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Abstract—This paper assesses the impact of deterioration
induced by biofouling and halide-mediated passivation (HMP)
on the electrochemical impedance and sensing performance of
gold screen-printed electrodes (SPEs). Two sets of experiments
were carried out in phosphate-buffered saline (PBS) solution
which contains chloride ion (to cause HMP) and the same buffer
solution enriched with mucin protein (to cause biofouling as
well as HMP). The results confirm the existence and role of
biofouling and HMP in degrading sensing performance. A decline
of more than 50% in sensitivity was set as a threshold for sensor
end of lifetime or failure. Concurrent electrochemical impedance
spectroscopy labelled with sensor status (healthy, failed) was
used to train a decision tree-based classification. A near 100%
accuracy was achieved in predicting the sensor health state using
only one feature: sensor admittance at a single frequency.

Index Terms—biofouling, screen-printed electrodes, halide-
mediated passivation, electrochemical impedance spectroscopy,
sensor classification, and decision tree.

I. INTRODUCTION

Electrochemical biosensors are extensively utilized across
various applications, including point-of-care diagnostics, envi-
ronmental monitoring and food safety, owing to their high sen-
sitivity, selectivity, compactness, and cost-effectiveness [1]–
[3]. Despite these advantages, halid-mediated and biofouling
pose significant challenges to the long-term reliability of
electrochemical biosensors [4]–[7] when that are in contact
with any fluid that may contain halide ions (e.g. fluoride (F-),
chloride (Cl-), iodide (I-) ).

Gold is one of the most popular choices for electrode
surfaces due to its inertness and biocompatibility. However,
when exposed to a solution containing halide ions, the gold
surface is firstly etched by the halide ions with the formation
of a soluble halide-gold complex [8]. Subsequently, a portion
of the dissolved gold ions is re-deposited onto the electrode
surface [9]–[11], initiating a heterogeneous reaction and ulti-
mately culminating in the establishment of a passive surface
layer on the electrodes [11], called halid-mediated passivation
(HMP). This affects the structural integrity and decreases the
reproducibility of the electrode surface.

On the other hand, biofouling denotes the adsorption of
cells, proteins, peptides, lipids and other biological materials
onto the surface of an electrode in contact with biological
fluid or other tissues [6], [7]. Biofouling obstructs the surfaces
of electrodes thereby limiting the area available for charge

transfer between the electrode and electrolyte, an essential
transduction mechanism in amperometric sensors. To mitigate
the interference caused by biofouling, strategies such as the
pre-treatment of samples, anti-biofouling modifications and
the utilization of disposable biosensors have been adopted
[12]. However these methods may not be suitable in scenarios
where long-term monitoring is required (e.g. wearable and
implantable applications); Sensor replacement may not be
possible depending on the location of the device in/on the
body, pre-treating the sample may lead to higher overall
sensor production that make the technology unattractive for
low resource settings [13], [14], and anti-biofouling coatings
typically reduce sensor’s sensitivity [15].

An alternative technique is to instead work with an ”array”
of sensing electrodes. This not only provides redundancy, in
case a sensor fails due to HMP or biofouling but also enables
parallel and simultaneous measurement of same (or multiple)
analytes that can improve the reliability of measurements.
An essential function that is required in such a system is to
determine which sensors within the array have failed (e.g. due
to biofouling or HMP) so they can be replaced with other
sensors within the array or their weight in overall measurement
be reduced or cancelled altogether.

Electrochemical impedance spectroscopy (EIS) has been
previously used to evaluate the health condition of various
systems, including lithium-ion battery cells [16], membrane
filtration system [17] and glucose sensor [18]. In particular,
it has been reported that some parameters extracted from
EIS, such as charge transfer resistance (Rct) and double
layer capacitance (Cdl), exhibit a strong correlation with
the sensor’s sensitivity [3], [18]. However, deriving such
parameters requires running a full electrochemical impedance
measurement at several frequencies followed by curve fitting
algorithms to estimate the parameters from the raw EIS data.
Producing sine waves at several frequencies is an energy and
resource-consuming task, and curve fitting algorithms are com-
putationally complex, making such a solution unsuitable for
point-of-care or low-resource settings with limited hardware
capabilities and large sensor arrays.

