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A B S T R A C T 

We investigate the non-adiabatic effect of time-dependent deformations in the Milky Way (MW) halo potential on stellar streams. 
Specifically, we consider the MW’s response to the infall of the Large Magellanic Cloud (LMC) and how this impacts our ability 

to reco v er the spherically averaged MW mass profile from observation using stream actions. Previously, action clustering 

methods have only been applied to static or adiabatic MW systems to constrain the properties of the host system. We use a 
time-evolving MW–LMC simulation described by basis function expansions. We find that for streams with realistic observational 
uncertainties on shorter orbital periods and without close encounters with the LMC, e.g. GD-1, the radial action distribution is 
sufficiently clustered to locally reco v er the spherical MW mass profile across the stream radial range within a 2 σ confidence 
interval determined using a Fisher information approach. For streams with longer orbital periods and close encounters with the 
LMC, e.g. Orphan–Chenab (OC), the radial action distribution disperses as the MW halo has deformed non-adiabatically. Hence, 
for OC streams generated in potentials that include an MW halo with any deformations, action clustering methods will fail to 

reco v er the spherical mass profile within a 2 σ uncertainty . Finally , we investigate whether the clustering of stream energies 
can provide similar constraints. Surprisingly, we find for OC-like streams, the reco v ered spherically averaged mass profiles 
demonstrate less sensitivity to the time-dependent deformations in the potential. 

K ey words: Galaxy: e volution – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure – Magellanic Clouds –
dark matter. 
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 I N T RO D U C T I O N  

ithin the Local Group, the Milky Way (MW) is undergoing a 
erger with the Large Magellanic Cloud (LMC). 1 The LMC is 

hought to be on its first pericentric passage 2 (Besla et al. 2007 )
nd to have a dark matter mass M LMC ∼ 10 11 M �. Such a large mass
or the LMC is needed to e xplain man y Local Group phenomena:
or example, the kinematics of MW satellites (Correa Magnus & 

asiliev 2022 ); dynamical models of stellar streams (Erkal et al. 
019 ; Koposov et al. 2019 ; Shipp et al. 2021 ; Vasiliev, Belokurov &
rkal 2021 ); and the timing argument (Pe ̃ narrubia et al. 2016 ). The
MC has also been observed to generate significant disequilibrium 
 E-mail: richard.brooks.22@ucl.ac.uk 
 See Vasiliev ( 2023 ) for a comprehensi ve re vie w detailing the effect of the 
MC on the MW. 
 There are proposed scenarios where the LMC is not on its first passage 
Vasilie v 2024 ). Ho we ver, most features of earlier passages are superseded 
y the most recent passage at a smaller pericentre. 
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2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
n the MW gravitational potential: the displacement of the MW disc,
 stellar o v erdensity (Belokuro v et al. 2019 ; Garavito-Camargo et al.
019 ; Conroy et al. 2021 ), and the reflex motion of the stellar halo
Erkal et al. 2019 , 2021 ; Petersen & Pe ̃ narrubia 2020 , 2021 ). The
rbit of the LMC is sensitive to the assumed Galactic potential (see
g. 3 of Vasiliev 2023 ) and, because the LMC is of considerable
ass, it is also subject to dynamical friction (Chandrasekhar 1943 ).
urrent state-of-the-art models of the MW–LMC system account for 
ynamical friction and the reflex motion of both galaxies (e.g. G ́omez
t al. 2015 ; Patel, Besla & Sohn 2017 ; Erkal et al. 2019 ; Cunningham
t al. 2020 ; Patel et al. 2020 ; Vasiliev et al. 2021 ; Dillamore et al.
022 ; Koposov et al. 2023 ; Lilleengen et al. 2023 ). 
Stellar streams act as kinematic tracers of the underlying dark 
atter distribution within the Galactic potential. Streams form when 

atellites, dwarf galaxies, or globular clusters orbiting the MW 

ave their stars tidally stripped. Streams are stringent probes of the
W gravitational potential (Helmi & White 1999 ; Johnston et al.

999 ); stream members roughly delineate orbits in the host potential
McGlynn 1990 ; Johnston, Hernquist & Bolte 1996 ; Sanders &
inney 2013a ), allowing us to infer the accelerations that the stars
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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xperience and hence the host’s gravitational field. The LMC has
erturbed streams in the MW, especially those with close encounters
e.g. Orphan–Chenab (OC); Erkal et al. 2019 ; Shipp et al. 2021 ;
oposov et al. 2023 ; Lilleengen et al. 2023 ]. We focus on the OC

Belokurov et al. 2006 ; Grillmair 2006 ; Shipp et al. 2018 ; Koposov
t al. 2019 ) and GD-1 (Grillmair & Dionatos 2006 ) stellar streams
ecause the y co v er a broad radial and angular range of the MW halo
ith the OC stream having a closer encounter with the LMC. 
The dynamics of streams are most simply described in action–

ngle coordinates (Helmi & White 1999 ; Tremaine 1999 ). Once a
tar is tidally stripped from the progenitor, its orbital actions are
onserved while the angles linearly increase with time in a static or
diabatically invariant potential. Modelling a stream using action–
ngle variables allows straightforward integration in time (Bovy
014 ), with the angle variables correlated with the frequencies in
otentials close to the true one (Sanders & Binney 2013b ). Ho we ver,
ime-dependent potentials (Buist & Helmi 2015 , 2017 ; Sanderson,
elmi & Hogg 2015 ) and the ‘self-sorting’ of streams (Bovy 2014 ;
anders 2014 ) can complicate these correlations. We omit the angle
ariables in our modelling and focus on the actions alone as the
bservable quantity. 
The stars in a stream originate from small progenitors and will
o v e along similar orbits; thus, the transformation from phase-

pace positions to action space results in stream members being
ightly clustered. When a chosen potential maximally clusters stream
embers in action space, this is said to reflect the true potential for

he system (Helmi & White 1999 ). Similarly, the energy clustering of
tream members displays the same behaviour. Pe ̃ narrubia, Koposov
 Walker ( 2012 ) demonstrated that for separable energy distribu-

ions, the associated entropy increases under wrong assumptions
bout the gravitational potential. 

The first attempts using stellar streams and their action clustering
ere able to reco v er parameters of the adopted static potential in
hich mock streams were evolved (Sanderson et al. 2015 ; Yang,
oruah & Afshordi 2020 ). In turn, the application to observational
ata using multiple streams was able to set constraints on the enclosed
ass of the MW for an assumed static St ̈ackel gravitational potential

Reino et al. 2021 ). Multiple streams are often used to nullify any
iases on galactic potential parameter fitting due to the orbital phase
f streams (Reino et al. 2022 ). Ho we v er, an y time dependence
hat is not captured in these static models will subject clustering

ethods to biases as actions may no longer be conserved (Sanderson
t al. 2015 ). Arora et al. ( 2022 ) provide the most recent effort to
ccommodate time evolution in the MW potential. They identify
W-like galaxies in FIRE-2 cosmological simulations and generate

opulations of stellar streams to maximize action clustering. For the
ime-evolving MW-like galaxies without any mergers, they find that
ctions remain clustered and stable o v er dynamical times. Ho we ver,
or a larger merger (1:8 mass ratio), there is a temporary decrease
n action clustering due to the interaction. Furthermore, highly non-
inear perturbations to the potential cause a drift in the radial action
istribution (Burger, Pe ̃ narrubia & Zavala 2021 ). 
Due to the merger with the LMC ( ∼1:8 mass ratio), the potential

f the MW has deformed (Lilleengen et al. 2023 ). Basis function
xpansions (BFEs) are used to represent complex systems as linear
ombinations of simpler functions called basis functions. As such,
FEs offer the flexibility to model the deformations captured in
-body simulations (Lilley et al. 2018a ; Lilley, Sanders & Evans

018b ; Petersen & Pe ̃ narrubia 2020 ; Sanders et al. 2020 ; Garavito-
amargo et al. 2021 ; Lilleengen et al. 2023 ). The N -body simulations
f Lilleengen et al. ( 2023 ) infer a BFE description using the EXP

oolkit (Petersen, Weinberg & Katz 2022 ). This provides a time-
NRAS 532, 2657–2673 (2024) 
volving MW system in which stellar streams can be generated.
he BFE structure allows exploration of which terms describing

he deformation to the MW halo will contribute most to the dis-
uption of clustering of stream members in action spaces. We will
onsider spherical actions, which not only are useful for perfectly
on-deforming spherical systems but also act as a solid base for
nvestigating perturbations to spherical potentials (Pontzen et al.
015 ). 
Analyses of the Galactic potential using statistical action clustering
ethods such as Kullback–Leibler divergence (or relative entropy;
anderson et al. 2015 ), minimum (Shannon) entropy (Pe ̃ narrubia
t al. 2012 ), or Fisher information (a non-clustering method; Bonaca
 Hogg 2018 ) are all closely related. The last one represents the
essian, or curvature, of the relative entropy of a conditional distri-
ution with respect to its parameters. Bonaca & Hogg ( 2018 ) use the
nverse of the Fisher information to determine the Cram ́er–Rao (Rao
945 ; Cram ́er 1946 ) lower bounds on model parameters describing
 static MW potential given cold stellar stream observations. To
roperly constrain the global properties of the Galactic potential, they
dvocate that many streams should be used simultaneously. Ho we ver,
o capture the complexity of our Galaxy’s accretion history with the
MC, a time-dependent model must also be used. We use time-
ependent MW and LMC dark matter haloes by employing BFEs
o determine the Fisher information on the model parameters (see
lso Lilleengen et al., in preparation). This extends upon previous
isher information methods that have assumed static MW potential
odels for the generation of streams (Bonaca & Hogg 2018 ). We

nvestigate the ability of action clustering methods to reco v er the
W’s spherically averaged mass profile when the temporal evolution

ould include non-adiabatic behaviour. The flexibility of BFEs allows
s to easily investigate behaviour for a wide range of deforming
W–LMC potentials. 
The plan of the paper is as follows. Section 2 describes our
ethodology containing an o v erview of BFEs, spherical action–

ngle coordinates, and the framework to generate stellar streams.
n Section 3 , we present the action distributions of mock stellar
treams in various deforming potentials. In Section 4 , we outline our
nformation theory approach and determine the ability to constrain
he spherically averaged MW mass profile. We discuss the results
lus an y cav eats in Section 5 and summarize our findings in Section
 . 

