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Abstract 

 
Evidence shows that diabetes is a risk factor for dementia.1 But how diabetes-related 

mechanisms affect brain health in the general population is still poorly understood. 

Answering this entails examining whether glycaemia and its related markers are 

associated with specific brain changes (e.g., Alzheimer’s disease-like pathology, 

damage to the brain’s microvasculature) or cognitive impairments.  

 

In line with the growing evidence highlighting important sex differences in metabolic 

and neurological health, these associations were examined separately in males and 

females. To combine different scientific approaches (e.g., using genetics and time-

sensitive mediation analysis) when examining these relationships, two different 

samples with unique characteristics and phenotyping, National Survey of Health and 

Development and UK Biobank, were used. 

 

In National Survey of Health and Development, poorer glycaemia and insulin 

resistance were associated with lower brain volume measures in females but not in 

males. This relationship was not mediated by systemic inflammation.  

 

In the UK Biobank sample, glycaemia-brain volume associations appeared to be 

non-linear with both low and high glycaemia being associated with smaller brain 

volumes. There were some suggestions of increased susceptibility in these 

relationships for females although analysis was complicated by the non-linear 

associations observed.  

 

A polygenic risk score for glycaemia was not convincingly associated with imaging 

markers of brain health, although the weakness of the genetic instrument limited the 

conclusions that could be drawn. There were no convincing associations between 

glycaemia and cognitive outcomes in either sample. 
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Impact statement 

 
In 2020, The Lancet Commission on Dementia Prevention, Intervention and Care 

emphasised diabetes as one of the 12 modifiable risk factors that increases dementia 

risk.1 Despite this, the precise nature of how diabetes-related pathophysiology may 

impact the brain across the general population is still poorly understood. Notably, this 

thesis takes a novel stance when examining these relationships as it aims to answer 

these questions by investigating males and females separately. This is particularly 

important in the context of growing evidence showing differences in metabolic and 

neurological health between males and females. Through taking different statistical 

and modelling approaches, this thesis aims to understand the relationship between 

glycaemia (and its related traits) and brain health, examining the nuances within these 

complex relationships in two flagship UK-based population-based studies.  

A central finding of this thesis is that poorer glycaemic health throughout life was more 

robustly associated with poorer later-life brain health in NSHD. In UK Biobank, there 

were again some suggestions of increased susceptibility in these relationships in 

females, although results were complicated by the non-linear associations observed. 

Such findings have important implications as they reinforce the idea of sex differences 

in the relationship between metabolic and diabetes-related health and differing 

impacts on the brains of males and females. 

This thesis offers thought-provoking findings about the nature of these relationships 

and can inspire future research. It highlights the need for all future research exploring 

similar associations to examine whether any effects differ by sex. Important 

mechanistic questions regarding what may be driving this increased vulnerability in 

females naturally follow. In this thesis, the potential mediating role of systemic 

inflammation was explored but other mechanisms related to cardiovascular health or 

oxidative stress may also be important in the glycaemia-brain relationship. Further 

neuroimaging questions are warranted to investigate whether these associations 

persist or aggravate as participants get older and are more likely to develop dementia. 
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Since diabetes is a modifiable risk factor, this opens an important route for 

intervention.  

To ensure dissemination and impact from this body of work, four of the chapters will 

be sent for publication. Chapter 3 has already been published in Neurobiology of 

Ageing. Chapter 4 will be shortly sent to European Journal of Endocrinology. Chapter 

5 will be sent to Lancet Diabetes & Endocrinology. Chapter 6 will be sent to PLOS 

one. Some of the work in this thesis has also been published in abstracts at Diabetes 

UK professional conference, presented at The Welcome conference for longitudinal 

studies, and locally at UCL. Some work from this thesis will be submitted to 

Alzheimer’s Research UK 2025. 
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1. General Introduction 

1.1 Ageing and the diabetes-brain connection 

Advances in medical research have improved public health standards and increased 

worldwide life expectancy. A recent report by the United Nations predicts that the 

number of people above the age of 80 is expected to triple in the next 30 years.2 An 

increasing ageing population, however, is giving rise to a number of age-related 

pathological diseases and complications. Ageing is a primary risk factor for many 

conditions such as dementia.3 Dementia, now referred to as major neurocognitive 

disorder, describes a cognitive syndrome with progressive functional loss.4,5 Estimates 

suggest that the global prevalence for the condition was 57.4 million people with this 

number projected to increase to 152.8 million by 2050.6 In the absence of effective 

treatments and growing evidence indicating that the pathological onset of the disease 

may occur many years before it is clinically diagnosed,7–9 there is a need to better 

understand the mechanisms that may underlie this. An important review of meta-

analyses has identified numerous modifiable risk factors across life such as those 

relating to metabolic health including diabetes.1 Diabetes-related pathology and 

mechanisms have been associated with an increased risk of developing all-type 

dementia, with around 3% of all cases being attributed to this metabolic disease.10 As 

will be discussed in this chapter, both conditions are prevalent and share common risk 

factors, but the precise mechanisms through which the pathophysiology of diabetes 

