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Abstract 

Impact-based weather forecasting requires forecasters to predict what weather might do 

(impact information), rather than solely what weather might be (meteorological 

information). In a collaboration between the UK Met Office, UK psychologists, and weather 

scientists in Indonesia, Malaysia, The Philippines, and Vietnam, the present study employed 

Judgment Analysis and decision strategy comparisons to better understand weather 

scientists’ impact severity judgments. In the Judgment Analysis Task, weather scientists 

(from Indonesia, Malaysia, the Philippines, and Vietnam) made numerical and categorical 

severity judgments for 70 hypothetical heavy rainfall events, each described via six impacts 

(e.g., number of deaths, number of people affected). The hypothetical impacts were 

generated from a multivariate distribution estimated from a distribution of real rainfall 

events. Subsequently, participants provided categorical severity classifications for a list of 

impact values for each type of impact (Threshold Identification Task) to aid the 

identification of decision strategies. In all four countries, weather scientists’ severity 

judgments were best predicted by incorporating all six impacts via a compensatory 

judgment strategy. However, considerable individual differences were identified in the 

weights assigned to the different impacts and in the identified thresholds for each impact’s 

categorical severity classification. To improve impact-based forecasting, meteorological 

agencies should seek to enhance consistency among forecasters.    

 

Keywords: Compensatory judgment strategy; Judgment Analysis; Impact-based forecasts; 

Impact-based weather warnings; severity judgments; threshold identification  



 3 

1. Introduction  

Mitigating costs and damages associated with extreme weather events is a global priority 

(United Nations, 2015). Results from the Global Risks Perception Survey (World Economic 

Forum, 2023) ranked such events as the second most severe risk facing the world (after the 

Cost-of-living crisis) in the next two years (and third in the next 10 years). Extreme weather 

refers to weather events that are markedly different from average or usual weather 

patterns, and includes events such as storms, flash-floods, strong winds, heatwaves and 

droughts (Haryanto et al., 2020). Extreme weather conveys significant negative impacts on 

populations, natural resources, and economic growth.  

Southeast Asia is a region particularly affected by extreme weather. In Indonesia, between 

1998 and 2018, extreme weather events included 8,814 floods, 5,969 heavy wind/storms, 

4,946 landslides, 1,872 droughts, and 13 tsunamis (Haryanto et al., 2020). In the last two 

decades, Malaysia has experienced 51 extreme weather events and earthquakes, with 281 

deaths, over 3 million people affected, and US $2 billion losses (Centre for Excellence in 

Disaster Management and Humanitarian Assistance, 2019). Over the past 20 years, extreme 

weather events in Vietnam have caused more than 13,000 deaths, and property damage in 

excess of US $6.4 billion (Global Facility for Disaster Reduction and Recovery, 2018). The 

Philippines is one of the most disaster-prone countries in the world and experiences an 

average of 20 typhoons every year (Global Facility for Disaster Reduction and Recovery, 

2016). Profound psychological impacts caused by extreme weather events such as trauma, 

anxiety, depression are also documented in Southeast Asia (Patwary et al., 2024). The 

design and utilization of an effective warning system is one approach to mitigate the 

damages caused by such hazards.  

1.1 The development of Impact Based Warnings 

One approach to improve the effectiveness of weather warnings in mitigating impacts is the 

development of Impact-Based Warnings (IBWs) (WMO, 2015). Incorporating impact 

information into forecasts and warnings is thought to facilitate appropriate protective 

actions (e.g., Uccellini & Hoeve, 2019).  IBWs can be well-illustrated through the Warning 

Impact Matrix (Figure 1, Met Office, 2023), which is employed by many countries for the 

development and communication of IBWs. A warning on this risk matrix conveys the 
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severity of impacts the weather may cause (Very Low/ Minimal, Low/Minor, Medium/ 

Significant, and High/ Severe) and the likelihood of those impacts occurring (Very Low, Low, 

Medium, and High). The combination of impact severity and likelihood defines a warning 

level colour. Yellow and Amber warnings represent a range of potential impacts and their 

likelihood; a Red warning indicates that dangerous weather is expected with a high 

likelihood of severe impacts.  The impact-based forecasting (IBF) paradigm is accepted and 

used by many national meteorological and hydrological services around the world (WMO, 

2021b; Yu et al., 2022), with research to develop such capacities in a number of other 

locations (e.g., Beckett & Hartley, 2020; Harrison et al., 2021; Jenkins et al., 2022; 

Kaltenberger et al., 2020; Mitheu et al., 2023; Singhal et al., 2022). 

 

Figure 1 

Met Office (2023) Warning Impact Matrix 

 

The move to IBWs clearly provides a requirement to forecast weather impacts, as well as 

(just) the weather. Consequently, algorithmic calculations of expected impacts have 

received recent research attention, including successful implementations of impact models 

for vehicles overturning (Hemingway & Robbins, 2020), building damages (Röösli et al., 

2021; Wei et al., 2018), electrical infrastructure damages (Wilkinson et al., 2022), critical 

facility damages (Taramelli et al., 2015), and agricultural losses (Chau et al., 2015).  
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1.2 Impact severity classification 

In addition to predicting specific impacts, successful IBW requires matching expected 

impacts to user-agreed overall severity levels (as in Figure 1). This classification of impacts 

into overall severity levels can be achieved through comparison with impact tables that 

have been developed for just this purpose within countries employing IBF. Impact tables 

comprise a collection of descriptive information of possible impacts from a variety of 

different sectors (e.g., Population, Transport, Education), classified according to severity 

level (e.g., Minimal, Minor, Significant and Severe). Impact tables are typically developed 

and refined through discussion between forecasters and key stakeholders (UN ESCAP, 2021; 

Met Office, 2017). Extant impact tables list various types of impacts in relation to different 

hazards. Consequently, in theory, forecasted impacts can be ‘looked up’ in these Impact 

tables, so as to define an appropriate severity level. In an online experiment with individual 

forecasters, Jenkins et al. (2022) observed good alignment between (hypothetical) impact-

based warnings issued by forecasters, with those implied by the original impact tables in 

Indonesia, Malaysia, and the Philippines. 

Jenkins et al. (2022) presented participants with a single expected impact, with an identical 

description to that found in their country’s impact table. There are, however, challenges 

associated with the use of impact tables for severity classification. A key one is the 

mismatch between the qualitative format of impact tables (e.g., “wider-scale and prolonged 

disruption to daily life and services”) and the often quantitative outputs of impact forecast 

algorithms. Developers of these algorithms have taken a variety of approaches to attempt 

to link their quantitative outputs with an overall severity classification (Aldridge et al., 2020; 

Aldridge et al., 2016; Cole et al., 2016; Moore et al., 2015; Speight et al., 2018). Aldridge et 

al. (2016), for example, classified 40-199 lives in danger as minor, 200-299 lives in danger as 

significant, and 300+ lives in danger as severe. Wyatt et al. (2023) designated severity 

classifications via octile breaks. In some other studies, researchers used both quantitative 

thresholds and descriptive classifications for impact severity assessment (Robbins & Titley, 

2018; Spruce et al., 2021). All the above approaches are inherently sensible. It is not, 

however, known how the approaches match users’ (both forecasters & forecast recipients) 

interpretations of how numerical impact forecasts map onto severity classifications. 
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Moreover, extant impact tables only match the level of individual sector impacts to a 

severity classification. We are aware of no work investigating how forecasted impacts on 

different sectors (e.g., agriculture & travel) are, or should be, combined in an overall 

severity classification.   

In addition to its importance for informing appropriate severity classifications for the 

issuance of IBWs, understanding how quantitative impacts are combined in an overall 

severity classification judgment is essential for the evaluation of IBWs. Evaluation requires a 

comparison between the warning level issued, and the impacts of a weather event that are 

actually observed. The impacts associated with extreme weather events are commonly 

recorded and reported in a numerical format, such as the number of people dead, and the 

number of livestock killed (AHA Center, 2023; ECHO, 2023; OCHA, 2022; WMO, 2021a). 

Notwithstanding that certain agencies prefer to report particular types of impacts or hazard 

- a reporting bias that can be reduced by combining observations across multiple 

information sources (Wyatt et al., 2023) - these numerical records offer an appealing way to 

evaluate IBF by comparing its forecasted impacts with observed outcomes. To do so, 

however, requires that the observed quantitative impact information reported by these 

sources can be mapped back to an overall (usually categorical – see Figure 1) severity 

forecast issued as part of an IBW. 

Identifying how numerical information about weather impacts is combined in overall 

severity classifications can therefore inform both forecast operations and IBF evaluation. 

From an operational perspective, identifying the strategies that forecasters actually use (a 

descriptive approach) does not, prima facie, imply that those are the ones that should be 

used (a normative question). Such identification does, however, enable subsequent 

scrutiny. Senior forecasters and disaster managers can subsequently determine whether the 

strategies used are appropriate, and employ training methods where this is thought not to 

be the case (see e.g., Cooksey, 1996, for examples and best practice of such applications of 

Judgment analysis). Even without such scrutiny, a descriptive approach can identify the 

degree of (in)consistency between forecasters. 

We are aware of only one study that has sought to identify the quantitative impacts 

associated with different severity classifications. Sai et al. (2018) asked farmers to recall 
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floods that had ‘minor’, ‘significant’ and ‘severe’ impacts. They found that events that 

caused less than 10% crop damages were rated as minor events, events that caused 60% -

80% crop damages and loss of livestock were significant events, and events that caused 

80%-100% crop damages and diffuse loss of livestock were severe events. This study is 

clearly limited in scope, and it is also possible that when farmers defined the severity levels 

of the scenarios, they not only focused on the impact of crop and livestock, but also 

considered impacts from other sectors.  

