of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 531, 2213-2222 (2024)
Advance Access publication 2024 May 14

https://doi.org/10.1093/mnras/stae1251

An antihalo void catalogue of the Local Super-Volume

Stephen Stopyra *',!* Hiranya V. Peiris ,'> Andrew Pontzen,’ Jens Jasche' and Guilhem Lavaux

4

'The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, Stockholm SE-106 91, Sweden
2 Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 OHA, UK

3 Department of Physics and Astronomy, University College London, Gower Street, London WCIE 6BT, UK

4Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France

Accepted 2024 May 8. Received 2024 April 11; in original form 2023 December 4

ABSTRACT

We construct an antihalo void catalogue of 150 voids with radii R > 102~! Mpc in the Local Super-Volume (< 1354~ Mpc
from the Milky Way), using posterior resimulation of initial conditions inferred by field-level inference with Bayesian Origin
Reconstruction from Galaxies (BORG). We describe and make use of a new algorithm for creating a single, unified void catalogue
by combining different samples from the posterior. The catalogue is complete out to 135/~ Mpc, with void abundances
matching theoretical predictions. Finally, we compute stacked density profiles of those voids which are reliably identified across
posterior samples, and show that these are compatible with A cold dark matter expectations once environmental selection (e.g.
the estimated ~ 4 per cent underdensity of the Local Super-Volume) is accounted for.

Key words: methods: data analysis —large-scale structure of Universe —cosmology: theory.

1 INTRODUCTION

Cosmic voids — regions of the Universe with significantly lower
density than the clusters and filaments where most galaxies are
found — make up the majority of the Universe’s volume, and provide
a pristine environment for probing cosmology and fundamental
physics (Kirshner et al. 1981; Zeldovich, Einasto & Shandarin
1982). In particular, the shapes of voids, via their ellipticity dis-
tribution (Park & Lee 2007) or the Alcock—Paczynski test (Alcock &
Paczynski 1979), and their abundance via the void size function,
can be used to constrain cosmological parameters (Sutter et al.
2012, 2014; Contarini et al. 2023). Furthermore, voids can probe
modifications to General Relativity on large scales which may
be hidden by screening in denser areas of the Universe (Spolyar,
Sahlén & Silk 2013; Joyce et al. 2015), and probe the dark energy
equation of state (Lee & Park 2009).

However, there are a large number of different void definitions
in use. A commonly used empirical approach is to identify voids
from the morphology of the density or galaxy field via the watershed
algorithm, using codes such as ZOBOV (Neyrinck 2008) or VIDE (Sut-
ter et al. 2015). Other approaches include spherical voids (Padilla,
Ceccarelli & Lambas 2005; Ceccarelli et al. 2006; Ruiz et al. 2015),
and the related popcorn voids (Paz et al. 2023). Most of these
definitions use the present day galaxy distribution, which traces the
underlying dark matter, and the morphology of the cosmic web. This
makes the relationship between cosmological initial conditions and
the shapes, sizes, and abundance of voids challenging to model,
in contrast with haloes where the relationship can be understood
via excursion set models (Bond et al. 1991) and modifications
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thereof. Several authors have studied the abundance of voids with
similar excursion-set approaches (Sheth & van de Weygaert 2004;
Jennings, Li & Hu 2013), but it has proven challenging to relate
these calculations to observational data (Nadathur & Hotchkiss
2015).

One approach in which the abundance can be directly predicted,
however, is the antihalo model of voids, proposed by Pontzen
et al. (2016), and further studied by Stopyra, Peiris & Pontzen
(2021b), Shim et al. (2021, 2023), and Desmond et al. (2022). In
the antihalo approach, voids in an N-body simulation are defined
in analogy to clusters by performing an ‘anti-universe’ simulation
with density-inverted initial conditions: by exchanging underdense
and overdense regions in the initial conditions, particles identified
as belonging to haloes in the anti-universe simulation correspond
to voids in the original simulation. The abundance of such voids
is then directly related to the initial conditions via the (anti-
)halo mass function, placing haloes and antihalo voids on equal
footing.

Because antihaloes are defined with reference to structure forma-
tion theory, identifying them in observational data requires additional
steps. Shim et al. (2023) used an approach with Gaussian smoothing
to infer the locations of antihaloes from galaxy data, calibrated using
simulations and mock galaxy catalogues. To construct an antihalo
catalogue directly from the dark matter density field, one would
require access to the initial conditions of an N-body simulation which,
when evolved forward, corresponds to the actual density field of the
present-day Universe. Field-level inference is an ideal approach for
achieving this, since it can be used to sample the posterior distribution
of possible initial conditions conditioned on the observed galaxy
distribution. The Bayesian Origin Reconstruction from Galaxies
(BORG) algorithm (Jasche & Lavaux 2019) is one such example
of field-level inference. By utilizing the posterior resimulation
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technique (Stopyra et al. 2023, hereafter S23), i.e. resimulating
samples and density-reversed samples from the posterior distribution,
and identifying antihalo voids in each sample, it is possible to build
an ensemble of samples from the posterior distribution of antihalo
catalogues.