 M E T H O D S  

n Section 2.1 , we summarize the approach taken in Lilleengen et al.
 2023 ) to generate their N -body model of the MW dark matter
alo using the BFE software suite, EXP (Petersen et al. 2022 ). Also,
e outline the expected result when the potential has non-adiabatic
ehaviour. In Section 2.2 , we outline the action–angle variables for
tream members in spherical potentials. This includes details of the
se of the high-performance numerical computing PYTHON package

AX (Bradbury et al. 2018 ) in analysing streams (see Section 2.2.1 ).
inally, in Section 2.3 , we present the dynamical modelling used to
enerate streams. 

.1 Basis function expansions 

.1.1 EXP 

o generate stellar stream models in a time-evolving MW–LMC sys-
em, we need a description of the potential and forces at any arbitrary
osition and time. Static potentials fail to capture deformations to
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he MW and LMC dark matter haloes. BFEs of fer a frame work to
escribe these deformations. They track the density, gravitational 
otential, and forces as the system evolv es o v er time. BFEs have
reviously been seen to accurately describe flexible models of the 
W (Petersen, Weinberg & Katz 2016 , 2019 ; Dai, Robertson &
adau 2018 ; Petersen & Pe ̃ narrubia 2020 ; Garavito-Camargo et al.

021 ). In this work, we use the BFEs of the MW–LMC system
resented in Lilleengen et al. ( 2023 ) that are simulated using EXP

Petersen et al. 2022 ), with the expansion coefficients recorded at 
ach time-step. All potentials we consider exclude contributions from 

he MW disc. 
The BFE technique uses appropriately chosen biorthogonal 

ensity–potential pairs of basis functions, { � μ( x ) , φμ( x ) } , that
olve Poisson’s equation, i.e. ∇ 

2 φμ( x ) = 4 πG� μ( x ), and satisfy
he biorthogonality condition 

∫ 
d 3 x φμ( x ) � ν( x ) = 4 πGδμν , where

μν is the Kronecker delta.Each basis function, labelled by the 
ndex μ, adds a degree of freedom to the system and has an
ssociated coefficient A μ, which determines its contribution to the 
otal description of the system, i.e. the summation o v er all basis
unction terms. A system at any given time is described by the basis
unctions and the coefficients that weight them. Mathematically, the 
ensity, ρ, and gravitational potential, 
 , are 

( x , t) = 

∑ 

μ

A μ( t) � μ( x ) , (1) 

 ( x , t) = 

∑ 

μ

A μ( t) φμ( x ) , (2) 

here the basis coefficients are time-dependent and the basis function 
eeps its fixed functional form. 

Basis functions are selected to reflect the system they describe. 
o model density profiles, ρ( r, φ, θ ), with deviations away from
pherical symmetry, the spherical harmonics Y 

m 

l are chosen to 
escribe the distribution in the angular coordinates ( φ, θ ), while 
XP describes the radial dependence (index n ) by the eigenfunctions 
f a Sturm–Liouville equation (Weinberg 1999 ). Each spherical 
asis function is then represented by the triplet of indices μ ≡
 n, l, m ). The radial index, n , determines the number of nodes
n the radial basis function. For l = 0, n equals the number of
odes in the radial function. For l > 0, there are n + 1 radial nodes.
 maximum truncation in the expansion for the radial part, n max ,

nd angular part, l max , corresponds to a spherical coefficient set of
ize ( l max + 1) 2 · ( n max + 1). The EXP method creates a lowest order
onopole term, ρ000 ( r), that exactly matches the unperturbed input 

otential–density pair. All other, higher order, terms are perturbations 
round the input distribution. If the lowest order monopole does not 
atch the input pair, more terms are needed to approximate the input

istribution. Another example of a BFE is the classical Hernquist–
striker basis set (Hernquist & Ostriker 1992 ), which expands 
pon the Hernquist density distribution (Hernquist 1990 ) as ρ000 ( r).
lternative choices of analytical basis functions have been made 

uch that the underlying density distribution allows axisymmetric, 
riaxial, and lopsided distortions (Lilley et al. 2018a , b ). 

.1.2 N -body models and basis function expansions 

n efficient lightweight PYTHON interface, MWLMC , has been de- 
eloped to facilitate the EXP simulations of the Lilleengen et al. 
 2023 ) MW–LMC system. This user-friendly interface is publicly 
vailable at https:// github.com/ sophialilleengen/ mwlmc . This MW–
MC system is constructed with three components with separate 
FEs: the MW dark matter halo, the MW stellar disc, and the LMC
ark matter halo. The EXP method explicitly uses the BFE for the
orce e v aluations in the N -body e volution. We describe the MW and
MC dark matter haloes in this section. Descriptions of the BFE
nd N -body models for the MW disc can be found in sections 2.1
nd 2.2 of Lilleengen et al. ( 2023 ), respectively. The N -body models
f Lilleengen et al. ( 2023 ) self-consistently include the effect of
ynamical friction on the LMC as it falls into the MW’s potential.
hroughout this work, we analyse the deformations of the MW halo.
he LMC is described by its full basis expansion throughout. 
The LMC dark matter halo is modelled by a Hernquist (Hernquist

990 ) profile with M LMC = 1 . 25 × 10 11 M � and r s = 14 . 9 kpc . This
alo is realized with 10 7 particles and simulated using EXP (Petersen
t al. 2022 ) with l max = 6 and n max = 23 (Lilleengen et al. 2023 ). 

The MW dark matter halo profile is selected from table A1 of
rkal et al. ( 2019 ) as the best-fitting spherical potential, labelled ‘sph.

MW + LMC’. A Navarro–Frenk–White (NFW) profile (Navarro, 
renk & White 1996 ) is used to describe the MW halo with
 vir = 7 . 92 × 10 11 M �, r s = 12 . 8 kpc , and c = 15 . 3. This profile

s truncated as ρhalo ( r) = 0 . 5 ρNFW 

( r)(1 − erf [( r − r trunc ) /w trunc ]),
here r trunc = 430 kpc and w trunc = 54 kpc . This halo is realized
ith 10 7 particles and simulated using EXP (Petersen et al. 2022 )
ith l max = 6 and n max = 17 (Lilleengen et al. 2023 ). For the MW
alo, it is convenient to describe individual harmonic subsets of l. The
 = 0 terms are called the monopole, l = 1 is the dipole, l = 2 is the
uadrupole, etc. The live simulation of the MW–LMC system begins 
t t = t live = −2 . 5 Gyr , with present day at t = 0 Gyr . At the start
f the live simulation, the MW and LMC haloes are totally distinct,
ith the LMC outside the virial radius of the MW at a distance of
50 kpc . The density, force, and potential fields before the start of the
ive simulation have the basis coefficients set to their initial values
rescribed at t live . 

.1.3 Evolution in increasingly complex systems 

o investigate how different harmonic subsets of the full BFE affect
he generation of a stellar stream, harmonic terms can be selectively
urned off, i.e. by setting all relevant BFE coefficients to zero, to
solate the contributions to the total BFE description of the system.
his effect on the OC stream track relative to that of the full BFE
xpansion is visualized in fig. 5 of Lilleengen et al. ( 2023 ). They
solate the effect of each term in the BFE by keeping either the MW
r LMC live and varying the harmonic contributions of the other.
or the MW halo, the largest effect on the OC stream track is from

ncluding the dipole harmonic. In this work, we consider six MW–
MC potentials to generate streams that all use the full LMC halo
FE but with different harmonic subsets of the MW halo BFE: ‘static
onopole’ that uses the unperturbed set of monopole coefficients, 3 

.e. before the live simulation starts, ‘evolving monopole’, ‘monopole 
 dipole’, ‘monopole + quadrupole’, ‘monopole + dipole + 

uadrupole’, and ‘full expansion’. We use the same LMC description 
or all generated streams so that we can focus on the systematic effect
f deformations to the MW halo. 
The harmonic orders of the BFE will dev elop o v er the entire

imulation. At the beginning of the live simulation, t = t live , and for
ll prior times, there has yet to be any response of the MW’s dark
atter halo due to the passage of the LMC. At these times, the MW

alo can be fully described by its monopole harmonic subset as we do
ot include the MW disc that would create some halo deformations.
MNRAS 532, 2657–2673 (2024) 
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M

Figure 1. Temporal development of various MW dark matter halo harmonics and the LMC dark matter halo o v er the liv e simulation time: t = −2 . 5 Gyr 
to t = 0 Gyr with time increasing from top to bottom. Going from left to right across the columns shows the MW dipole, MW quadrupole, MW full 
expansion harmonic, and LMC full expansion. The potentials are computed in the x = 0 Galactocentric plane in a slab of 10 kpc thickness. The colour 
map represents the potential contrast, �
 ≡ ( 
 − 
 0 ,i ) /
 0 , MW 

, where 
 0 ,i corresponds to the monopole potential computed using only the l = 0 order 
of either the MW (first three columns) or LMC expansion (final column). The track of the LMC through this plane is shown as the black line. Halo 
deformations due to the MW disc are omitted as they are subdominant with respect to the outer halo deformations. A video version of this figure is available at 
https:// www.youtube.com/ watch?v=i18zbNxNyf8 . A similar version of this figure using the dark matter densities can be found in Appendix A . 
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evertheless, these deformations would be subdominant with respect
o the outer halo deformations. The infall of the LMC, as the
atellite galaxy, on to the MW, as the central galaxy, generates
ensity w ak es (Chandrasekhar 1943 ). The classical ‘conic’ w ak e
railing the LMC is described as the transient response , whereas
he response elsewhere in the MW halo is the collective response
NRAS 532, 2657–2673 (2024) 
Garavito-Camargo et al. 2021 ). These effects will also be reflected
n the gravitational potential as the density and potential are related
y Poisson’s equation. In Fig. 1 , we demonstrate the temporal
evelopment of the MW halo potential contrast for both isolated
armonic subsets and the full basis expansion simulation in the
W–LMC simulations of Lilleengen et al. ( 2023 ). We show only

https://www.youtube.com/watch?v=i18zbNxNyf8
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he harmonic subsets that are considered in this paper; i.e. harmonic 
rders abo v e the octupole, l = 3, are not shown. Additionally, we
how the potential contrast for the LMC halo described by the full
asis expansion in the rightmost column. The potential contrast is 
efined as �
 ≡ ( 
 − 
 0 ,i ) /
 0 , MW 

, where 
 0 ,i corresponds to the
onopole potential computed using only the n = 0 order of either

he MW (first three columns) or LMC expansion (final column). 
s the system evolves towards the present day (going from top 

o bottom of Fig. 1 ), the amplitude of the potential contrast of all
armonic subsets increases. The MW dipole potential contrast that 
s generated is stronger than that of the MW quadrupole. This is
xpected as the MW dipole deformation is known to have the largest
ffect on the OC stream track (Lilleengen et al. 2023 ). The potential
ontrast of the full expansion LMC is more localized than that of
he MW, while also being weaker by a factor of ∼4 −5, consistent
ith the expectation of infalling satellites (Weinberg 1989 ). Analysis 
sing the dark matter densities, with comparison to the similar yet 
istinct MW–LMC BFE of Garavito-Camargo et al. ( 2021 ), can be
ound in Appendix A . 

