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Abstract 

Background 

Cystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been 

led by family-based and candidate gene studies, an approach that is susceptible to 

ascertainment and other biases.  

Methods 

Using whole genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls 

participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to 

generate quantitative estimates of disease risk for each genetic contributor to CyKD, across 

genes, variant types and allelic frequencies.  

Results 

In 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was 

found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD 

genes, with novel statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. 

Quantification of disease risk for each gene (with replication in the separate UK BioBank study) 

revealed substantially lower risk associated with genes more recently associated with autosomal 

dominant polycystic kidney disease, with odds ratios for some below what might usually be 

regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did 

not reveal significant associations but suggested this category of variation contributes 3-9% to 

the heritability of CyKD across European ancestries.  
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Conclusion 

By providing unbiased quantification of risk effects per gene, this research suggests that not all 

rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in 

families. This information may inform genetic testing and counselling in the clinic. 

Keywords: genomics, cystic kidney disease, renal, ADPKD, WGS 
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Introduction 

Cystic kidney disease (CyKD) is a term for any disease that causes multiple fluid filled cysts within 

the kidney (excluding cystic degeneration of chronically diseased/failed kidneys). The term 

Polycystic Kidney Disease (PKD) generally refers to CyKD in which the kidneys become enlarged 

and replaced by cysts and is almost always inherited as a Mendelian trait (either autosomal 

dominant or autosomal recessive). 90% of CyKD is caused by Autosomal Dominant Polycystic 

Kidney Disease (ADPKD) which accounts for approximately 10% of all patients receiving kidney 

replacement therapy for kidney failure (KF) in the United Kingdom (UK) (1). It is estimated that 

between 1 in 800-1,000 of the population has ADPKD (2) making this the commonest monogenic 

cause of life-shortening disease worldwide. 

Rare monoallelic variants in two genes, PKD1 and PKD2, cause the majority of ADPKD, whilst 

biallelic variants in PKHD1 cause the majority of ARPKD. PKD1 accounts for ~80% of ADPKD 

diagnoses whilst PKD2 accounts for ~15%(2). PKD1 encodes Polycystin-1 (PC1), a large multi-

domain glycoprotein whilst PKD2 encodes Polycstin-2 (PC2) which is a nonspecific cation channel 

that interacts with PC1. Both proteins are found in primary cilia and play a role in 

mechanotransduction, transferring external information to the cell. Whilst the function of PC1, 

PC2 and the PC1-2 complex is still not fully understood, it is increasingly accepted that these 

proteins prevent cystogenesis via a dose dependent mechanism (3). PKHD1 encodes the 

fibrocystin protein and acts via a common polycystin pathway to cause cysts in ARPKD usually 
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manifesting at a younger age than ADPKD and associated with extra-renal features including liver 

fibrosis (4).  

There has been increasing recognition of the genetic heterogeneity of CyKD including 

contributions of genes other than PKD1/PKD2. Among the 10-15% of patients suspected to have 

ADPKD who have no explaining variants in either PKD1 or PKD2, next generation sequencing (NGS) 

has identified several other genes in which variants cause ADPKD including DNAJB11 (5), GANAB 

(6), ALG9 (7) and more recently IFT140 (8) and ALG5 (9). Presently, a clinical diagnosis of polycystic 

kidney disease implies a high risk of kidney failure but pathogenic variants in these more recently 

described genes seem to carry a lower penetrance, manifesting as sporadic or non-Mendelian 

disease in individuals or families, with a less severe phenotype. To date, estimates of penetrance 

and outcomes with these rarer genetic variants are based predominantly on case series and 

reports of individual families, increasing the risk of ascertainment bias because more severely 

affected families are more likely to have come to light. Providing accurate data about the adverse 

consequences of these rarer variants is essential to prognostication, informing life and 

reproductive choices for patients and family members.  

Obtaining a molecular diagnosis for CyKD can also inform choice of therapy (10,11). Genetic testing 

for PKD1 variants is challenging owing to its high GC content, numerous repetitive regions, and the 

presence of six pseudogenes that share 97% of their sequence with PKD1 (12,13). This has 

traditionally necessitated the use of Sanger sequencing of a long-range PCR-amplification product 

(13), a method that is technically difficult and expensive. Whole genome sequencing (WGS) has 

been shown to offer high quality PKD1 sequencing (14). WGS provides more uniform coverage and 
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avoids capture bias, resulting in increased sensitivity to detect structural variants (SVs) and rare 

single nucleotide variants (SNVs) compared with exome (or capture-based) sequencing platforms, 

even within regions targeted by the latter (15,16). In addition, WGS benefits from economies of 

scale and the associated costs have dropped dramatically over the past decade (17) . However, 

few studies have looked at the utility of WGS in CyKD on a large scale (18).  

Large-scale WGS datasets facilitate the assessment of the association of variants across the allelic 

spectrum with a certain phenotype in an unbiased genome-wide manner. This is especially useful 

in the study of the genomics of rare diseases, where approaches reliant on the sequencing of 

candidate gene panels or single genes of interest lead to discovery bias. In this study we perform 

genome-wide association analyses using WGS data from 1,209 CyKD cases and 26,096 ancestry 

matched controls. We perform variant-level, gene-level, pathway-level, and time-to-event 

association analyses including rare, common, and structural variants in a diverse-ancestry 

population providing the largest unbiased assessment of CyKD to date. We identify strong 

associations in known (PKD1, PKD2, DNAJB11, IFT140) and novel genes (COL4A3, monoallelic 

PKHD1) across various variant types. We leverage this data to conduct the largest common variant 

GWAS of CyKD to date, showing no significant associations, and use this to define the common 

variant heritability of CyKD as between 3-9%. This approach provides a comprehensive, unbiased 

framework for large-scale WGS analysis which can be utilized to gain insights into the molecular 

mechanisms underlying other rare diseases going forward. 
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Results 

A full study workflow with high level results can be found in Figure 1.  

The CyKD cohort demographics.  

The cystic kidney disease cohort consisted of 1,558 participants recruited to the 100,000 

Genomes Project (100KGP) of which 1,294 were probands (full breakdown of recruited 

pedigrees in Supplementary Table 1a). The demographic information and top five most frequent 

HPO codes of probands are shown in Table 1.  

The clinically validated arm of the 100KGP gave a molecular diagnosis to 53% of the CyKD cohort. 

Of these probands, 1,290 had a genetic outcome  from the 100KGP clinical pipeline: 640 

(52.93%) were solved, 34 (2.81%) were partially solved, 79 (6.54%) had missing data and 537 

(44.42%) were unsolved. The top three molecular diagnoses were: PKD1 truncating (340[26%]), 

PKD2 truncating (122[9.5%]) , and PKD1 non-truncating (118[9.1%]) variants. The full breakdown 

of solved cases and the types of variants can be found in Supplementary Table 2 (three patients 

were solved for primary conditions unrelated to their cystic kidney disease e.g. intellectual 

disability and were not included in this table and 12 cases did not have a gene recorded despite 

being listed as solved).  

Outcome data shows those with pathogenic PKD1 variants have the worst renal prognosis 

followed by those without a diagnosis. 