Recently, Desmond et al. (2022) built an antihalo void catalogue
based on initial conditions derived from the Markov chain pro-
duced by Jasche & Lavaux (2019). However, it was subsequently
demonstrated by S23 that the forward model used for field-level
inference by Jasche & Lavaux (2019) was insufficiently accurate to
describe massive haloes (and antihaloes). This led to an overestimate
of antihalo masses and therefore, an overestimate of the antihalo
mass function (see S23).

In this work, we present an antihalo catalogue for voids in the Local
Super-Volume using posterior resimulations of initial conditions
from a new Markov chain computed by S23, based on Bayesian
Origin Reconstruction from Galaxies (BORG; Jasche & Wandelt
2013) applied to the 2M++ galaxy catalogue (Lavaux & Hudson
2011). This chain uses a 20-step COLA (Tassev, Zaldarriaga &
Eisenstein 2013) forward model to increase the accuracy of initial
condition inference relative to earlier work by Jasche & Lavaux
(2019), eliminating the aforementioned spurious excess of antihaloes
seen by Desmond et al. (2022). We also introduce an algorithm for
combining lists of antihaloes from different posterior resimulations
into a combined catalogue of well-constrained voids, robustly iden-
tified across the different posterior samples.

The structure of this paper is as follows: In Section 2, we explain
how field-level inference with BORG can be used to produce an
ensemble of antihalo lists via resimulation of posterior samples, and
then outline our algorithm for combining these lists into a single,
unified void catalogue. In Section 3, we compare the abundance of
voids in the combined catalogue to A cold dark matter (ACDM)
predictions using the antihalo mass function and void size function,
and also compute the stacked void density profile. We discuss the
implications of these results for the compatibility of the Local Super-
Volume with ACDM in Section 4.

2 METHODS

In this work, we make use of the technique of posterior resimulation
(see S23) in order to link the antihalo void definition with data,
and thereby construct a void catalogue from the 2M++ galaxy
survey (Lavaux & Hudson 2011). We begin by briefly outlining
the posterior resimulation technique and describing how we selected
N = 20 posterior samples for resimulation in Section 2.1. Using
methods outlined in Section 2.2, we use these posterior resimulations
to construct 20 lists of antihaloes, one for each posterior sample. In
Section 2.3, we show how to combine these samples into a single
catalogue of robustly identified voids. We then describe how to
construct the stacked void profile of this combined catalogue in
Section 2.4.

2.1 Posterior resimulation with BORG

The central technique in this work will be posterior resimulation,
as presented in our recent work, S23. The approach uses field-
level inference to draw samples from the posterior distribution of
possible initial conditions compatible with data (in this case, the
2M++ galaxy catalogue of the Local Super-Volume). These initial
conditions can then be evolved to redshift z = 0 using an N-body
solver. We can also evolve a ‘reversed’ set of initial conditions, in
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which the density contrast is inverted (swapping underdensities and
overdensities); this allows antihalo catalogues to be generated for
each sample.

The first crucial ingredient in reliable posterior resimulation is that
the accuracy of the field-level inference is sufficient to accomplish
the science goals. For our present purposes, it is vital to reproduce
the halo and antihalo mass function accurately within resimulations.
S23 studied the required accuracy in the gravity solver which, during
the inference process, is by necessity approximate; we found that it
is possible to balance computational speed with physical accuracy,
even to the point of obtaining reliable mass estimates of individual
clusters. The same level of accuracy was shown to be sufficient for
voids, we therefore use results from the same Markov chain, obtained
with a 20-step COLA gravity solver, in this work. The inference makes
use of the Neyrinck et al. (2014) bias model, which describes galaxy
bias as a power law with an exponential cutoff in order to allow for
different behaviour in underdense regions. See S23 for further details
on why an approximate gravity solver can lead to convergence on
cluster and void masses via posterior resimulation.

A second crucial ingredient is that the structures being resimulated
(clusters, or voids) are reliably represented across posterior samples,
more frequently than is found by cross-matching objects in inde-
pendent, random simulations. This is because the posterior contains
a mix of prior-driven and data-constrained structures. To reliably
identify the latter, it is necessary to establish that their frequency of
occurrence in posterior samples is significantly more likely than by
chance alone. We discuss this requirement and its implementation in
practice in Section 2.3.

The 20 samples used in this work were drawn from the Markov
Chain Monte Carlo (MCMC) chain computed by S23. Balancing
available computational resources and the fact that the MCMC sam-
ples are correlated, we picked a subsample for resimulation which
saturates the available statistical power in constraining structures in
the relevant mass range. The samples were chosen from the portion
of the chain after burn in, with a spacing of 300 samples between
every sample which was resimulated. This spacing was chosen since
it was longer than the correlation lengths of all the relevant model
parameters of the field-level inference, as well as the correlation
lengths of the density field around the largest clusters (see S23 for
further details). We further investigated the effect of doubling the
number of samples from 10 to 20 on the catalogue, finding that this
did not lead to significant changes in the catalogue. We now describe
the use of these 20 samples for posterior resimulation.