.2 Actions in spherical potentials 

n integral of motion, I i ( x , v ), is any function of phase-space
oordinates, ( x , v ), that is a constant along an orbit. The action–angle
ariables, ( J , � ), use a particular set of canonical coordinates where
he three momenta are integrals called actions and the conjugate 
oordinates are the angles . This choice of coordinate system makes 
he Hamiltonian independent of the angle variables, i.e. H = H ( J ),
o the angles increase linearly in time. As the actions are conserved
uantities on bound orbits, the full orbit can be explored by varying
he angles only, � , the orbital three-tori (Arnold 1989 ; Binney 
 Tremaine 2008 ). The actions quantify the rotation around the 

ymmetry axis, the oscillation amplitude in the radial direction, and 
he direction perpendicular to the symmetry axis. 

F ollowing Binne y & Tremaine ( 2008 ), we define the radial action: 

 r = 

1 

π

∫ r a 

r p 

d r 

√ 

2 [ E − 
 ( r) ] − L 

2 

r 2 
, (3) 

here L is the angular momentum, E is the energy, 
 is the gravita-
ional potential, and integral limits are the orbital perihelion, r p , and
phelion, r a . The other two actions are the azimuthal action J φ = L z 

nd the latitudinal action J θ = L − | L z | . This completes the triplet
f actions, J = ( J r , J φ, J θ ). When variations in the potential are
low compared to the typical orbital frequencies, , these potentials 
re labelled adiabatic (Binney & Tremaine 2008 , section 3.6). The 
ctions of particles in an adiabatic potential are constant and for this
eason, the actions are called adiabatic invariants. 

Throughout this work, we calculate actions in spherical potentials 
nly. Often, there will be asymmetry in our chosen MW–LMC 

otential to generate a stream. We discuss the process of spherically 
veraging the potential in Section 4.2 . There are very few instances
here analytical solutions for equation ( 3 ) exist, therefore requiring 
s to make a numerical estimate. To do this, we have implemented
 numerical version of equation ( 3 ) in JAX (Bradbury et al. 2018 )
y approximating the integral as a Gauss–Legendre summation over 
adial bins in the interval between the pericentre and apocentre. 
o check whether our numerical implementation is successful, we 
erform a check against radial actions calculated for a mock OC
tream generated o v er 3 Gyr in an analytical isochrone MW potential
Henon 1959a , b ), with a total mass M MW 

= 10 12 M � and scale radius
 s = 15 kpc , using AGAMA (Vasiliev 2019 ). We find an agreement
etween the analytical and numerical action calculation of ∼10 −6 

er cent. 

.2.1 JAX automatic differentiation 

 key part of our formalism to analyse streams requires the
nowledge of the phase- and action-space deri v ati ves with respect
o the quantities that parametrize them. These deri v ati ves are useful
n the context of information theory (see Section 4.1 ) and maximum
ikelihood estimation (MLE; see Section 4.2 ). We choose JAX to
mplement these deri v ati ves because it employs automatic dif feren-
iation. The premise of automatic differentiation exploits the fact 
hat for any given algorithm, it will execute elementary arithmetic 
perations, e.g. addition, multiplication, division, and functions, e.g. 
ine, cosine, and log. By repeatedly applying the chain rule to these
perations, the partial deri v ati ves up to an arbitrary deri v ati ve order
an be calculated automatically. 

To be able to calculate the deri v ati ves of e.g. the potential and
orces from the BFE code, we wrap functions from the MWLMC

ackage in a JAX environment. Once wrapped, we can automatically 
ifferentiate functions with respect to their input parameters. Impor- 
ant deri v ati ves to obtain are those of the potential. The deri v ati ve
ith respect to the position is simply the ne gativ e of the force at that
osition, ∂ 
 ( x ) / ∂ x = −F ( x ). From equation ( 2 ), the deri v ati ve of
he potential with respect to a time-varying basis function coefficient 
s 

∂ 
 ( x , t) 
∂ A μ

∣∣∣∣
t 

= φμ( x ) , (4) 

hich is simply the basis function corresponding to the coefficient 
 v aluated at a gi ven position. An adv antage of the automatic
if ferentiation frame work is that any subsequent function that de-
ends on the function with calculable deri v ati ves will also have
ts deri v ati v es automatically calculated. F or e xample, the radial
ction J r ( x , v , { A μ} ) has automatic deri v ati ves with respect to the
asis function coefficients, ∂ J r / ∂ A μ, because it is a function of the
otential where we know the coefficient derivatives. 
To determine the accuracy of the automatic differentiation scheme, 

e perform a check against deri v ati ves calculated numerically from
nite differencing for 10 4 test particles in the MW halo described by

he full BFE. We find that the numerical and automatic deri v ati ves
or the potential with respect to the coef ficients dif fer by no more
han ∼10 −9 per cent, while the radial action shows ∼10 −1 per cent
ifferences. Taken in comparison to the stream dispersions of ∼20 
er cent, this accuracy is more than sufficient for our problem. By
sing the JAX grad function to calculate the deri v ati ves automati-
ally, we are able to find the deri v ati ves with respect to the positions,
elocities, and coefficients for both the potential and radial action 
cross all stream particles. For the 10 4 test particles, calculating the
eri v ati ves for the radial action over 3 position elements, 3 velocity
lements, and 882 coefficients takes �30 s when e x ecuting the code
n a local environment. 

.3 Dynamical modelling of stellar streams 

.3.1 Stream generation 

o produce realistic models of stellar streams, we use a ‘modified
agrange Cloud Stripping’ (mLCS) technique (K ̈upper, Lane & 

eggie 2012 ; Bonaca et al. 2014 ; Gibbons, Belokurov & Evans
014 ; Bowden, Belokurov & Evans 2015 ; Fardal, Huang & Weinberg
015 ). Modifications were developed to include the forces from the
MNRAS 532, 2657–2673 (2024) 



2662 R. A. N. Brooks et al. 

M

L  

p  

i  

p  

f  

s  

s  

r  

b

r

w  

M  

t  

d  

d  

o  

i  

v  

a

i  

t  

p  

e  

a  

g  

e
 

c  

E  

r  

s  

d  

c  

m  

a  

h  

c  

o  

p  

t  

m  

(  

d
 

f  

i  

m  

3  

o  

2  

(  

L  

e  

2  

s  

t  

i  

B  

w  

c  

s

2

W  

i  

d  

s

 

a  

b  

(  

o  

2  

w  

t  

o  

1  

1  

l  

φ  

μ  

t  

t  

b  

t
 

e  

D  

f  

a  

T  

t  

c  

o  

p  

G  

φ  

μ  

t  

b

 

p  

g  

f

3
S

W  

a  

e  

o  

r  

a  

h  

t  

c
L  

r

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/2/2657/7702442 by Eastm
an D

ental Institute user on 30 August 2024
MC and reflex motion of the MW in Erkal et al. ( 2019 ). The stream
rogenitors are modelled as Plummer spheres (Plummer 1911 ) with
nitial masses and scale radii as defined in Section 2.3.2 . From the
rogenitor’s present-day position, we rewind the phase-space orbit
or 3 Gyr in chosen MW–LMC potentials (see Section 2.1.3 ). The
ystem is subsequently forward-evolved in the same potential, and
tream particles are released from the progenitor’s Lagrange points,
 prog ± r t , at each time-step. The Lagrange, or tidal, radius is found
y 

 t = 

[ 

GM prog ( t) 

ω 

2 − d 2 
 

d r 2 

] 1 / 3 

, (5) 

here ω is the angular velocity of the progenitor with respect to the
W and d 2 
 / d r 2 is the second deri v ati ve of the MW potential along

he radial direction. We model the mass-loss of progenitors as linearly
ecreasing in time since the progenitors are not seen in observational
ata (Koposov et al. 2023 ). We account for the velocity dispersion
f the progenitor, σv , by randomly drawing velocities from a 3D
sotropic Gaussian centred on the velocities of the stripped particles,
 strip , with standard deviation σv = 

√ 

GM prog ( t) / ( r 2 t + a 2 s ) 
1 / 2 , where

 s is the scale radius of the progenitor. The radial component of v strip 

s the same as the progenitor, while the tangential components are set
o those at the point halfway between the progenitor and the Lagrange
oint. We use the same right-handed coordinate system as Lilleengen
t al. ( 2023 ) with the Sun’s position at x = ( −8 . 249 , 0 , 0) kpc
nd its velocity v = (11 . 1 , 245 , 7 . 3) km s −1 . We include the self-
ravity of the progenitors during the mLCS such that stream particles
xperience forces due to the progenitor. 