Of the 1,290 cases, 578 (44.8%) had data regarding kidney function in the form of Human 

Phenotype Ontology (HPO) [PMID: 37953324] or Hospital Episode Statistics (HES) codes of whom 

398 (68.9%) had reached KF (full breakdown in Supplementary Tables 1b and S1c). Survival 
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analysis of these cohorts followed what is known about the renal prognosis of variants in CyKD 

(Figure 2). 

Combining the clinical and research pipelines identified a potential explaining genetic variant in 

the majority of  CyKD cases. 

Of the 1,209 ancestry matched CyKD cases, 994 (82%) had a potentially explaining monogenic or 

single structural variant  identified when combining the clinical pipeline results with those who 

had variants identified via collapsing gene-based analyses (Supplementary Table S3). These are 

discussed in more detail below. Of note the research cohort consists of a subset of cases with  

ancestry matched controls (n=1,209).  

Unbiased rare variant analysis highlights IFT140 and COL4A3 as important genes involved in 

CyKD. 

Rare variant analysis of the ancestry matched cohort of 1,209 cases and 26,096 controls under 

the “missense+” mask showed a significant enrichment of cases for PKD1 (P=1.17x10-309, 

OR=10.60, 95% CI = 9.35-12.01), PKD2 (P=1.96x10-150, OR=19.07, 95% CI 15.13-23.99), DNAJB11 

(P=3.52x10-7, OR 1.07, 95% CI 0.95-1.21), and COL4A3 (P=1.26x10-6, OR=3.02, 95% CI 2.10-4.22,  

Figure 3a). There was no evidence of genomic inflation (lambda<1, see QQ-plot in 

Supplementary Figure 3b). 

Removing cases solved by 100KGP and patients that had a bioinformatically ascertained 

potentially disease-causing variant in a known cystic gene left 308 cases (at the time of analysis 

IFT140 was not a known CyKD gene). Repeating the rare variant analysis under the “missense+” 

mask in this group showed a significant enrichment of cases with variants in IFT140 (P=1.26x10-
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16, OR=5.57, 95% CI 3.63-8.21) and COL4A3 (P=6.83x10-7, OR=4.93 95% CI 2.77-8.11) compared 

with 26,096 controls (Figure 3b).  

Using REVEL, a different annotation method for missense variants in the total and unsolved CyKD 

cohort, led to largely similar results but with smaller association values. In the total cohort; PKD1 

(P=1.63x10-35, OR=22.41, 95% CI 14.57-34.49, PKD2 (P=3.84x10-14, OR=21.87 95% CI 10.47-

45.71) and COL4A3 (P=8.84x10-6, OR=3.42 95% CI 2.04-5.47) remained significant with the loss of 

the DNAJB11 signal. Of note PKHD1 (P=8.12x10-5, OR=3.56 95% CI 1.62-7.02) and COL4A4 

(P=7.74x10-4, OR=3.52 95% CI 1.80-6.42) increased their significance. In the unsolved CyKD 

cohort COL4A3 (P=1.09x10-6 OR=6.50 95% CI 3.01-12.50) remained significant (Supplementary 

tables S6 and S8) .  

Of note other known genes causing CyKD such as GANAB and ALG8 were not found to be 

enriched at a population level in this cohort. Analysis of a combined unsolved CyKD and 

polycystic liver disease cohort (n=359) did not reveal any additional associated genes 

(Supplementary tables S10 and 14).  

IFT140 and COL4A3 variants in unsolved individuals most likely represent their primary diagnosis. 

Out of the 308 unsolved cases, 27 (8.8%) had a qualifying variant in IFT140 under the 

“missense+” mask. Of the 27 cases, all were heterozygous for the qualifying variants. None of the 

variants individually reached genome-wide significance.  

Analysis of SVs intersecting with IFT140 revealed two additional cases (0.65%) with heterozygous 

exon-crossing SVs from the 308 unsolved cystic disease cases: one patient had a 3.6kb deletion 

spanning exon 16 and 17 and another patient had two different inversions (12.6kb and 8.1kb) . 
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Four exon crossing SVs (three deletions and one tandem duplication) were seen in four different 

controls (0.015%). There was enrichment of IFT140 SVs in cases versus controls (P= 0.0032) 

although this was not significant at genome-wide level. None of the 27 initial cases with IFT140 

SNVs had detectable CNVs affecting IFT140 compared to three CNVs seen in 26,096 controls (P= 

1). 

There were no plausible second variants within IFT140 or other known cystic kidney genes in any 

of these individuals. A full variant and phenotypic breakdown of the IFT140 cases can be found in 

Supplementary Table 4a.  

Amongst the 15 unsolved CyKD patients with qualifying variants in COL4A3 under the 

“missense+” mask, all were heterozygous for their respective variants and did not overlap with 

the unsolved IFT140 cohort listed above. None of the variants individually reached genome-wide 

significance. There was no plausible second variant in known cystic kidney genes that could 

explain the phenotype. Of note four of the COL4A3 patients had liver cysts. We reanalysed these 

four patients searching for known genetic causes of polycystic liver disease, but none were 

found. A full variant and phenotypic breakdown of the COL4A3 cases can be found in 

Supplementary Table 4b. 

 

Analysis of loss-of-function (protein truncating) variants identifies monoallelic defects of PKHD1 

in unsolved CyKD 

Collapsing rare variants that had a high confidence call for loss-of-function under the “LoF” mask 

(i.e. analysis restricted to protein length-altering variants, excluding all missense variants) 
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revealed significant enrichment of cases for PKD2 (P=3.05x10-147, OR=130.85, 95% CI 83.66-

215.37), PKD1 (P=1.29x10-117,OR=36.01, 95% CI 30.52-42.23), IFT140 (P=3.00x10-25, OR=14.03, 

95%CI 7.91-24.45), DNAJB11 (P=1.84x10-12, OR=1.07, 95% CI 0.95-1.21) and PKHD1 (P=2.98x10-

08, OR=4.07 95%CI 2.24-6.88) (Figure 4). 

Removing cases with qualifying variants in IFT140 and COL4A3 left 266 unsolved cases in whom 

rare variant testing did not reveal any additional significant associations (Supplementary Figure 

3). 

In all presented analyses, the patients were heterozygous for their qualifying variants, except in 

DNAJB11 where 59 of the 369 cases that had qualifying variants within the “missense+” mask 

were homozygous. 

There were 61 predicted LoF variants in PKHD1 that made up the association signal in the LoF 

mask analysis of the whole CyKD cohort. These were seen in 50 cases of which 22 were solved, 

two were partially solved, 24 were unsolved and two were unascertainable. All 50 cases were 

heterozygous for the variant that made up the signal. 

Of the 22 solved cases, three patients had a diagnosis of ARPKD secondary to biallelic PKHD1 

variants, and 19 had a diagnosis of ADPKD due to variants in PKD1 or PKD2. In the two partially 

solved cases both patients had a second PKHD1 variant deemed to be a variant of unknown 

significance (VUS). 

