Continuous Manufacturing of Ketoprofen Nanosuspensions using a Miniaturised Flow Reactor

Xin Yi Teoh¹, Maryam Parhizkar¹, Asterios Gavriilidis², Luca Mazzei², Georgios Gkogkos², Hend Abdelhakim³, Duncan Q.M. Craig^{1,4*}

¹ School of Pharmacy, University College London, UK

² Department of Chemical Engineering, University College London, UK

³ Global Business School for Health, University College London, UK

⁴ Faculty of Science, University of Bath, UK

Background

- Continuous manufacturing has emerged as a transformative approach in pharmaceutical production as it avoids the intermittent processes inherent in traditional batch manufacturing.
- Transition from batch to continuous manufacturing solves various challenges, including fixed batch size, numerous sequential steps, interruptions and difficulties with upscaling batch processes.

Aim of Study

- 1. To identify the potential of a flow millireactor to continuously manufacture ketoprofen nanosuspensions in comparison to batch manufacturing.
- 2. To develop a platform for the continuous manufacture of a viable formulation for a poorly soluble drug.

- Ketoprofen (KTP) nanosuspensions were produced using a 3D printed miniaturised continuous stirred tank reactor (mCSTR) and a batch reactor (Figure 1) via antisolvent precipitation.
- Optimisation of the nanosuspension production method was conducted using 3³ response surface design:
 - 1. Concentration of stabilising agent, polyvinyl pyrrolidone vinyl acetate 64 (PVPVA 64) at 2.5%, 5% and 10% w/v
 - 2. Solvent flow rate (0.25, 0.5 and 1.0 mL/min)
 - 3. Stirring rate (250, 500 and 1000 rpm)

Results

- Two conditions were selected to proceed with investigation:
 - 1. 2.5% w/v stabilising agent, 250 rpm stirring rate and 0.5 mL/min solvent flow rate – selected based on JMP[®] Pro 17 best model approach [Batch 1, mCSTR 1]
 - 2. 5.0% w/v stabilising agent, 1000 rpm stirring rate and 1.0 mL/min solvent flow rate
 - manually selected based on sample stability observation [Batch 2, mCSTR 2]

- Samples investigation:
 - 1. Dynamic light scattering (DLS)
 - 2. Transmission electron microscopy (TEM)
 - 3. Wide-angle X-ray scattering (WAXS)
 - 4. Dissolution study

Batch Reactor

mCSTR

Figure 1: Illustrations of reactors. Batch reactor is a borosilicate vial $(27.5 \times 72 \text{ mm})$, 28.25 mL), mCSTR is a 3D printed resin model ($16 \times 16 \text{ mm}$, 3 mL).

- mCSTR generated significantly (p < 0.05) smaller amorphous KTP particles with no significant difference (p > 0.05) in polydispersity index compared to the batch reactor (Figures 2-4).
- No significant difference (p > 0.05) in dissolution profile (Figure 5) and initial dissolution rate (Table 1) among nanosuspensions.

600

(uu) 500 400

Particle 200

100

0

Figure 3: TEM image of fresh (A) Batch 1 and (B) mCSTR 1 (C) Batch 2 and (D) mCSTR 2 nanosuspension.

Conclusion

- No significant difference in dissolution profile was reported between mCSTR and batch reactor-generated nanosuspension.
- The continuous production of nanosuspensions using mCSTR therefore shows great promise as an alternative to batch reactors due to its potential for a higher throughput production yield.

Table 1: Initial dissolution rate of fresh sample, n = 3.

Sample	Dissolution rate (%/min)	
	10 mins	30 mins
Batch 1	0.67 ± 0.23	0.81 ± 0.27
mCSTR 1	0.64 ± 0.18	0.79 ± 0.28
Batch 2	0.51 ± 0.08	0.67 ± 0.06
mCSTR 2	0.63 ± 0.15	0.69 ± 0.13

Acknowledgement: This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) (EP/V050796/1).