At each time-step during the forward evolution of the system, we
ompute the forces acting on each particle. In the same fashion as
rkal et al. ( 2019 ) and Lilleengen et al. ( 2023 ), moti v ated by the

esults of Dehnen & Read ( 2011 ), we implement an adaptive time-
tep such that computational efficiency and precision are achieved
uring the integration. To capture the orbit around the MW, we
alculate � t i, MW 

= η
√ 

r i / | a i | , where i is the index over stream
embers, r i is the distance of each particle to the MW centre, a i is the

cceleration each particle feels due to the combined MW and LMC
aloes, and η = 0 . 01. To capture the orbit around the progenitor, we
ompute � t i, prog = η

√ 

r i, prog / | a i, prog | , where r i, prog is the distance
f each particle to the progenitor and a i, prog is the acceleration each
article feels due to the progenitor. We then determine the minimum
ime-step o v er all particles � t = min i ( � t i, MW 

, � t i, prog ) with a
inimum allowed time-step of 0 . 5 Myr . Similar to Lilleengen et al.

 2023 ), including an LMC time-step criterion makes no observable
ifference to the stream. 
We make the connection to observations of stellar streams as

ollows. Having generated and evolved a stream through the total
ntegration time, we take a random sample of the stream particles to
atch the number of likely stream members. The OC stream includes

60 likely members (Koposov et al. 2023 ) based on the combination
f the Southern Stellar Stream Spectroscopy Surv e y (Li et al.
019 ), Apache Point Observatory Galactic Evolution Experiment
Majewski et al. 2017 ), Sloan Digital Sky Survey (SDSS), and
arge Sky Area Multi-Object Fiber Spectroscopic Telescope (Cui
t al. 2012 ) surv e y data. To be conserv ati ve, we assume that only
50 members are observationally confirmed and generate a random
ample of the idealized OC streams to match this number. Meanwhile,
he GD-1 stream has 1155 likely members (Viswanathan et al. 2023 )
dentified using Gaia Early Data Release 3 (Gaia Collaboration 2021 ;
abusiaux et al. 2023 ), of which 783 are main-sequence stars and
e choose to generate random samples to match this value as a
NRAS 532, 2657–2673 (2024) 
onserv ati ve estimate for the number of observationally confirmed
tream members. 

.3.2 Milky Way stream selection 

e choose two MW streams with distinct radial ranges and proxim-
ties to the LMC such that we infer information about the underlying
ensity/potential fields across different parts of the MW. These
treams are as follows: 

(i) OC: The Orphan and Chenab streams were disco v ered sep-
rately (Belokurov et al. 2006 ; Grillmair 2006 ; Shipp et al. 2018 )
efore being disco v ered that the y formed two parts of the same stream
Koposov et al. 2019 ). This confusion was due to the Chenab part
f the OC stream being actively perturbed by the LMC (Erkal et al.
019 ). The OC stream is v ery long, e xtending radially ∼15 −80 kpc
ith sections passing close to the LMC, making it ideal to investigate

he MW and LMC potentials (Koposov et al. 2023 ). To match
bservational constraints, we model it as a Plummer sphere (Plummer
911 ) with an initial mass of M prog = 10 7 M �, and a scale radius of
 kpc (Koposov et al. 2019 ). We set the progenitor’s present-day
ocation using the same initial conditions as Lilleengen et al. ( 2023 ):
1 = 6 . 340 ◦, φ2 = −0 . 456 ◦, d = 18 . 975 kpc , v r = 93 . 786 km s −1 ,
α = −3 . 590 mas yr −1 , and μδ = 2 . 666 mas yr −1 , following the no-

ion of Koposov et al. ( 2019 ) and Erkal et al. ( 2019 ). The stream
rack coordinates ( φ1 , φ2 ) are given in a coordinate system provided
y Koposov et al. ( 2019 ). Appendix B of Koposov et al. ( 2019 ) gives
he rotation matrix for this coordinate transformation. 

(ii) GD-1: The GD-1 stream was disco v ered in the SDSS (York
t al. 2000 ) as a very thin and long, ∼63 ◦ structure (Grillmair &
ionatos 2006 ). The progenitor for GD-1 is unknown and has likely

ully dispersed. We model the progenitor as a Plummer sphere with
n initial mass of M prog = 2 × 10 4 M �, and a scale radius of 5 pc .
he total stellar mass of the observed GD-1 stream is estimated

o be 1 . 8 × 10 4 M � (de Boer, Erkal & Gieles 2020 ), hence our
hoice of M prog is abo v e the lower bound for the initial mass
f the GD-1 progenitor. We load the present-day 6D phase-space
osition of the GD-1 progenitor in Webb & Bovy ( 2019 ) via the
ALPY module (Bovy 2015 ). The progenitor’s initial conditions are
1 = −39 . 640 ◦, φ2 = −0 . 493 ◦, d = 7 . 485 kpc , v r = 6 . 337 km s −1 ,
α = −13 . 097 mas yr −1 , and μδ = −3 . 248 mas yr −1 . The stream

rack coordinates ( φ1 , φ2 ) are given in a coordinate system provided
y Koposov et al. ( 2010 ). 

Fig. 2 shows a mock GD-1 stream generated in an MW–LMC
otential described by the full basis set for each halo. The colour
radient represents the time at which stream particles were released
rom the Lagrange points relative to the present day, t = 0 Gyr . 

 R A D I A L  AC T I O N  DI STRI BU TI ONS  O F  

TREAMS  IN  TI ME-EVOLVI NG  POTENTIALS  

e adopt the following process to demonstrate how the radial
ction distribution of stream members changes in the different time-
volving MW–LMC potentials. We take the positions and velocities
f all stream particles at the present-day snapshot. The spherical
adial action is calculated using equation ( 3 ) by using the spherically
veraged potential, i.e. described by the monopole subset of the MW
alo BFE only. The resulting 1D distributions of radial actions for
he GD-1 (left) and OC (right) streams are shown in Fig. 3 . To
ompare the distributions for streams generated in different MW–
MC potentials, we have normalized each distribution by its mean

adial action. 
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Figure 2. A mock GD-1 stream generated in an MW + LMC potential 
described by the full basis sets for each dark matter halo. The ro ws sho w the 
stream sky coordinates (Koposov, Rix & Hogg 2010 ), heliocentric distance, 
radial velocity, and reflex-corrected proper motions, respectively. The colour 
scale shows the time at which the stream particle was released during the 
forward integration of the progenitor relative to the present day. 
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Figure 3. The distribution of radial actions n ( J r ) for the GD-1 (left) and OC (righ
MW halo described by six distinct BFE subsets: static monopole (pink), evolving
(green), monopole + dipole + quadrupole (cyan), and the full expansion (thick bla
MW halo potential. For each mock stream, the distribution is normalized by the m
distribution that appears non-Gaussian suggests non-adiabatic behaviour in the pote
appear Gaussian implying adiabatic potential behaviour locally. For OC streams gen
implying non-adiabatic behaviour locally. 
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The actions of a stream specify its path through phase space.
he stream members share similar orbits to their progenitor, hence 
haring similar actions (Helmi & White 1999 ; Helmi 2020 ; Deason &
elokurov 2024 ). As action variables are adiabatic invariants (Binney 
 Tremaine 2008 ), any changes to the potential that are slower than

he typical orbital frequency of a stream will retain a Gaussian-
istributed, or at least well-clustered, set of actions o v er time (Eyre
 Binney 2011 ; Sanders & Binney 2016 ). This is because stream

tars, before a perturbation to the Galaxy e.g. by the merger with the
MC, will initially share similar orbits (but at different phases) and
ill still share similar orbits after any slow changes to the potential

re complete. 
Streams will interact with the infalling LMC, dynamically altering 

hem. These interactions are adiabatic if the present-day distribution 
f stream actions is clustered. For GD-1-like streams (left panel of
ig. 3 ) irrespective of the degree of time dependence allowed in the
W halo, the action distribution remains clustered at present day. 
onversely, OC-like streams (right panel of Fig. 3 ) are significantly
ffected by the inclusion of any time dependence in the MW
alo potential. Spherical actions computed for streams generated in 
otentials that allow an evolving MW halo monopole or quadrupole 
how long tails to their distributions. Moreo v er, the MW halo
ipole manifests as a bimodality in the action distribution. The 
on-Gaussian nature of these action distributions suggests that the 
W halo has deformed non-adiabatically with respect to the OC 

tream. As we are e v aluating the spherical action, there may be
ontributions to the action evolution due to non-spherical changes in 
he potential. We explore the distinction between non-adiabatic and 
on-spherical contributions to the action evolution in Appendix B . 
riefly, for the OC stream generated in the full expansion MW–LMC
otential, we find that the action evolution is dominated by non-
diabatic changes to the potential. Whereas for GD-1, non-adiabatic 
ontributions are insignificant compared to contributions from the 
on-spherical changes to the potential. For both streams generated 
sing a static monopole MW halo potential, the distributions are well
MNRAS 532, 2657–2673 (2024) 

t) streams generated in the full basis expansion LMC halo potential plus the 
 monopole (indigo), monopole + dipole (yellow), monopole + quadrupole 
ck). The spherical radial action is calculated using the spherically averaged 
ean radial action and shown using a kernel density estimate. A radial action 
ntial with respect to the stream generated. For GD-1, all action distributions 
erated in deforming potentials, they show non-Gaussian action distributions, 
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an D
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lustered as expected. Indeed, the spreads of these distributions are
ominated by the intrinsic properties of tidal stripping as opposed to
he perturbative effects of the LMC, i.e. σJ, exc . LMC /σJ, inc . LMC ∼ 1. 

We note that GD-1 has been associated with perturbations due to
he Sagittarius dwarf galaxy merger (Bonaca et al. 2020 ; Dillamore
t al. 2022 ). The simulations considered in this work do not
nclude Sagittarius and future work will determine whether the GD-
–Sagittarius interaction causes its action distribution to disperse
urther. 