Of the 24 unsolved cases with a single LoF PKHD1 variant, four also had a computationally 

predicted high impact non-truncating variant in PKD1, and one (in addition to the PKHD1 variant) 

had a predicted high impact non-truncating PKD2 variant.  
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In the remaining 18 cases with a single heterozygous PKHD1 LoF variant there were no SNVs or 

SVs that would imply compound heterozygosity (and a diagnosis of ARPKD), or potentially 

pathogenic variants in any other gene associated with CyKD. Two patients had a second PKHD1 

variant with CADD  >20 in PKHD1, but both had been deemed “likely benign” by Clinvar (Clinvar 

ID: 1187104 and 102305). 

In total, 634 (2.4%) of the 26,096 controls carried qualifying monoallelic PKHD1 LoF variants. 

When compared to the 18 (6.7%) out of 266 unsolved cases with no clear molecular diagnosis 

there is a significant enrichment of PKHD1 variants in the unexplained CyKD cohort (P=5.85x10-6, 

OR=2.92, 95% CI 1.69-4.76). Three of the 18 monoallelic PKHD1 cases had reached KF at a 

median age of 42 years. There was no statistical difference between the rates of liver cysts 

between monoallelic PKHD1 cohort and the general CyKD cohort (P=0.31). The full demographic 

details of the PKHD1 cohort can be found in Supplementary table 4c. 

Non-coding collapsing analysis of the no variant detected (NVD) cohort revealed enrichment of 

splice site variants in PKD1 and PKD2  

Removing the cases with qualifying IFT140, COL4A3 and monoallelic PKHD1 variants led to no 

further enrichment in the NVD cohort under the “missense+” or “LoF” gene collapsing tests. 

However, in the remaining 248 cases versus 26,096 controls there was significant enrichment in 

acceptor gain (AG), acceptor loss (AL) and donor loss (DL) splice variants for PKD1 (AG P= 

6.70x10-11 OR=150.57 95% CI 35.39-730.24, AL P= 4.22x10-8 OR=398.51 95% CI 39.10-16384, DL 

P=6.32x10-6 OR=no variants in controls ) and for DL in PKD2 (P=5.97x10-10 OR=no variants in 

controls) (Figure 5).  
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There was no enrichment in the 3’ or 5’-UTR regions, intronic regions with a CADD score >20 or 

donor gain splice sites on a genome-wide basis. 

Rare variant analysis by primary variant does not reveal contribution of variants in other genes. 

Using the primary variant, the CyKD cohort was divided into cases with PKD1 and PKD2 

truncating and non-truncating variants, respectively. Excluding the primary gene in each cohort 

did not identify significant enrichment of any additional genes. 

A full list of the summary statistics which includes the variants that make up each association can 

be found in Supplementary Tables 5-26.  

Structural variants in PKD1, PKD2 and the 17q12 loci play an important role in cystic kidney 

disease. 

Exome wide gene-based SV analysis was performed in all CyKD cases and ancestry matched 

controls. Across all combined types of SV (CNVs, deletions, duplications, inversions) there was 

significant enrichment in PKD1 (P=2.02x10-14, OR=2.52 95% CI 1.69-3.63), PKD2 (P=7.48x10-12, 

OR=3.51, 95% CI 1.74-6.37) and genes within 17q12 locus including HNF1B (P=8.81x10-9, 

OR=7.11, 95% CI 3.41-13.66). Of note, two genes within proximity of PKD2 also reached genome-

wide significance: SPARCL1 (P=5.76x10-7) and HSD17B11 (P=8.69x10-6) but these were made up 

of large CNVs that also encompassed PKD2 (Figure 6). 

The PKD1 signal was driven by small deletions <10kb (median size 1.14kb, IQR 2.60) (P=2.17x10-

22, OR=8.11 95% CI 4.58-13.83). For PKD2 (P=7.48x10-12, OR=13.03 95% CI 5.02-31.87) and the 

17q12 locus (P=4.12x10-8, OR=8.70, 95% CI 3.72-18.80), the signal was driven by deletions >10kb 
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(median size in PKD2 405kb, IQR 1273kb; 17q12 1550kb, IQR 94kb) with no other loci reaching 

genome-wide significance. No genes reached genome wide significance for duplications.  

Of the 46 patients with rare exon crossing SVs in PKD1 or PKD2, 13 also harboured predicted LoF 

variants in PKD1 or PKD2, thus leaving 33 patients with cystic kidney disease attributable to SVs 

in PKD1 or PKD2.  

Of the 11 patients with 17q12 loci CNVs in the CyKD cohort, one patient had a PKD1 non-

truncating SNV and two had PKD1 truncating SNVs that met the criteria for being likely disease-

causing. One patient had a known HNF1B CNV detected by a separate diagnostic lab prior to the 

return of 100KGP results.  

Analysing the subgroup of patients without an identified molecular diagnosis (n=248), there was 

significant enrichment for large (>10kb) deletions at the 17q12 loci (P=9.21x10-9, OR=24.04 94% 

CI 8.00-60.71) which were detected in seven probands.  

Of the seven 17q12 patients, the median age was 13.5 years, significantly lower than the total 

cystic disease cohort (P<0.05). None of the patients had reached kidney failure or had HPO or 

HES codes pertaining to diabetes; a full breakdown of phenotypic profile can be found in 

Supplementary Table 27 and all summary statistics from the SV analysis can be found in 

Supplementary Table 28-29.  

More recently described genes in CyKD are less penetrant than PKD1 and PKD2. 
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There was marked variation in the proportion of individuals with each gene/variant type that 

were documented to have CyKD, with the figures broadly comparable between 100KGP and 

UKBB (Table 2). 

SeqGWAS of CyKD reveals no robust common variant associations. 

A seqGWAS of 1,209 CyKD cases and 26,096 ancestry-matched controls using 10,377,275 

variants with a MAF>0.1% (Supplementary Figure 4) revealed only a single variant reaching 

genome-wide statistical significance on chromosome 8, chr8:92259567:A:C (P=1.38x10-8, OR 

0.72, MAF 0.23). There was no evidence of genomic inflation (lambda 0.99). To confirm/refute 

this surprising finding we meta-analysed this dataset with those from the UK, Japanese and 

FinnGen biobanks. In the non-100KGP datasets there was evidence of association at several loci, 

most notably a stop gain in PKHD1 in the FinnGen cohort (see Supplementary Figures 5-6 for 

individual study Manhattan plots) but the chr8:92259567:A:C signal was not replicated and likely 

to be a false positive. Overall in the combined analysis of 2,923 CyKD cases and 900,824 controls 

across 6,641,351 variants there were no genome-wide significant associations (Supplementary 

Figure 7).  

Subgroup analysis by primary disease-causing variant type did not reveal any genome-wide 

significant loci (see Supplementary Figure 8 and 9).  

The proportion of heritability attributable to common variants was between 3%-9%  

Within the 100KGP CyKD cohort the proportion of phenotypic variance (h2) explained by additive 

common and low-frequency variation among individuals of European ancestry was 9.0% (SE 

7.6%). Using the summary statistics from the combined FinnGen/UKBB CyKD GWAS the 
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estimated heritability was 3.0% (SE 9.7%). The large standard errors reflect low power to detect 

heritability within this cohort.  