1.3 The current study 

The primary aim of the current study is to understand how weather scientists1 form overall 

severity classifications from sets of numerical impact values. Specifically, a Judgment 

Analysis approach (Cooksey, 1996) is used to reveal how weather scientists utilize, weight, 

and combine different numerical impact information into an overall severity judgment. 

Commonalities or inconsistencies between weather scientists can be identified. Where 

there is good consistency between weather scientists, the results from this study may be 

used to assign severity thresholds to observed numerical impacts in disaster databases or 

impact reports, allowing for the subsequent evaluation of IBWs. 

Judgment Analysis can identify if weather scientists rely on a small sub-sample of impact 

types (e.g., only number of people affected) to make their severity classifications. Judgment 

and decision strategies relying on single cues, or a sequential consideration of single cues 

(e.g., following a Take the best approach - Gigerenzer & Goldstein, 1996; Gigerenzer et al., 

2011; Gigerenzer & Todd, 1999), can be classed as non-compensatory. Alternatively, some 

judgment and decision strategies involve consideration of multiple cues at once. For 

example, a mean strategy (whereby the final severity classification is a [weighted] mean of 

the severity level implied by each individual impact) can be considered a compensatory 

strategy, as a low value for one impact can be ‘compensated’ for by a high value of another. 

As part of our aim of determining how weather scientists combined multiple pieces of 

quantitative impact information to form an overall severity judgment, we sought to 

 
1 Scientists from Southeast Asia meteorological agencies (including, but not limited to operational forecasters) 
were included as potential participants, given that their knowledge is driving IBF in these countries. 
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ascertain the degree to which they engaged in a compensatory or non-compensatory 

judgment process (Dhami & Harries, 2001; Foerster, 1979). 

Whilst Judgment Analysis can provide clues to the compensatory vs. non-compensatory 

question (i.e., if only ‘number of people affected’ is a significant predictor of overall severity 

judgments this points towards a non-compensatory strategy), we wanted to extend this to 

consider the possibility that the impacts weather scientists focus on (in a non-compensatory 

process) depend on the severity level of those individual impacts. For example, an intuitively 

plausible decision process is that weather scientists judge overall severity level according to 

the highest severity level implied by any individual impact type. Indeed, Aldridge et al. 

(2016) adopted just this approach when determining the overall severity level for each 1km 

grid cell of a focal area, across all contributing impact criteria. Meyer et al. (2007) also 

argued that such a disjunctive approach is more appropriate for flood risk analysis than 

other approaches (e.g., a conjunctive approach whereby a severe severity classification is 

only made if all impact types are individually severe). These are just two of a number of 

possible algorithmic strategies of aggregating individual impacts that forecasters might use 

to make an overall assessment (for overviews of such strategies see Malczewski, 1999; 

Malczewski & Rinner, 2015). 

1.3.1. Judgment Analysis 

Judgment Analysis relies on multiple regression to investigate how people weight different 

pieces of information when making judgments. We apply this approach to examine how 

weather scientists’ severity judgments are influenced by the quantitative levels of different 

impacts of a weather event (Figure 2).  
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Figure 2  

Overall severity judgments as a function of individual impact levels 

 

 

In our Judgment Analysis task, weather scientists make severity judgments for a series of 

hypothetical heavy rainfall events. Either hypothetical events or real events can be 

employed in Judgment Analysis, and each approach has its advantages and disadvantages 

(Cooksey, 1996; Dhami et al., 2004). A key advantage of using hypothetical events is that 

researchers can remove correlations between cues and utilise fully factorial designs. 

However, such correlations exist in the real world, and this is certainly true in the case of 

weather impacts. There is therefore a trade-off between multicollinearity and ecological 

validity. Usually the key problem posed by multicollinearity is that estimates of the unique 

predictiveness of any particular cue (e.g., impact type) are specific to the particular 

correlational structure in the Judgment Analysis task - the estimates reflect the unique 

contribution of each predictor (i.e., after accounting for the contribution of the other 

predictors). In the current study, this can be viewed as a desirable property if the 

correlations in our task approximate those for real-world weather events. Our aim is to 
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understand the structure of weather scientists’ severity judgments for real-world weather 

forecasts, which necessarily have high degrees of multicollinearity (i.e., less extreme 

weather hazards tend to lead to lower consequences across all impact types and more 

extreme weather hazards lead to greater consequences across all impact types). 

Consequently, we sought to maximise the ecological validity of our task structure in the 

current study. This was achieved through creating a task structure in which the correlations 

between cue values approximated those observed for real weather events, as identified 

from databases reporting the impacts of real weather events. 

1.4 Previous Findings 

The dominant result in the analysis of expert judgment is that experts typically rely on a 

small sub-sample of cues to form judgments (e.g., using 5 out of 10 presented). Such a result 

is observed across domains, including medical diagnosis and referral (Saintonge et al., 1988; 

Harries et al., 1996; Baker & Thompson, 2012), accounting and finance (Ettenson et al., 

1987; Kuo & Liang, 200), and Education (Browne & Gillis, 1982). Such a result is not, 

however, universal. With a tabular presentation of symptoms, White et al. (2018) found 

palliative care professionals utilised six out of seven in predicting imminent death, and eight 

out of fourteen cues were significantly weighted when bankers rated loan applicants 

(Wilsted et al., 1975). 

Judgment analysis has also been applied to weather forecasting, where Stewart et al. (1989) 

argued that regression models provided good descriptions of meterologists’ forecasts. 

Mirroring the majority of research in this tradition, meteorologists have, however, typically 

been found to rely on a sub-sample of the cues provided (e.g., 2-4 out of 12-24 cues; 

Stewart et al., 1997; see also Stewart et al., 1989; Stewart et al., 1992). These previous 

studies have focussed solely on the prediction of weather phenomena (e.g, precipitation 

likelihood, maximum temperature). In the current study, we specifically investigate weather 

scientists’ judgments of impact severity. Due to the novelty of this research, we do not make 

specific predictions, but note that we expect the results to be informative for understanding 

how such judgments are made, and for the subsequent evaluation of IBWs.  

A considerable amount of research has been published on impact-based forecasting 

recently (e.g., Boult et al., 2022; Mitheu et al. 2023; Nkiaka et al. 2020; Potter, et al., 2021; 
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Sai et al., 2018; Silvestro et al., 2019). This is the first study to investigate how weather 

scientists’ severity judgments relate to multiple (quantitatively expressed) impacts. We aim 

to understand how weather scientists from four Southeast Asian countries (Indonesia, 

Malaysia, The Philippines, Vietnam)2 combine information from six impact types to make an 

overall severity judgment. We employ a mixed-methods approach, whereby our 

quantitative empirical study was informed by analyses of extant weather-event databases 

and qualitative discussions with in-region forecasters to ensure ecological validity and 

relevance of the cues included. 

2. Methods 

We conducted the same study in Indonesia, Malaysia, the Philippines, and Vietnam. We 

report the general methodology once, and highlight differences between countries where 

appropriate. The method, but not the analysis plan, was pre-registered. Pre-registration, 

materials and analysis code are available at 

https://osf.io/84scv/?view_only=fd5c264109374a48ac8fe7558fad999a.   

 

The study included two tasks, the Weather Event Judgment Analysis Task and the Individual 

Impact Threshold Identification Task (hereafter referred to as ‘Judgment Analysis Task’ and 

‘Impact Threshold Task’). The study was presented in English in Malaysia and the 

Philippines. It was translated into Bahasa in Indonesia, and Vietnamese in Vietnam. 

 

2.1 Participants 

Weather scientists working in the four countries were recruited through online survey links, 

distributed via email. Reminder emails were sent weekly throughout the data collection 

period (see Table 1), except during local holidays. Participants volunteered for this study 

and were not monetarily reimbursed. Ethical approval was granted from the Departmental 

Ethics Chair for Experimental Psychology (University College London). Pre-registered 

 
2 The organizations which are responsible for impact-based forecasting in each country are: the Indonesian 
Agency for Meteorology, Climatology and Geophysics (BMKG) in Indonesia, the Philippine Atmospheric, 
Geophysical and Astronomical Services Administration (PAGASA) in Philippines, Viet Nam National Center of 
Hydro-Meteorology Forecasting (NCHMF) in Vietnam, and the Department of Irrigation and Drainage Malaysia 
and Met Malaysia in Malaysia. Fifty-six participants from Indonesia are students from State College of 
Meteorology Climatology and Geophysics. They are familiar with IBF through their studies, but do not engage 
in daily practice. 

https://osf.io/84scv/?view_only=fd5c264109374a48ac8fe7558fad999a
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exclusion criteria included: (1) unfinished survey responses, (2) respondents with missing 

values on an item, and (3) responses that did not respect monotonicity in the Impact 

Threshold Task3. Only the third criterion led to any exclusions (6 participants from Vietnam). 

Data from 278 participants were subsequently included in the analysis.  

