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Abstract—The digitalisation of the building stock necessitates
the integration of a wide array of digital and non-digital data
sources into a cohesive framework that adheres to standardized
data formats. Achieving this integration involves employing
various extraction, transformation, and loading processes. These
processes play a crucial role in converting raw data collected from
building sites into instances that align with the specified unified
format. This work delves into extraction, transformation, and
loading methods utilized across nine pilot building sites situated
in different countries, each marked by substantial data diver-
sity. The heterogeneity among data sources and, consequently,
datasets, is effectively addressed by a customized gathering pro-
cess. This process incorporates static data to enhance the overall
quality, enabling better-informed decision-making. The result is a
harmonized building data repository with 10 use cases and more
than 8000 data points, facilitating the application of intelligent
services for energy-efficient management strategies. Enrichment
of data is also achieved by synchronization approaches to ensure
the coherence of the data.

Index Terms—Data lake, Extraction, Transformation and
Loading (ETL), interoperability, data syncing, timeseries, static
data.

I. INTRODUCTION

Digitalisation is of paramount importance in today’s rapidly
evolving landscape, fundamentally transforming the way of
data collection, processing, and sharing. One key facet of
this transformation lies in the development and widespread
adoption of big data. Big data, with its vast and intricate
datasets, empowers organizations to derive valuable insights,
make better-informed decisions, and innovate across various
sectors [1]. The ability to capture and analyse massive amounts
of data in real time not only enhances operational efficiency,
but also unveils patterns and trends that might otherwise go
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unnoticed. From optimizing business processes to advancing
scientific research, big data fuels innovation fosters strate-
gic planning and ultimately propels progress. The synergy
between technological advancements and the utilization of
big data stands as a catalyst for efficiency, innovation, and
informed decision-making in the interconnected world [2].

The rise of this digital transformation is fueled by the
growing adoption of cutting-edge information and commu-
nication technologies (ICTs), such as the Internet of Things
(IoT) and/or artificial intelligence (AI). Data permeates virtu-
ally every facet of the built environment, encompassing how
individuals and businesses utilise and engage with properties
[3]. It extends to the recording and analysis of a building’s en-
ergy consumption and construction details, facilitating better-
informed decisions in construction and real estate processes.
Harnessing data for decision-making and embracing digital en-
hancements can significantly enhance operational efficiencies
at a minimal cost.

Ensuring transparency and trust in the decision-making
process to achieve the objectives of the Energy Performance
of Buildings Directive (EPBD) [4] requires a meticulous
validation and detection of gaps, incorrect, or inaccurate data
across the entire value chain of building monitoring. This
crucial step is integral to the directive’s goals of promoting low
energy usage, minimizing carbon footprint, optimizing thermal
comfort, and evaluating air quality.

To effectively leverage the potential of this data-driven land-
scape for the built environment and its stakeholders, various
technical, social, and economic challenges must be addressed.
The main challenge involves overcoming the prevailing silo
approach, which leads to vendor lock-in when integrating
data from diverse and heterogeneous sources [5]. Digital
solutions play a pivotal role in achieving the sustainability



targets by delivering energy savings ranging between 10-15%,
through the implementation of optimal control strategies and
the indirect savings resulting from users being better informed
[6]. Furthermore, there is a need for standardization throughout
the data lifecycle, encompassing acquisition, sharing, and
storage. This addresses interoperability issues and facilitates
the seamless merging of data from multiple building domains,
thereby enhancing data enrichment [7].

Addressing these challenges is crucial for unlocking the full
potential of the data-driven landscape in the built environment.
This work then advances with respect to the current practices
to harmonise dynamic datasets and synchronise with static
metadata in order to provide a unified data and store infor-
mation in common data models. This procedures then fosters
the engagement of stakeholders involved in different aspects
of the co-created interoperable services and tools that make
use of the uniform data space yielded by the federation of
the data to be able to make better performance monitoring,
have a more trustworthy decision-making for assessment and
planning of building infrastructure, policy making and re-
risking investments, in the end, an energy efficiency-focused
set of services and tools.