.1 Actions as adiabatic invariants 

he theoretical attraction of using action variables is their property of
diabatic invariance. This means, that for a time-dependent system,
he energies of particles will not be conserved. Ho we ver, for a
lo wly v arying system, there exists a combination of energy and
ime-dependent parameters, which make up the actions, that remain
pproximately constant (Vandervoort 1961 ; Landau & Lifshitz 1969 ;
ells & Siklos 2007 ; Binney & Tremaine 2008 ). For our Galaxy,
hen the potential is assumed as static or slo wly-e volving, the actions
f a stream remain approximately constant and clustered. In this
nstance, action clustering methods are appropriate to infer global
ystem properties, e.g. mass profiles. For an MW–LMC system
escribed by BFEs, the conditions under which actions remain
lustered are outlined in Appendix B . We consider changes in radial
ction as a function of lookback time for two neighbouring particles
volved in a time-dependent MW–LMC potential compared to the
tatic potential. Our equation ( B6 ) demonstrates this, connecting
hanges in the potential to changes in actions. This equation high-
ights how each basis function coefficient will affect the action
volution uniquely . Namely , the ratio Ȧ μ( t) / is a global indicator
or adiabatic invariance in the actions. The bracketed terms modulate
his global quantity to the location of the stream particles, with
he first term measuring the change in the actions of the particles
rbiting in a time-dependent system, while the second term measures
he change in actions around a particle’s orbit in a static system.
n general, non-adiabatic potentials translate themselves to a total
hange in actions, � J r ( t) ∼ O( σJ r ), i.e. comparable to the spread
f the original distribution of actions. 

 RESULTS  

.1 Information theory 

he Fisher information (Fisher 1925 ) is a way of measuring the
mount of information that a random variable y carries about an un-
nown parameter x of a distribution that models that random variable.
onaca & Hogg ( 2018 ) developed an information framework for cold

tellar streams in static potentials where the random variables y are
he tracks of the stream observations (on-sky track, distance, radial
elocity, and proper motions), while the model x includes parameters
or the progenitor, the baryonic potential components, and the dark
atter potential components. 
For a more general case where there are N model parameters x =

 x 1 , x 2 , ..., x N ] T that describe the variable y , the Fisher information
s given by the N × N positive semidefinite matrix called the Fisher
nformation matrix (FIM) with the elements 

 I ( x )] i,j = E 

[(
∂ 

∂ x i 
log f ( y ; x ) 

)(
∂ 

∂ x j 
log f ( y ; x ) 

)∣∣∣∣ x 
]

, (6) 
NRAS 532, 2657–2673 (2024) 
here [ I ( x )] i,j is the information that the variable y carries about
he covariances between the model parameters x i and x j . The
robability distribution for the random variable y conditioned on
he value of the model parameters, x , is labelled f ( y ; x ). In our case,
e are calculating the present-day information that a radial action
istribution of a stellar stream carries about the set of BFE coefficients
hat are used to model the Galactic potential. Inverting the FIM
eturns the matrix of Cram ́er–Rao lower bounds (Rao 1945 ; Cram ́er
946 ). The square roots of the diagonal elements are the bounds
n the individual coefficient model parameters. The Cram ́er–Rao
ower bounds are interpreted as the lower bounds for the best-case
ncertainties given the data and their uncertainties. 
The radial action J r is calculated starting from the phase-space

oordinates of stream members and the model parameters as the BFE
oefficients A μ that define the potential, i.e. J r = J r ( x , v , { A μ} ).
or the radial action, we assume a Gaussian distribution cen-

red on the mean action 〈 J r 〉 with a standard deviation, σJ r , i.e.
 ( J r ; A μ) = N ( 〈 J r 〉 , σ 2 

J r 
). For adiabatic invariant systems, this is a

ood approximation (Eyre & Binney 2011 ; Sanders & Binney 2016 ).
To account for the stream observational uncertainties, we take

he uncertainties for the GD-1 stream based on v alues gi ven in
aia Collaboration ( 2018 ), Malhan & Ibata ( 2019 ), and Dillamore

t al. ( 2022 ), while for the OC stream, we use the v alues gi ven in
oposov et al. ( 2023 ). Each stream member’s positions and velocities
re convolved with these uncertainties. Using these observation-like
ositions and velocities, we calculate the actions of each stream, J r ,
nd the spread of the action distribution, σ 2 

J r 
. 

Assuming that the actions are separable, the BFE-rele v ant ele-
ents of the FIM for the ( a th , b th ) coefficients are given by 

[
I 
(

A μ

)]
a,b 

= 

∑ 

stars 

( φa − 〈 φa 〉 ) ( φb − 〈 φb 〉 ) ( J r − 〈 J r 〉 ) 2 
2 

r σ
4 
J r 

, (7) 

here φj are the basis functions e v aluated at the particles’ positions,
nd with the frequency r . This expression looks similar to minimum
ntropy methods developed in Pe ̃ narrubia et al. ( 2012 ) as will be
iscussed in Section 5 . A full deri v ation and discussion of the radial
ction FIM expression for the general and Gaussian distribution cases
an be found in Appendix C . 

.2 Spherically averaged Milky Way acceleration profiles 

ur deri v ation of the information using the radial action assumes
he potential to be spherical. Hence, we only use the Cram ́er–Rao
ower bounds of the spherically averaged monopole BFE coefficients
s these terms are independent of angular contributions. For all
enerated streams, we seek the combination of monopole coefficients
hat best describe the MW halo potential given the action distribution
f the stream generated in the various time-dependent potentials.
e employ an MLE to achieve this by minimizing a log-likelihood

unction for the radial action that is assumed to be Gaussian (Eyre &
inney 2011 ; Sanders & Binney 2016 ), i.e. 

ln [ f ( J r ) ] = −1 

2 

[ 

ln 
(
2 πσ 2 

J r 

) + 

( J r − 〈 J r 〉 ) 2 
σ 2 

J r 

] 

. (8) 

he returned spherically averaged coefficients are then used to re-
 v aluate the potential, the actions plus their deri v ati ves, and the Fisher
nformation for the streams generated in time-evolving systems. 

In Fig. 4 , we show the logarithmic ratio of the acceleration
eld described by the MLE coefficients to the ‘true’ spherically
veraged MW acceleration field described by the original monopole
oefficients. In the left (right) panel, we show the ratio across the
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Figure 4. Logarithmic ratio of the spherically averaged BFE acceleration profile, described by the maximum likelihood estimates of the MW halo monopole 
coefficients, to the original spherically averaged MW halo acceleration profile. Left : For a GD-1 stream generated in a full basis expansion LMC plus an MW 

halo potential described by the following harmonic subsets: static monopole (pink), evolving monopole (indigo), monopole + dipole (yellow), monopole + 

quadrupole (green), monopole + dipole + quadrupole (cyan), and the full expansion (thick black). Right : The same as the left panel but for an OC stream. The 
gre y-shaded re gion indicates re gions outside the av erage 10 th −90 th percentiles of the radial distribution of stream particles. 
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tream radial range for the GD-1 (OC) streams. The grey-shaded 
egion indicates regions outside the average 10 th −90 th percentiles 
f the radial distribution of stream particles. In both cases, the 
cceleration field is only well reco v ered across the stream range
Bonaca & Hogg 2018 ). For GD-1, the expected acceleration profile 
cross the majority of the stream can be reco v ered reasonably well
or all potentials in which we generate streams. For OC, only in the
tatic monopole case can the acceleration be reco v ered well across
he radial stream range. All other cases that include the dipole and/or
uadrupole harmonic of the MW halo BFE description demonstrate 
arge deviations from the expected acceleration profile across the 
tream range implying that we cannot reco v er useful information 
bout the MW when it has undergone non-adiabatic evolution. 

.3 Action clustering – Milky Way mass profile 

e now investigate recovering the MW mass profile using action 
lustering. Using the MLE spherically averaged monopole coeffi- 
ients determined in Section 4.2 , we calculate the radial actions and
uantities required to determine the FIM (see Section 4.1 , equation 
 ). To make the FIM realistic in connection with observation, we
ake conserv ati ve matches for the counts of likely stream members

see Section 2.3.1 ). To a v oid biases from outlier stream particles, we
elect our random samples from the distribution of particles within 
he 10 th −90 th distance percentile. Once the FIM is known, we take its 
nverse to return the Cram ́er–Rao matrix. We draw random samples of 
pherically averaged coefficients from a multivariate normal distribu- 
ion with the mean being the MLE spherically averaged coefficients 
nd the covariance matrix being the Cram ́er–Rao matrix. Using these 
amples of spherically averaged coefficients in combination with the 
orce basis function weights, we compute the radial acceleration 
rofile. We can then infer the spherically averaged mass profiles 
or the GD-1 streams (top row, Fig. 5 ) and OC streams (bottom
ow, Fig. 5 ). For an assumed spherically symmetric potential, the 
cceleration and mass are related, a( r) = ∂ 
/ ∂ r = GM( < r) /r 2 .
n Fig. 5 , the median mass profiles are shown as the dashed black
ine with 1 σ (dark red) and 2 σ (light red) confidence intervals. If the
ystem in which the stream was generated is adiabatic, we expect to
e able to reco v er the true MW mass profile (thick black line) across
he radial range where there are stream members. The lower panels
n both rows of Fig. 5 show the number density, normalized by bin
idth, of stream members as a function of radius. 
For the mock GD-1 streams (top row, Fig. 5 ), we can reco v er the
ass profiles within 2 σ across the stream range in all cases. Although

he stream has visited smaller and larger radii on its orbit, the action
lustering method is only sensitive to local accelerations. Hence, we 
re only locally constraining the flexible BFE description of the mass
rofile across the radial extent of the stream. Outside this range, there
s a dearth of information and the confidence intervals widen. This
s in contrast to static parametrizations of potential models, which 
an lead to constraints being placed on regions outside of the stream
ange (e.g. Erkal et al. 2019 ; Malhan & Ibata 2019 ; Koposov et al.
023 ). These results imply that any time dependence in the MW–
MC potential is adiabatic o v er the evolution of a GD-1-like stream.
ence, for GD-1-like streams, we can use the clustering of actions

o infer the MW mass profile. 
For the mock OC streams (bottom row, Fig. 5 ), we can reco v er

he MW mass enclosed profile, within 1 σ across the stream range,
n the static monopole case. This result is expected as the MW halo
s not deforming; i.e. it is time-independent, and so the potential will
e adiabatic during the evolution of the OC stream. However, the
nclusion of any time dependence in the MW halo potential leads
o an inability to reco v er the mass profile across the stream range.
his suggests that the deformations of the MW halo introduce non-
diabatic behaviour in the potential that is sustained throughout the 
volution of OC-like streams. This effect is reflected as the non-
h ysical neg ative mass dips seen in Fig. 5 . These perturbations to
he mass profile mean that we are not able to reco v er the e xpected
rofile within the confidence interv als. Gi ven the definition of BFEs,
f the coefficients assign ‘extra’ weight to specific fine-tuning higher 
adial orders with smaller periodicity, the combination with the 
asis function weights can generate ne gativ e masses. These ne gativ e
asses should be addressed in future work, although this is a non-

rivial e x ercise. This could be achiev ed by putting constraints on
egions of the coefficient parameter space that permit negative masses 
o e xist. Indeed, allowing ne gativ e masses has likely impro v ed the
MNRAS 532, 2657–2673 (2024) 
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M