 

Table 1 

Participant information for four partner countries  

Country  Indonesia Malaysia Philippines Vietnam 
Full completion  105 45 33 95 

Location 
Headquarter 2 35 20 55 
District 103 10 13 40 

Organization BMKG(49) 
STMKG(56) 

DID (13) 
MetMalaysia 

Other (2) 
PAGASA NCHMF 

Other (2) 

Experience 
with IBF 

Little or no experience 28.6% 37.8% 33.3% 36.6% 
I have received training on it 26.7% 15.6% 30.3% 21.8% 
Some experience 41.0% 46.7% 33.3% 39.6% 
A lot of experience 3.8% 0.0% 3.0% 2.0% 

Experience 
with IBF risk 
matrix 

Little or no experience 27.6% 48.9% 42.4% 42.6% 
I have received training on it 30.5% 15.6% 27.3% 17.8% 
Some experience 39.0% 33.3% 30.3% 38.6% 
A lot of experience 2.9% 2.2% 0.0% 1.0% 

Use IBF 
Don't use IBF 27.6% 68.9% 87.9% 52.5% 
Use IBF 72.4% 31.1% 12.1% 47.5% 

Data collection period4  

December 
1st 2022 - 
January 

17th 2023 

December 
1st 2022 - 

January 31st 
2023 

December 
2nd 2022 - 

January 
31st 2023 

December 
15th 2022 
- January 
31st 2023 

 

 
3 In the Impact Threshold Task, participants had to provide categorical severity ratings (Minimal, Minor, 
Significant, and Severe) for several numerical impacts, separately for each impact dimension (e.g., first for 
number of deaths then for number affected). Importantly, for each impact dimension the numbers that had to 
be rated increased in ascending order (e.g., first 1 death, then 2 deaths, ...). There should therefore be a 
corresponding monotonic increase in severity ratings (first Minimal, then Minor, etc.). Any deviations from 
strict monotonicity led to participant exclusion. For example, one participant’s data were excluded since they 
rated a heavy rainfall event that caused 3 houses damaged as a significant severity event but rated a heavy 
rainfall event that caused 7,347 houses damaged as a minor severity event.  
4 We pre-registered that we would collect data within the timeframe of one calendar month and aim to collect 
20 participants in each country. Given the difficulties with obtaining the minimum number of participants after 
four working weeks in Malaysia, Philippines and Vietnam, we subsequently extended the data collection 
period for them.  
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2.2 Materials 

2.2.1 Identification of impacts for heavy rainfall events  

Real weather events and corresponding impacts were collected from seven online 

databases compiled into one (hereafter referred to as ‘the database’) (Wyatt et al., 2023). 

The majority of weather events recorded in the database are precipitation related, with the 

most common events being floods and flash floods. Additionally, in-country authors have 

consistently identified heavy rainfall events as the most relevant for their forecasters. These 

concerns led us to focus the current study on heavy rainfall events. In addition to 

information from the database, a qualitative study was conducted to help finalise the 

impacts for heavy rainfall events. The six impact types used in the Judgment Analysis Task 

(Figure 2) were selected based on the data available in the database, in conjunction with the 

results of four qualitative surveys and four discussion groups conducted in August 2022 (one 

qualitative survey and one focus discussion for each country).  

 

2.2.1.1. Database analysis  

The database (for details see Wyatt et al., 2023) included five global impact data sources 

and two regional impact data sources covering Southeast Asia. Nineteen impact types were 

identified in the database (e.g., the number of reported deaths, the number of hospitals or 

health centres affected, the total economic losses reported).  

 

2.2.1.2. Qualitative survey and Focussed discussions  

A qualitative survey was distributed to a small number of key weather scientists to obtain a 

complete list of impact types they consider for heavy rainfall events. Nineteen survey 

responses were collected from four countries, including 4 responses from BMKG Indonesia 

answered by author R.N. and 3 colleagues, 4 responses from PAGASA Philippines answered 

by author L.A.M., J.S.P. and 2 colleagues, 5 responses from NCHMF Vietnam answered by 

author L. H. and 4 colleagues, and 6 responses from Malaysia answered by authors A.T., 

S.O., and 4 colleagues from Met Malaysia. In the survey, participants were asked: “When 

you think of Heavy Rain, what impacts would you consider in determining the severity of a 

heavy rain event”. Fifty-five unique impacts of heavy rainfall events were identified, and a 
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list of those impacts was sent back to the participants before focus discussion (see Appendix 

1).  

It was necessary to reduce the number of impacts to be included in the quantitative survey, 

as each additional impact requires a minimum of five additional events (and more where 

there are high correlations between cues) to enable reliable estimates of each impact’s 

regression weight (Cooksey, 1996). It was highly desirable to keep the survey as short as 

possible in order to encourage participation from as many of our intended participants as 

possible. To identify the most critical impacts when weather scientists judge the severity 

level of the heavy rainfall events, separate online focus discussions (each lasting about 2 

hours) were conducted with each country’s representatives. Although aiming to recruit the 

same experts who had participated in the initial survey to focus discussions, due to the 

unavailability of some experts, two experts from BMKG Indonesia were replaced by two 

new experts; one expert from NCHMF Vietnam was lost; one additional expert from DID 

Malaysia was recruited. Approximately one week prior to the focus discussions, a summary 

of the impacts listed in the qualitative survey was provided back to the experts. During each 

discussion, the experts discussed: how multiple impacts can be grouped together, whether 

any key impacts were missing if only focusing on six impacts that were commonly 

mentioned in both qualitative survey and the database, how to distinguish different 

impacts, how spatial and temporal factors relate to the six impacts, which format is easiest 

to answer questions (text vs table), who are the people that receive impact forecast 

information and make severity judgments5.  Consequently, six key impacts were identified: 

People dead, People affected (e.g., injured, displaced, evacuated), Houses damaged or 

destroyed, Public buildings affected (e.g., schools, hospitals, government or religious 

buildings), Agriculture/aquaculture affected (hectares), and Road sections and/or bridges 

closed. Within these focus discussions, our experts confirmed that there were no critical 

impacts missing if we focussed on these six.  

 
5 Slides used to guide the focussed discussions are available at 
https://osf.io/84scv/?view_only=fd5c264109374a48ac8fe7558fad999a.  

https://osf.io/84scv/?view_only=fd5c264109374a48ac8fe7558fad999a
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2.2.2 Identifying impact values  

The levels of the six impacts for all presented hypothetical heavy rainfall events were 

simulated from a multivariate normal distribution that was estimated from real heavy 

rainfall events present in the database. This ensured that all hypothetical events used in this 

study had high ecological validity, as they were statistically similar to real heavy rainfall 

events. The statistical similarity included the collinearity among different impacts that is 

typical for real rainfall events. This similarity is visualised in Figure 3, which shows the pair-

wise joint distributions (co-occurrences) of the real weather impacts in the lower triangle, 

and the pair-wise joint distributions of the hypothetical weather impacts in the upper 

triangle. The univariate distribution of each variable is shown in the diagonal, with the grey 

histogram showing the real impacts and the density estimates (solid lines) showing the 

hypothetical impacts. 

Full technical details of how the task events were obtained based on the database can be 

found in Appendix 2. Worthy of note here, though, is that the distributions of all impacts 

were extremely positively skewed, with most having some extreme outliers. This reflects the 

fact that the most catastrophic weather events are (close to) one-of-a-kind events, with 

many more low impact events occurring across the world. To address this property of the 

distributions, and the fact that there are many events with zero deaths in the database, we 

winsorised each impact type distribution at the 99th percentile, and performed a log1P 

(defined as ln[1+x]) transformation. The multivariate normal distribution was estimated to 

the impact events on the transformed scale, which is also the scale shown in Figure 3. 

Whereas the Judgment Analysis (as well as the other statistical analyses) were also 

performed on the transformed scale, the events shown to participants in the study (see 

Figure 4) were back-transformed from the log1P scale (ex – 1). We also checked the 

hypothetical events for patterns that were implausible (specifically, in 67 of the hypothetical 

2,000 events the number of affected people was less than two times the number of affected 

houses; likewise, in 21 events there were more affected public buildings than affected 

houses). We removed these implausible events from the list of possible events. Each 

weather event presented to participants in the Judgment Analysis Task was randomly 

sampled (with replacement across participants) from the remaining 1,912 hypothetical 

events created from the database. One additional constraint to the sampling was that 70% 
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(49) of events presented to each participant should have no deaths associated with it. This 

decision followed an intuition (not subsequently borne out in the results, but reflected in 

some focus group discussions) that a consideration of deaths would overshadow any 

consideration of other impact types. Consequently, we wanted to ensure that we had 

sufficient events without any deaths observed to be able to measure the influence of all 

impact types.  

Figure 3 
Multivariate Distribution of Real and Hypothetical Weather Events  

 

Note. The lower triangle (panels below the diagonal) shows the pair-wise distributions of 
real weather events and the upper triangle (panels above the diagonal) shows the pair-wise 
distributions of hypothetical (i.e., simulated) weather events. In these panels the values 
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shown are the numbers of the corresponding impacts (e.g., number of deaths on the x-axis 
in the first column and y-axis of the first row). The value in each lower right corner is the 
correlation between each pair of variables shown in each panel. The diagonal panels show 
the univariate distribution of each impact where the histogram (in grey) shows the 
distribution of real events and the density estimate (the black line) the distribution of the 
hypothetical events. Because the y-axes of the diagonal panels showing the density do not 
match the y-axes of the pairwise plots showing the pairwise data, the y-axis labels for the 
first row are shown only in the second panel. Because of the strong right skew of each 
univariate distribution, all variables are log1P transformed (𝑥!"#$%&'"()* = ln	(1 + 𝑥)), but 
axes values are given on the original (i.e., event) scale. The lower triangle of Figure 3 shows 
the multivariate distribution of events in a pair-wise manner. This shows that there is a 
substantive positive correlation among all (log1P transformed) impacts. The only exception 
is the correlation between houses and roads & bridges, which we assume is a consequence 
of the limited data for these two variables. A good match between the correlations in the 
real and hypothetical weather events is shown if the pair-wise distributions in the lower 
triangle resemble a transposed version of the corresponding distributions in the upper 
triangle. This is generally observed in this figure across pairs with the pair-wise correlations 
for the hypothetical events being somewhat larger than the correlations for the real events. 