In this work, we present a lightweight method to determine
the state of health of the sensors that are experimentally driven
from parallel EIS and sensitivity measurement on a large
number of commercially available gold screen printed elec-
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Fig. 1: SEM images of (a) a fresh Au-SPE (b) same Au-
SPE after 6-hrs incubation in mucin solution with the circle
highlighting the adsorbed mucin.

trodes (SPEs). The electrodes were frequency-characterised
when undergoing accelerated biofouling and HMP. A feature
engineering was then carried out to find the smallest set of
features that not only achieve high accuracy classification but
can be implemented using minimal hardware and resources.

II. ELECTROCHEMICAL CHARACTERISATION DURING
INCUBATION: MATERIALS AND METHODS

A. Electrodes, chemicals, and equipment

Gold SPEs (C220AT) with a working electrode diameter
of 4mm purchased from DropSens. A short thin rod of a
platinum electrode and an Ag/AgCl electrode was utilized
as counter electrode and reference electrode respectively.
PBS tablet, mucin from the porcine stomach, potassium fer-
ricyanide(III) and potassium hexacyanoferrate(II) trihydrate
were purchased from Sigma-Aldrich. De-ionised water (DI)
was prepared with the Milli-Q system. The buffer solution
was prepared by dissolving one PBS tablet into 200 ml DI.
Mucin solution was prepared by dissolving 270 mg mucin
protein into 10 ml of PBS solution. 5 mM and 2.5 mM
potassium ferri/ferrocyanide solutions were prepared by dis-
solving 82.31 mg of potassium ferricyanide and 105.6 mg
of potassium hexacyanoferrate(II) trihydrate into 50 ml and
100 ml of PBS solution respectively. All solutions were
stored at 4 °C while not used. EIS and CV measurements
were performed with Autolab PGSTAT204 from Metrohm.
Scanning Electron Microscopy(SEM) was carried out using
JEOL JSM IT-100 SEM machine.

B. Experiment design

To distinguish any differences between EIS due to HMP and
biofouling, SPEs were studied in two groups. Group A was
designed to assess the impact of HMP where SPEs were kept
in PBS buffer for several days. In Group B, electrodes were
instead kept in a mucin-enriched PBS solution, that would
cause biofouling in addition to HMP. A total of 28 electrodes
were used, that is 14 electrodes in each group.

In both groups, the temperature was controlled throughout
the entire time by keeping the electrodes (and solutions)
in an incubator at 37 °C. To accelerate biofouling, a high
concentration of mucin, 27 mg/ml that is roughly 10 times its
salivary levels was used. Frequent EIS and cyclic voltammetry

(CV) measurements were carried out on four electrodes at
specific time points within 3 days after starting the incubation.

C. EIS and sensitivity measurements

The frequency range of EIS measurements was from 0.1 Hz
to 1 MHz with an amplitude of 5 mV . This yielded the
complex impedance at 141 specific frequencies, within the
above frequency range.

To gauge the sensing performance of the electrodes, CV
measurements were conducted in 5 mM and 2.5 mM potas-
sium ferri/ferro-cyanide solutions sequentially, with potential
sweeping from -0.4 V to 0.6 V at a scan rate of 100 mV/s.
The sensing performance, hereafter referred to as ”sensitivity”
for simplicity, was defined as the difference between the peak
current (at 173.8 mV ) at 5 mM and 2.5 mM potassium
ferri/ferro-cyanide concentrations, divided by the concentra-
tion difference (2.5 mM ).

After initial characterisation of each SPE with EIS and CV,
they were all rinsed with DI water and incubated.Sequential
EIS and CV measurements were then carried out at seven
specific time points from the start of incubation: 30 minutes,
1 hour, 6 hours, 12 hours, 1 day, 2 days, and 3 days. At this
point day, all electrodes showed lower than 50% sensitivity.

At each time point, two SPEs from group A and two from
group B were taken out of the incubator, rinsed with DI water
and underwent EIS and then sensitivity measurement one at
a time. These four electrodes were then discarded and did
not continue to incubation, because CV measurement itself is
expected to change the surface of the electrodes [19]. Overall,
56 measurements were carried out, two per SPE (one before
and one after the start of incubation).

III. ELECTROCHEMICAL CHARACTERISATION DURING
INCUBATION: RESULTS AND DISCUSSION

The existence of biofouling induced by the proposed recipe
is confirmed by comparing the SEM images of a new SPE
(Figure 1(a)) and the same SPE after 6 hours of incubation in
mucin enriched buffer solution (Figure 1(b)). The adsorption
of mucin proteins form visually discernible structures that can
be observed by SEM as dark areas in Fig. 1(b).