Figure 5. Constraints on the spherically averaged MW mass profile using the generated GD-1 streams (top row) and generated OC streams (bottom row) from 

their radial action distribution. The resulting median mass profile (black dashed lines) is shown with the 1 σ (dark red) and 2 σ (light red) confidence intervals 
as shaded bands. The number density of stream members as a function of radius is shown in the lower panels; the total number of stream members matches 
observational counts in Section 2.3.1 . The grey-shaded regions indicate radial regions where there are no stream members. The thick black line represents the 
true MW halo monopole potential go v erning the spherical part of the BFE. From left to right are shown these mass profiles for the streams generated in the 
fully live LMC + MW halo harmonic subset potentials: static monopole, evolving monopole, monopole + dipole, monopole + quadrupole, monopole + dipole 
+ quadrupole, and the full expansion. Streams that cannot recover the mass profile across their radial extent imply that their actions have been impacted by 
non-adiabatic behaviour in the underlying potential. 
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eturned mass-profile constraints. Nevertheless, these results imply
hat for OC-like streams created in MW haloes, which are time-
ependent due to the merger with the LMC, we are unable to use
ction clustering methods to reco v er the mass profile as the potential
s non-adiabatic and action clustering is no longer preserved. We
ote, for mock OC streams generated in potentials with an evolving
onopole or monopole + quadrupole MW halo, the mass profile is

iased low. A possible source of this bias is seen in these streams’
adial action distributions (see Fig. 3 ). In both cases, their action
istributions are biased to lower values relative to the mean of the
istribution and display larger spreads. It is possible that the MLE
rocedure picks up on this bias and larger action spread to produce
 set of basis coefficients that return a mass profile that is lower than
xpected. 

.4 Energy clustering – Milky Way mass profile 

he entire action clustering method presented so far can be replicated
y replacing the actions of stream members with their energies.
he energies can be simply described as the sum of the kinetic
nd potential energy. By assuming that the energies of stream
embers should be normally distributed, we can find similar sets

f MLE monopole coefficients that best describe the gravitational
otential given the energy distribution of the streams generated
n the various time-dependent potentials. In the case of energy,
ach element of the FIM has a slightly different calculation and
s detailed in Appendix D . Energy clustering is expected to be
ensiti ve e ven to adiabatic changes to the potential. Hence, we
ould expect energy clustering methods to ‘break down’ faster than
ction clustering. Further, spherical radial actions will change in non-
NRAS 532, 2657–2673 (2024) 
pherical potentials regardless of the adiabatic state of the potential.
hereas, energies do not suffer this problem but are more sensitive

o time dependence. 
Using these spherically averaged coefficients, we calculate the

nergies and quantities required to determine the FIM. Again, to
ake the FIM realistic in connection with observation, we make

onserv ati ve matches for the counts of likely stream members in
he same fashion as the actions in Section 2.3.1 . Once we have the
nergy FIM, we take its inverse to return the energy Cram ́er–Rao
ovariance matrix. Again, we draw random samples of spherically
veraged coefficients from a multivariate normal distribution with the
ean being the MLE coefficients and the covariance matrix being

he Cram ́er–Rao matrix. Using these samples of MLE coefficients
n combination with the force basis function weights, we compute
he MW mass profiles for the GD-1 streams (top row, Fig. 6 ) and
C streams (bottom row, Fig. 6 ). Fig. 6 mimics Fig. 5 but for

he constraints made by using the stream energies instead of radial
ctions. 

For the GD-1 streams (top row, Fig. 6 ), we can reco v er the
ass profile across a portion of the stream within 2 σ in all cases.
he deformations of the MW halo in its monopole and quadrupole
armonics are the mildest (see fig. 5 of Lilleengen et al. 2023 ) and we
ould expect that the energies are the least affected by their inclusion
n the potential. Ho we ver, these deformations seem to affect the
nergies in such a way that the reco v ered spherically av eraged mass
rofile is underestimated across portions of the stream radial range. 
For the OC streams (bottom row, Fig. 6 ), we obtain similar results

o the action clustering method with less obvious deviations when
ncluding the time-dependent MW halo harmonics. For the static

onopole case, we can reco v er the mass profile within 2 σ across
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Figure 6. Constraints on the spherically averaged MW mass profile using the generated GD-1 streams (top row) and generated OC streams (bottom row) from 

their energy distribution. A multi v ariate normal sampling of the maximum likelihood monopole BFE coefficients from the Cram ́er–Rao covariance matrix is 
carried out to obtain the median mass profile (black dashed lines) with the 1 σ (dark red) and 2 σ (light red) confidence intervals as shaded bands. The number 
density of stream members as a function of radius is shown in the lower panels; the total number of stream members matches observational counts in Section 
2.3.1 . The gre y-shaded re gions indicate radial re gions where there are no stream members. The thick black line represents the true MW halo monopole potential 
go v erning the spherical part of the BFE. From left to right are shown these mass profiles for the streams generated in the fully live LMC + MW halo harmonic 
subset potentials: static monopole, evolving monopole, monopole + dipole, monopole + quadrupole, monopole + dipole + quadrupole, and the full expansion. 
Streams that cannot reco v er the mass profile across their radial extent suggest that their energies have been impacted by the time dependence of the MW halo 
potential. 
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he stream range. Ho we ver, similarly to action clustering, we are
nable to reco v er the mass profile across the full stream range when
ncluding time dependence in the MW halo potential. The non- 
h ysical neg ative mass dips seen in Fig. 6 are damped in comparison
o the same dips seen in the mass profile from action clustering (see
ig. 5 ). This is a positive result if one wishes to measure the mass
rofile of galaxies using stream clustering methods when a system is
n disequilibrium. 

 DISCUSSION  

.1 Context of results 

e have demonstrated that OC-like streams generated in MW–
MC potentials including any deformations to the MW halo will 
ufficiently break down action clustering, such that we cannot locally 
eco v er the spherically averaged mass profile (see Fig. 5 ). Whereas,
or GD-1-like streams, we are still able to locally reco v er the mass
rofile even when the MW halo is allowed to be fully deforming.
hese results highlight the importance of considering deformations 

o the Galactic potential when modelling streams that are hotter, 
onger, and near the LMC, e.g. OC. 

The leading order deformation to the MW halo is the dipole 
armonic (Lilleengen et al. 2023 ), i.e. the displacement in the MW
alo centre due to the LMC’s gravitational effect. This could imply 
hat a better frame of reference for e v aluating the actions is the
hared centre of mass frame. Re-centring the MW–LMC system 

ould remo v e the non-adiabatic behaviour that is implied by the
tream actions, while simultaneously offering a possible explanation 
s to why energy clustering seems to be less sensitive to the halo
eformations. 
We showed that a similar analysis can be carried out using the

lustering of the stream energies. We found tentati ve e vidence that
nergy clustering is less susceptible to MW halo deformations as 
he deviations in the spherically averaged mass profile are damped 
ith respect to the results from action clustering (see Fig. 6 ).
e ̃ narrubia et al. ( 2012 ) used the energies of stream members

n a distinct statistical technique to constrain the MW potential 
y the minimization of entropy. This method is related to ours,
lthough our Fisher information approach is more clearly related to 
ayesian statistics. This work is the first formalism of using Fisher

nformation to determine the model uncertainties when using a time- 
ependent BFE model of the gravitational potential while acting as 
 complementary effort to other studies pushing information theory 
nto time dependence [Erkal et al. (in preparation); Lilleengen et al.
in preparation)]. Via this approach, the accuracy in recovering the 

W mass profile is sensitive to where stream members exist in
he Galaxy, i.e. a localized constraint (Bonaca & Hogg 2018 ), and
ny model assumptions made, e.g. Gaussian distributions for the 
ctions. Current state-of-the-art MW mass estimates using streams 
av e e xtrapolated mass enclosed estimates further out in the MW halo
o the virial radius (Wang et al. 2020 ; Reino et al. 2021 , 2022 ; Vasiliev
t al. 2021 ; Ibata et al. 2024 ). Ho we v er, an y constraint using a non-
arametric description for the potential, e.g. a BFE, can only produce
 localized constraint. Also, for a Fisher information approach, the 
recision on the returned mass profile is controlled by the number
f stars observed in a stream, their associated uncertainties in their
ositions/velocities, and the intrinsic stream width. This will vary on 
MNRAS 532, 2657–2673 (2024) 
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 stream-by-stream basis. Recent re vie w papers for MW (e.g. Wang
t al. 2020 ; Bonaca & Price-Whelan 2024 ) show that we know the
ass to a precision of ∼10 per cent where we have visible tracers. 

.2 Caveats 

ur action clustering method contains sources of bias that are
naccounted for in our model. The first is biases introduced due to the
nergy (phase) sorting of stars along stellar streams. For individual
treams, maximal clustering can occur for the wrong potential
ecause we do not include action–phase information. Neglecting
he phase information could in principle find a potential that exactly
ancels action–angle correlations, producing a more tightly clustered
ction distribution than that for the true potential. The bias on the
otential will differ for each stream and will likely cancel when
onsidering populations of streams simultaneously (Sanderson et al.
015 ; Reino et al. 2021 ). 
Another source of bias is the energy bimodality of stars in stellar

treams: a bias that also affects entropy-based techniques (Pe ̃ narrubia
t al. 2012 ). As stars are stripped from the progenitor’s Lagrange
oints during its orbit in the MW halo, they form two distinct tidal
ails: the leading and trailing stream arms. If sufficiently separated,
he leading and trailing tails can have distinct energy distributions
i.e. they do not overlap in energy space) with orbital energies that
re higher and lower than those of the progenitor, respectively (Eyre
 Binney 2011 ; Pe ̃ narrubia et al. 2012 ). Similarly to phase sorting,

his effect translates into action space as the radial action depends on
he energy of stars producing a ‘clumps within clumps’ effect. 