(e.g., glycaemia) relates to brain health in the general population is still yet to be 

elucidated.  

1.2 “Normal ageing”: cognition and brain health  

1.2.1 Brain Ageing  

In order to better understand the effects of aberrant ageing on the brain, I first must 

describe “normal ageing”. Postmitotic cells, such as those that make up brain tissue, 

are particularly sensitive to the effects of ageing. Mounting evidence indicates that 
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ageing results in a number of functional and anatomical changes to the brain. A review 

of 57 longitudinal imaging studies showed that there is a 0.2-0.5% annual decrease of 

total brain volume across the adult lifespan.11 The volume and/or weight of the brain 

declines with age at a rate of around 5% per decade after age 6011 with this reduction 

speeding from age 70.12 By age 90 (or over), brains are found to weigh around ~10% 

(or 150g) less than at age 50.13  

Both cross-sectional and longitudinal studies suggest that some brain areas are more 

susceptible to ageing than others with the frontal and parietal cortices showing the 

steepest rates of age-related decline.14,15 Frontal lobe volume is estimated to decline 

0.9-1.5% per year with volume loss affecting both grey matter (GM) and white matter 

(WM).16 A recent study aggregating data from 100,000 brain imaging scans reported 

a decline of both GM and WM throughout a 100-year span with some evidence that 

the reduction in GM during late-life was steeper.17  

Some studies suggest that there are some sex-specific differences in WM and GM 

during ageing.18–20 For example, a study of 1,172 healthy older adults (aged 65-82) 

showed that females experienced a higher rate of GM atrophy (−4.7 cm³/year, 

−0.91%/year) compared to males (−3.3 cm³/year, −0.65%/year), suggesting greater 

anatomical vulnerability in females. But some regions such as the hippocampus 

showed an accelerated rate of GM atrophy with age in both sexes, highlighting its 

specific susceptibility to aging processes after 65 years of age.20 
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Figure 1.1: Representing volumetric brain changes throughout human life. Both grey 
matter and white matter volume decline as one ages but the decline in late life appears 
to be more severe for grey matter volume.17  

In addition, ageing comes with cerebrovascular changes to the brain that affect small 

vessels and cerebral blood flow (CBF).21,22 The ageing brain may thus begin to accrue 

microbleeds, loss of myelinated axons and lesions to WM tissue in the periventricular 

and deep subcortical areas. For example, white matter hyperintensities (WMH), a 

surrogate marker of small vessel disease (SVD), are uncommon under the age of 30 

but can be detected in around 90% of the population by age 65.22,23 These issues are 

discussed further below in the context of vascular disease (e.g., neurocognitive 

disorder of vascular origin or vascular cognitive impairment). 

There is also evidence of age-related changes at the intracellular or local circuitry 

level. This includes the formation of Alzheimer’s hyperphosphorylated tau 

neurofibrillary tangles (NFTs), amyloid plaques, Lewy bodies and α-synuclein.13,24 

Cerebrovasculature may also be affected with ageing, with evidence indicating a 

narrowing in vessel size, stiffening, and thickening of the vessel walls and a reduction 

in the number of capillaries. 25 These changes are associated with a great prevalence 

of WMH.24 These are described in more details below.  
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1.2.2 Cognitive ageing  

The neurobiological changes that underlie “normal ageing” are typically accompanied 

by some degree of cognitive deficit. This being said, it is important to note that there 

is considerable variety in the degree of functional loss observed across the population 

and that not all cognitive abilities are equally vulnerable to senescence.26 Cognitive 

decline describes a worsening of complex human processes such as mentalising, 

planning and problem solving.  