2.3 Task Design 

The two tasks in the study were designed to explore how weather scientists form severity 

judgments based on the six impacts (Judgment Analysis task), and to investigate their 

severity classifications for each impact (Impact Threshold Task). The Judgment Analysis task 

always preceded the Impact Threshold Task. 

 

2.3.1 Judgment Analysis Task  

Each participant viewed 70 hypothetical heavy rainfall events (consistent with the 10 to 1 

ratio of events to cues prescribed for Judgment Analysis; Cooksey, 1996). Each event 

included a list of the impacts in a table for a country-specific location (see Figure 4). The 

order of the six impacts in the table was randomized between participants. Below the table, 

participants were asked to indicate the overall severity of the weather event in two formats. 

The first question asked “How would you rate the impact severity of this event?” with 

responses made on a scale from “0 (no severity)” to “100 (the highest severity)”. The 

starting point of the slider was 50 for every event. The second question asked participants 

to choose one of the four severity categories from the Risk Matrix (e.g., Minimal, Minor, 
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Significant, Severe)6 to describe the severity level of this event. We used a numerical 

severity judgment as well as the categorical severity classification to simplify the 

presentation of the results presented below (i.e., regression coefficients are much easier to 

understand for a continuous compared to a categorical outcome variable, when using an 

appropriate ordinal model for the latter). 

Figure 4 
An example event from the Judgment Analysis Task (Malaysia) 

 
Note. The location of the heavy rainfall varies according to the country of the participants: 
Kelantan State in Malaysia; Jakarta in Indonesia; Metro Manila in Philippines; Hanoi in 
Vietnam.  

 

 
6 To be consistent with the words used in partner countries, we used “Minimal, Minor, Significant and Severe” 
for Malaysia and Philippines, and they were translated into Bahasa for Indonesia. The terms “Minor, 
Potentially Dangerous, Dangerous and Very Dangerous” were used in Vietnam (translated into Vietnamese). 
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2.3.2 Impact Threshold Task 

Participants saw six matrices on six pages, with each page corresponding to one of the six 

impact types (see Figure 5). For each matrix, they were told that “The following impacts are 

caused by different heavy rainfall events in Kelantan State7 (whether from flooding, 

landslides or other associated hazards)”. Then they were asked to select one severity 

classification (e.g., Minimal, Minor, Significant, Severe) to indicate the severity level of each 

of these impacts. The order of the six matrices was randomized between participants. 

Figure 5 
An example of the impact matrix of Houses damaged or destroyed (Malaysia) 

 

 

The numbers of the impacts in each matrix in the Impact Threshold Task were based on 

quantiles of the multivariate normal distribution estimated from real heavy rainfall events  

 
7 This is the location used in Malaysia’s survey. Materials were customised for each country (see note in Figure 
4). 
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(i.e., the same multivariate normal distribution used for creating the hypothetical heavy 

rainfall events). For the three impacts of “People affected (e.g., injured, displaced, 

evacuated)”, “Houses damaged and destroyed”, and “Agriculture/aquaculture affected”, we 

selected the 1% quantile as the first impact value. Then, for each participant anew, we 

randomly sampled one value from a uniform distribution with limits given by each pair of 

adjacent quantiles (1%, 10%, 20%, 30%, ... steps of 10 percentage points ..., 90%, 99%). This 

resulted in 11 judgments for each of these three impacts (see Appendix 3). 

For the impacts of “People dead”, “Public buildings affected (e.g., schools, hospitals, 

government or religious buildings)” and “Road sections and/or bridges closed”, we used 

similar methods. Because of the even more extreme right skew of these impacts, however, 

we used fixed values of 1, 2 and 5 as their first three impact values. The impact of “Public 

buildings affected (e.g., schools, hospitals, government or religious buildings)” had another 

fixed value of 10 as the value of its fourth impact. Then we identified the 80%, 90%, 95% 

and 99% quantiles, and generated one random value from a uniform distribution with 

endpoints given by each pair of adjacent quantiles for each participant. Consequently, seven 

judgments were required for impact types “People dead” and “Road sections and/or bridges 

closed”, and eight judgments for “Public buildings affected (e.g., schools, hospitals, 

government or religious buildings)”. 

2.4 Procedure 

The study was developed using lab.js (Henninger et al., 2022) and delivered to participants 

using a JATOS server (https://www.jatos.org/). Each participant completed the study in a 

single session of approximately 30 minutes. After providing informed consent, participants 

were asked a series of demographic questions, such as the organisation that they work for, 

experience with impact-based weather forecasting, experience with the impact-based risk 

matrix, and whether they use IBF in daily life or not (see Table 1).  

At the outset of the Judgment Analysis Task, participants received 5 practice trials. These 

trials were randomly selected from simulated events to provide participants with a general 

impression of the events and the mode of presentation. Responses to the practice trials 

were not analysed and participants were aware that these were practice trials. Specifically, 

they were given the following instructions: 
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“Before the start of survey, you will now see 5 practice events, so that you can get a 

feel for the task before starting it for real.  

We will show you tables listing the impacts of heavy rain / flood events. Each table 

will be presented at the top of the screen, and you will be asked to rate the severity 

of the event both on a scale of 0-100, and also by indicating a severity level, which 

corresponds to the impact-based weather warning classification system: Minimal; 

Minor; Significant; Severe.  

While the events are simulated based on a series of real heavy rain events, you 

should treat the impacts as real.  

You are reminded that there are no right or wrong answers. It is really important 

that you answer these questions as YOU see appropriate as a weather forecaster / 

weather scientist.” 

After completing the practice trials, participants were told that they were now moving onto 

the main task: “On the following screens, you will be presented with 70 hypothetical heavy 

rain / flooding events, just like the ones in the practice. Each table will be presented at the 

top of the screen, and you will be asked to rate the severity level on two severity judgment 

questions listed below.” They then completed the Judgment Analysis task (70 events).  

After completing the Judgment Analysis Task, participants were given instructions for the 

Impact Threshold Task, and proceeded to complete it. The specific instructions were as 

follows: 

“Your answers to this task will enable us to undertake the appropriate analysis of 

your answers in Part 1. 

Each of the following 6 screens will present different values associated with a single 

impact. For each impact value, we ask you to rate whether that level of impact is 

Minimal, Minor, Significant or Severe.  
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As before, there are no right or wrong answers. It is really important that you 

answer these questions as YOU see appropriate as a weather forecaster / weather 

scientist.”  

Finally, participants were thanked and debriefed.  

3. Results 

3.1 Correlations between numerical and categorical severity judgments 

Participants provided numerical and categorical severity judgments. The former were 

included to considerably simplify the presentation of the results of the Judgement Analysis. 

However, a prerequisite for using the numerical severity judgements for the Judgement 

Analysis is a strong relationship between numerical and categorical ratings. Figure 6 shows 

that there is. Further evidence for this strong relationship comes from a linear mixed model 

(‘Severity model’) estimated with afex (an R software package for the Analysis of Factorial 

EXperiments, Singmann & Kellen, 2019)8, with the numerical severity ratings as the 

dependent variable; the categorical severity ratings, Country, and their interaction as fixed 

effects; and by-participant random slopes for categorical severity ratings. In a second step, 

we then checked for the presence of a linear trend of categorical severity ratings on 

numerical severity ratings. In line with the visual impression of Figure 6, the linear trend was 

clearly significant (z = 52.86, p < .001). The linear trend was also significant in each country 

(Indonesia: z = 31.01, p < .001; Philippines: z = 21.90, p < .001; Malaysia: z = 26.41, p < .001; 

Vietnam: z = 33.93, p < .001).  

 

 

 

 
8 The Severity model specification in lme4 syntax (Bates et al., 2015) was as follows: Numerical severity 
judgments ~ Categorical severity judgments *Country + (Categorical severity judgments | id). The p-values 
were based on denominator degrees of freedom estimated with the Satterthwaite method (Kuznetsova et al., 
2017). Estimating this model resulted in a solution with a gradient value slightly larger than the tolerance 
(0.004 > 0.002). Refitting the model without the correlations among random terms removed this issue and 
resulted in very similar parameter estimates and the same patterns of significance. In the text, we report the 
results from the maximal model. The following analyses on the maximal Impact models, including the maximal 
Impact model omitting zero deaths events, the maximal Position model and the maximal Interaction model, 
also showed the same convergence issues, and refitting models without the correlations among random terms 
removed these issues and revealed the similar patterns. We report the results of the maximal models in the 
text.  
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Figure 6  

The relationship between numerical and categorical severity ratings.  

 

Note. In Panel A, the grey lines correspond to mean ratings of individual weather scientists 
and the black lines correspond to the overall mean in those countries. Panel B only shows 
overall country means, with corresponding 95% confidence intervals. 

 

3.2 Correlations between impact values and numerical severity judgments 

Figure 7 depicts the correlations between numerical severity ratings (from 1 to 100) and the 

provided values for each impact type. In this figure, and all reported analyses, the impact 

values were transformed using the log1P transformation which reduced the right-skew of all 

impacts and was the same data pre-processing as used for the real impacts from the impact 

database before analysis (see Section 2.3.1). Positive significant correlations were observed 

between severity ratings and all impact types (Death: r = 0.42; Affected: r = 0.51; Houses: r = 
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0.46; Public buildings: r = 0.39; Agriculture/Aquaculture: r = 0.36; Roads/Bridges: r =0.37). 