Throughout this work, we are limited by the necessity to spher-
cally average the BFE coefficients given our use of spherical
ctions. Future work to extend the current formalism to reco v er
symmetries in the MW–LMC system would require a larger set of
asis coefficients to be constrained, i.e. the harmonic orders l > 0.
uch an approach could impro v e the reco v ered properties, but it
ould require using axisymmetric actions. Further extensions could
e to include the conjugate angles and the MW disc in the potential.
Finally, there is possible insensitivity of the action clustering due

o non-adiabatic perturbations to the potential. Given a stream that is
lumped in phase space, i.e. a short and cold stream, it is possible that
arge-scale and low harmonic order deformations to the potential,
.e. the lowest order radial functions and the dipole/quadrupole of
he BFE, respectively, could be non-adiabatic but will affect the
ctions of all stream members in the same way. This would shift the
ntire distribution of stream actions without causing the clustering
o disperse. Hence, non-adiabatic changes to the potential could still
llow action clustering methods to work. This is most likely for
he coldest and shortest streams in the Galaxy. Hotter and longer
treams are likely to show dispersion in their clustering when there
re non-adiabatic changes to the potential. 

 C O N C L U S I O N S  

he merger event of the LMC with the MW is causing significant
isruption in the system (e.g. Erkal et al. 2019 ; Garavito-Camargo
t al. 2019 ; Petersen & Pe ̃ narrubia 2020 ; Conroy et al. 2021 ), in
articular, the deformations of both the MW and LMC dark matter
aloes (Petersen et al. 2022 ; Lilleengen et al. 2023 ). Stellar streams
n the MW will be affected (Erkal et al. 2019 ; Koposov et al. 2019 ,
023 ; Shipp et al. 2021 ; Lilleengen et al. 2023 ). The clustering of
tream actions has been used to constrain the mass profile of the

W when the potential is assumed to be static or adiabatically time-
ependent (Sanderson et al. 2015 ; Yang et al. 2020 ; Reino et al. 2021 ,
NRAS 532, 2657–2673 (2024) 
022 ). When time dependence is introduced into the potential in the
orm of galaxy mergers, the clustering of actions is subject to biases
Arora et al. 2022 ). The deformations to the MW dark matter halo
ue to the LMC are an example of such a system. Whether these
eformations perturb the potential in an adiabatic way is unknown
nd would impact upon using action clustering to constrain the MW
ass enclosed profile. 
We have demonstrated the ability of action clustering methods

o constrain the MW mass profile by using the N -body simulations
f Lilleengen et al. ( 2023 ), which model the deforming MW–LMC
ystem using a BFE description using the EXP toolkit (Petersen et al.
022 ). We use the spherical action clustering of GD-1 and OC streams
enerated in various MW–LMC potentials to infer the mass profiles.
his allows us to investigate which harmonic modes of the MW halo
ecome sufficiently non-adiabatic such that we are unable to reco v er
he mass profile. Our uncertainties are provided using an information
heory approach. This is the first time such a formalism has been used
or a BFE description of the MW–LMC potential. 

Our main conclusions are as follows: 

(i) Using the action clustering of GD-1-like streams, i.e. cold,
lobular cluster streams well separated from the LMC, we can
eco v er the mass profiles within 2 σ irrespective of the level of
eformations to the MW halo. This implies that any time dependence
s adiabatic o v er their e volution, allo wing action clustering of these
treams to be used to infer the mass profile of the MW halo. 

(ii) Using the action clustering of OC-like streams, i.e. hot,
warf galaxy streams close to the LMC, the inclusion of any time
ependence in the MW halo potential leads to an inability to reco v er
he mass profile within 2 σ . This suggests that deformations to the

W halo introduce non-adiabatic behaviour in the potential that is
ustained throughout the evolution of an OC-like stream. 

(iii) Using the energy clustering of GD-1-like streams, we can
eco v er the mass profiles within 2 σ . 

(iv) Using the energy clustering of OC-like streams, we find sim-
lar results to those from action clustering. Ho we ver, the de viations
way from the expected mass are not as extreme. 

(v) All mass-profile constraints made using action or energy
lustering are only local to the radial extent of the stream. 

Our results have demonstrated using action clustering methods to
onstrain the Galaxy properties when the MW halo is deforming due
o the merger with the LMC. An interesting tak eaw ay is that the
nergies of the streams seem to be less strongly affected, particularly
or the OC stream. Recent observational studies using stellar streams
osted around external galaxies have been able to constrain the mass
istribution of the host galaxy (Pearson et al. 2022a , b ; Nibauer,
onaca & Johnston 2023 ). As the prospect of detecting more low

urface brightness streams in external galaxies is set to increase
ith the Nancy Grace Roman Space Telescope (Spergel et al. 2015 ),

he increased number of streams opens up the exciting prospect for
sing energy clustering of external streams as a method to measure
he masses of other galaxies within the Local Volume as well. To
chieve this, the next step would be to apply the current methodology
o phase-space data with missing information, e.g. without distances
o the stream. 
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 PYTHON interface to integrate orbits and access to the expansion 
odel for the simulation can be found at https://github.com/sophial 
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PPENDIX  A :  M I L K Y  WAY  DA R K  MATTER  

A L O  DENSITY  C O N T R A S T  

n Fig. A1 , we demonstrate the temporal development of the MW
alo density contrast due to the LMC’s passage for both isolated
NRAS 532, 2657–2673 (2024) 
armonic subsets and the full basis expansion simulation in the MW–
MC simulations of Lilleengen et al. ( 2023 ). This figure replicates
ig. 1 using the densities instead of the potentials. 
Garavito-Camargo et al. ( 2019 , 2021 ) present similar, yet distinct,

old dark matter simulations of the MW–LMC system and high-
ighted a similar scenario for the density contrast at present day in
he latter’s fig. 1f. They state that the LMC imposes effects on the MW
hat are threefold: the collective response is primarily due to the shift
f the inner halo relative to the outer halo; a global underdensity
urrounds the transient response; and the transient response itself.
he strength of the collective response density contrast at present
ay is much higher in these simulations than in the ones considered
n this work (Lilleengen et al. 2023 ). Ho we v er, this discrepanc y
an be e xplained giv en the differences between the two MW–LMC
imulations: first, the degree of the system’s radial anisotropy will
ause orbits of simulation particles to vary and redistribute them.
aravito-Camargo et al. ( 2021 ) explored the possibility of radially
iased and isotropic MW kinematics, although both have similar
ffects on the inner halo at radii <30 −50 kpc , i.e. their fig. 15.
econdly, the mass of the LMC in Garavito-Camargo et al. ( 2021 )

s around 5–6 times more massive than Lilleengen et al. ( 2023 ) with
he former finding the strength of the l = 1 term (dipole) to be most
mpacted by varying the LMC mass. The adopted LMC mass affects
he density distribution, which translates into characteristic visible
hanges to the stellar halo distribution (Foote et al. 2023 ; Vasiliev
024 ). Other subdominant differences include the resolution of the
ark matter particles and basis expansion. All of the above can impact
he final density distribution and strength of the LMC’s dynamical
riction properties. Future work devoted to understanding the extent
o which the properties of the LMC, such as its mass and orbital
rajectory, affect the strength of its dynamical friction signature is
rucial to fully understanding the recent merger. 
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Figure A1. Temporal development of various MW dark matter halo harmonics and the LMC o v er the liv e simulation time: t = −2 . 5 Gyr to t = 0 Gyr with 
time increasing from top to bottom. Going from left to right across the columns shows the MW dipole, MW quadrupole, MW full expansion harmonic, and 
LMC full expansion. The densities are computed in the x = 0 Galactocentric plane in a slab of 10 kpc thickness. The colour map represents the density contrast, 
�ρ ≡ ( ρ − ρ0 ,i ) /ρ0 , MW 

, where ρ0 ,i corresponds to the monopole density computed using only the l = 0 order of either the MW (first three columns) or LMC 

expansion (final column). The track of the LMC through this plane is shown as the black line. Halo deformations due to the MW disc are omitted as they are 
subdominant with respect to the outer halo deformations. 
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PPENDIX  B:  A D I A BAT I C  I N VA R I A N T S  

his deri v ation is based on concepts outlined in Landau & Lifshitz
 1969 ), Wells & Siklos ( 2007 ), and Binney & Tremaine ( 2008 ). 

Consider a system with a potential 
 ( x ; λ( t)). This potential is a
unction of the time-dependent parameter λ( t) such that the energy 
a  
s no longer conserved, i.e. E = E( t), 

˙
 = 

∂ H 

∂ λ
λ̇, (B1) 

here the dotted notation indicates a time deri v ati ve. There are some
ombinations of E and λ that will remain constant. These are called
diabatic invariants . The actions, J , are functions of energy E and
MNRAS 532, 2657–2673 (2024) 
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M

Figure B1. The instantaneous time deri v ati ve of the radial action calculated 
using equation ( B6 ), normalized by the action of the progenitor at each time, 
J̇ r /J r , for the OC (black) and GD-1 (grey) streams in a full expansion, 
time-dependent MW–LMC potential o v er their last full orbit. We determine 
the fraction of the orbit that is subject to ‘significant’ action evolution, i.e. 
J̇ r /J r � / 2 π (dashed lines, same colours). For spherical actions, significant 
action evolution can arise from non-spherical and/or non-adiabatic evolution 
of the potential. We find the fraction of the orbit that is subject to non- 
adiabatic/non-spherical changes in the potential for the OC and GD-1 streams 
as ∼50 and ∼10 per cent, respectively. 
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he time-dependent parameter, λ. Varying either of these will change
 as 

 ̇= 

∂ J 

∂ E 

∣∣∣∣
λ

Ė + 

∂ J 

∂ λ

∣∣∣∣
E 

λ̇. (B2) 

n adiabatic invariant is when Ė and ̇λ are related in such a way that
he two terms in equation ( B2 ) cancel. These two terms can be dealt
ith individually and be written as 

∂ J 

∂ E 

∣∣∣∣
λ

= 

1 


= 

T 

2 π
, (B3) 