The scientific literature usually splits cognitive functions into two distinct categories: 

fluid and crystallised abilities. Fluid abilities support the active processing of new 

information and thus capture cognitive domains such as memory, reasoning, and 

processing speed. In contrast, crystallised abilities refer to abilities that use learned 

skills and knowledge such as language and visual perception.27 Research has 

demonstrated that fluid abilities are most susceptible to ageing, with studies indicating 

that they peak in early adulthood and begin to decline before age 50.28,29 In contrast, 

crystallised abilities can remain well-preserved, even in the face of mild dementia and 

only begin to decline much later in life.30,31 Since it is those fluid cognitive abilities that 

typically decline earlier in life, research into cognitive decline has focused on 

assessing domains of memory, executive function, speed of processing and 

visuospatial function. Epidemiological studies have found that factors such as 

childhood cognition, individual and paternal educational attainment, occupational 

complexity and adult occupational class influence the trajectory of cognitive decline.32 

It is important to note that there are limited studies that have been able to explore the 

effect of ageing on cognition and brain volume in the same sample from the general 

population. Similarly, very few studies allow investigating changes in brain and 

cognitive health across the entire life course. This implies that research into changes 

in cognitive and brain health in the context of normal ageing can be biased depending 

on the study design used. This can be due to bias in the recruitment or 

misclassification of participants. For example, individuals who are ill or have less social 

and financial support could be less likely to enrol in research studies. Evidence for this 
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can be seen in the UK Biobank where participants have been found to be healthier, 

smoke less and have a lower incidence of disease than the general UK population.33 

This is discussed in more detail in Chapter 2.5.1.  

1.3 Cognitive impairment and dementia 

Pathological aging includes cognitive, behavioural and functional impairments that 

exceed the expected “normal” age-related decline such as those characteristic of 

neurogenerative diseases such as dementia. Individuals considered in the “transitional 

stage” showing cognitive deficits but failing to meet the diagnostic criteria for dementia 

have mild forms of the respective neurocognitive disorder (e.g., mild cognitive 

impairment (MCI)). MCI is associated with a higher conversion risk into dementia, 

however there is considerable heterogeneity in the underlying biological mechanisms 

behind the condition and how it progresses into the full-blown disease across the 

population.34–36  

The clinical assessment for dementia is comprehensive and multifaceted. It involves 

a two-part process that first aims to diagnose a person with the condition and then 

secondly identify the cause of it. These processes include a combination of an 

investigation into the patient’s history and assessments of mental and physical 

abilities.37 The full history of a patient may be obtained directly from the individual 

and/or suitable informants (such as relatives) to gain an insight into any behavioural 

or cognitive change that the patient may have experienced. Mental state examinations 

will also be carried out, aiming to identify the presence of clinical symptoms such as 

those of depression, psychosis, physical illness as well as self-neglect and agitation. 

These may include a range of assessments of cognitive function, such as the Mini-

Mental State Examination (MMSE), a standard test that captures temporal and spatial 

orientation, attention, registration, recall, language and working memory.38 Clinicians 

then use thresholds to ascertain cognitive impairments (e.g., for the MMSE, a score 

below 23 from 30 is considered to reflect impaired cognition). A physical examination 

is also required to study other conditions that may affect the functioning of the central 

nervous system (CNS). For example, assessing blood pressure and focal neurological 
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signs may help identify a neurocognitive disorder of vascular origin. Clinicians assess 

hearing and vision to exclude impairments that may exaggerate cognitive dysfunction. 

Other screening typically involves a full blood count, erythrocyte sedimentation rate, 

serum B12 and folate, urea and electrolyte levels, and tests of liver and thyroid 

function. The definitive diagnosis of Alzheimer’s disease (AD) requires post-mortem 

analysis of brain tissue for pathological markers. This contrasts with neurocognitive 

disorders of vascular origin (formerly known as vascular dementia), which despite 

several attempts do not have generally accepted neuropathological criteria.39 

Several conditions may cause dementia or major neurocognitive disorders, with the 

AD aetiology at the heart of around 70% of cases.40 Other common causes of 

dementia include vascular cognitive impairment (VCI), dementia of Lewy bodies 

(DLB), frontotemporal dementia (FTD), and Parkinson’s disease dementia (PDD). 

1.4 Risk factors for dementia 

The last decades of research have uncovered a number of predictive risk factors for 

dementia and cognitive impairment. These include non-modifiable (e.g., age, 

apolipoprotein E (APOE) status, sex and ethnicity) and modifiable factors (e.g., 

hypertension, obesity, smoking, physical activity, and hearing loss). A more 

comprehensive list consisting of 12 modifiable risk factors for dementia has previously 

been described in detail in the report by the Lancet Commission on Dementia 

Prevention, Intervention and Care.1  

1.4.1 Non-modifiable factors 

Sex is an important non-modifiable factor for dementia. It is discussed in detail in 

section 1.5. 