The measured average sensitivity of 28 fresh SPEs was
40.6±6.1 µA/mM prior to the incubation. Therefore, the
threshold of the fault was set for 20.3 µA/mM (dashed
lines in Fig. 2). The long-term sensitivity measurement results
are presented in Fig. 2(a). It can be observed that in both
groups the sensitivity decreases with incubation time, while
the change of sensitivities of Group B, is more significant
than that of Group A. This was expected as SPEs in group
A only undergo HMP while group B undergo both biofouling
and HMP.

In figure 2(b) and (c), two series of Nyquist plots of each
group are shown. The diameters of the semi-circles, which
serve as indicators of the charge transfer resistance of the
sensors, exhibit an increasing trend in each group over the
incubation time. Fitting the EIS data to the randles equivalent
model of the sensor was used to extract Rct values. These are
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Fig. 2: (a) plot the sensitivity aginst the incubation time of Group A and Group B with a dash line indicating the threshold
of fault. (b) Nyquist plots measures on sensors before incubation and after 0.5 hours to 72 hours of Group A. (c) Nyquist
plots measures on sensors before incubation and after 0.5 hours to 72 hours of Group B. (d) plot the sensitivities against the
correspond Rct, with a dash line indicating the threshold of fault.

(a) (b) (c)
Fig. 3: (a) plots of 1

|Z| against frequency of SPEs of Group A after 0 hour to 72 hours. (b) plots of 1
|Z| against frequency of

SPEs of Group A after 0 hour to 72 hours. (c) plot the prediction accuracy against the specific frequency selected as the only
feature of the decision tree, with the error bar showed in shaded area.

plotted versus SPE sensitivity in Fig 2(d). Two clusters can
be visually distinguished above and below the threshold line.
This is consistent with findings previously reported [3], [18].

In search of a more easily measurable feature, the ad-
mittance, 1

|Z| of the SPE was considered in this work. The
admittance is plotted versus frequency and time in Fig. 3(a)
and 3(b) for sensors in Groups A and B. A visual assessment
indicates areas where the admittance of substantial changes
exists at low-frequency ranges.

IV. FEATURE SELECTION AND CLASSIFIER DESIGN

The correlation between the admittance and sensitivity is
obvious in the low-frequency ranges as shown in Fig. 3(a)
and (b), suggesting the possibility of manual classification of
SPEs. However, to allow scalability of the classification and its
robustness, a machine learning feature selection and classifica-
tion technique was adopted in this work. As previously stated,
a total of 141 frequencies were used in EIS measurement,
leading to 141 measured 1

|Z| . The importance of each one
of these values in the accurate prediction of the SPE health
state was evaluated using a random forest model. To train the
random forest model, the dataset containing all 141 1

|Z| values
was fed to the model as the features and the labels (failed,
healthy) obtained through concurrent sensitivity measurement
were used as outputs. A decision-tree-based machine learning
classifier was then trained with the selected feature subset,
starting from 10 most important frequencies, then to only the
single most important feature. To develop the classifier, the

dataset including 56 measurements is divided into 80% of
training (44 data) and 20% testing samples(12 data). Data were
randomized to ensure robustness, with accuracy assessments
conducted across all 558.383 billions of combinations to de-
termine the model’s reliability. The achieved average accuracy
and its variation at each specific frequency is plotted in Fig.
3 (c). The highest accuracy achieved among all frequencies
is 99.98%, with any one of frequencies from 0.1Hz to
12.589Hz. The lower frequencies achieve a high prediction
accuracy with a low error bar which means the admittance
at these frequencies is suitable for use as a single feature in
classifying the SPE sensor.

V. CONCLUSION

The feature extraction and selection method enable the
machine learning classifier to achieve a near 100% accuracy
on detecting a failed SPE caused by either biofouling or HMP
with only one feature: admittance at any single frequency from
0.1Hz to 12.589Hz. This admittance feature is more efficient
than conventional Rct or Cdl measurements in terms of time
and energy. This work will be further advanced by considering
the impact of other deterioration sources and environmental
factors such as temperature and pH, which are limitations of
current work. Future works include validating the classifier
on gold microelectrodes prior to developing an embedded and
compact circuit for in-situ fault detection in microelectrode
sensor arrays.
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