The posterior resimulations contain 5123 particles over a
677.7h~" Mpc box, evolved to z = O from the inferred initial
conditions with GADGET2 (Springel 2005). While BORG produces
a 256> output, we interpolate this to 512 for resimulation so
that shot noise can be suppressed for the largest haloes. Density-
reversed initial conditions are created using genetIC (Stopyra
et al. 2021a) and also evolved to z = 0 to provide reverse (anti-
universe) simulations for generating antihaloes. We also run 20
independent random simulations (with both forward and reverse
initial conditions for each) with the same settings, but random
initial conditions, to use as a ACDM reference. Random initial
conditions are generated on a 256> grid and interpolated up to a
5123 grid with genet IC in order to replicate the procedure used for
posterior resimulation and account for any differences arising from
the interpolation step. Throughout this work, we use the Planck
2018 cosmological parameters (Planck Collaboration VI 2020),
with lensing and baryon acoustic oscillations: Q,, = 0.3111, o3 =
0.8102, Hy = 67.66km s~ Mpc™', ny = 0.9665, Q, = 0.049.
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2.2 Identifying antihaloes in posterior resimulations

To identify antihaloes from posterior resimulations, we apply the halo
finder AHF (Knollmann & Knebe 2009) to the reverse simulations.
The particles corresponding to each halo in the reverse simulation are
then mapped to the corresponding particles in the forward simulation,
where they define the antihaloes. We compute a Voronoi tessellation
using the VOBOZ code (Neyrinck, Gnedin & Hamilton 2005) in order
to assign every particle i in the antihalo a volume, V;. We then
compute for each antihalo the volume-weighted centre, xyw, and
effective radius, r.s, given by

1
Xyw = VZVI'Xh 1

1

3\ '3
eff = | s 2
Teff (471) (2)

where i runs over all particles in the antihalo and V=", V; is the total
volume of all Voronoi cells. The impact of redshift space distortions
is already taken into account during the inference step in Section 2.1.
We refer the reader to S23 for more details, but in brief the gravity
solver is used to model velocities at each point, which allows the
density field to be computed in redshift space for comparison with
galaxy catalogue data. Applied to each resimulation, this gives us
N = 20 separate lists of antihaloes (independent samples from the
posterior distribution), which we now combine to create a single
robust antihalo catalogue.

2.3 Construction of the antihalo catalogue

The constraining power of the galaxy catalogue is variable within
the volume that it samples, due to signal-to-noise fluctuations in
the data. Therefore some antihaloes identified in the previous step
are expected to be well-constrained by data and stable across the
N = 20 independent posterior resimulations, while others will not
be reproduced across the samples. In addition, even those which
are present in each sample will differ in varying degrees as to their
exact locations and radii. Therefore, creating a combined catalogue
requires us to associate these slightly differing antihaloes found in
different resimulations with a single, reliably reproducible void.
A method for identifying candidates for the ‘same’ halo between
resimulated posterior samples has been proposed by Hutt et al.
(2022) and recently Stiskalek et al. (2023) have proposed an approach
based on the overlap of Lagrangian regions. However, for reliable
posterior resimulation it is necessary to assess how well-constrained
an individual cluster or void is by the data, as opposed to being largely
prior driven. This can be quantified by defining a reproducibility
score, defined as the fraction of posterior samples in which a void
appears, and comparing with independent random catalogues to
assess whether a match is significantly more likely than chance.

Our primary desiderata for creating a combined antihalo catalogue
are:

(i) The catalogue should prioritize reliability and reproducibility
over completeness;

(ii) Each posterior sample should be on an equal footing, i.e.
antihaloes identified in any one resimulation should not be privileged
over those from another resimulation;

(iii) Those antihaloes appearing in the combined catalogue should
closely agree in their centres and radii across a high fraction of the
resimulations.

In order to address desideratum (i), we filter the antihaloes
identified in each resimulation based on thresholds for signal to
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noise and minimum radius corresponding to the resolution limit of
the simulations. We only seek to include voids in the final catalogue
with radii r. above 10 h~! Mpc, which corresponds approximately
to the minimum mass at which haloes can be resolved with least 100
particles in posterior resimulations. However, to avoid edge effects,
we perform the matching with smaller voids down to 54~! Mpc,
and retain only voids with mean radii above R > 10 h~! Mpc after
matching. In order to apply the signal-to-noise cut, we remove
antihaloes for which the mean value of (8/c 5)* over the voxels within
a sphere of radius r.g about an antihalo’s centre is less than 10, where
8 is the mean density contrast over all MCMC samples in a voxel,
and o5 the standard deviation of the density contrast over a voxel.

The above procedure yields 20 filtered lists of antihaloes which
we pass on to an iterative matching procedure as follows. We
start by initializing a candidate list of voids using the centres and
effective radii from one of the resimulations, which we denote as
resimulation 1. We then match these candidates with the antihaloes
in resimulation 2 by demanding that the centre and radii are equal
within a specified threshold. This introduces two parameters which
reflect the tolerance on the location and radius matches, respectively.
We call these tolerance parameters ps and g for the centre and
radius, respectively.