Increasing age, as mentioned above, is predictive of poorer brain health, with each 

decade of ageing being associated with a higher risk of being diagnosed with 

dementia. One meta-analysis observed an exponential increase in dementia rate that 

doubled every 5 years from age 65 to 90.41 However, another meta-analysis of 12 
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studies suggested that incident rates of dementia slow down with increasing age 

tripling every 5 years before age 63, doubling every 5 years between ages 64 and 75 

and increasing by 1.5 times by age 85.42  

Genetic predisposition is an important factor in cognitive decline. The APOE e4 gene 

(APOE ε4) has been found to confer an elevated risk for AD and its related 

pathology.43,44 Very briefly, the APOE protein is present in several classes of 

lipoprotein particles and is involved in lipid homeostasis.45 In the CNS, APOE is mainly 

produced by astrocytes transporting cholesterol to neurons via APOE receptors 

(APOER).46 The human APOE gene exists as three polymorphic alleles—ε2, ε3 and 

ε4—having a worldwide frequency of ~8%, ~78% and 14%, respectively.47 Being an 

APOE ε4 carrier is the strongest genetic risk factor for sporadic AD and amnestic 

MCI.44 Carriers of the ε4 allele have a higher risk for AD as well as typical earlier age 

of onset for the condition, compared to non-carriers.48 Around 40% of all individuals 

with AD carry at least one copy of the allele.44 One copy of the ε4 allele increases the 

risk of developing AD by about 3.7 times whereas two copies increase the risk up to 

12 times.49 Carrying the ε2 allele (APOE ε2), the least common one, is thought to have 

a protective effect as it reduces the risk of AD by about 40%.50 Importantly, some 

studies suggest that the genetic driven-vulnerability caused by having two copies of 

APOE varies across populations, being weaker in African Americans (OR: 5.7) and 

Hispanics (OR: 2.2) but stronger in Japanese individuals (OR: 33.1). There is also 

evidence that APOE may confer sex-specific effects on the brain since females with 

the ε4 polymorphism have been found to have a higher risk for AD, a more rapid 

cognitive decline as well increased burden of NFTs compared to males.47,51,52  

A recent systematic review and meta-analysis also identified ethnicity as an important 

risk factor with ethnic differences in AD incidence. Black individuals were found to 

have a higher risk of developing dementia compared to White individuals, with a 

pooled risk ratio of 1.33, while Asian individuals have a lower risk with a pooled risk 

ratio of 0.86. There was no significant difference in dementia incidence between Latino 
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and White individuals.53 The complex relationship between ethnicity and AD risk is still 

not well understood.  

1.4.2 Modifiable factors   

The recent Lancet Commission for Dementia Prevention, Intervention and Care 

identified 12 risk factors that could prevent or delay up to 40% of dementia cases.1 

These included risk factors related to early life (e.g., low education), midlife (e.g., 

hypertension, obesity, hearing loss, brain injury, and alcohol abuse) and late life (e.g., 

smoking, depression, living a sedentary lifestyle, social isolation, diabetes and air 

pollution). 

Individuals with lower education were 1.6 times more likely to develop dementia, 

based on a Weighted Population Attributable Fraction (Weighted PAF). it was 

estimated that 7.1% of dementia cases in the population can be attributed to 

inadequate education.1 Higher levels of education can alter the shape of our cognitive 

trajectory delaying the onset of cognitive symptoms and protecting us against 

neurodegenerative diseases.54  

Metabolic-related risk factors such as hypertension, obesity, physical inactivity and 

smoking together were predicted to account for 10.4% of dementia cases.1 This is 

supported by findings demonstrating that the treatment and management of 

cardiometabolic health is an effective protective approach reducing dementia risk.55 

For example, one study found that the risk of dementia and AD can be lowered by 

28% and 45% respectively with physical activity.56 Exercise is neuroprotective and has 

been associated with preserved brain volumes, particularly in the hippocampus which 

is crucially involved in memory and learning and is characteristically vulnerable in 

AD.57 It has been found that current smokers have a 30% increased risk of developing 

all-cause dementia, 40% higher risk for Alzheimer’s disease and 38% higher risk for 

VaD. Furthermore, the risk of all-cause dementia increased with every 20 cigarettes 

smoked.58 Diabetes is also an important metabolic modifiable risk factor for dementia.1 
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Its associations with brain health and conditions such as dementia is discussed further 

below.  

