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Abstract
Human-artificial intelligence (AI) alignment ensures that AI sys-
tems align with human goals and behaviors. This paper introduces
perceptual alignment as a critical aspect of this alignment, focusing
on the concurrence between human judgments and AI evaluations
across sensory modalities. We particularly explore how Multimodal
Large Language Models (MLLMs), which process both visual and
textual data, interpret the tactile qualities of textiles—a significant
challenge in online shopping environments. Our research analyzes
six vision-based MLLMs to see how they describe the tactile ex-
perience of textiles and compares these AI-generated descriptions
with human assessments. Through semantic similarity measures
and in-person evaluations, we investigate the extent of alignment
between human perceptions and AI descriptions. Our findings indi-
cate significant variability in the AI’s ability to interpret different
textiles, highlighting both the potential and limitations of current
AI models in achieving perceptual alignment. This work contributes
to understanding the complexities of aligning AI capabilities with
human touch sensory experiences.
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1 Introduction
Artificial Intelligence (AI) lacks human-like perceptions; instead, it
processes digitized inputs through algorithms operating on com-
puter systems. For instance, Large LanguageModels (LLMs), such as
GPT-4, mainly handle text-based information, lacking an inherent
understanding of touch, smell, or other sensory inputs. On the other
hand, Multimodal Large Language Models (MLLMs) like KOSMOS-
1 [13] (text+image) process inputs from multiple modalities. They
undertake tasks integrating information from various sources such
as text and images [13, 15], and potentially tactile data [12, 26].

In the realm of online shopping, the inability to physically touch
and feel products often leads to consumer dissatisfaction and high
return rates [17]. Can AI understand our experiences of garments,
i.e. how they feel like, to help us in daily life? Can current MLLMs
bridge human and AI perception by interpreting tactile qualities
based on visual and descriptive inputs? Given that vision and text-
based descriptions are the primary forms of product presentation
in online retail, we focus on vision-based MLLMs.

In this work, we explore how well vision-based MLLMs describe
the tactile experiences of textiles compared to human assessments
— a concept we refer to as "perceptual alignment". We investigate
whether these language models can be well-aligned with humans
in assessing the tactile qualities of textiles from textile images and
catalog descriptions. Specifically, our study examines the align-
ment between AI-generated descriptions and human perceptions of
textiles’ tactile experience. Our study involved an in-person evalua-
tion with 40 participants to compare human and AI interpretations
directly. The contributions of this work are as follows:

• We evaluate the ability of six different vision-based MLLMs
to interpret the tactile experience of textiles from textiles’
appearance and their associated catalog descriptions.

• We compared the generated outputs provided by vision-
based MLLMs and by human participants using LLM embed-
dings to capture more nuanced semantic similarity.

• We explored the variability in AI’s ability to understand and
interpret different textiles, highlighting the diverse effective-
ness of AI across various textile types.
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Figure 1: An overview of the proposed method. We use images of textile samples along with their catalog descriptions (leftmost)
for Vision-based MLLMs to generate sensory descriptors. Additionally, we present real samples to human participants to elicit
descriptors (at the bottom). These descriptors are then input into an LLM encoder to produce textile embeddings (E𝑀𝐿𝐿𝑀 and
Eℎ𝑢𝑚𝑎𝑛). Subsequently, these embeddings are visualized and analyzed using t-SNE visualization in the vector space (rightmost).