The higher the impact values, the higher the severity judgments.  

Figure 7. 

Relationship between impact values and numerical severity judgments in the four countries. 

 

 

3.3 Judgment Analysis of weather scientists’ severity judgments  

To analyse participants’ numerical severity ratings, we used a linear mixed effects model to 

utilise all the data, but also enable us to ascertain whether the influence of any impacts was 

moderated by Country. Specifically, the model (hereafter referred to as ‘Impact model’) 
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included numerical severity ratings as the dependent variable, fixed effects for the six 

impacts and Country (entered as a factor with four levels), and the two-way interactions 

between each of the six impacts and Country. We used the maximal random effect structure 

justified by the design (Barr et al., 2013), with by-participant random intercepts, by-

participant random slopes for the six impacts, as well as correlations among the random 

terms. To allow for a direct comparison of the magnitude of the relationship across impacts, 

the impact values were log1P transformed (see above) and z-standardized (i.e., for each 

impact variable, we first applied the log1P transformation, then we standardised by 

subtracting the mean and dividing by the standard deviation)9.  

Results of the Judgment Analysis are summarized in Table 2 and show significant main 

effects of all six impact types, such that higher values of each impact type resulted in higher 

numerical severity judgments (p < .001). This shows that all six impacts provided some 

unique contribution to participants’ overall perceptions of the severity of a heavy rainfall 

event. Inspection of the standardised regression coefficients shows that increases in the 

Number of People Affected resulted in the biggest increase in severity judgments, followed 

by the Number of Deaths. There were interaction effects between Deaths and Country, 

between Affected and Country, and between Agriculture/Aquaculture and Country. 

Crucially, even though these results demonstrate some differences in the precise weightings 

of these impacts between countries, simple effects undertaken using emmeans (an R 

package for estimating marginal means and linear trends; Lenth, 2024), showed all impacts 

to be positive and significant in all countries (see Table A3 in Appendix 4).  

Recall that only 30% of the heavy rainfall events provided to weather scientists included any 

deaths. A priori, we considered it possible that the inclusion of deaths would render all 

other impact types irrelevant for overall severity judgments. We therefore repeated the 

mixed model analysis with a data set from which we omitted all events with zero deaths. As 

in the Impact model on the full data, all impact types were found to be significant predictors 

of numerical severity judgments.  In this model, Number of Deaths (F (1, 280.02) = 201.26, p 

< .001) and Number of People Affected (F (1, 257.79) = 80.15, p < .001) again were weighted 

 
9 The Impact model specification in lme4 syntax was as follows: Numerical severity judgments ~ (Deaths + 
Affected + Houses + Public buildings + Agriculture/Aquaculture + Roads/Bridges)* Country + (Deaths + Affected 
+ Houses + Public buildings + Agriculture/Aquaculture + Roads/Bridges | id). 
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most heavily in severity judgments, followed by Houses (F (1, 309.25) = 25.87, p < .001), 

Agriculture/Aquaculture (F (1, 563.04) = 48.50, p < .001) and Roads/Bridges (F (1, 272.90) = 

12.18, p < .001). Public buildings (F (1, 307.91) = 6.01, p = 0.01) received the least weight in 

their numerical severity. 

While all six impact types improve the predictiveness of the overall model, it is worth 

drawing attention to the considerable interpersonal variation in the weightings of each 

impact type (as indicated by the standard deviations of the random slopes [Table 2, final 

column]). For example, the smallest SD is 1.26 for public buildings which has a fixed-effect 

coefficient of 𝛽 = 0.94. Assuming the assumption of normally distributed individual-level 

effects holds reasonably well, this means that more than 1/6 of participants have a 

coefficient that is more than double the value of the fixed effect and more than 1/6 of 

participants even have a negative coefficient.10 We will return to this issue in the Discussion, 

highlighting it as an important focus for future research. 

Table 2 

Coefficient estimates from Impact model with impacts as predictors, predicting heavy 
rainfall event severity ratings 

Predictor df F p Estimate SE Random 
effect (SD) 

(Intercept) 1, 273.72 3382.94 <.001 60.94 1.05 15.50 
Deaths 1, 273.68 275.81 <.001 4.67 0.28 3.75 
Affected 1, 270.64 353.19 <.001 7.25 0.39 4.92 
Houses 1, 268.43 77.20 <.001 2.18 0.25 2.43 
Public buildings 1, 265.21 34.95 <.001 0.94 0.16 1.26 
Agriculture/ Aquaculture 1, 273.82 229.02 <.001 2.32 0.15 1.45 
Roads/ Bridges 1, 272.66 63.99 <.001 1.36 0.17 1.61 
Country 3, 273.72 13.90 <.001   

 
Death: Country 3, 273.32 7.39 <.001   

 
Affected: Country 3, 270.29 3.21 0.024   

 
Houses: Country 3, 267.00 1.01 0.388   

 
Public buildings: Country 3, 262.66 0.52 0.669   

 
Agriculture/ Aquaculture: 
Country 3, 273.81 5.66 <.001 

  
 

Roads/ Bridges: Country 3, 270.03 1.57 0.198       

 
10 For a normal distribution, around 1/6 of data is larger than mean + 1*SD (0.94 + 1.26)  and around 1/6 of 
data is smaller than mean – 1*SD (0.94 – 1.26).  
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Note. Significant predictors (p < 0.05) are shown in bold. 
 

The previous analyses demonstrate that all six impact types are used to form severity 

judgments across participants. These results could stem from all participants generally using 

all six impacts, or subsets of participants relying on different subsets of impacts. Were the 

latter true, one would expect to see negative correlations between the by-participant 

random slopes of different impacts, indicating that participants who weight certain impacts 

strongly, weight other impacts less strongly (or not at all). The random slopes portrayed in 

Table 3 do not support such a conclusion. The preponderance of positive correlations is 

more supportive of the conclusion that weather scientists typically used all six impacts when 

making severity judgments in this task. As a further test, we investigated whether 

participants focussed on different impacts according to the order in which they were 

presented (as order was randomised between participants). Specifically, we categorised 

predictors according to their position in the table for any individual participant (‘First’, 

‘Second’, ‘Third’, ‘Fourth’, ‘Fifth’, and ‘Sixth’). We then ran a further linear mixed model with 

the numerical severity ratings as a dependent variable, the six positions of the six impacts, 

Country, and the interaction between each of the Position and Country as the fixed effects. 

As before, we employed the maximal random effect structure with by-participant random 

intercept and random slope for the six positions as well as the correlations among by-

participant random terms (‘Position model’)11. The results of the maximal model are 

summarized in Table 4.  

The Position model revealed two interesting results: 1) The first impact had the largest 

effect, with the size of the effects decreasing monotonically. This suggests that participants 

did generally weight the first impact most heavily; 2) More importantly, the model showed 

significant main effects of all six predictors (p < 0.001), implying that all variables in the 

event impact table were significant predictors for numerical severity judgment no matter 

which position they were in the impact table. This further supports our conclusion that all 

six impacts were considered in overall severity judgments.  

 
11 The Position model specification in lme4 syntax was as follows: Numerical severity judgments ~ (First + 
Second + Third + Fourth + Fifth + Sixth) * Country + (First + Second + Third + Fourth + Fifth + Sixth | id). 
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Table 3  

Correlations between random slopes of impact types from the full data Impact model  

  Deaths Affected Houses Public 
buildings 

Agriculture/ 
Aquaculture 

Affected -0.22     
Houses -0.04 0.00    
Public buildings 0.22 -0.08 0.39   
Agriculture/ Aquaculture 0.20 0.22 0.04 0.42  
Roads/ Bridges 0.21 0.10 0.03 0.22 0.25 

 

Table 4 

Coefficient estimates from the Position model with impact Positions as predictors of severity 

ratings  

Predictor df F p Estimate SE Random 
effect (SD) 

First 1, 252.04 152.20 <.001 4.06 0.33 4.39 
Second 1, 238.99 156.09 <.001 2.87 0.23 2.63 
Third 1, 270.80 153.39 <.001 3.26 0.26 3.24 
Fourth 1, 246.32 130.39 <.001 3.16 0.28 3.54 
Fifth 1, 236.58 139.96 <.001 2.89 0.24 2.97 
Sixth 1, 252.31 107.53 <.001 2.63 0.25 3.12 
Country 3, 274.04 13.96 <.001   

 
First: Country 3, 252.41 0.24 0.87   

 
Second: Country 3, 237.02 1.09 0.36   

 
Third: Country 3, 268.94 2.70 0.046   

 
Fourth: Country 3, 246.18 1.00 0.40   

 
Fifth: Country 3, 237.49 1.30 0.28   

 
Sixth: Country 3, 250.34 0.90 0.44       

Note. We only report the estimated coefficients (beta) and SEs, for model terms 
corresponding to one coefficient (i.e., not for terms involving country). Significant predictors 
(p < 0.05) were shown in bold. 
 

To investigate the influence of Experience with IBFs (see Table 1) on judgment policies (how 

overall severity judgments were derived from the impact information), we added a fixed 

effect of Experience into the Impact model, as well as 2-way interactions with each of the 
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impacts12. The four response levels of Experience with IBFs were classified into two levels, in 

order to guarantee having enough data in each group. Hence, the responses with ‘Little or 

no experience’ and ‘I have received training on it’ were classified into the ‘Inexperienced 

group’ (N = 160), and the responses with ‘Some experience’ and ‘A lot of experience’ were 

classified into the ‘Experienced group’ (N = 118). We observed no significant main effects or 

interactions involving Experience (p > 0.05), suggesting the identified judgment policies 

were not moderated by Experience.  