1.5 Sex as a risk factor for dementia  

Sex differences have been reported in the incidence of dementia. Studies of European 

cohorts have shown that the prevalence of AD is 7.02 per 1000 person-years in males 

vs 13.25 per 1000 person-years in females.59 Individual participant data from the 

COSMIC Consortium, revealed that the risk of all-cause dementia was higher in 

females.60 There were however significant country-level variations with age-adjusted 

rates of dementia found to be the highest among the lowest-to-middle income 

countries. Another meta-analysis has suggested that although there were no sex-

specific differences in the prevalence of age-specific dementia, AD prevalence was 

higher for females.61 This higher risk in females was observed at various ages 

including between 60-64, when it was triple that of males as evidenced by the 

incidence rate was 0.6 per 1000 person-years for males (Confidence Intervals (CI): 

0.4-1.0) and 1.8 per 1000 person-years in females (CI: 1.2 to 2.7). This is consistent 

with recent data from the Alzheimer’s Association which found that 3.3 million of the 

5.2 million people with AD in the United States (US) are female.62 Some of this excess 

has been attributed to the different survival rates between males and females. Newer 

evidence suggests that these differences may be due, at least in part, to biological and 

socio-cultural mechanisms. The impact of these on brain health are still poorly 

understood. In regard to brain pathology, some studies suggest a larger brain size in 

males than in females both in post-mortem and vivo imaging studies,63,64 although the 

extent to which this is independent from differences in body size is unclear.  
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1.6 The cognitive and neurological markers of neurocognitive 

disorders  

1.6.1 Introduction   

The latest Diagnostic and Statistical Manual (DSM) Fifth Edition (DSM-V) has replaced 

the term dementia with neurocognitive disorders. This term broadly captures a 

spectrum of cognitive and functional conditions (e.g., AD and vascular disease) that 

form the basis of the clinical diagnosis made.5 In this section, the different causes of 

these conditions and their manifestation will be discussed with a specific focus on the 

AD and vascular disease subtypes. The other prevalent subtypes such as 

neurocognitive disorders with Lewy bodies and frontotemporal lobar degeneration are 

comparatively infrequent. These will not further be covered in this thesis.  

1.6.2 Alzheimer’s disease 

AD is the single biggest cause of dementia/neurocognitive disorder accounting for 

over 50-70% of clinically diagnosed cases. It is typically diagnosed in the eighth or 

ninth decades of life, but early onset forms of the disease may be diagnosed as early 

as the fifth decade.65 Average duration of survival is about ~5-7 years after the onset 

of dementia,66 but this varies widely depending on the age of onset, the severity of the 

cognitive impairment experienced and the presence of comorbid diseases, as well as 

other factors.67  

The two main pathological hallmarks of AD are extracellular deposition of Aβ and 

intraneuronal NFTs in the brain. Downstream of these neuropathological markers is 

synaptic and neuronal degeneration, which manifests as macroscopic atrophy that can 

be picked up by magnetic resonance imaging (MRI). Clinically, AD is associated with 

impairments in episodic memory affecting the ability to learn and remember new 

information.68 These cognitive symptoms are associated with early NFT in medial lobe 

structures, such as the hippocampus and entorhinal cortex (discussed further 

below).69 Other impairments include deficits in visuospatial abilities70 and language.71  
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AD brains also show considerable atrophy across a range of structures. These include 

regions of the frontal and temporal cortices which show both enlarged sulci and 

atrophy to the gyri.72 Atrophy of the temporal cortices can reflect damage to regions 

of the medial temporal lobe such as the amygdala and the hippocampus, with the latter 

being crucially important for memory formation and learning. Several MRI studies have 

reported that total hippocampal volume (HV) are 25% lower in clinical AD patients than 

healthy controls.73 Hippocampal atrophy rates have also been reported to be more 

than 3% higher in AD patients than in controls.74 HV loss correlates with the severity 

of cognitive disorders and episodic memory deficits in MCI and AD.75,76 Despite being 

one of its cardinal features, hippocampal atrophy is known to lack specificity for AD, 

and it may lack both sensitivity and specificity at the MCI stage since it can be present 

in non-AD forms of dementia, like VaD,77,78 semantic dementia,79 PDD78 and 

frontotemporal lobar degeneration.80 

Tissue loss has also been reported in posterior cortical regions in areas such as the  

precuneus, posterior cingulate gyrus and temporo-parietal cortex.72,81–83 Despite such 

loss, other regions such as primary motor and somatosensory cortices have been 

found to be preserved.72 Early cerebral atrophy in AD is thought to be due primarily to 

neuronal loss84 but it is worth noting that some of these macroscopic changes such as 

the cortical atrophy observed in the frontal lobe are not specific to AD and may overlap 

with some other conditions as well as, to some extent, with natural ageing processes. 