2 Related Work
2.1 Human-AI Alignment
Human-AI alignment refers to the design, development, and refine-
ment of artificial intelligence systems that understand, predict, and
augment human intentions and behaviours [10, 23]. Hendrycks et
al. presented the ETHICS dataset [10] to evaluate language models’
understanding of values – basic moral principles, such as justice
and commonsense morality. Further research has built upon this
work to reduce toxicity and promote ethical behaviour in language
models with human-in-the-loop [9, 21]. Marjieh et al. [18] recently
demonstrated that LLMs, i.e. GPT-4, can effectively interpret cer-
tain human sensory judgments (e.g., colour, sound and taste) based
on textual sensory inputs. For example, they displayed the same
pair of colours (red and blue) to both humans (image) and GPT
models (hex code), requesting each to rate the similarity score, and
then comparing the resulting scores. Their findings show that judg-
ments made by GPTmodels exhibit correlations with those made by
humans. Our research extends beyond these foundational studies
by integrating semantic embeddings [4] with MLLMs. Zhong et
al. [27] examine LLMs’ ability to predict textiles from user touch
descriptions but do not compare or categorize human versus AI
descriptions, overlooking linguistic nuances and MLLMs.

2.2 Human-AI Alignment in Multimodal LLMs
Multimodal models are particularly powerful in applications where
a single modality does not provide enough information to make ac-
curate predictions or decisions. The advent of MLLMs, exemplified
by KOSMOS-1 [13], marks a significant advancement in integrating
language with perception tasks, such as multimodal dialogue and
image recognition with descriptions. Results show that MLLMs can
benefit from cross-modal transfer, i.e., transfer knowledge from
language to multimodal, and from multimodal to language.

Despite MLLMs exhibiting outstanding performance in multi-
modal tasks, it is even more crucial to understand their sensory
alignment. Extending the exploration of Human-AI alignment in
sensory judgments, Lee et al. [15] introduced the VisAlign dataset
to evaluate the alignment between AI and human visual perception,
aiding in the understanding of aligning AI with human vision per-
ceptual processes. Yet, the sense of touch remains unexplored.

3 Method
We investigate the perceptual alignment between humans and
MLLMs in "textile hand". Textile hand refers to the tactile qual-
ities of a textile when touched against the skin [3, 14]. Specifically,
we compare the embeddings of their textile hand descriptions for 20
different textiles (see Figure 1 and Section 3.1.1). Marjieh et al. [18]
presented a direct method for assessing the perceptual alignment
between LLMs and humans, involving human rating of similarity
scores. However, this approach overlooks intricacies, such as nu-
anced semantic similarities. This method can be extended to the
embedding space. Consequently, we adopted a novel method that
involves encoding human descriptions alongside those generated
by various MLLMs about textiles to a high-dimensional embedding
space using another LLM encoder to measure the similarity.

3.1 Mapping Textiles to Embeddings
Embeddings are learned representations; they capture the seman-
tics of the input data, group semantically similar items together and
keep dissimilar items far apart in the embedding space [11]. LLM
encoder assesses similarities by semantic content and overall mean-
ing rather than just lexical. This serves as a valuable measurement
tool for our study: if MLLMs are aligned with humans, clearly both
MLLM and human-generated outputs would be clustered in proxim-
ity when processed by the embedding model. We employ OpenAI’s
text-embedding-3-small [20] to create our embeddings, as this
model is among the top-performing on the market.
3.1.1 Data Preparation. We select 20 textile samples based on a
combination of a domain-focused taxonomy [28] and textile cat-
alogs [25] that cover a wide range of properties. These 20 textile
samples are from four major fiber categories: natural, animal, regen-
erated, and synthetic, using the TextileNet taxonomy [28].We chose
two widely used materials from each category based on annual con-
sumption [7]. Each sample was sourced from commercial sample
books for professionals in design as shown in Figure 1. We then
created the textiles’ catalog description with domain experts using
industry-standard descriptions from Textilepedia [6] and sample
books [25]. This ensures the data’s relevance for the textile industry
and compatibility with current LLMs. Full catalog descriptions are
provided in the Appendix.



Feeling Textiles through AI: An Exploration into Multimodal Language Models and Human Perception Alignment ICMI ’24, November 04–08, 2024, San Jose, Costa Rica

3.1.2 Map to Embeddings. Previous work has used word embed-
dings to learn the sensory description language representation in
natural language processing [1]. However, traditional word em-
beddings do not adequately capture the nuanced sentiment and
contextual meanings of the entire content as they provide static
vectors for each word [19]. This work employs a more sophisticated
approach by adopting sentence-level embeddings. Specifically, we
use advanced LLM (OpenAI’s text-embedding-3-small model
[20]), which is optimized for representing whole sentences rather
than individual word features. This offers context-aware embed-
dings that adapt to the surrounding text, allowing for a richer and
more comprehensive analysis of content sentiment [5, 8].