 

3.4 How do weather scientists combine severity levels of separate impact types into a 

single severity judgment?  

The Judgment Analysis results are consistent with the use of a compensatory, weighted 

additive strategy, whereby all impact types are linearly combined in arriving at an overall 

severity judgment. In this section, we perform a further test of this idea by directly 

comparing compensatory and non-compensatory decision strategies using a descriptive 

data visualisation approach. We specifically test whether participants rely on a subset of 

impact types (a non-compensatory strategy), or use all impact types (a compensatory 

strategy). If, for example, five impact types are of a minimal severity level, but one is of a 

severe level, do weather scientists base their overall classifications on the maximum level 

(‘severe’), the modal level (‘minimal’), or some aggregation across the events (i.e., a 

compensatory strategy)? To perform this test, it was necessary to determine the thresholds 

for severity classifications for each individual impact type.  

3.4.1 Severity classification thresholds for each individual impact type 

In the Impact Threshold Task, participants provided categorical severity classifications for 

specified numerical values of individual impact types. We used these responses to estimate 

severity thresholds for each impact. For this, we estimated six ordinal regression models, 

one for each impact. More specifically, we estimated cumulative models with probit link 

 
12 The Impact model with the variable of Experience in lme4 syntax was as follows: Numerical severity 
judgments ~ (Deaths + Affected + Houses + Public buildings + Agriculture/Aquaculture + Roads/Bridges) * 
Country * Experience + (Deaths + Affected + Houses + Public buildings + Agriculture/Aquaculture + 
Roads/Bridges | id). 
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(Bürkner & Vuorre, 2019), with the categorical severity ratings as a dependent variable and 

the numerical impact values, as well as Country, as fixed-effect predictors. We also 

estimated by-participant random thresholds as well as a by-participant random slope for 

each impact value13. This by-participant random effect structure meant that the thresholds 

and resulting predictions were specific to each individual weather scientist, which resulted 

in models providing a good account of the observed data (see Appendix 6). The specificity of 

these thresholds means, for example, that the same number of people affected might be 

classified as Severe for Forecaster 1, but as Significant for Forecaster 2.  When comparing 

the cumulative model with by-participant random terms (i.e., with idiosyncratic thresholds 

and idiosyncratic effects of impacts) with a cumulative model without by-participant 

random terms we saw clear qualitative and quantitative differences. The estimates of the 

fixed-effect, as well as the predicted categorical responses, differed dramatically between 

models. In the models with by-participant random terms, the predicted responses 

categories were much more certain (i.e., predicted probabilities near 1) compared to the 

model without the by-participant random terms where they were much more uncertain 

(i.e., predicted probabilities near 0.5). This result is in line with our finding of substantial 

random effect variances in the Judgement Analysis and suggests that inter-individual 

variance must be accounted for in the cumulative models. In other words, different weather 

scientists have markedly different perceptions of what constitutes a significant versus 

severe number of people affected (for example). This variance can be seen in Figure 8, 

which shows thresholds for each individual weather scientist (coloured lines), as well as 

overall mean thresholds (bold black lines). 

 

 

 

 

 

13 For example, the cumulative model of Death in brms syntax (Bürkner, 2017): Death severity classification ~ 1 
+ log1P (Death values)* Country + (cs(1)|id) + (0 + log1P(Death values)|id). 
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Figure 8 

The fitted thresholds for the six impact types  

 

Note. The coloured lines correspond to individual weather scientists’ thresholds and the 
black lines correspond to the mean thresholds.  
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3.4.2. What decision strategy do weather scientists use to combine multiple impacts into an 

overall severity classification? 

We used the unique individual thresholds for each participant to predict each participant’s 

categorical severity classification for each impact in each impact table in the Judgment 

Analysis Task (i.e., for each numerical impact as exemplified in Figure 4). We then computed 

predictions of four possible decision strategies for each hypothetical heavy rainfall event. 

We used one compensatory strategy (the Mean strategy), and three non-compensatory 

strategies: Max, Mode (largest) and Mode (average), and compared the resulting 

predictions with participants’ (‘observed’) severity classifications.  

In order to compute the predictions of the Mean strategy, the four categorical severity 

levels were coded as follows: Minimal = 1, Minor = 2, Significant = 3, Severe = 4. The 

predicted severity classification is the mean of the numbers. For the Max strategy, the 

prediction is given by the maximum severity level. For the Mode strategy, the prediction is 

given by the modal severity level. In case of multiple modes (which occurred frequently), we 

used two different approaches14: (1) The Mode (largest) Strategy is the largest mode (the 

highest severity level); (2) The Mode (average) Strategy implied that the mean severity level 

of all modes was used to present the overall severity level of the event.  

Figure 9 provides an overview of the relationship between the predictions derived from the 

four strategies described in the previous paragraph (on the x-axes) and the observed 

severity classifications (on the y-axes). For all of the shown strategies, we can see a clear 

positive relationship between the prediction made by the strategy and the weather 

scientists’ actual severity classifications. In other words, all strategies seem to be able to 

account for the observed severity classifications to a similar degree based on the data 

shown in Figure 8. The only strategy that seems to make some clear qualitative mis-

predictions was the Max strategy where the predicted classifications were somewhat higher 

than the observed classifications (the larger points are to the right of the main diagonal).  

 
14 For example, in a heavy rainfall event, two of the six impacts were rated as “Minimal”, two of them were 
rated as “Significant” and the last two were rated as “Severe”. Thus there were three modes in the event.  
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Figure 9 

The use of different strategies in four countries  

Note. The x-axes show the severity classification predicted by the strategy, whilst the y-axes 
show the observed severity classification. All trials (Judgment Analysis Task) are included. 
The size of the data points indicates the relative proportion of trials with that value within a 
given panel. Because both the Mean and Mode (average) strategy involve averaging the 
numerical category codes, the predicted strategy classifications can fall between categories. 
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Figure 9 suggests that the correlation among the different strategies is substantial and 

therefore looking at the overall predictions of the different strategies does not allow us to 

identify a single strategy participants might have used. In the following, we attempted to 

overcome this problem by directly comparing two strategies based on subsets of the data  

in which we control for the correlation between the compared strategies. More specifically, 

we always compare the compensatory mean strategy against one non-compensatory 

strategy, such that we hold the predictions of one of the two compared strategies constant 

and then evaluate whether a change in the other strategy is reflected with a change in the 

weather scientists’ numerical severity rating. By doing this twice, once holding each strategy 

in a pair constant, visually it becomes readily apparent which of the two strategies has a 

stronger predictive ability. Note that for this purpose we use again the numerical severity 

ratings as the dependent variable as this provided for a clearer result (as discussed above, 

this is justifiable given the close relationship between the numerical ratings and the 

categorical classifications, see Figure 6).  

The first such comparison is shown in Figure 10 which compares the Mean strategy with the 

Max strategy. In Panel A, the mean strategy is held constant at two levels, Minor and 

Significant (as these strategies represented the majority of responses). In Panel B, the Max 

Strategy is held constant at two levels, Significant and Severe (representing the majority of 

responses). Panel A shows that there was minimal influence of the Max Strategy when the 

Mean Strategy level remained constant. In contrast, when controlling for Max Strategy 

severity, the Mean Strategy levels tend to positively affect severity judgments (Panel B). It 

thus appears that participants’ severity judgments are better predicted by the Mean 

strategy than the Max strategy. The same pattern was observed in comparison of the Mean 

Strategy against the Mode (largest) Strategy (Figure A5.1 in Appendix 5) and the Mode 

(average) Strategy (Figure A5.2 in Appendix 5). Overall, the results show that the 

(compensatory) Mean strategy appeared to be a better predictor of severity evaluations 

than other candidate strategies. Whilst additional analyses might show alternative 

compensatory strategies to be superior (e.g., a Weighted Mean), the aim of this analysis was 

to rule-out simpler non-compensatory strategies.  
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Figure 10 

Comparison between Mean Strategy and Max Strategy 

 

Note. In each panel, different colours represent different countries, with each datapoint 
reflecting one observation. Datapoints are plotted semi-transparently to avoid overplotting, 
such that darker points do indicate more data. In Panel A, individual data points are 
additionally jittered randomly on the x-axis. Furthermore, the large points represent means 
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(with error bars representing the standard error of the mean). In Panel B, the solid lines 
show the regression lines. 

3.4.3. Non-compensatory strategies using specific impact types. 

The Judgment Analysis based on the Impact model found that Number of Deaths and 

Number of People Affected were the strongest predictors of overall severity judgments. 

Consequently, we wanted to compare the fully compensatory Mean strategy against 

strategies that focussed on only one of either of these two impacts. We did so again by 

focussing on the predicted impact severity classifications (i.e., analogous to Figure 10). As 

with the comparison against Max and Mode, a direct comparison of the Mean strategy with 

a strategy whereby weather scientists solely rely on Number of Deaths (Figure 11), or 

Number of People Affected (Figure 12), suggested the Mean strategy was a stronger 

predictor of the weather scientists’ severity ratings. The Mean Strategy had an influence on 

the severity judgment after controlling for the Death Strategy and the Affected Strategy, but 

the influence was much weaker the other way round.  
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Figure 11 

Comparison between Mean Strategy and Death Strategy 
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Figure 12 

Comparison between Mean Strategy and Affected Strategy 
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Thus far, we have paid no attention to possible interactions between individual predictors. 