∂ J 

∂ λ

∣∣∣∣
E 

= − 1 

2 π

∫ T 

0 

∂ H 

∂ λ

∣∣∣∣
E 

d t ′ , (B4) 

here  is the frequency of an orbit in the system, and T is
he corresponding time period. The final result can be found by
ombining equations ( B1 ), ( B2 ), ( B3 ), and ( B4 ) to give 

 ̇= 

1 



[
∂ H 

∂ λ

∣∣∣∣
E 

− 1 

T 

∫ T 

0 

∂ H 

∂ λ

∣∣∣∣
E 

d t ′ 
]
λ̇. (B5) 

Now, we can make equation ( B5 ) specific to our analysis. The time-
ependent parameter λ( t) is replaced by the basis function coefficient,
 μ( t). This makes the partial deri v ati ve of the Hamiltonian with

espect to the time-dependent parameter straightforward as we know
his deri v ati ve to be, ∂ H / ∂ A μ = φμ( x ) from equation ( 4 ). This
akes equation ( B5 ) read as 

 ̇= 

1 



[∑ 

μ

φμ( x ) − 1 

T 

∫ T 

0 

∑ 

μ

φμ( x ) d t ′ 
]
Ȧ μ, (B6) 

here Ȧ μ( t) is the time deri v ati ve of the basis function coefficients.
he ratio Ȧ μ( t) / is a global indicator of adiabaticity in the potential
onsidered. The bracketed terms modulate this global quantity to the
ocation of the particles. The first term in the brackets is the variation
n particle energy. The second term is an integral of the changes in
asis function o v er the orbital time period of a particle. Cancellation
f these two terms for the integral around an orbit gives rise to
diabatic invariance. In Fig. B1 , we evaluate equation ( B6 ) for an
rbit of the OC and GD-1 streams evolved in the full expansion MW
alo potential. We define ‘significant’ action evolution as J̇ r /J r �
NRAS 532, 2657–2673 (2024) 
/ 2 π ; i.e. the radial action will change by itself o v er an orbital
eriod. As we are e v aluating the spherical action, significant action
volution arises from non-spherical and/or non-adiabatic evolution
f the potential. We find that the fraction of the orbit that is subject
o significant action evolution for the OC and GD-1 streams are
50 and ∼10 per cent, respectively. This agrees with the present-day

ction distributions in Fig. 3 for each stream generated in the full
xpansion MW halo potential. The GD-1 stream has a well-clustered
ction distribution as expected for only adiabatic spherical changes
o the potential, but the OC stream is multimodal, hinting at non-
diabatic/non-spherical changes in the potential. 

As noted, the computation of the radial action only uses the
pherical terms of the BFE, i.e. the monopole terms, so neglects non-
pherical contributions. To e v aluate the relati ve importance of the
ction evolution from non-adiabatic and non-spherical contributions,
e determine equation ( B6 ) for the evolving monopole MW halo
otential. As this potential is spherical, all action evolution can be
ttributed to the non-adiabatic time dependence of the potential.
e find significant action changes for the OC and GD-1 streams
 v er ∼50 and ∼2 . 5 per cent of the orbits, respectiv ely. F or OC, this
mplies that most, if not all, of the action evolution is driven by
on-adiabatic changes in the potential. For GD-1, this suggests that
he action evolution is mainly driven by the non-spherical evolution
f the potential, while contributions from non-adiabatic changes are
egligible. 

PPENDI X  C :  D E R I VAT I O N  O F  FISHER  

N F O R M A  T I O N  MA  TRI X  ELEMENTS  –
C T I O N S  

1 General distribution 

iven the observation of an ensemble of particles, for N model
arameters so that a = [ a 1 , a 2 , ..., a N ] T that define the action J ,
he Fisher information is given by the N × N positive semidefinite

atrix called the FIM: 

 I ( a )] i,j = E 

[(
∂ 

∂ a i 
ln f ( J ; a ) 

)(
∂ 

∂ a j 
ln f ( J ; a ) 

)∣∣∣∣ a 
]

= 

∑ 

particles 

[(
∂ 

∂ a i 
ln f ( J ; a ) 

)(
∂ 

∂ a j 
ln f ( J ; a ) 

)]
, (C1) 

here [ I ( a )] i,j is the information about the model parameters a i and
 j given the action J . The choice of the distribution of actions f ( J ; a )
s arbitrary. In the following section, we demonstrate its application
o the Gaussian distribution. 

2 Gaussian distribution 

or a case of a Gaussian distribution of radial actions centred on
 mean action 〈 J r 〉 with standard deviation, σJ r , i.e. f ( J r ; a ) =
 ( 〈 J r 〉 , σ 2 

J r 
), the log-likelihood is 

ln [ f ( J r ; a ) ] = −1 

2 

[ 

ln (2 πσ 2 
J r 

) + 

( J r ( a ) − 〈 J r ( a ) 〉 ) 2 
σ 2 

J r 

] 

. (C2) 

rom equation ( C1 ), the Fisher information element for the ( i th , j th )
ombination of parameters is 

 I ( a )] i,j = 

∑ 

particles 

[(
∂ J r ( a ) 
∂ a i 

− ∂ 〈 J r ( a ) 〉 
∂ a i 

)(
∂ J r ( a ) 
∂ a j 

− ∂ 〈 J r ( a ) 〉 
∂ a j 

)

× ( J r ( a ) − 〈 J r ( a ) 〉 ) 2 
σ 4 

J 

]
. (C3) 
r 
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e now replace the general Gaussian distribution f ( J r ; a ) with
he model-specific distribution. Our radial action J r has the model 
ariables of phase-space coordinates and is parametrized by the 
FE coefficients, i.e. a = [ A 0 , A 1 , ..., A N ] T = { A μ} , such that its
istribution is described by J r = J r ( x , v , { A μ} ). Using Leibniz’s rule
or differentiation, the derivative of the radial action with respect to 
he BFE coefficients is 

∂ J r 

∂ A i 

= 

1 

π

∫ r a 

r p 

d r 
φi ( r 0 ) − φi ( r) [

2 E − 2 
 ( r) − L 

2 /r 2 
]1 / 2 

= 

φi ( r 0 ) 

r 

− I( J ) , (C4) 

here φi is the basis function e v aluated at the particle’s position r 0 ,
he frequency is r = d H / d J r , and I( J ) is some integral (constant)
hat is the same for all particles with the same action. Now, we can
ubstitute equation ( C4 ) into equation ( C3 ) to give 

 I ( A μ)] i,j = 

∑ 

particles 

[
( φi ( r 0 ) − 〈 φi ( r 0 ) 〉 ) 

(
φj ( r 0 ) − 〈 φj ( r 0 ) 〉 

)
2 

r 

× ( J r − 〈 J r 〉 ) 2 
σ 4 

J r 

]
, (C5) 

hich is as per the expression given in Section 4.1 (equation 6 ). 

PPENDIX  D :  D E R I VAT I O N  O F  FISHER  

N F O R M A  T I O N  MA  TRIX  ELEMENTS  –
NERGIES  

1 General distribution 

iven the observation of an ensemble of particles, for N model 
arameters so that a = [ a 1 , a 2 , ..., a N ] T that define the energies E,
he FIM is 

 I ( a )] i,j = E 

[(
∂ 

∂ a i 
ln f ( E; a ) 

)(
∂ 

∂ a j 
ln f ( E; a ) 

)∣∣∣∣ a 
]

= 

∑ 

particles 

[(
∂ 

∂ a i 
ln f ( E; a ) 

)(
∂ 

∂ a j 
ln f ( E; a ) 

)]
, (D1) 

here [ I ( a )] i,j is the information about the model parameters a i and
 j given the energy E. The choice of the distribution of energies
 ( E; a ) is arbitrary. In the following section, we demonstrate its
pplication to the Gaussian distribution. 
2024 The Author(s). 
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2 Gaussian distribution 

or a case of a Gaussian distribution of energies centred on a mean
nergy 〈 E〉 with standard deviation, σE , i.e. f ( E; a ) = N ( 〈 E〉 , σ 2 

E ),
he log-likelihood is 

ln [ f ( E; a ) ] = −1 

2 

[
ln (2 πσ 2 

E ) + 

( E( a ) − 〈 E( a ) 〉 ) 2 
σ 2 

E 

]
. (D2) 

rom equation ( D1 ), the Fisher information element for the ( i th , j th )
ombination of parameters is 

 I ( a )] i,j = 

∑ 

particles 

[(
∂ E( a ) 
∂ a i 

− ∂ 〈 E( a ) 〉 
∂ a i 

)(
∂ E( a ) 
∂ a j 

− ∂ 〈 E( a ) 〉 
∂ a j 

)

× ( E( a ) − 〈 E( a ) 〉 ) 2 
σ 4 

E 

]
. (D3) 

e now replace the general Gaussian distribution f ( E; a ) with
he model-specific distribution. The particle energies E have the 
odel variables of phase-space coordinates and are parametrized 

y the BFE coefficients, i.e. a = [ A 0 , A 1 , ..., A N ] T = { A μ} , such
hat E = E( x , v , { A μ} ) = | v | 2 / 2 + 

∑ 

μ A μφμ( x ). The deri v ati ve
f the particle energy with respect to the BFE coefficients is
 E( x , v , { A μ} ) / ∂ A μ = φμ( x ). Substituting this deri v ati ve into equa-

ion ( D3 ) gives the final FIM element expression: 

 I ( A μ)] i,j = 

∑ 

particles 

[
( φi ( r 0 ) − 〈 φi ( r 0 ) 〉 ) 

(
φj ( r 0 ) − 〈 φj ( r 0 ) 〉 

)

× ( E − 〈 E〉 ) 2 
σ 4 

E 

]
, (D4) 

here φi is the basis function e v aluated at the particle’s position
 0 . This expression for the energy Fisher information is closely
onnected to the action Fisher information by the simple relations: 
r = d E/ d J r and σE = σJ r × r . 
One important difference between the Fisher information expres- 

ions for the actions and energies is that for the latter, we do not
ave to assume that I( J ) (equation D3 ) is the same for all particles.
his simplification makes the action spread smaller and hence we 
an linearly propagate the action Fisher information in equation ( C5 )
o get the energy Fisher information in equation ( D4 ). 
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