In practice, these must scale with the size of the voids being
matched, and we therefore express them as dimensionless fractions
of the radius. Since the antihalo radius may differ from the radius of
the candidate void, the search radius tolerance, g, is defined as the
ratio of the maximum permitted distance between the centres of the
voids to the geometric mean between their radii. The radius ratio is
defined as the minimum allowed ratio between the lowest radius and
highest radius void in a pair. Explicitly, consider a pair of voids with
centres X1, X2, and radii R, R, respectively. Assuming that R} < R,
without loss of generality, the radius ratio and search distance ratio
must satisfy

Ry
MR < R = 1, (3)
2
/LSZM>0- 4)

If more than one antihalo in resimulation 2 satisfies our criteria for
a given candidate void, we flag the match as ambiguous and treat it
as though no match were found. Otherwise, the matching procedure
is repeated starting from the antihalo list from resimulation 2 and
matching it back to the candidate void list. Any antihaloes where this
backwards map results in a different identification are again flagged
as ambiguous, and treated as though there was no match at all. In
summary, a candidate void is only treated as identified in resimulation
2 if there is a unique two-way match on to an antihalo, addressing
desideratum (iii).

Once the matching of the candidate void list on to resimulation 2
is complete, the procedure begins again with resimulation 3, and so
on. At this point, one may calculate the reproducibility score for each
candidate void, reflecting how many of the N independent resimula-
tions it appears within. Candidate voids with a high reproducibility
score are more robust than those with a low-reproducibility score,
and we will shortly return to how we threshold the candidate voids
on this robustness measure.

However, at this point in the algorithm, the candidate void list
has unfairly privileged resimulation 1 over the other N — 1 = 19
resimulations, in contradiction with our desideratum (ii). There is
therefore the need to iterate the candidate void list, replacing its
initial centres and radii with the mean over all antihaloes counted
as a match. We find that typical candidate voids converge to a

MNRAS 531, 2213-2222 (2024)

$20z 1snbBny Qg uo Jasn aynisu| [elua uewised Aq L80S29//€122/2/ 1L £S/a10oNIB/SeIuW/Woo dno-olwspeoe//:sdny woJj papeojumoq



2216 8. Stopyra et al.

single shared centre and radius within a few iterations, but any
which do not converge within 100 iterations are discarded as
unreliable.!

In order to choose the values of 11z and g in practice, we made use
of a visually confirmed ‘curated set’ of voids which are found with
high confidence in a high fraction of the void lists obtained from the
20 posterior resimulations. The curated set of voids consisted of 30
voids selected by hand which were verified by visual inspection
to have corresponding voids in more than half of samples. We
inspected the spread of centres and radii of these curated voids
and chose ug = 0.75, us = 0.5 as accurately identifying unique
matches for this curated void set while yielding as tight a tolerance
as possible on antihalo centres and radii across the resimulations.
This value of ug corresponds to allowing radii to differ by no more
than 25 per cent with respect to the larger radius in a pair, while
the chosen value of ug means that void centres can differ from
each other by no more than half the geometric mean of their radii.
We explored the parameter space of possible values around this
canonical set of parameters to confirm that this choice recovered
the curated voids while also producing a final catalogue with high
completeness.

After this stage, it is necessary to impose a reproducibility score
cut in order to remove poorly constrained voids from the catalogue.
This cut must be carefully chosen in a radius-dependent manner
in order to obtain a pure catalogue. We carried out the following
procedure to minimize the possibility of spurious voids making
it into the combined catalogue via chance alignments. First, we
applied the algorithm specified above to a set of antihalo lists created
from 20 independent, random simulations. For both this random
catalogue and the combined catalogue obtained from the posterior
resimulations, we then computed the reproducibility score of each
void. We observed that the threshold for a significant reproducibility
score was radius dependent: smaller voids would frequently be
matched by chance in random catalogues, while this was rarer
for larger voids. To allow for this, we binned both catalogues
in seven bins by the void mean radius, equally spaced between
10-20 2~! Mpc, and removed all voids in the combined catalogue
whose reproducibility score was lower than the 99th percentile for
the same bin in the random catalogue. These bins were chosen since
they subdivide the radius range as much as possible, while also
yielding at least ~O(1) voids in even the highest radius bins. We
checked that changing the binning scheme does not significantly
affect the catalogue as long as more than three radius bins are used.
The reproducibility score for each void is given in Table Al. The
threshold reproducibility scores as a function of radial bin are given in
Table A2. Overall, the reproducibility score cut removes 44 per cent
of the voids above 10 2~! Mpc in the combined catalogue obtained
in the previous step.

We use this filtered set as our final catalogue. We estimate
the properties of each void in the final catalogue — such as the
mean centre, effective radius, and central density — as the mean
of that property over the corresponding antihaloes in each posterior
resimulation in which it is found. We provide the reproducibility
score and signal to noise of each void as a measure of the void’s
reliability.