1.6.3 Neuropathological markers of AD   

Aβ deposits consist of aggregated Aβ primarily found in GM tissue. Aβ plaques consist 

of toxic polypeptide aggregates composed of 39 to 43 amino acids (Aβ40 and Aβ42). 

These are generated through proteolytic cleavage of a larger amyloidal precursor 

protein (APP).85 These plaques are spherical lesions and can usually found in the 

basal neocortex, spread into the neighbouring neocortical areas and the hippocampal 

formation, and finally appear in primary neocortex.86 The evolution of Aβ plaques is 

not thought to correspond to disease stage nor is it specific for AD since amyloidal 

plaques can be observed in the brain during “normal ageing”.87,88 
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NFTs are fibrillary intracytoplasmic structures of abnormally hyperphosphorylated tau 

proteins.89 Tau is a protein crucial for the stability, assembly and maintenance of 

axonal microtubules.90 Tau can be measured using techniques such as positron 

emission tomography (PET) and cerebrospinal fluid (CSF) analysis. The former is 

discussed in more detail later. 

The progression of NFTs in the human brain in the context of AD can be described by 

the Braak and Braak stages. This staging system is based on the distribution and 

severity of NFTs within different regions of the brain.69 NFTs first typically appear in 

the medial region of the perirhinal cortex before progressively spreading to the limbic 

area, followed by areas of the neocortex. Tau pathology in AD appears to correlate 

with disease stages and is required for a neuropathological diagnosis of AD.91 NFTs 

in AD are closely associated with cognitive decline and brain atrophy.92,93 The amount 

and distribution of NFTs has been found to correlate with the severity and duration of 

dementia.94 

The understanding of the manifestation of these AD biomarkers is constantly evolving. 

There is now evidence of significant pathophysiological changes occurring in the 

prodromal stage, long before clinical symptoms manifest.23,72 A sigmoid-shaped 

trajectory of biomarker changes has been proposed with amyloid-related pathology 

being followed by tau and neurodegenerative markers.95 Revised models of this 

prioritise change across these trajectories (rather than clinical symptoms), consider 

inter-subject variability and modify the temporal ordering of biomarkers by recognising 

the possibility that Aβ and tau proteinopathies may occur independently in late-onset 

AD.95 This is consistent with the idea that AD progresses as a continuum, starting with 

brain pathology in asymptomatic individuals, advancing through stages of increasing 

pathology and eventually resulting in clinical symptoms.  

More recently, the “A/T/N” system for categorising AD biomarkers into three binary 

groups has been proposed: "A" stands for amyloid beta (Aβ) deposition (amyloid PET 

or CSF Aβ42), "T" for tau pathology (CSF phosphorylated tau or tau PET), and "N" for 

neurodegeneration (CSF total tau, FDG-PET, or structural MRI). Each category is 
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scored as positive or negative to create various combinations such as A+/T+/N−, 

A+/T−/N−, etc. Each combination represents a different biomarker profile, making this 

system a comprehensive framework for describing and studying AD or other related 

pathologies. The “A/T/N” system effectively addresses several key issues in AD 

research. It neatly integrates newly developed tau PET tracers, which measure NFTs 

that correlate strongly with clinical impairments, and accommodate for the uncertainty 

in the causal relationship between amyloid and tau pathologies by not assuming a 

specific temporal order of events. By providing a flexible and unbiased classification 

that is independent of consensus diagnostic criteria, it comprehensively represents all 

clinical states.96 

 

Figure 1.2: Photomicrograph of tissue from the temporal cortex of a patient with 
Alzheimer’s disease. A neuritic plaque is shown by a black arrow and a neurofibrillary 
tangle by a red arrow (Source: published work by Perl).72 
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Figure 1.3: Photomicrograph of tissue from the temporal cortex of a patient with 
Alzheimer’s disease.  
A neurofibrillary tangle is shown by the red arrow whereas a dystrophic neurite that 
forms the outer rim of the senile neuritic plaques is singled out using a black arrow 
(Source: published work from Perl).72  

1.6.4 Vascular cognitive disorders and vascular dementia   

The DSM-V uses the global diagnostic criteria of vascular neurocognitive disorder to 

describe mild and major cognitive syndrome of vascular origin.  

