning algorithm.

Despite the algorithm used for each diagnosis-specific classifier being the same, the model-

agnostic approach allows us to be able to generalise the computed importances to other work

in the literature.
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Enrichment analysis for each of the signatures developed was performed with the gprofiler2
R package (version 0.2.1, https://cran.r-project.org/web/packages/gprofiler2/index.html). A

threshold for multiple comparison correction under the framework of false discovery rate was

instituted at 0.05.
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cited in the main text as well as supplementary text on the application of a reduced, 8-marker
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