In other words, each description, generated either by the MLLM
(𝑓𝑀𝐿𝐿𝑀 (𝑥𝑖 )) or human (𝑥ℎ

𝑖
), is encoded by an LLM encoder model

(𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , OpenAI’s text-embedding-3-small) to generate a unique
embedding vector {𝑣𝑖 } from the image and text input 𝑥𝑖 .

𝑣𝑖 = 𝑓encoder (𝑓𝑀𝐿𝐿𝑀 (𝑥𝑖 )) (1) 𝑣𝑙𝑖 = 𝑓encoder (𝑓𝐿𝐿𝑀 (𝑥𝑖 )) (2)

𝑣ℎ𝑖 = 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥ℎ𝑖 )) (3)
Algorithm 1, 2 and 3 would generate the following sets of vectors:

E𝑀𝐿𝐿𝑀 = {𝑣1, 𝑣2, ...𝑣20}, E𝐿𝐿𝑀 = {𝑣𝑙1, 𝑣
𝑙
2, ...𝑣

𝑙
20} and E𝐻𝑢𝑚𝑎𝑛 =

{𝑣ℎ1 , 𝑣
ℎ
2 , ...𝑣

ℎ
20}. Taking E𝑀𝐿𝐿𝑀 as an example, Algorithm 1 resulted

in 20 generated vectors E𝑀𝐿𝐿𝑀 = {𝑣1, 𝑣2, ...𝑣20}, where 𝑣𝑖 repre-
sents an embedding vector generated by a MLLM. And another
20 vectors for both E𝐿𝐿𝑀 and Eℎ𝑢𝑚𝑎𝑛 are generated respectively.
This would later enable us to compare the descriptors generated by
MLLMs, LLMs and humans. The prompts and experimental settings
are detailed in the supplementary material.

For AI’s textile description, we consider the current most power-
ful MLLM/LLM families for both 𝑓𝑀𝐿𝐿𝑀 and 𝑓𝐿𝐿𝑀 : OpenAI GPT
[20], Google Gemini [24] and Anthropic Glaude [2], and compare
the following models via their official APIs:

• OpenAI GPT [20]: gpt-4 and gpt-4-turbo-preview
• Google Gemini [24]: gemini-1.0-pro and gemini-1.5-pro
• Anthropic Claude [2]: claude-3-opus-20240229 and
claude-3-sonnet-20240229

It’s worth mentioning that leading LLMs, such as GPT-4, now
incorporate the capability to process visual input data, enabling
the extraction of both 𝑓𝐿𝐿𝑀 and 𝑓𝑀𝐿𝐿𝑀 from the same model. The
experiment setup and prompts used are provided in the Appendix.

3.1.3 Visualize Embeddings in 2DUsing t-SNE. We run a t-distributed
Stochastic Neighbor Embedding (t-SNE) algorithm, which is an
unsupervised dimensionality reduction, to visualize LLM embed-
dings in 2D. This method transforms high-dimensional Euclidean
distances between data points into conditional probabilities that
reflect their similarities. The probability of point 𝑥𝑖 selecting 𝑥 𝑗 as
its neighbor is calculated as follows:

𝑝 𝑗 |𝑖 =
exp(−∥𝑥𝑖 − 𝑥 𝑗 ∥2/2𝜎2𝑖 )∑
𝑘≠𝑖 exp(−∥𝑥𝑖 − 𝑥𝑘 ∥2/2𝜎2𝑖 )

(4)

where 𝜎𝑖 represents the variance of the Gaussian distribution cen-
tered at point 𝑥𝑖 . These probabilities are then symmetrized to in-
corporate mutual relationships:

𝑝𝑖 𝑗 =
𝑝 𝑗 |𝑖 + 𝑝𝑖 | 𝑗

2𝑁
(5)

Figure 2: Embeddings of Human created 20 textiles’ catalog
descriptions (crosses) with AI generated descriptions (dots)
visualized in 2D using t-SNE.