This is because it is not possible to consider all possible interactions between the six impacts 

– the number of events required in the Judgment Analysis task would have been prohibitive. 

As an initial check that we are unlikely to be missing critical insights through not including 

interactions, we visualised the interaction between the Deaths strategy and the Affected 

strategy, as these were the most heavily weighted predictors in the Impact model. Figure 13 

plots the mean numerical severity judgments for the combination of classifications 

predicted by the Death and Affected strategies. The main effects of the two variables are 

clear from Figure 13 - numerical severity judgments are higher as both Affected strategy 

predictions (on the x-axis) and Death strategy predictions (represented by colour) increase. 

Figure 13 also suggests an interaction, which is confirmed in a linear mixed effects model15, 

F (1, 263.32) = 329.62, p <.001. When Deaths is Severe, the difference between the different 

severity levels of Affected is smaller than when Deaths is Minor. The most likely explanation 

of this interaction is a ceiling effect. When Deaths is already Significant or Severe, the 

severity cannot increase by much more as it is already approaching its maximum. We can 

also see that the two data points that largely drive the interaction (Death = Significant for 

Affected = Minimal; Death = Severe for Affected = Minor) represent only a minimal fraction 

of the overall data (each representing less than 50 observations, or 0.2% of all data). 

Because of this overall weak evidence for the importance of this interaction, we conclude 

that our overall conclusions are likely not compromised by excluding a consideration of 

interactions.   

 

 

 

 

 

 

 
15 The Interaction model specification was as follows: Numerical severity judgments ~ (Deaths * Affected) + 
(Deaths + Affected + Deaths * Affected | id). 
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Figure 13 

The interaction of Death Strategy and Affected Strategy on numerical severity judgments 

 

Note. Data points represents the mean numerical severity levels given by the combinations 
of predictions of Death strategy and predictions of Affected strategy. The size of data points 
reflects the number of observations.  The interaction is illustrated by, for example, the 
greater effect of ‘deaths’ when the Affected strategy suggests Minimal severity than when it 
is Severe (the greater distance between the points in the leftmost ‘column’ of the figure 
versus the ‘rightmost’). 

4. Discussion  

In the current paper, we took a Judgment Analysis and decision strategy comparison 

approach to understand how weather scientists combine quantitative information about 

different impact types to form overall severity judgments. We found that weather scientists 

incorporated information from all six presented impact types in a compensatory process 

when forming an overall severity judgment for heavy rainfall events. Whilst all six impacts 

were found to be significant predictors for assessing severity levels, the two human factors 

(“Number of People Dead” and “Number of People Affected”) received the most weight in 
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weather scientists’ judgments. We were able to rule out the possibility that this result was a 

group-level artefact of individual weather scientists each focussing on a different subset of 

impact types. This general result was observed in all four countries, notwithstanding slight 

variations in the precise weights assigned by weather scientists in the different countries. 

Whilst the data suggest a preponderance of a compensatory decision strategy in weather 

scientists, the precise weightings of impact types, and impact-value-to-severity-classification 

mappings (thresholds) varied considerably across individual weather scientists.  

The compensatory strategy contrasts with the ‘max’ strategy used for aggregation in 

Aldridge et al. (2016). Meyer et al. (2007) argued that a disjunctive approach (such as the 

max strategy) was more appropriate than a more compensatory approach for spatial flood 

risk analyses. The disjunctive approach is a quick and simple rule that can help to screen the 

risk area since it requires only one threshold value is exceeded. In urgent situations, 

warnings need to be made in a timely manner, so a simpler and quicker strategy is 

preferred. It is possible that our weather scientists might use such a strategy where task 

characteristics alter the nature of the trade-off between time and accuracy (Huber & Kunz, 

2007; Peng et al., 2019). A weighted mean has, however, been argued to be the optimal 

algorithm by which multiple cues should be combined (e.g., Cooksey, 1996; Frisch & 

Clemen, 1994). As accuracy concerns are likely more important in real forecasting scenarios, 

we maintain that these task characteristics are unlikely to encourage adoption of less 

optimal strategies. That said, given the large interpersonal differences in precise weightings 

and thresholds, it might be argued to be beneficial to include some consideration of error 

cost functions in the final, communicated, severity level, so that more costly errors (e.g., 

forecast recipients underestimating the impacts associated with a particular severity 

communication) can be avoided (Batchelor & Peel, 1998; Harris et al., 2009; Lawrence & 

O'Connor, 2005; Whiteley & Sahani, 2008; see also Liefgreen et al., 2024). 

Our results also deviate from the majority of studies applying judgment analysis to expert 

judgment, where experts typically rely on a subset of cues available (c.f., Brehmer & 

Brehmer, 1988). As highlighted in the Introduction, however, such a result is by no means 

universal, with a sizeable minority of studies finding experts to aggregate across a large 

number of provided cues (see e.g., Chewning & Harrell, 1990; Taylor & Wilsted, 1974; 

Wilsted et al., 1975; White et al., 2018). In the current study, we only included a relatively 
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small number of cues. The selection of these cues was based upon analysis of the impact 

types that are recorded (Wyatt et al., 2023), along with detailed focus discussions 

undertaken with experts sampled from the same population as the weather scientists who 

participated in the main study (many of those would have participated in the main study as 

well as the focus group). Thus, the observation that all six impacts contributed to overall 

severity judgments might suggest that the experts in the focus discussions had good insight 

into the relevant factors for determining the overall severity of a heavy rainfall event. 

Future work, however, might seek to specifically test the question of the degree of insight 

weather scientists have into their judgment processes (see Cooksey, 1996). Such research 

should ensure that methods for assessing such awareness are suitably sensitive (see e.g., 

Lagnado et al., 2006; Newell & Shanks, 2014, 2023; Persaud et al., 2007). 

4.1 Implications and future directions  

This study investigated how weather scientists combine impact severity levels to form 

overall severity judgments for IBWs. One crucial observation was that there was 

considerable inter-forecaster variation in subjective thresholds of numerical impacts. This 

adds to previous observations (in experimental settings) of great variation in probability 

thresholds used by National Weather Service forecasters before issuing warnings (Trujillo-

Falcón et al., 2022), and between broadcast meteorologists when deciding television 

coverage types to communicate impactful weather information to the public (Obermeier et 

al., 2022). Addressing the inter-individual differences between weather scientists is 

therefore a key research priority, further highlighted in the present work. These large 

individual differences prohibit the current findings from informing evaluations of IBF using 

quantitative information from database sources (see e.g., Wyatt et al., 2023). It was not 

possible to identify a common threshold for categorical severity classifications from 

numerical impact information. Whilst highlighting this variability is a good first step to 

addressing this issue, future work should seek to identify methods to improve consistency 

between weather scientists within individual countries. Finally, it may be desirable to 

develop a commonly recognized and standard guideline of severity threshold definitions for 

IBF within individual countries.  
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Although we showed that weather scientists’ overall severity judgments were best 

predicted by a Mean strategy here, people with different roles and responsibilities to these 

scientists might use different strategies. Aldridge et al. (2016), for example, reported that 

disaster managers agreed that a Max strategy was most informative to enable quick 

computations and to avoid unexpected risks and consequences. Indicating that this is a 

desirable strategy is not, however, the same as using that strategy in classifications. Future 

work might seek to determine how stakeholders such as the disaster managers in Aldridge 

et al.’s work aggregate information about different impacts to inform overall severity 

judgments.  

If IBWs are to be communicated to the general public, the public’s understanding of these 

warnings is critical (e.g., Taylor et al., 2019, 2024). The examination of the general public’s 

severity judgments is thus another important research direction. The public receive IBWs in 

many countries. Whether these are of a simplified nature (e.g., ‘there is a medium likelihood 

of significant impacts from heavy rain’), or incorporate more detailed information about the 

hazard, source and impact (Casteel, 2016; Weyrich et al., 2018), it is still desirable that the 

public’s perception of ‘significant impacts’ (and indeed ‘medium likelihood’) matches that 

intended by the weather scientists issuing the warnings (see also Potter et al., 2021). Only in 

this instance will the public be prepared for the forecasted weather impacts. Before 

engaging in such research, however, it is necessary to address the extant inter-individual 

differences between weather scientists.  

4.2 Conclusion  

Overall, weather scientists pay attention to all impact types, whilst giving more weight to 

human factors (‘Number of People Dead’ and ‘Number of People Affected’) when forming 

overall severity judgments. These results demonstrated a shared understanding of the 

importance of impacts between weather scientists from four countries in Southeast Asia. 