 

Time to event analysis did not reveal any trans-acting genetic modifiers of severity. 

Within the pre-ancestry matched CyKD cohort, 398 of the 1,288 probands had reached KF 

(30.9%) with a median age of 52 years (IQR 16). Time to event genetic association analysis did 

not reveal any genome-wide significant associations – either in the total cohort or stratified by 

primary gene or variant type (see Supplementary figure 10).  
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Discussion 

Of the 1,209 ancestry matched CyKD patients, 994 (82%) had a qualifying potentially pathogenic 

SNV or SV identified through a combination of clinical grade and unbiased research analyses of 

biobank-scale WGS data.  

The high diagnostic yield of WGS  to investigate CyKD has led to this technology being made 

available to patients presenting with CyKD in the UK via the National Health Service’s Genomic 

Medicine Service (19) (though it must be noted that as yet a proportion of these variants do not 

necessarily meet ACMG criteria for issuing a clinically actionable molecular diagnosis).  

The data presented also clarifies the underlying genetic architecture of cystic kidney disease. 

They point strongly to the conclusion that cystic kidney disease is extensively driven by 

monogenic mechanisms via rare variants of multiple different types, with a small contribution 

from common variants.  

The arguments for this position are compelling. Firstly, this unbiased method has confirmed the 

importance of established and newly described genes in the pathogenesis of cystic kidney 

disease (PKD1, PKD2, IFT140, DNAJB11). 

Secondly, we provide robust statistical evidence that COL4A3 is associated with cystic kidney 

disease. Smaller studies have hinted at this association (20) and sequencing of unexplained KF 

patients in an American cohort, showed a significant proportion of unexplained cystic cases were 

attributed to the COL4A family of genes (21). Using collapsing burden testing (as opposed to 

SKAT-O) another group has also observed enrichment of rare variants in COL4A3 in CyKD in the 

100KGP (22).  In the UK Biobank, COL4A4 is the most strongly associated COL4A gene with a 
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cystic kidney disease phenotype (P=5.85x10-4) and it is likely the play of chance, i.e. the rare 

variant distribution in our cohort versus UKBB, that accounts for the observation of association 

with COL4A3 rather than COL4A4 (or both genes):  it is likely that a larger study would have the 

power to detect associations with both genes. Of note, four patients in the COL4A3 cohort had 

liver cysts and despite no potentially pathogenic variants being found in genes associated with 

polycystic liver disease (PRKCSH, SEC63, LRP5) we cannot completely rule out the presence of a 

second variant contributing to this phenotype.  

Thirdly, our attempts to find  common variants  that might contribute to the CyKD phenotype by 

meta-analysing more than 2,000 cases with nearly one million controls did not reveal any 

significant associations. In fact, in the Finnish population that has undergone significant genetic 

bottlenecks causing positive selection for certain recessive variants there is an enrichment of a 

known pathogenic PKHD1 variant at an allelic frequency that borders the “rare” variant mask 

(rs137852949, MAF in Finnish population = 7.48x10-3, MAF in non-Finnish European population = 

3.24x10-4) but meets inclusion in FinnGen. This variant has been implicated as a heterozygous 

cause of polycystic liver disease (23) and its enrichment in our cohort as a heterozygous entity 

provides evidence for the role of PKHD1 as a monoallelic cause of cystic kidney disease. Of note, 

two of the monoallelic PKHD1 cases also exhibited hepatic fibrosis which  would be consistent 

with ARPKD, however, interrogation of their genomes did not reveal a plausible second variant. 

Potential explanations for this include: that these cases had an unannotated second variant 

(perhaps hypomorphic rather than truly pathogenic); they had somatic mosaicism for a second 

pathogenic PKHD1 allele; they had an alternative cause for hepatic fibrosis; or that monoallelic 

PKHD1 variants can manifest with this phenotype. Long term follow-up or more detailed 
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acquisition of phenotypic data from patients with monoallelic PKHD1 variants may help to 

answer this in the future.  

Our analysis of common variant heritability suggests that 3%-9% of CyKD may be explained by low 

penetrance common variation, though our efforts to ascertain this were underpowered resulting in 

large standard errors. The small magnitude of this contribution explains why individual genome-

wide significant variants were not detected – the small effect size means an additional 440 cases 

would be required to detect a heritability signal with >80% power and that substantially larger 

studies would be needed to detect the loci contributing to this risk. (A full power calculation can 

be found in Supplementary Figure 9). Our efforts to use age of KF per driving molecular diagnosis 

within CyKD is an attempt to try and unpick common variant contributions to disease severity 

and quantitatively define genetic modifiers, a key question faced by those researching CyKD, but 

power was not sufficient to detect any significant signals. This represents the largest systematic 

analysis of whether oligogenic or polygenic mechanisms are important in the aetiology of CyKD 

and with a rapidly increasing number of CyKD patients undergoing WGS as part of routine clinical 

care in the UK and establishment of a National Genomic Research Library, our study sets up an 

analytical pathway to address this in the future with ever-increasing power.  

Similar to our recent work on urinary stone disease highlighting the importance of intermediate 

effect rare variants as a risk factor (24), as well as work describing a low-frequency UMOD 

variant (present in 0.1% of European ancestry individuals) that confers an intermediate risk of KF 

(25), we show that CyKD represents another disease enriched for such variation. As shown in 

Table 2, the odds ratio for a CyKD diagnosis for each gene across both the 100KGP cohort and 

the UK Biobank is highly variable. This highlights that even highly deleterious variants in some of 
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the more recently reported CyKD genes are likely to have such a low penetrance that they may 

seldom exhibit Mendelian patterns of inheritance  and may be perhaps regarded as intermediate 

risk factors for developing CyKD rather than ‘pathogenic’ variants in the Mendelian disease 

sense. Communicating this information clearly to patients and their relatives is likely to be 

important when counselling them about the pros and cons of predictive testing or reproductive 

interventions for these disorders. 

Finally, our findings are replicated in the UK Biobank with the top gene associations with cystic 

kidney disease being PKD1 (P=9.83x10-63), PKD2 (P=1.64x10-60) and IFT140 (P=4.52x10-15) in a 

European ancestry cohort of 531 patients and 239,516 controls (26).  We calculate that the UK 

Biobank CyKD cohort is powered to detect genes that explain ≥8% of the total phenotypic 

variance, meaning genes associated with smaller effect sizes are unlikely to be identified.  