This work is executed under the European project Di-
giBUILD [8], which is focused on creating a uniform data
space fed by an abundant number of data sources using
different protocols to access them. By integrating state of
the art big data techniques and methods, data collection
mechanisms are implemented. DigiBUILD project counts on
nine pilots in different locations (U.K., Greece, Spain, Italy
and The Netherlands) to validate the developments across
multiple climates and building topologies in Europe.

The rest of the paper is organised as follows. Section II
provides the concept of the data lake that supports the digital-
isation process. Section III describes the Extract, Transform
and Loading (ETL) processes to gather heterogeneous data.
Section IV includes the integration of metadata to enrich the
dataset obtained from the data sources. Finally, Section V
summarises the insights and future work.

II. METHODOLOGY OF DIGITALISATION

Extract, Transform and Loading (ETL) procedures are a
crucial step in data integration that involves extracting data
from various sources, transforming it into a consistent and
usable format, and loading it into a target database or data
warehouse [9]. ETLs play a pivotal role in facilitating data-
driven decision-making by ensuring that information is accu-
rately collected, processed, and made available for analysis.
Innovations in ETL processes have been driven by advance-
ments in cloud computing, big data technologies, and the
growing complexity of data sources. Cloud-based ETL solu-
tions offer scalability, flexibility, and cost-effectiveness [10],
allowing organizations to adapt to changing data needs [11].
Additionally, modern ETL tools leverage machine learning
and automation to enhance data cleansing, transformation, and
enrichment, reducing manual efforts and improving efficiency
[12]. Real-time ETL processes have become more prevalent,

enabling organizations to work with up-to-the-minute data for
timely insights. The evolving landscape of ETL reflects a
commitment to addressing the challenges posed by the ever-
expanding volume and diversity of data in today’s digital age.

Within this work, these ETLs are part of a data lake
architecture that represents a significant stride in addressing
prevailing challenges. Firstly, it places a clear emphasis on
the data gathering process, with a central focus on robust data
quality methodologies. Secondly, it advocates for a dynamic
and adaptable interoperable framework grounded in existing
standards specific to energy-related applications. Thirdly, the
perspective on interoperability is distinctly outlined across
three levels [2]:

• Southbound: At the field level, data sources interface with
consideration for current protocols and data formats, es-
tablishing data brokers and synchronization mechanisms
to homogenize data before persistent storage.

• Northbound: Interfaces for data sharing are designed to
provide stakeholders and intelligent services with infor-
mation based on Business Intelligence approaches.

• Semantic: Combination of dynamic and static build-
ing datasets through adaptable data models tailored to
building requirements and the services to be deployed.
This ensures a comprehensive and flexible integration of
building data for enhanced functionality.

This approach is depicted in Fig. 1, where the data lake
concept is illustrated, so that digitalisation process could take
place. The first step right after extracting the data from the
many different sources is unifying the format that data comes
in. This is carried out using tailored ETLs developed in the
Pentaho Data Integration tool.

The ETLs serve as the key drivers facilitating data gathering
from both dynamic (i.e., timeseries) and static (i.e., contextual)
repositories in the pilots. In Fig. 2, the integration of data
sources into the digitalization schema is illustrated. Deployed
alongside are dedicated data storage repositories, necessitating
synchronization mechanisms to maintain data coherence. Atop
these repositories, data marts utilize business intelligence
(refer to Fig. 1) to aggregate and amalgamate data from

Fig. 1. Conceptual schema of the digitalisation process



Fig. 2. ETLs within the building digitalisation process

these sources. Consequently, these data marts offer intelligent
querying mechanisms, enabling the efficient sharing of data.