"n practice, this did not affect any of the voids above 10/2~! Mpc in our
experiments, but we retain this stop condition so that the algorithm will not
become stuck if handling less well-constrained and/or smaller voids.
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2.4 Computation of void density profiles

The void dark matter density profile as a function for radius is
sensitive to changes in the cosmology (Dai 2015; Chantavat et al.
2016), deviations from the standard laws of gravity in low-density
regions (Falck et al. 2018), and the effects of neutrinos (Schuster
et al. 2019; Contarini et al. 2021). It is, however, not directly
observable, and typically the galaxy number density profile is used
instead (Hamaus, Sutter & Wandelt 2014; Nadathur et al. 2015;
Schuster et al. 2023). An innovation in our work is that the dark
matter distribution has been inferred and can be used to construct a
stacked (i.e. averaged) dark matter density profile from our combined
final catalogue, as described below.

We first estimate the density profile for each void by averaging
across the antihaloes matched to it within the posterior resimula-
tions. Specifically, we construct spherical shells around the volume-
weighted centre in equation (1) for each MCMC sample and use
the total mass of dark matter particles in each to obtain a density
estimate using a volume-weighted mean, as outlined by Nadathur
et al. (2015), but taken over the N realizations of the same void in all
samples. The uncertainty on each individual void profile (with index
i) is calculated by computing the variance, o2(r), of this profile over
all samples. These density estimates are then averaged between the
individual antihaloes to obtain a final estimate for the void density
profile as a function of the scaled radius, /7.

We then stack these posterior profiles across the entire catalogue,
again following the volume-weighted stacking procedure of Na-
dathur et al. (2015). Since we use dark matter particles rather than
galaxy tracers, Poisson errors are subdominant to profile variability
and we therefore use a different procedure to that used by Nadathur
et al. (2015) to compute the uncertainty in the stacked profile. This
procedure is outlined in Stopyra et al. (2021b) and gives the variance,
o2 (r), of the volume-weighted mean profile in a stack, Pmean(7),

mean
as

créean(r) = <Z w?) 02(r), 5)

where we sum over all voids, , in the stack with volume-weights w; =
V;3";V; for void volume V;, and o2(r) = var({p1(7), . .., py(1)}) is
the variance of all profiles in the stack and thus common to all voids.
This generalizes the usual variance of the mean for weighted means,
and reduces to o2(r)/N for the case of N equal weights.

However, because each void in the stack now has a significant
uncertainty associated with it, quantified by the variability of the
profile of this specific void across the 20 MCMC samples, the
procedure requires a slight modification. We add the variance of
the profile mean with the posterior variances of each void in the
stack, o2(r), to obtain

o) = > w? (02(r) + 02(r)) . ©)

Equation (6) then gives the final error bar on the stacked profile, in
each radial bin.

To obtain a ACDM profile to compare with, we apply the same
stacking procedure to antihaloes within the random simulations
previously described (though in this case there is no posterior
variance on each individual void profile). In order to construct a fair
comparison, we need to account for several environmental selection
effects related to the properties of the Local Super-Volume. The
Local Super-Volume voids exist within an underdense region of
the Universe (the mean density contrast over all MCMC samples
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Figure 1. Projected locations of the 10 antihalo voids which appear most consistently across 20 MCMC samples (all have reproducibility scores of 0.95 or
above). Numbers follow the same ordering as in Table A1, sorted in descending order of reproducibility score. Voids 1-6 appear in all 20 posterior resimulations,
while voids 7-10 are each missing in only 1 of 20 samples. Note that apparent void sizes are driven by distance-dependent projection effects.

is § = —0.043 £ 0.001), and their central and average void density
distributions (defined as the density within 1/4 of the void radius, and
the total mass divided by the total volume of the void, respectively)
form subsets of void properties that occur within ACDM simulations
sampling all environments. To account for these selection effects, our
comparison profiles are constructed from antihaloes found within
135 h~! Mpc spheres with a density contrast matched to that of the
Local Super-Volume [in this case, choosing regions whose density
contrast lies within a 68 per cent confidence interval of the maximum
a posteriori (MAP) estimate, Syap = —0.041%]. We randomly select
voids from these matched regions in a way that (up to the limits of
sample size within each region) reproduces as closely as possible the
central/average density distribution of the combined catalogue. To
avoid duplication, we retain only spherical regions that do not over-
lap, giving a total of 144 density-matched regions over 20 random
simulations. Finally, we compute the mean and standard deviation of
the stacked density profiles in each of the 144 regions, to compare
with the combined catalogue profile. Note that there may remain ad-
ditional environmental selection effects to be accounted for; however
we expect the above considerations to capture the main factors.

3 RESULTS

We present the results for our combined catalogue, obtained from
the set of 20 posterior samples previously described. The resulting

2The difference between the MAP estimate and the mean density contrast
is due to the fact that the posterior on the Local Super-Volume density is
non-Gaussian, and skewed.

combined catalogue consists of 150 voids with radii > 102~ Mpc
within the Local Super-Volume (135 4~! Mpc of the Milky Way).