The larger odds ratios observed for PKD2 compared to PKD1 is notable. We believe 

ascertainment bias of patients with PKD1 variants in the 100KGP might explain this as patients 

with PKD1 variants tend to present  earlier to healthcare services with hypertension and other 

sequalae. In an unrelated analysis of patients with severe early onset hypertension in 100KGP we 

found PKD1 to be the most strongly associated gene on collapsing analysis with many of the 

cases having been solved (27). This suggests that many CyKD-PKD1 patients have a clinical 

diagnosis early in life and were therefore not entered into the 100KGP (100KGP recruitment 

criteria dissuaded recruitment of typical CyKD patients) meaning there are fewer PKD1 patients 

(56% of those with potentially pathogenic variants) compared with the prior literature. Among 

655 French patients with CyKD and a molecular diagnosis reported for clinical purposes, 80% had 

PKD1 variants (28) and consistent with similar data from patients undergoing genetic testing for 
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CyKD in a clinical setting in the UK (unpublished RaDaR data: 438/550 (80%) patients have PKD1 

variants) . This suggests that the 100KGP and UK Biobank cohorts are probably depleted for 

people with PKD1-associated disease compared with people undergoing genetic testing for 

clinical reasons. It is also possible, however, that clinical sequencing cohorts may be susceptible 

to ascertainment bias, where patients with more severe or earlier onset disease are more likely 

to have a molecular test. Finally it is important to note that these odds ratios represent the odds 

of being ascertained for CyKD and should not automatically be seen as a marker for disease 

severity or age at kidney failure.  

Using WGS we have also undertaken the first systematic assessment of the structural and non-

coding variant contribution to CyKD. These contribute to unsolved cases highlighting the power 

WGS has in identifying sites previously untested by traditional sequencing  technologies. Whilst 

splice site variants have been implicated in individual families with unexplained CyKD (29,30) this 

analysis gives quantitative statistical evidence at a population level that suggests these sites 

should be scrutinized in clinical analysis of PKD1 and PKD2, something that is increasingly being 

recognized (31). Equally, utilizing methodology similar to the gnomAD SV working group (32) we 

find, as they did, that SVs play a larger role in the variant landscape than previously thought. 

Whilst SVs in CyKD genes have been implicated in small numbers, this cohort level analysis 

attributes at least 3.35% (40/1209) of the cystic disease burden to SVs, a similar proportion to 

the recently described IFT140 gene at a population level. These discoveries are made possible by 

WGS which, unlike older methods, such as multiplex ligation-dependent probe amplification 

(MLPA) or arrays, enable accurate calling of many different types of SVs genome-wide. These 

findings should help inform decisions about the sensitivity of short-read WGS and other potential 
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sequencing approaches,  such as RNA-sequencing or long read DNA (33) sequencing, in a clinical 

setting.  

In the remaining unsolved cases we did not find any further enrichment at a variant, gene, 

pathway, or SV level. Given the findings above, one explanation is that we lacked the power to 

detect additional monogenic signals in this group – either because they have reduced effect size 

or are individually extremely rare. Alternatively, it may be that a proportion of this group 

exhibited cystic kidney disease as a consequence of non-monogenic developmental disorders, 

somatic mosaicism that WGS would be unable to detect, or undocumented environmental 

exposures that we have not accounted for such as diet, lithium exposure (34) or smoking that 

are known to  affect CyKD risk or phenotype and may account for some of the missing 

heritability. Irrespective, this work gives an estimate of the cohort size (an additional 2000 cases 

using the assumptions in the power section of the methods) needed to power future studies to 

discover additional monogenic causes of CyKD using unbiased genome-wide approaches. As 

more patients with CyKD are sequenced as part of their routine healthcare in the UK it is possible 

that this threshold will be passed, and further monogenic causes will be discovered using this 

type of methodology. Coupled with developments in analytical techniques, identification of 

variants across the allelic frequency and disease risk spectrum may further extend understanding 

of the biological basis of cystic kidney disease.  

This study has several other limitations. From a phenotype perspective we are reliant on age at 

KF as determined by hospital coding systems as our only marker of outcome, and were unable to 

access granular phenotypic and imaging data for our cohort, limiting our ability to apply several 

prognostic tools (11,35) that would have aided in further stratification as well as potentially 
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improving power by reducing the chance of misclassification of cases as controls. Secondly, 

whilst this study represents the largest WGS study in CyKD to date, we were underpowered to 

detect common variant signals in our seqGWAS with an OR<3, this has limited our ability to find 

tractable signals in all forms of GWAS as well as in the heritability analysis. The heritability 

estimates also relied on pre-computed taggings from the UKBB potentially introducing biases 

influenced by assumptions about genetic architecture and population structure. Furthermore, 

while WGS allows for more accurate SV calling over traditional microarray, this process is highly 

dependent on the algorithm used for calling with the possibility of false positives. Ideally long-

range sequencing and independent validation would allow for more complete SV detection. 

Equally, we were unable to functionally characterize the splice variants given the lack of RNA 

sequencing, meaning our conclusions rest on the enrichment of such variants in cases compared 

with controls and any clinical actionability for participants in the 100KGP would be subject to 

cDNA confirmation on a case-by-case basis. 

In summary, this study provides the most comprehensive WGS analysis of CyKD to date 

highlighting the contributions to disease risk of different types of variants across the allelic 

spectrum. Whilst some of our novel findings (COL4A3 and PKHD1) will need additional validation 

both functionally and statistically, these findings can be used to inform genomic sequencing and 

counselling strategies offered to patients. This study also provides a blueprint for the unbiased 

analyses of other rare diseases using WGS on a biobank scale.  
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Methods 

Sex as a biological variable 

In all presented analyses sex, as determined by X and Y genotypes, was used as a covariate in all 

models generated.  

The 100,000 Genomes Project 

The 100,000 Genomes Project (100KGP) is one of the largest disease-based sequencing initiatives 

in the world in which WGS data from large numbers of NHS patients with rare diseases and cancer, 

and their relatives, have been generated (36,37). Key strengths of this dataset with respect to the 

study of rare diseases are that all germline samples are processed and analysed using a shared 

pipeline and that sequencing data is available for many individuals without the phenotype under 

study, drawn from the same population. This allows for robust control of technical artefacts, allele 

frequency and variant burden in the population, in contrast to previous sequencing studies.  

Recruitment to the 100KGP is via a network of 13 NHS Genomic Medicine Centres (GMCs) and 

includes collection of phenotype data hierarchically encoded using Human Phenotype Ontology 

(HPO) codes (38), facilitating computerized analysis of clinical features. CyKD patients were 

recruited to the project if they met the following criteria: 

• >5 cysts affecting one or both kidneys with at least one of the following features: 

o cysts not clinically characteristic of ADPKD; 

o onset before the age of 10; 

o syndromic features; 
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o where a genetic diagnosis would influence management; 

• and/or: 

o features suggestive of classical ADPKD who had not undergone prior genetic 

testing of PKD1 and PKD2.  

 

Participants were excluded if they suffered from kidney failure (KF) due to identified (non-cystic) 

disease, if they had multicystic dysplastic kidney(s) or if they had a prior genetic diagnosis for 

their condition. We used the Genomics England dataset (v15) (39), which contains WGS data, details of 

clinical phenotypes encoded using Human Phenotype Ontology (HPO) terms and structed data 

automatically extracted from National Health Service (NHS) hospital records, collected for more than 

90,259 cancer and rare disease patients (see Data availability) as well as their unaffected relatives to 

generate the cohorts. The study workflow and a full description of the cohort creation can be found in 

Supplementary Methods 1-4. After quality control, relatedness filtering and ancestry matching 

(Supplementary Methods 1-4 and Supplementary Figure 2), we were left with 1,209 cases and 26,096 

controls for analysis.  