The major syndrome, synonymous with vascular dementia (VaD), refers to a 

syndrome of vascular origin that accounts for around 15-17% of all dementia cases. 

This makes it the second leading cause of dementia after AD. The incidence for the 

condition has been found to increase with age, with some suggesting a doubling every 

5–10 years after the age of 65 years.97 However, the heterogenous nature of VaD has 

resulted in various criteria being developed. And more recently, the term VCI has been 
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proposed for its inclusivity of various cognitive conditions of vascular aetiology. The 

recently published guidelines from the Vascular Impairment of Cognition Classification 

Concensus Study (VICCCS) broadly defines VCI as clinically meaningful impairments 

that severely impact one’s quality of life. The second criteria for mild or major VCI is 

imaging evidence of cerebrovascular disease. The criteria and new trends about VCI 

are discussed by Barbay and colleagues.98 

In regard to its underlying mechanisms, any of the numerous aetiology causes of 

stroke (e.g., SVD, large artery atherosclerosis, or cardiac embolism) can result in 

VCI.99 The most common cause of VCI is thought to be damage to small vessels 

(diameters of ~50 to 400µm), termed cerebral SVD. Damage to these smaller vessels 

(i.e., arterioles, capillaries and venules) has been found to affect the integrity of the 

blood–brain barrier (BBB), resulting in cerebral hypoperfusion and WM degeneration. 

SVD can manifest as WM lesions, lacunes and microbleeds. WMH of presumed 

vascular aetiology can present as multiple punctuate or periventricular lesions and 

subcortical lesions, which appear hypodense (on CT) or hyperintense (on MRI T2/ 

Fluid attenuated inversion recovery (FLAIR) imaging). Due to their appearance and 

location in deep GM and WM, WMHs are described as subcortical vascular disease. 

But the manifestation of SVD may affect the cortex resulting in both microscopic 

vascular lesions and cortical atrophy.  

The clinical evolution of VCI can be often variable as it can represent a gradual 

deterioration triggered by a novel vascular insult (e.g., a stroke) or as a chronically 

deteriorating syndrome. The profile and temporal evolution of the cognitive deficits tied 

to VCI, and neurocognitive disorders of vascular origin are also variable. Cognitive 

decline may develop gradually, sequentially, or through a combination of both. Current 

diagnostic criteria no longer require the presence of memory impairment, which is 

typically characteristic of AD.39 Brain lesions of vascular origin have been previously 

associated with impairments in executive function, processing speed and language 

abilities.99,100 Another common finding in patients with VCI is a deficit in delayed recall 

of word lists and visual content.100 It is generally accepted that VCI may occur more 
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commonly with prevalence rates of 30% in males compared to 25% in females.101 This 

being said, VaD pathology may be decreasing over time due to improvements in 

vascular health.102 As previously mentioned, WMHs are also reported in the general 

healthy population although their rates are much lower.22  

1.6.5 Overlap of the AD and vascular subtype   

Clinic-based studies show that many with dementia show mixed pathology.103 This 

may be reflective of the high frequency of both vascular and AD-related pathology in 

the elderly as well as the shared risk factors between these conditions. Evidence from 

the Religious Orders Study and the Rush Memory and Aging Project revealed that 

mixed vascular and AD-type pathology was predominant in patients diagnosed with 

dementia.103 Both individuals with AD have been found to show SVD (e.g., WMHs and 

lacunar infarcts) and those with VaD may exhibit amyloidosis and tau tangles.104 

These pathologies may interact as the combination of WMHs and Aβ pathology have 

been shown to negatively impact HV in elderly participants and increase dementia 

risk.103,105 The volumetric changes typical of AD such as lower HV and global atrophy 

have been shown to also correlate with VaD.106,107 It has been previously suggested 

that there is a multiplicative effect between vascular and AD-type pathology on 

cognition,108 although more recent studies suggest that their effects are additive.109–

111 It is however likely that the association between the two are more complex. 

Vascular brain lesions may also lower the threshold of AD pathology required to induce 

dementia.108,112,113 Novel autopsy data show that both large- and small-artery disease 

are associated with AD dementia, independently of infarcts.114 In addition, vascular 

risk factors have been shown to be associated with damage to areas commonly 

damaged in AD/MCI, perhaps due to being watershed regions with strong vascular 

supply.115 Overall, mixed neuropathological evidence highlights the complex 

mechanistic interplay between vascular issues and neurodegenerative diseases. 
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1.7 The brain – how to study it?  