III. ETLS FOR DYNAMIC DATA COLLECTION IN THE PILOTS

Data sources are diverse and heterogeneous from pilot to
pilot (i.e., test cases where the ETLs have been deployed).
Table I summarises the multiple datasets provided in each one
of the pilots, with the communication protocol used in the
data extraction, as well as the data format. This heterogeneity
stands out as a primary challenge and constraint during the
data gathering process. It demands a customized implementa-
tion of interfaces to access raw data.

This approach is visually represented in Fig. 3, depicting
three distinct data pipelines. The blue pipeline pertains to
dynamic data, involving interfacing with the pilot repository,
filtering data, and extracting measurements for storage in
the common data model. The orange pipeline begins with
the filtered dataset, extracting metadata to synchronize with
static repositories. The green stream shares real-time data,
enabling services to dynamically update conditions. It should
be noted the capability of managing real-time data processing.
According to the interfaces in TABLE I, velocity is one of the
key aspects. MQTT (Message Queuing Telemetry Transport)
provides streaming data, while FTP (File Transfer Protocol)
is accessible once per day. The use of the methodology
proposed in this manuscript allows multiple processing timing,
enhancing the capability of data analysis in real-time.

It is not just about establishing access points; the format also
needs harmonization to achieve a standardized representation
of information. In this context, each pilot confronts a unique
set of challenges, as elaborated in the following sections.

A. UCL pilot (United Kindom)

UCL manages the ingestion of data sources from an MQTT
broker, where an approximate volume of 3800 data-points is
published in plain text format. The primary objective of this
pilot is the effective management of the substantial data influx
arising from this multitude of data-points. To accomplish this,
the ETL interfaces the MQTT broker to consume streaming
data. Presently, the configuration capabilities of the MQTT
Consumer impose constraints, compelling to adopt a specific
approach. This entails subscribing to all topics and subse-
quently employing topic filtering to selectively extract the
relevant data. Following this step, the separation of metadata
and timeseries data takes place.

TABLE I
DIGIBUILD PILOT INTERFACES TO GATHER DATASETS

Pilot
Interface details

Dataset Protocol Format

UCL

(U.K.)

BMS
(Building

Monitoring
System) MQTT Text

EMS (Energy
Management

System)

Light
Controls

Access
Controls

Occupancy

EDF

(France)

Ethera Nemocloud
API JSON

Ellona Ellonasoft
API

Wattsense Wattsense
API

IASI

(Romania)
3PhaseMeters InfluxDB CSV

VEOLIA

(Spain)

Building
EMS FTP CSV

District EMS

EMOT

(Italy)

Charging
Stations API JSON
PV and
building

eV data

FOCCHI

(Italy)

PV data SolarEdge
API JSON

Comfort and
energy data

JotMotiqa
API

Comfort and
energy data

MQTT Text

Occupancy Google
Calendar API CSV

Energy
Consumption

Google Drive
API

HERON

(Greece)
Building data API JSON

FVH

(Finland)
BEMS FTP CSV

IEECP

(The Neth.)
Building data

MQTT Text

Netatmo API JSON

NTUA

(Greece)
BMS PostgreSQL Text

B. EDF pilot (France)
There are three distinct data pipelines, each correspond-

ing to a different interface with unique authentication and



Fig. 3. ETL approach for the data collection from pilots

identification methods. For the Nemocloud API, credentials
are utilized, which are provided earlier in the HTTP request
body and the authorization header populating it from the
”digest” process, acquiring a session token. Subsequently, it
is possible to navigate through available devices and variables
before making the data request. In the case of the Ellonasoft
API, an authentication token is obtained by including the
credentials in the HTTP request body, and data extraction
occurs in a following HTTP request. As for the Wattsense
API, authentication is achieved through the authentication tab
when requesting data. The data, extracted in JSON format
from each interface, undergoes separation into metadata and
timeseries data in each pipeline and is ultimately stored in the
data warehouse.