 

 Potentially pathogenic variants were ascertained through a combination of the clinical arm of 

the 100KGP and bioinformatically as detailed below to create subgroups stratified by enrichment 

for primary molecular  cause of CyKD. We performed all single-variant, gene-burden and 

structural variant analysis in the total cohort and each molecular subgroup (except the “other 

genes” group). We used the same controls for each subgroup without repeating ancestry 

matching as there was no evidence of genomic inflation within each subgroup and the controls 

(lambda between 0.99-1.02 in all common variant analyses, see Supplementary Figure 9). We 
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performed European only analysis in the unexplained CyKD cohort to highlight the advantages of 

ancestry matching (supplementary methods 4 and supplementary tables 9 and 13).  

Single-variant seqGWAS 

Whole-genome single-variant association analysis (seqGWAS) was carried out using the R 

package SAIGE (40) (version 0.42.1) which uses a generalised linear mixed model (GLMM) to 

account for population stratification. High-quality, autosomal, bi-allelic, LD-pruned SNVs with 

MAF >5% were used to generate a genetic relationship matrix and fit the null GLMM. Sex and the 

top 10 principal components were used as covariates (fixed effects). SNVs and indels with MAF 

≥0.1% that passed the following quality control filters were retained: minor allele count (MAC) 

≥20, missingness <1%, Hardy-Weinberg equilibrium (HWE) p>10–6, and differential missingness 

p>10–5. When case-control ratios are unbalanced, as in our study, type 1 error rates are inflated 

because the asymptotic assumptions of logistic regression are invalidated. SAIGE employs a 

saddle point approximation (41) to calibrate score test statistics and obtain more accurate p-

values than the normal distribution. 

 

One limitation of SAIGE is that the betas estimated from score tests can be biased at low MACs 

and therefore odds ratios for variants with MAF <1% were calculated separately using allele 

counts in R. The R packages qqman (42) was used to create Manhattan and Q-Q (quantile-

quantile) plots. The genomic inflation factor (lambda), calculated based on the 50th percentile, 

was between 0.99-1.02 in all analyses indicating no significant population stratification. 
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Metanalysis of GWAS data 

A metanalysis of cystic kidney disease GWAS using summary statistics from our analysis, a 

combined UK/Japanese Biobank (UKBB/JBB) analysis of 220 phenotypes including polycystic 

kidney disease (19,093,042 variants) and Finngen (version 8) analysis of cystic kidney disease (43) 

(19,441,692 variants) was performed using METAL [version 2011-03-025](44). The summary 

statistics from the UKBB/JBB analyses were lifted over from build 37 to 38 using the UCSC liftover 

tool(45). A full breakdown of the biobank phenotypes can be found in Supplementary Methods 

5. Between the three data sets 8,217,458 variants were shared with matching alleles. Meta-

analysis was performed weighting the effect size estimates using the inverse of the standard 

errors. Variants showing heterogeneity of effect between the two datasets (P < 1 × 10−5) and 

those in which the minimum/maximum allele frequencies differed by >0.05 were excluded 

leaving 6,641,352 variants across 2,923 cases and 900,824 controls. The genomic inflation factor 

(lambda), calculated based on the 50th percentile, was 1.01 indicating no significant population 

stratification. 

 

Single-variant seqGWAS time to event analysis  

Genetic Analysis of Time-to-Event phenotypes (GATE) (46) was used to conduct a time to event 

(TTE) analysis utilizing the Cox proportional hazard model that accounts for heavily censored 

phenotypes and low frequency variants. The 100KGP project participants consented to give 

access to their Hospital Episode Statistics (HES) which is a database containing details of all 

admission, emergency attendances and outpatient appointments at NHS hospitals in England. 

The database was searched for codes (full list of codes used in supplementary table 32) that 
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would highlight whether a patient had reached kidney failure (KF) as well as codes pertaining to 

their stage of chronic kidney disease (CKD) from stage 1-5 (Supplementary Table 1). The age of 

KF, as determined by the earliest occurrence of a clinical code for KF, was used as the end point 

in the TTE analysis and those who were yet to reach KF were censored. The same genomic and 

phenotype data as per the single variant seqGWAS was used to conduct the TTE GWAS.  

 

Heritability estimation using common variants. 

Narrow sense heritability (h2), the contribution of phenotypic variation from additive genetic 

factors was estimated using two methods: GCTA-LDMS (47) and LDAK-SumHer (48). GCTA-LDMS 

was applied to the 100KGP WGS data using a European subset of the total ancestry-matched 

CyKD cohort (full details in Supplementary Methods 6).  

 

Summary statistics from the cystic kidney disease analysis of the combined European ancestry 

Finngen and UK BioBank (780 FinnGen cases and 424 UKBB cases with 375,708 FinnGen controls 

and 417,905 UKBB controls) were used with LDAK-SumHer to calculate heritability under the 

BLD-LDAK model using the pre-computed taggings  (a record of the relative expected heritability 

tagged by various predictors), calculated from the UKBB. 

 

The observed heritability was then liability adjusted to account for the population prevalence of 

CyKD relative to its representation in the 100KGP (49). In this analysis a CyKD prevalence of 0.001 

was used to transform the observed heritability to a liability threshold model. 
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Rare variant collapsing analysis 

Prior to collapsing analysis, variants were filtered based on different criteria called masks. The 

masks used for this analysis were a rare, damaging missense mark (“missense+”), a high 

confidence loss of function mask (“LoF”), an intronic mask (“intronic”), a splice site mask, a 3-

prime untranslated region mask (3’-UTR) and a 5-prime UTR mask (5’-UTR). For the total CyKD 

cohort and the unsolved NVD cohorts we also ran a rare exome variant ensemble learner 

(REVEL) (50) derived mask to investigate missense signals in more detail. Full details of the mask 

parameters and quality control can be found in Supplementary Methods 7.  

 

We applied the “missense” and “LoF” masks to the total cohort and then removed cases that 

had qualifying variants in statistically significant genes until we had a cohort of patients with “no 

variants detected” (NVD). To this cohort we applied all the masks listed above looking for 

previously undetected gene signals. Association testing was performed using the Scalable and 

Accurate Implementation of Generalized mixed model (SAIGE-GENE) (v0.42.1) (51) to ascertain 

whether rare coding variation was enriched in cases on a per-gene basis exome-wide. Sex and 

the top ten principal components were included as fixed effects when fitting the null model. Full 

details about the use of SAIGE can be found in Supplementary Methods 8.  