A sample of the pure set of antihaloes with high signal to noise and
which are consistently represented across MCMC samples is given
in Table A1l in Appendix A, with the full catalogue available online
as supplementary material. We also display the locations of the most
robust of these antihaloes on the sky in Fig. 1: the outlines show
alpha-shapes (Edelsbrunner, Kirkpatrick & Seidel 1983) around
the particles corresponding to each antihalo when projected on to
the sky in a representative MCMC sample from the 20 used to
construct the catalogue. Outlines are broadly similar in the other
samples, but fluctuate at a minor level as matter moves around due to
unconstrained modes. Note that nearby antihaloes appear larger due
to projection effects.

We performed additional checks on the catalogue, including
randomly permuting the order in which catalogues were processed.
This led to minimal variation in the voids found.

3.1 Antihalo mass functions and void size function

In the antihalo model of voids, the abundance of voids is predicted
by the halo mass function. For large radius voids (> 10 2~! Mpc),
the effect of crushing of voids by surrounding large-scale structure is
negligible (Pontzen et al. 2016a), and so the expected abundance
of voids as a function of antihalo mass can be given by any
model for predicting halo mass functions, such as the Tinker mass
function (Tinker et al. 2008).

We show the antihalo mass function for the combined catalogue in
Fig. 2, finding that it is consistent with the ACDM predictions from
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Figure 2. Mass functions for the combined catalogue of high-confidence voids. Left: voids within 135 2~! Mpc. The signal to noise for these is high, and the
catalogue is complete for the most massive antihaloes (above 4 x 10'> Mg i ~!), matching the expected number from ACDM predictions. Low-mass, low-radius
voids tend to be more prior-driven than higher mass voids, and the algorithm therefore excludes them at a higher rate. Right: all voids within 300 2~! Mpc. This
catalogue is largely incomplete, since there are not many more voids at this distance which can be identified with sufficient signal to noise to rule out spurious
alignment between MCMC realizations. We estimate the bin count and its error using a bootstrap approach (see Section 3.1).
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Figure 3. Void size function for the catalogue compared with the ACDM
expectation, showing consistency across all mass bins and demonstrating the
completeness of the catalogue for > 10 2~! Mpc voids within 135 h~! Mpc
of the Milky Way. As in Fig. 2, we compute a weighted histogram using the
scheme outlined in Section 3.1.

the Tinker mass function within the Local Super-Volume. Looking
further out to 300 2~! Mpc, we see that the completeness of the
catalogue is much lower, an effect primarily driven by the low signal
to noise further from the Milky Way. Since voids are commonly
presented in the literature in the form of the void size function, we
also show the abundance of voids within the Local Super-Volume as
a function of their radius in Fig. 3.

To compute the uncertainty for the bin counts in each mass or
radius bin, we treat the counts as a weighted histogram, with weights
given by the probability that the mean lies in each bin. We estimate the
probability, p;;, that void i lies in bin j by bootstrapping the posterior
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samples to approximate the distribution of the mean mass or radius.
Since a void can be either in or out of a bin, the contribution of each
void to a bin is a Bernoulli-distributed variable (1 with probability p;;,
0 with probability 1 — p;;). The mean bin count, n;, and its variance
then follow from the sum of N Bernoulli-distributed variables:

N
np=>_pi )
i=1

N
var(n;) = pi;(1 = py), ®)

i=1

where N is the total number of voids in the catalogue (150). For large
numbers of voids in a bin, #; is approximately Gaussian. However,
for the purposes of computing an accurate error bar in low-count bins
we estimate the 68 per cent interval for bin counts in Figs. 2 and 3
using Monte-Carlo realizations in which each void occupies bin j
with probability p;.

3.2 Void density profiles

We present the void density profiles computed using the procedure
outlined in Section 2.4. Without any constraints on the voids in
random ACDM simulations, the MCMC profiles appear to be outside
the 68 per cent interval of profiles (Fig. 4, left-hand panel). However,
this is driven in large part by the underdensity of the Local Super-
Volume. Selecting only 144 regions of radius 1354~! Mpc whose
density matches that of the Local Super-Volume brings the profiles
into better agreement by lowering the profile at large distances from
the void centre, illustrating the influence of a void’s environment
on its density profiles. Even better agreement is obtained (Fig. 4,
right-hand panel) when we sample a subset of voids from each
region whose distribution of central and average densities match
that of the Local Super-Volume, indicating consistency with ACDM
expectations for voids in the Local Super-Volume.
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Figure 4. Density profile for the catalogue within 1352~! Mpc (shaded) compared with the 68 per cent interval for the distribution of profiles in randomly
selected 135 h~! Mpc regions assuming ACDM (solid lines with cross-hatching). Without accounting for environmental effects (left) the density between 1
and 3 effective radii in the posterior catalogue is low at the 1o level. However, if we select regions from ACDM simulations which agree with the ~ 4 per cent
underdensity of the Local Super-Volume (right), and additionally account for the distribution of central and average densities (see Section 2.4) the profile is

consistent with ACDM expectations.