This method effectively maps the similarities onto a 2D plane.

3.2 Human Textile Hand Evaluation
We conducted an in-person study with 40 participants (30 female,
10 male, aged 18-39, mean = 25.79, SD = 4.12) to gather descrip-
tors for 20 selected textile samples. All participants were native
or highly proficient English speakers, provided informed consent,
and were compensated for their participation. Participants verbally
described their ‘textile hand’ experience after handling textile sam-
ples placed inside a black box to avoid bias due to visual cues. Each
participant was assigned two textiles to describe and repeat this
procedure three times to familiarise them with verbalizing their ex-
periences. Their verbal descriptions were captured using automatic
speech recognition (ASR), displayed on a monitor, and confirmed
by the participants. These descriptions were then encoded into
unique vectors Eℎ𝑢𝑚𝑎𝑛 = {𝑣1, ...𝑣𝑛}. This study was approved by
the University Research Ethics Committee (Approval ID Number:
UCLIC_2021_014_ObristPE).
3.3 Evaluation Measurements
We employ the t-SNE algorithm to visually compare their embed-
dings in 2D. We first calculate the centroid of the vectors for human
descriptions of each textile, represented as Eℎ𝑐 . These centroids cap-
ture the average semantic space of human perceptions for each tex-
tile. We then compared and visualized these centroids with E𝑀𝐿𝐿𝑀

and E𝐿𝐿𝑀 in the same embedding space using t-SNE. This allows us
to observe the clustering and dispersion patterns, comparing how
closely AI-generated descriptions resemble human perceptions.

Additionally, we explore the linguistic differences between AI-
generated and human descriptions by analyzing term frequency.
We first excluded non-substantive words (e.g. "it", "this") and study-
specific terms (e.g. "feel", "touch") using Python NLTK. We then
used WordCloud for visualisation. This approach emphasizes on
the most significant content words used in descriptions, providing
insight into the focus and variability of language used.

4 Results and Discussion
We present semantic analysis in embedding space and content
analysis for understanding the alignment between AI and humans.

4.1 Alignment with Catalog Descriptions
Our initial experiment does not involve human participants but
is centred on investigating the alignment between textile catalog
descriptions and descriptions generated by LLMs. The catalog de-
scriptions (see Section 3.1.1) and the corresponding images from
the sample books [25]. The aim is to determine if formally defined
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(a) Human and MLLM textile hand description t-SNE.

(b) Human textile hand description across 20 textiles t-SNE.

Figure 3: t-SNE for human and AI textile hand descriptions.

textile descriptions correspond with LLMs’ outputs and assess the
level of agreement among various LLMs on this specific task.

Figure 2 depicts the t-SNE analysis results for textile catalog de-
scriptions generated by human and different LLMs (𝑓𝐿𝐿𝑀 ). The prox-
imity of markers in the figure illustrates the similarities between
textile descriptions—dots closer together indicate more similarity.
Catalog descriptions by humans are marked with crosses, while
those generated by LLMs are shown as solid dots. AI-generated cat-
alogs tend to cluster closely, indicating high similarity among them,
while human-generated descriptions are distinctly more distanced.
Despite these differences, the clustering of catalogs for the same
textiles by both humans and LLMs suggests a shared understanding,
confirming that both recognize the textiles in a comparable manner.

4.2 Misalignment in Sensory Representation
In this section, our analysis centres on the outcomes of the human
textile touch experience detailed in Section 3.2. The experiment
specifically targets human descriptors that originate from subjec-
tive interpretations, as opposed to the objective catalog descriptions
provided in Section 4.1. The result in Figure 3a illustrates partici-
pants’ textiles hand description (crosses) with six MLLMs (dots) and
six LLMs (triangles) textile hand description regarding 20 textiles.
Each textile is colour-coded the same way as shown in Figure 1.