The consistency in the overall process was offset by the high levels of inter-forecaster 

variability in the precise weightings given to each impact type. As the utilization of IBF in 

Southeast Asia is still at a relatively early stage, helping weather scientists to form stable 

and consistent severity classifications will be beneficial for leveraging the full potential of 

IBF, as well as enabling subsequent evaluation of IBF.  
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Appendix 
Appendix 1 

Table A1  
Impact list summarized from qualitative surveys of partner countries 
Death - The number of reported deaths Class / work suspension/daily activities 
Injury - The number of people injured Increase road accidents 
Miss - The number of people missing Stranded passengers  
Displace - The number of people displaced 
(made homeless) 

The time of the event (during the after-
office hour / peak time) 

Evacuate -The number of people evacuated The number of municipalities affected 

Affect - The number of people affected Infrastructure damaged (road, bridge, 
house) 

Building Damaged - The number of buildings 
damaged 

Damage to property - utilities (power 
plant/electricity pole) 

Hospital - The number of hospitals or health 
centres affected 

Damage to the dam wall / River 
embankments  

School - The number of educational facilities 
affected Road damaged 
Public building - The number of government, 
public or religious buildings affected Damage to water pipes / sewerage system 
Transport Infrastructure -The number of 
transport infrastructure assets affected Damage to property - residential/house 
Road Sections - The number of road sections 
affected  Damage to public facilities 
The length of recovery after the event (e.g. if 
utilities were damaged, how long before they 
were back) 

The areal extent - how widespread is the 
effect / damage in a certain 
locality/municipality 

Bridges - The number of bridges damaged or 
affected 

Road Distance (Km) - The distance of road 
affected 

Agriculture and aquaculture -The total area of 
agriculture and aquaculture affected The duration of the event 

Livestock - The total number of agricultural 
animals and poultry killed 

Spread of other health issues (cough, 
fever, dengue) / infectious disease  

Waterborne diseases due to prolonged flooding The location of the event 
Water contamination Cause trauma and escalate the distress  
Plants were damaged Flood / Flash flood / water pooling 
Soil erosion  Increase in river/creek level heights 
Food supply Landslide 
Communication failure/Isolated community Lightning strikes 
Water supply Rock fall  
Disrupt transport  Wet roads and reduced visibility 
Traffic congestion Debris / mud flows 
Flight/train cancellation/delay Airport closure 
Difficult to drive vehicle on the street  Disruption at the port / waterways 
Energy supply  
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Appendix 2 

Ensuring the ecological validity of the heavy rainfall events used – database analysis and 
simulation 

Estimating the multivariate distribution of rainfall events from the database and generating 

hypothetical rainfall events from it required several steps. Firstly, the database initially 

contained entries on an individual record level and not on an event level; that is, the same 

event could have multiple entries (e.g., from different data bases or different days). 

Therefore, we first needed to reduce the database so that only one entry per weather event 

remained. We used two different reduction approaches, a strict approach and a less strict 

approach. In the strict approach we matched events based on the city level and consecutive 

days, in the less strict approach we matched events based on country and a time window of 

7 days. In the strict approach we ended up with a total of around 7,500 events and in the 

less strict approach with a total of around 4,000 events. If for one event different entries 

had values recorded for the same impact, we used the maximum value across entries as 

value for this event. 

In the second step, we explored the distribution of the impacts for the two event data sets. 

This data exploration provided several important insights. For both approaches, the vast 

majority of events did not have values for all impacts. For some impacts the number of 

missing values was comparatively low, (e.g., for deaths, the proportion of missing values 

was 43% for the strict approach and 7% for the less strict approach) and for other impacts 

we had hardly any values (e.g., for roads and bridges the proportion of missing values was 

97% and 98%). When looking at the univariate distributions of each impact, all were 

extremely right skewed with most having some extreme outliers. To handle the extreme 

outliers in each distribution we winsorised each univariate distribution at the 99th 

percentile. To address the extreme right skew we decided to log-transform the data. 

Because the deaths variable also included many events with 0 deaths, we used a log1P 

transformation which is defines as 𝑥!"#$%&'"()* = ln	(1 + 𝑥). The histograms in the main 

diagonal of Figure 3 show the univariate distribution of the impacts from event data based 

on the less strict approach after the log1P transformation. As can be seen, for some of the 

impacts (i.e., Affected, Houses, and Agriculture), the univariate distributions of impacts are 

approximately normal after transformation. For the remaining impacts there still is a 
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noticeable right skew after transformation, but it is much less dramatic compared to pre-

transformation. 

In the third step, we estimated the multivariate normal distribution of the log1P 

transformed impact variables in a Bayesian statistical framework (using Stan) (Carpenter et 

al., 2017). Because of the large amount of missing data, we estimated the multivariate 

normal distribution in such a way that each event informed the part of the multivariate 

normal distribution for which it did have information. For example, an event that only had 

data for one impact, only informed the mean for that impact type. An event with data for 

two impacts, informed the corresponding two means as well as the covariance between 

both impacts. Because we had two different event data sets (one based on the strict and 

one based on the less strict event reduction approach), we estimated the multivariate 

normal distribution jointly on both data sets. This joint analysis was chosen to alleviate 

concerns regarding the specific choices taken in the event reduction step. We felt the 

downside of the joint analysis – it can be seen as an instance of pseudoreplication (Hurlbert, 

1984) – were less of a concern given the relatively large sample sizes. The analysis resulted 

in one posterior distribution for the multivariate normal distribution over all six impacts on 

the log1P transformed scale. 

In the fourth step, we drew 1,000 samples from the multivariate posterior distribution (i.e., 

each sample represents one set of parameters for the full multivariate normal 

distribution). From each of these samples, we generated two hypothetical weather 

events using a random number generator for the multivariate normal distribution. This 

resulted in a total of 2,000 hypothetical weather events. Because not all hypothetical 

weather events were generated from the same set of parameters of the multivariate normal 

distribution, but from different samples of the full posterior distribution, the simulation 

ensured that the uncertainty we had in the parameters of the multivariate normal 

distribution (i.e., the means and covariances of the variables) were properly represented in 

the hypothetical data. Because the hypothetical weather events were on the log1P 

transformed scale, we back-transformed them onto the actual event scale using (𝑒+ − 1) 

and then rounded them to whole numbers. Furthermore, all negative impacts were set to 0. 

We then checked the resulting events for certain patterns that could occur in the 

hypothetical events, but were unlikely to occur in real data. For example, in 67 of the 
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hypothetical 2,000 events the number of affected people was less than two times the 

number of affected houses, which we deemed unlikely. Likewise, there were 21 events with 

more affected public buildings than affected houses. We removed these events from further 

consideration. The upper triangle of Figure 3 shows the distribution of the remaining 

hypothetical weather events, after transforming them back to the log1P scale to deal with 

the strong right-skew. The univariate as well as multivariate pattern of the hypothetical 

events strongly matches the characteristics of the real weather events.  
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Appendix 3 

Table A2  
Impact values used in Impact Threshold Task 
 

Impacts People 
dead 

People 
affected (e.g., 

injured, 
displaced, 
evacuated) 

Houses 
damaged 

or 
destroyed 

Public 
buildings 
affected 

(e.g., 
schools, 

hospitals, 
government 
or religious 
buildings) 

Agriculture 
/ 

aquaculture 
affected 

(hectares) 

Road 
sections 
and / or 
bridges 
closed 

Number1 1 38 3 1 5 1 
Number2 2 (39, 244) (4, 20) 2 (6, 32) 2 
Number3 5 (244, 532) (20, 43) 5 (32, 65) 5 
Number4 (6, 8) (532, 932) (43, 74) 10 (65, 108) (6, 10) 
Number5 (8, 15) (932, 1505) (74, 117) (11, 18) (108, 167) (10, 16) 
Number6 (15, 25) (1505, 2355) (117, 178) (18, 31) (167, 250) (16, 24) 
Number7 (25, 61) (2355, 3685) (178, 272) (31, 48) (250, 374) (24, 52) 
Number8 N/A (3685, 5948) (272, 427) (48, 108) (374, 576) N/A 
Number9 N/A (5948, 10417) (427, 723) N/A (576, 953) N/A 

Number10 N/A 
(10417, 
22661) 

(723, 
1501) N/A (953, 1917) N/A 

Number11 N/A 
(22661, 
143484) 

(1501, 
8488) N/A 

(1917, 
10063) N/A 

Note. The yellow cells represent the fixed numbers. The green cells represent drawing a 
random number from the range. (A, B): A is inclusive, B is exclusive. 
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Appendix 4 

Table A3. Trend estimates and their standard errors (in parentheses) of six impact predictors for four 
SEA countries in the Impact Model.  

Predictor Indonesia Philippines  Malaysia  Vietnam  

Deaths 3.44*** 
(0.41) 

4.09*** 
(0.73) 

4.98*** 
(0.62) 

6.17*** 
(0.43) 

Affected 6.09*** 
(0.56) 

6.92*** 
(1.00) 

9.23*** 
(0.85) 

6.76*** 
(0.59) 

Houses 2.15*** 
(0.36) 

2.74*** 
(0.64) 

2.24*** 
(0.55) 

1.56*** 
(0.38) 

Public buildings 1.17*** 
(0.23) 

1.03* 
 (0.42) 

0.72* 
 (0.35) 

0.84*** 
(0.24) 

Agriculture/ Aquaculture 2.03*** 
(0.22) 

3.53*** 
(0.40) 

2.10*** 
(0.34) 

1.64*** 
(0.23) 

Roads/ Bridges 0.96*** 
(0.25) 

2.05*** 
(0.45) 

1.26*** 
(0.37) 

1.16*** 
(0.26) 

Note. *** p < .001; ** p < .01; * p < .05.  
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Appendix 5 

Figure A5.1.  

Comparison between Mean Strategy and Mode (largest) Strategy 

 



 60 

Note. In each panel, different colours represent different countries, with each datapoint 
reflecting one observation. Datapoints are plotted semi-transparently to avoid overplotting, 
such that darker points do indicate more data. In Panel A, individual data points are 
additionally jittered randomly on the x-axis. Furthermore, the large points represent means 
(with error bars representing the standard error of the mean). In Panel B, the solid lines 
show the regression lines. 
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Figure A5.2.  

Comparison between Mean Strategy and Mode (average) Strategy 

 
Note. See Figure A5.1. 
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Appendix 6 

The plot comparing the observed and predicted categorical severity ratings for the impact of 

People Dead in Individual Threshold Task. Plots for each of six impact types are available in 

OSF. Note that the colourful dots are observed data and the grey dots are predicted data.

 

 