4 DISCUSSION

The abundance of voids, as shown in Figs 2 and 3, is consistent with
ACDM within 135 2~ Mpc. Further out, fewer voids are identified
(Fig. 2, right panel), but this is consistent with expectations from
signal-to-noise considerations: fewer higher signal-to-noise voids
are available further out to be matched by the catalogue combination
algorithm, and those that are found have lower reproducibility
score. Our approach thus correctly excludes random, coincidental
alignments of voids which are driven by the prior, rather than the data.

This illustrates that our approach by design creates a very
pure catalogue, which can be used for high-precision tests of
cosmology. The completeness of the catalogue at higher redshifts
is primarily limited by the availability of high-tracer-density, high-
precision redshift data. Therefore, there is broad scope to build
larger catalogues of high-quality voids, by including Sloan Digital
Sky Survey (SDSS; Abazajian et al. 2009) data, and data from
upcoming surveys such as Euclid (Laureijs et al. 2011; Scaramella
et al. 2022), the Vera Rubin Observatory’s Legacy Survey of Space
and Time (Ivezi¢ et al. 2019), the Roman Space Telescope’s High
Latitude Survey (Wenzl et al. 2022), the Dark Energy Spectroscopic
Instrument (DESI; DESI Collaboration et al. 2022), and the Spectro-
Photometer for the History of the Universe, Epoch of Reionization,
and Ices Explorer (Doré et al. 2014). Fully exploiting the mix
of photometric and spectroscopic data in next-generation surveys
will however require careful analysis to account for differences in
tracer density and redshift precision (Jasche & Wandelt 2012). The
2M++ results we present in this work, however, already build a
robust picture of the voids in the Local Super-Volume.

Although we assume a ACDM prior with fixed cosmological
parameters in the inference (Section 2.1), the high-signal-to-noise
regions are demonstrably data driven. Direct evidence of this for
the central 135k~ Mpc region can be seen in the left panel of
Fig. 2: by construction, 99 per cent of prior-driven voids would be
discarded by our reproducibility score cut, but the abundance of
voids we actually see is consistent with ACDM. Where the signal-
to-noise ratio drops (beyond 135/~! Mpc), our catalogue strongly
favours incompleteness over returning spurious prior-driven voids
(right panel of Fig. 2).

We expect our catalogue to be insensitive to the ACDM prior used
in the inference. BORG seeks to reproduce the final density field, and
therefore the void centres and radii are strongly constrained by data.
Adopting a different set of cosmological parameters would primarily
change the power spectrum, while the locations of void regions are
primarily determined by phase information. Such information has
previously been shown to be insensitive to cosmological assump-
tions (Villaescusa-Navarro et al. 2020; Kosti¢ et al. 2022). However,
detailed features such as the density profiles may show stronger
cosmological dependencies. It would therefore be of clear interest
to explore the impact of sampling over cosmological parameters
or models (Porqueres et al. 2022; Andrews et al. 2023). A full
investigation will be the subject of future work.

4.1 Influence of the environment on void density profiles

It is clear from our results (Fig. 4) that environmental selection
impacts the shape of the (stacked) void density profile. The primary
factor driving these results is the fact that the Local Super-Volume
density is lower than the cosmological average at the 68 per cent
level (§map = —0.041 £ 0.001, bootstrap error). Accounting for this
environmental effect explains the low value of the profile compared
to a ACDM ‘average’ profile, and the finer details of the profile are
consistent with ACDM once the distribution of central and average
void densities in the catalogue is also accounted for.

Previous studies of voids have indicated a universal void den-
sity profile that is found to apply across a wide array of void
sizes (Hamaus et al. 2014; Nadathur et al. 2015) and redshifts (Na-
dathur et al. 2014). This remains true of antihalo void stacks
when averaging over all environments, but our results highlight the
importance of the environment of cosmic voids in shaping their
density profiles. This manifests foremost in the large-radius profile
returning to a lower background density (see Fig. 4, right-hand panel).
However, we also see dependence on the profile on the average
density of voids. This highlights that in addition to information about
gravitational evolution, void profiles contain information about the
larger-scale environment in which a void is found. Conversely, this
indicates that the environment in which voids are found must be self-
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consistently accounted for when comparing void catalogues with
cosmological models.

4.2 Comparison to watershed void catalogues

Leclercq et al. (2015) built a watershed void catalogue for the SDSS
using BORG and the void-finding code VIDE (Sutter et al. 2015) and
Leclercq et al. (2017) examined more general cosmic web classifiers,
including voids. Leclercq et al. (2015) also performed simulations of
posterior samples, an approach they refer to as non-linear filtering,
which shares similarities to the posterior resimulation approach
we use in this work, but lacks an object-by-object matching. As
such, while they were able to estimate aggregate properties of their
void catalogue with a Blackwell-Rao approach, it was not possible
to study the reliability of individual voids. By contrast, posterior
resimulation requires satisfying accuracy requirements on field level
inference (S23), and an assessment of the reliability of the structures
appearing in resimulated posterior samples (this work).