 

Subgroup analysis stratified by primary variant and depleting analysis 

 

Patients who have their phenotype “solved” by the clinical multi-disciplinary team (MDT) had a 

report issued with the details of the molecular diagnosis. Depending on the diagnosis these 
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patients were placed into different cohorts: PKD1-truncating (PKD1-T), PKD1-non truncating 

(PKD1-NT), PKD2-truncating (PKD2-T), PKD2 non-truncating (PKD2-NT), “other gene” 

(encompassing other genes in the panel) and no variant detected (NVD). In the patients with 

NVD we bioinformatically reanalysed them looking for variants that met the “missense+” or 

“loss-of-function mask” (detailed below), in the approved cystic kidney disease panel of genes in 

PanelApp (52) and placing them in the relevant cohort. The filtering was performed using 

bcftools and filter-VEP. For each subsequent round of analysis (across SNV and SVs) if a gene or 

SV was found to be significantly enriched in cases, we identified the cases that contained 

qualifying variants and removed them from the NVD cohort and re-analysed the cohort, 

eventually leaving 184 cases with no clear genetic cause of disease identified.  

 

We performed all single-variant, gene-burden, and structural variant analysis in each molecular 

subgroup (bar the “other genes” group). We used the same controls for each subgroup without 

repeating ancestry matching as there was no evidence of genomic inflation within each subgroup 

and the controls (lambda between 0.99-1.02 in all common variant analyses, see supplementary 

figure 9). 

Pathway analysis 

For the cohort of patients that had no molecular diagnosis, the summary statistics from their 

rare variant SKAT-O analysis with SAIGE was analysed using the Gene set analysis Association 

using Sparse Signals method (GAUSS) (53) with default settings. The summary statistics were 

analysed using the canonical (3759 pathways) and hallmark (50 pathways) curated gene set 
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pathways from the Gene Set Enrichment Analysis (GSEA) group (54). The results of these 

analyses can be found in Supplementary Table 30-31. 

 

Exome-wide Structural variant analysis  

Structural variants were called from WGS using the Genomics England pipeline that incorporates 

CANVAS (55) to detect copy number (>10kb) and MANTA (56) to identify SVs greater than 50bp. 

CANVAS uses read depth to assign CNV losses and gain. MANTA uses both discordant read-pair 

and split-read data to identify SV regions. While MANTA can detect deletions and tandem 

duplications <10kb, inversions, and interchromosomal translocations, it cannot reliably identify 

dispersed duplications, small inversions (<200bp), fully assembled large insertions (>2x150bp) or 

breakends where repeat lengths approach the read size (150bp). Very few insertions were 

identified in this cohort using MANTA and in view of this they were excluded from downstream 

analysis. In addition, variants classified as translocations, single breakends or complex SVs which 

are more difficult to accurately resolve were filtered out. 

 

The following quality control filters were applied to the variants: CNV length > 10kb and Q-score 

≥ Q10 indicating 90% confidence there is a variant present, a quality score ≥ 20 indicating 99% 

confidence that there is a variant at the site, GQ ≥ 15 indicating 95% confidence that the 

genotype assigned to a sample is correct, and MaxMQ0Frac < 0.4 which indicates the proportion 

of uniquely mapped reads around either breakend. Variants without paired read support, 

inconsistent ploidy, or depth > 3x the mean chromosome depth near one or both breakends 

were excluded. 
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For each sample BEDTools(57) was used to extract SVs that intersected at least one exon by a 

minimum of 1 bp. Variants were then separated by type into CNV, deletion (DEL), duplication 

(DUP), and inversion (INV) sets before being filtered using BEDTools to remove common SVs of 

the same type. SVs were removed if they had a minimum 70% reciprocal overlap with the 

gnomAD SVs(32) with allele frequency >1% and or a dataset of common (AF>0.1%) SVs 

generated from 12,243 cancer patients recruited to 100KGP. SVs were then merged using 

SURVIVOR (58) allowing a maximum distance of 300bp between pairwise breakpoints and allele 

frequencies calculated using BCFtools (59).  

 

After removal of overlapping common variants, a custom Perl script (Dr Helen Griffin, Newcastle 

University) was used to calculate allele frequencies for each type of SV across the combined 

case-control cohort using bins of 10kb across the entire genome. SVs with an AF < 0.1% were 

retained for further analysis. 

 

Exome-wide gene-based burden testing was carried out using custom R scripts stratified by SV 

type. SVs were aggregated across 19,005 autosomal protein-coding genes.  

 

Power 

PAGEANT (60) is a power calculation tool for rare variant collapsing tests that uses the 

underlying distribution of gene size and MAF of variants from the ExAC dataset (61). Under the 

assumption that 80% of variants collapsed per gene in the SAIGE-GENE analysis were causal, we 
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calculated that we had >80% power to detect a gene signal that accounted for >4% of the 

variance of the phenotype with an exome-wide significance threshold of P=2.5x10-6 in the total 

case control cohort.  

 

For single variant analysis, power was calculated using the R package genpwr (62) under an 

additive model using the conventional genome-wide significance threshold of P<5x10-8.  With 

this sample size at an allele frequency of 1%, single variant association testing was sufficiently 

powered (>80%) to detect alleles with an odds ratio (OR) > 3. Supplementary figure 11 details 

the results of the power calculations for the CyKD GWAS in more detail.  

 

For heritability analysis we used the GCTA-GREML power calculator (63) which revealed we had a 

54% chance of detecting 5% heritability within the 100KGP cohort. This is likely to be even lower 

in the summary statistics methods applied to the combined UKBB/FinnGen metanalysis.  

Statistics 

For single-variant association analyses (including time to event analyses) a significance threshold 

of P<5x10-8 was applied for genome-wide statistical significance. For gene-based rare variant 

analyses, a Bonferroni-corrected significance threshold of P<2.58x10-6 (0.05/19,364 genes) was 

used. Binary odds ratios and 95% confidence intervals were calculated for exome-wide 

significance genes by extracting the number of cases and controls carrying qualifying variants per 

gene in the collapsing analysis and applying a two-sided Fisher’s test. 
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For pathway analysis a two-sided Fisher’s exact test was utilized to compare cases to controls 

with a Bonferroni-corrected significance threshold of P<0.05/(n=pathways tested).  

 

For structural variant (SV) analysis, a two-sided Fisher’s exact test was utilized to compare cases 

and controls under a dominant inheritance model, with a Bonferroni-corrected significance 

threshold of P<2.5x10-6 although with the knowledge that this is likely to be too stringent given 

the tests are not truly independent (one SV can affect multiple genes) 

 

When comparing demographic and phenotypic characteristics between cases and controls, 

Student's t-tests and ANOVA were applied as appropriate. All t-tests were two-tailed unless 

otherwise specified. Two-way ANOVA was used when examining interactions between multiple 

factors. 

 

The statistical significance for all tests was determined using a P value threshold of 0.05, unless 

specified otherwise for specific analyses. All statistical analyses were performed in R. 

 

Study Approval 
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Ethical approval for the 100,000 Genomes Project was granted by the Research Ethics 

Committee for East of England – Cambridge South (REC Ref: 14/EE/1112). Participants provided 

written informed consent for the use of their genetic and clinical data. 

Data Availability 

All collapsing gene and pathway analyses can be found in the Supplementary Tables.  

All seqGWAS summary statistics can be found at: https://zenodo.org/records/10613736 

Details of the aggregated dataset used for the analysis can be found at: https://re-

docs.genomicsengland.co.uk/aggv2/ 

Genomic and phenotype data from participants recruited to the 100,000 Genomes Project can 

be accessed by application to Genomics England Ltd 

(https://www.genomicsengland.co.uk/about-gecip/joining-research-community/). 