C. IASI & SITTA pilot (Romania)

The ETL developed for the IASI & SITTA pilot intro-
duces a different approach to data extraction. Prior to the
transformation steps, authentication and data extraction are
executed through a Python script within the job containing the
ETL. This necessity primarily stems from the absence of the
InfluxDB version 3 plugin in Pentaho’s marketplace. In this
script, it is instantiated an InfluxDB client with the provided
credentials and TLS certification. Subsequently, SQL queries
are generated and executed to retrieve electricity consumption
and air quality data, storing the results in a CSV file. Finally,
within the ETL process, metadata and timeseries data are
separated and stored in the Data Warehouse.

D. VEOLIA pilot (Spain)

The VEOLIA pilot comprises two distinct complexes. Con-
sequently, two separate ETLs have been developed, despite the
fact that the applied transformations are identical for both sites.
In this scenario, a unique challenge arises when establishing
the connection for the extraction interface. The extraction
process is carried out through SFTP. VEOLIA daily publishes
a CSV file on their FTP server every day, encompassing
over 750 variables for on pilot and 15 for the second one.
During the transformation phase, the focus is on filtering
and formatting only the relevant variables, which are then

separated into the metadata and timeseries data and stored in
the Data Warehouse.

E. EMOT pilot (Italy)

In the EMOT pilot, access to a public API is granted,
enabling to request data from three distinct pipelines: building
energy consumption, photovoltaic production, and electrical
vehicle charging stations. The data extraction is facilitated
through a straightforward HTTP request, lacking the capability
to specify the desired time period for data retrieval. This
temporal filtering is assumed and executed by the ETL process.
Finally, the extracted data from all three pipelines is stored in
the Data Warehouse.

F. FOCCHI pilot (Italy)

In addressing the challenges posed by the FOCCHI pilot,
it is grappled with the intricacies of managing six distinct
interfaces for data extraction, each adhering to its format.
Pertaining to photovoltaic production, power, and energy data,
an API delivering JSON-formatted data is accessed, which
was subsequently merged into a unified flow. Additionally,
this pilot encompasses data from one of FOCCHI’s factory
complex offices, retrievable monthly through the Google Drive
API in CSV format. For the ground floor room, data is ingested
via an MQTT broker in plain text, focusing on comfort and
lighting parameters. In contrast, the first-floor room employs
an API-based interface for retrieving comfort, lighting, and
energy consumption parameters in JSON format. Furthermore,
a schedule from a meeting room in the same office building
serves as a metric of occupancy through the Google Calendar
API in JSON format.

G. HERON pilot (Greece)

The connection process in the HERON pilot, illustrated in
Fig. 4, followed a familiar path: authentication was achieved
through credentials embedded in the body of an HTTP request,
resulting in the acquisition of a session token. The particular
challenge in this pilot lay in the formatting of timeseries data.
The sensor devices comprise smart meters and smart plugs,
measuring three phases for power, energy, returned energy, and



Fig. 4. ETL for the HERON pilot where the extraction of data requires additional filtering processes

relay. Some devices lack data for returned energy and relay,
and the nulls they generate are appropriately filtered out. Meta-
data retrieval simply involved requesting device information.
In the end, after merging and pivoting the various measured
magnitudes, the data is stored in the Data Warehouse.

H. FVH pilot (Finland)

In the context of FVH, a parallel scenario to VEOLIA
emerges concerning data extraction, conducted daily through
SFTP. The outcome involves obtaining a compressed CSV
file for timeseries data and a decompressed CSV file for
metadata. Both the file transfer and decompression operations
are executed within the job file. The subsequent transformation
steps mirror those employed in previous cases, ending in the
storage of data within the warehouse. Following this process,
the decompressed CSV file is deleted, and the compressed
version is relocated to a distinct directory.

I. IEECP pilot (The Netherlands)

For this particular pilot, two distinct pipelines are interface,
employing MQTT and an API connection, respectively. In the
MQTT consumer, the subscriptions extend to electrical meter
and relay topics, with messages lacking a specific timestamp.
Assuming immediate production and minimal consumption
delay, the timestamp is appended using the system’s time
reference. In the second pipeline, an external list of devices
and their credentials, encapsulated in a JSON file, is provided.
For each device, a refreshed token is requested to facilitate
authentication though an API request. Subsequently, timeseries
data is requested and appropriately formatted, while metadata
extraction relies on information sourced from the stations. The
outputs from both pipelines find their storage destination in the
data warehouse.