There is an effective limit of ~ 25-304~! Mpc on the radius an
antihalo void can have, due to the absence of significant number of
haloes above 10'> Mg h~!. Higher radius voids are frequently found
in other void catalogues such as GIGANTES (Kreisch et al. 2022),
and other catalogues based on the Baryon Oscillation Spectroscopic
Survey (BOSS) Data Release 12 (DR12) data such as the watershed
catalogues by Nadathur (2016) and Mao et al. (2017). However,
these typically represent shallower, large-volume voids which in the
antihalo picture would not yet have virialized. Particles within such
watershed voids are typically found within smaller antihaloes in
analogy to the bottom-up picture of structure formation with haloes
—see Pontzen et al. (2016) for example.

4.3 Concluding remarks

We have presented a void catalogue for the Local Super-Volume,
constructed by robustly combining antihalo voids identified in
posterior resimulations of the dark matter density field using initial
conditions obtained with field-level inference. The methodology used
to construct the catalogue is general and can be applied to posterior
resimulations of field-level inferred initial conditions for any galaxy
catalogue.

Our catalogue is complete out to 1354~ Mpc, identifying all
antihaloes with radii > 10h~' Mpc. We have shown that it is
compatible with ACDM expectations, both in the abundance of
voids, and in the shape of the stacked void density profiles. One
application of the catalogue, which we leave to future work, is to
constrain cosmological effects whose impact is strongly felt in low-
density regions. An important example is neutrino masses, which are
known to impact the abundance of voids (Kreisch et al. 2019), and
their density profiles (Massara et al. 2015). Additionally, modified
gravity models such as f{R) (Hu & Sawicki 2007) and nDGP (Dvali,
Gabadadze & Porrati 2000) theories are known to affect the shapes of
voids and their density profiles (Cai, Padilla & Li 2014; Cautun et al.
2018; Falck et al. 2018; Paillas et al. 2019). While such theories are
heavily constrained in their ability to explain dark energy (Saridakis
etal. 2021), cosmological constraints are still capable of constraining
the properties of gravity itself (Shankaranarayanan & Johnson 2022).
A challenge which remains, however, is how to disentangle the effects
of modified gravity from that of massive neutrinos, since both have
similar effects on void density profiles (Baldi et al. 2014; Hagstotz
et al. 2019).

In future work, we will explore the impact on the detailed
properties of voids within the catalogue, if one assumes different
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cosmologies within field-level inference. These developments will
be crucial for obtaining robust constraints on gravity, cosmology,
and particle physics using the Local Super-Volume. In the meantime,
however, we will test the consistency of the local void population with
ACDM predictions, an important first step enabled by the catalogue
of voids presented in this work.
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APPENDIX A: THE ANTIHALO CATALOGUE

In Table Al, we present the final catalogue after applying the
combination algorithm in Section 2.3. Uncertainties are computed
as the standard deviation of the mean over all antihaloes matching
to a given void (which may not include all samples if a void is
missing in some samples). The voids are sorted by the reproducibility
score, which quantifies how robustly a void appears in all catalogues
(a reproducibility score of 1 indicates that a void appeared in all
catalogues). As discussed in Section 2.3, voids with reproducibility
scores not significantly higher than would be found by chance alone
are not included. We also show the reproducibility score thresholds
for each radius bin in Table A2.
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Table Al. First 10 of 150-total voids in the antihalo catalogue for voids within 135 2~! Mpc. Radii and mass uncertainties are computed as the standard error
on the mean over the antihaloes in each MCMC sample matching on to a given void. The signal-to-noise ratio (SNR) is the mean signal to noise for each of
the same contributing antihaloes, computed as the average of 2 /082 as discussed in Section 2.3. The voids are sorted by reproducibility score, defined as the
fraction of MCMC samples which contain a representative antihalo for a given void. The entire catalogue is provided as supplementary material.

ID  Radius (h~! Mpc) Mass (10 A~ M) R.A.(deg) Dec. (deg.) z Distance (h~! Mpc) SNR  Reproducibility score
1 21 0.3 9.5 + 0.4 343 37.2 0.026 113 183 1
2 14 4+ 02 3402 0.263 —39.9 0.01 45.1 147 1
3 17 £ 03 51402 139 8.68 0.031 135 21.3 1
4 14 4+ 02 32402 40.6 —50.2 0.0072 32 23.7 1
5 11+ 02 1.4 + 0.07 218 —25.6 0.021 93.7 79.2 1
6 13 £+ 0.1 2.5 £ 0.09 223 24.1 0.018 79.2 147 1
7 13 + 0.1 2 + 0.07 49.6 14.5 0.011 48 422 0.95
8 11 402 1.6 4+ 0.08 318 —19.7 0.0097 0.7 35 0.95
9 10 + 0.2 1.2 £ 0.09 212 —14.4 0.017 74.3 44.6 0.95
10 11 4+ 02 1.5 4+ 0.06 174 —28.6 0.012 52.4 30 0.95

Table A2. Reproducibility score thresholds in each radius bin, above which
99 per cent of voids in ACDM simulations are excluded.

Radius bin range (h~! Mpc) Reproducibility score threshold
10-11.4 0.2

11.4-12.9 0.2

12.9-14.3 0.15

14.3-15.7 0.15

15.7-17.1 0.15

17.1-18.6 0.142

18.6-20 0.1
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