Code Availability 

Code used for the analyses in this paper can be found at: 

https://github.com/oalavijeh/cykd_paper. 

Details of the ancestry derivation methods used by Genomics England can be found at: 

https://re-docs.genomicsengland.co.uk/gen_sim/ 

Details of the rare variant workflow can be found at: https://re-docs.genomicsengland.co.uk/avt/ 

Details of the common variant GWAS workflow can be found at: https://re-

docs.genomicsengland.co.uk/gwas/ 

https://github.com/oalavijeh/cykd_paper
https://re-docs.genomicsengland.co.uk/gen_sim/
https://re-docs.genomicsengland.co.uk/gwas/
https://re-docs.genomicsengland.co.uk/gwas/
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Figures 

 

Figure 1 – Study workflow detailing high level methods and results 
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Flow diagram depicting the methods and high-level results from the study. 100KGP -100,00 genome project, UKBB - UK Biobank, 
GATE – Genetic Analysis of Time-to-Event.  

 

 

Figure 2 - Outcome data shows those with pathogenic PKD1 variants have the worst renal prognosis followed by those without 

a diagnosis. 

Kaplan-Meier graph of kidney failure by variant type. PKD1-T PKD1-truncating variant, PKD1-NT PKD1-nontruncating variant, 

PKD2-T PKD2-truncating variant, Other-another variant in the PanelApp cystic kidney disease gene panel 
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Figure 3 - Unbiased rare variant analysis highlights IFT140 and COL4A3 as important genes involved in CyKD 

Gene-based Miami plots of the SAIGE-GENE “missense+” analyses. Each point is a gene, made up of variants that qualified under 

their respective mask. A. Missense+ analysis of the total ancestry matched cohort of 1,209 cases and 26,096 showing a 

significant enrichment of cases for PKD1, PKD2, DNAJB11 and COL4A3. PKD1 and PKD2 are highlighted as the plot is capped at 

an association of 1x10-30, actual associations: PKD1 (P=1.17x10-309), PKD2 (P=1.96x10-150).  B. Missense+ analysis of the depleted 

cohort of 308 cases versus 26,096 controls showing enrichment of cases for IFT140 and COL4A3. The horizontal line indicates the 

threshold for exome-wide significance.  
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Figure 4 - Analysis of loss-of-function (protein truncating) variants identify monoallelic defects of PKHD1 in unsolved CyKD. 

Gene-based Manhattan plot of the SAIGE-GENE “loss-of-function” analysis of the total ancestry matched cohort of 1,209 cases 

and 26,096 showing a significant enrichment of cases for PKD1, PKD2, DNAJB11, IFT140 and PKHD1. Each point is a gene, made 

up of variants that qualified under their respective mask. The red line indicates an exome-wide significance level of P=2.5x10-6. 
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Figure 5 - Non-coding collapsing analysis of the no variant detected (NVD) cohort revealed enrichment of splice site variants in 

PKD1 and PKD2 

Gene-based Manhattan plot of SAIGE-GENE splicing analysis. Each point is a gene representing the significance of the 

association with cystic kidney disease in 248 cases versus 26096 controls, made up of variants that are highly likely (SpliceAI 

score >0.8) to impact splicing. The horizontal line indicates the threshold for genome wide significance (genome or exome? Add 
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the threshold used). There was significant enrichment in acceptor gain (AG), acceptor loss (AL) and donor loss (DL) variants for 

PKD1 (AG P= 6.70x10-11, AL P= 4.22x10-08, DL P=6.32x10-6) and for DL in PKD2 (P=5.97x10-10).  
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Figure 6 – Structural variants in PKD1, PKD2 and the 17q12 loci play an important role in cystic kidney disease. 

Gene-based Manhattan plot. Each point is a gene representing the significance of the association with cystic kidney disease in 

1,209 cases and 26,096 controls, made up of rare (in-house MAF<0.01), exon crossing SV/CNVs that have been called by 

MANTA/CANVAS. Common SV/CNVs (MAF>0.1%) seen in gnomAD or the 100KGP cancer cohort were excluded. The horizontal 

line indicates the threshold for genome-wide significance. The significant associations were PKD1 (P=2.02x10-14), 

PKD2(P=7.48x10-12) and the 17q12 locus (P=8.81x10-9). 
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Tables 

Table 1- Demographic and phenotypic breakdown of the recruited cystic kidney disease probands and controls. Ancestry is 

inferred using whole genome sequencing (as described in the methods). HPO, Human Phenotype Ontology.  

Demographics Case (N=1294) Control (N=26096) 

Female 669 (51.75%) 14,557 (55.78%) 

Median age 50 (IQR 37-61) 47.89 (IQR 39-54) 

Affected 1st degree relative 752 (58.03%) NA 

Consanguinity in parents 41 (3.17%) NA 

Inferred Ancestry 

European 960 (74.19%) 20255 (77.62%) 

African 65 (5.02%) 553 (2.12%) 

American 4 (0.31%) 42 (0.16%) 

South Asian 90 (6.96%) 2982 (11.43%) 

East Asian 15 (1.16%) 158 (0.61%) 

Admixed  160 (12.36%) 2106 (8.07%) 

HPO phenotypes 

Multiple renal cysts 1,085 (83.85%) NA 

Hypertension 697 (53.86%) NA 

Enlarged Kidney 513 (39.64%) NA 

Hepatic cysts 383 (29.60%) NA 

Haematuria 162 (12.52%) NA 
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Table 2 – Odds ratio of developing CyKD in the 100KGP (n=741) and the UKBB (n=825) in each different gene. OR for UKBB taken 

from the AstraZeneca analysis [ref] using the model closest to our analysis.  

**Association not statistically significant in association analysis, included here as they are clinically reportable genes for this 

phenotype. The 100KGP results are presented for those individuals who were between 40-70 years old at the time of recruitment 

to match the UKBB recruitment analysis. 

Gene OR of developing CyKD 

(100KGP) 

OR of developing CyKD 

(UKBB) 

PKD1 truncating  264 (218-329) 658 (451-959) 

PKD1 non-truncating 7.90 (6.84 -9.10) 8.97(7.44-10.82) 

PKD2 truncating 931 (525-1600) 1310 (697-2460) 

PKD2 non-truncating  13.36 (9.91-17.91) 12.92 (9.61-17.36) 

GANAB truncating 5.40 (0.11-54.56)** Not seen 

GANAB non-truncating 1.63 (0.79-3.02)** Not seen 

DNAJB11 truncating 1.07 (0.94-1.24) 30.05 (7.12-126.57)** 

IFT140 truncating 12.21 (5.85-24.50) 14.99(9.92-22.66) 

ALG5 truncating 1.00 (0.12-3.77)** Not seen 

ALG9 truncating 7.20 (0.71-40.35)** 22.03 (9.66-50.23)** 

COL4A3 non-truncating 2.72 (1.71-4.15) Not seen 

Monoallelic PKHD1 truncating 3.23 (1.36-6.56) 2.13(1.01-4.50)** 
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