J. NTUA pilot (Greece)

In the NTUA pilot, data extraction involves reforming SQL
requests directed at a PostgreSQL database. The primary
challenge in this scenario lies in effectively managing the
substantial volume of these requests and manually specifying
the time period for each. To address this, two distinct inputs
are devised. The first one assimilates data from over 20
diverse tables, encompassing information on air conditioning

and lighting. Concurrently, the second flow draws data from
six distinct tables, focusing on comfort parameters. Following
the extraction of metadata from both pipelines, timeseries data
is seamlessly merged and processed before finding its storage
destination in the data warehouse.

IV. INTEGRATION OF CONTEXTUAL DATA

Semantic web technologies are utilized to connect dynamic
data with static contextual data. At each pilot site, a semantic
graph is created. This graph consists of semantic graph nodes,
each corresponding to physical sensing devices or virtual
simulation points in a one-to-one mapping relationship. These
semantic graph nodes adhere to the core module of the
ontological scheme known as the DigiBUILD ontology, which
has been documented online: [13] and uses classes from real
estate core (rc:) and BRICK ontologies (brick:). The
core module of this ontology is displayed in Fig. 5. In this
diagram, the connection between the references to static data
(brick:point) and the references to dynamic data entries
(:Timeseries) is emphasized with a red dashed rectangle
in the bottom right section. Essentially, the :Timeseries
class contains information about the database entries contain-
ing dynamic data referring to the respective static data point.

A. Dynamic and static data syncing

Ensuring data coherence relies heavily on the synchroniza-
tion of data repositories. As previously mentioned, dynamic
and static repositories exist concurrently, housing distinct
datasets that may overlap in certain samples, such as sensor
identifiers. Consequently, employing synchronization methods
becomes a pivotal factor in upholding uniform identifiers
across both repositories. The depicted approach can be ob-
served in Fig. 6, illustrating two types of synchronization.

• The initial synchronization of the repositories, indicated
by a dotted line, corresponds to the first loading of data
into the repositories. This marks the commencement of
the data population process.

• Second case lies in the dynamic syncing of data. When
the ETL is executed, metadata is extracted and, then, sent
to the static repositories to detect inconsistences, such as
a new sensor has been installed.



Fig. 5. UML diagram DigiBUILD’s ontology core module

Fig. 6. Synchronisation of the static and dynamic repositories

V. CONCLUSIONS

The contemporary shift towards digitalisation is shaping a
new era in building technologies, thanks to emerging digital
tools. However, navigating this transformation is challenging,
primarily due to the diverse array of data sources. The intrica-
cies are compounded by the omission of crucial contextual
data during the process. This necessitates the development
of novel methodologies for data acquisition, aligned with
innovative conceptual approaches to Extract, Transform, Load
(ETL) procedures.

This research has explored ETL implementations across
various pilots, revealing the intricacies of data gathering.
Simultaneously, standardized mechanisms are introduced to
harmonize data and augment timeseries information, facili-
tating better-informed decision-making. Yet, the ETL process
alone falls short. Synchronisation between dynamic and static
repositories becomes imperative to maintain data coherence.

At times, the usability of data for smart services is hampered
by inconsistencies between contextual information and time-
series data extracted from local databases. To address this,
this work introduces a dynamic synchronization approach,
ensuring continuous updates to graph databases and thereby
enhancing data availability.

In upcoming endeavors, the fully implementation across
all the pilots will open future implementations and research
directions. Throughout this process, adaptations and new re-
quirements may emerge, presenting opportunities to refine
and enhance data enrichment strategies, making them more
scalable across different architectures and following velocity,
variety and volume of data.
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