We make three interesting observations. First, human descrip-
tions (clustered at the top left in Figure 3a) are distinctly distanced
from AI-generated descriptions. This suggests LLM and MLLMs’
sensory interpretations are not aligned with humans. Second, the
content obtained from humans tends to cluster together, whereas
descriptions generated from the AI are more distinguished across
different models. Third, it is intriguing to observe that, despite most
likely being trained on similar datasets (see Section 3.1.2), the AI
models exhibit considerable variance in their sensory descriptions
across different textiles, as exemplified by the Cupro Charmeuse
(no. 12, light orange) and linen plain (no. 3, green).

(a) Human Descriptions

(b) AI Descriptions

Figure 4: Word clouds from the "textile hand" descriptions.

We then take a closer look at the agreement achieved by partici-
pants as shown in Figure 3b. Although human descriptors are quite
sparse, humans generally agreed on most of the presented textiles.

4.3 Human vs MLLMs Expressions
The word clouds in Figure 4 present an initial comparison between
how MLLMs and humans describe textile hand. At first glance, we
observe significant overlap in the vocabulary used, with both clouds
featuring prominent terms like "smooth," "texture," and "soft". This
indicates a basic alignment in their perception of tactile qualities
when characterizing textiles.

However, notable differences also emerge. Humans focus on the
immediate sensory insights into what they value in textiles, like
practical usage, using terms like "one side," "fold," and "stretchy". In-
terestingly, some qualities such as "side", "thin", "rough" and "light"
are frequently mentioned by humans whereas less by the AI. Ad-
ditionally, the human descriptions also seem more grounded in
personal experience and individual perception, using subjective
and qualitative terms like "quite," "kind," and "bit". These terms not
only reflect a direct interaction with the textile but also a nuanced
understanding of its physical properties and practical functionality.

In contrast, MLLMs offer a more abstract and embellished inter-
pretation, which can sometimes be detached from everyday lan-
guage. Their language tends to be poetic and emotive, using words
such as "drape," "delicate," "luxurious," "perfect," "whisper," and "airy".
For instance, gpt-4-turbo-preview described viscose satin stripe
organza as "This fabric would caress the skin with a smooth, silky
touch, delicately kissed by the subtlest hint of texture from its satin
stripes, imparting a luxurious, airy feel with a gentle, fluid drape."
This style contrasts the human tendency to use more tangible, prac-
tical terms as P06 "When I touch it, I can feel the friction, and it’s very
soft, and the weight of this kind is very light." AI’s rich vocabulary
might come from its training on diverse data sources, including
marketing language [5]. However, this might lead to a misalignment
in interpretations of tactile textile perception, as AI often lacks the
human element of subjective sensory experiences.

5 Conclusion and future work
This work is an initial step towards exploring the perceptual align-
ment between human and AI. Despite some overlap in the vo-
cabulary used to describe 20 textile samples, as evidenced by the
alignment with textile catalog descriptions, LLMs’ interpretation of
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how these textiles feel (i.e., textile hand) is not well aligned with hu-
mans. While AI excels at processing data and identifying patterns,
it often struggles to capture the subjective and nuanced aspects of
human perception. These discrepancies highlight the challenge of
achieving human-AI perceptual alignment.

To enhance AI’s understanding of the physical world, future re-
search needs to integrate more human sensory data into AI training
processes, such as Seifi’s work on vibration libraries [22]. In addi-
tion, our study limited to textiles, exploring textures beyond textile
can enrich our understanding of tactile perception. Research should
also expand into other daily but underrepresented modalities like
olfaction to foster novel sensory interactions, as suggested by Mag-
gioni et al. [16]. Only through a better perceptual alignment, where
"better" needs to be carefully understood, can we build future AI
systems that understand the physical world and all its multimodal
facets that share our everyday experiences.
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