1.7.1 Introduction   

The development of neuroimaging techniques has helped to bridge the gap in our 

understanding of how the brain changes during healthy ageing and disease. These 

safe and non-invasive methods have given us several indices of brain structure and 

function. In disease, some imaging criteria can help exclude certain non-degenerative 

pathologies or distinguish neurocognitive subtypes for diagnosis. These techniques 

are complimentary to cognitive and clinical assessments. Imaging techniques include, 

but are not limited to, MRI, computed tomography (CT), positron emission tomography 

(PET), functional magnetic resonance imaging (fMRI) and functional near infrared 

spectroscopy (fNIRS). In addition, there are other promising blood biomarkers that are 

now being investigated in AD research, but these will not be discussed further in this 

thesis.  

1.7.2 Overview of Magnetic Resonance Imaging: 

MRI is a fundamental research and clinical tool used to investigate the anatomical 

structure of various parts of the body. In neuroscience, MRI is used to generate 

detailed images of the brain which can help identify cerebral markers associated with 

cognitive decline and neurological disease. It is considered safe and non-invasive 

since it does not contain ionising radiation (unlike CT and X-ray scans).  

The description that follows is a simplification of the use of MRI since a comprehensive 

explanation would involve delving into quantum and “classical theory”, but these go 

beyond the scope of this thesis. Some of the concepts discussed below originate from 

the following journal.116  

MRI is based on the magnetisation properties of atomic nuclei. In the presence of a 

strong magnetic field (typically of 1.5 to 7 Tesla), nuclei (protons) of hydrogen atoms 

found in fat and water within the human body act like tiny dipoles and align their spins 

either in parallel or antiparallel to the field. This creates a net magnetic field (known as 
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B0). Once aligned, the spins of the hydrogen nuclei precess around the magnetic field 

line with the frequency of this rotation known as the Larmor frequency. Anti-parallel 

and parallel protons cancel each other out in terms of the magnetisation vector, but 

the surplus of parallel protons aligned with the magnetic field produces a “net 

magnetisation vector” MZ. 

The next step in MRI involves sending a short burst of radiofrequency (RF) energy 

which creates a rotation magnetic field at the same frequency as the angular frequency 

of the precessing protons. This disrupts the alignment of protons from their equilibrium 

resulting in some of them being tipped into a higher energy state (from parallel to anti-

parallel), resulting in more anti-parallel protons and transversal magnetisation. When 

the RF pulse is switched off, the net magnetisation returns to equilibrium, protons relax 

back to their original, lower-energy state and electromagnetic energy is re-emitted and 

the nuclear magnetic resonance (NMR) signal is picked up by receiver coils of the MRI 

scanner placed around the participant. The emitted signals are crucial as they carry 

information about the local magnetic environment and properties of the tissues being 

imaged. 

The timing and characteristics of the RF pulse is crucial in determining the contrast of 

the images produced and the specific information obtained in the MRI scan. By using 

a pulse sequence (multiple RF pulses) and modifying the time intervals between these 

different signals, researchers can influence the signal intensity and contrast of the final 

images produced. The time between the repetition of RF pulses is known as Time to 

Repeat (TR) whereas the time between the delivery of successive RF pulses and the 

receipt of the echo signal that follows is known as Time to Echo (TE). A short TR and 

TE generate T1-weighted images whereas a long TR and TE produce T2-weighted 

images.  

T1-weighted images can be used to evaluate global and regional brain structure, 

tissue atrophy (with repetitive scans), as well as the assessment of tissue specific 

changes such as those characteristics of GM (affecting neurons, synapses, and the 
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damage and expansion of CSF spaces)117 or those of WM (affecting white matter 

rarefaction, predominantly glial cells).  

FLAIR is a variation of a T2-weighted imaging where the CSF signal is suppressed to 

allow better detection of lesions near fluid-filled spaces making it useful for detecting 

WM lesions, presumed to originate from demyelination and leukoaraiosis.117 In 

addition, PET imaging can be used (and can be combined with MRI) to detect 

evidence of abnormal Aβ plaques and tauopathy. For example in Insight 46, a 

neuroscience and clinical sub-study of NSHD, a Biograph mMR 3 T PET/MRI scanner 

(Siemens Healthcare, Erlangen) was used to perform simultaneous acquisition of 

dynamic amyloid PET and MR data.118 This can be particularly useful in reducing 

scanning time and participant exposure to radiation.   

 

Figure 1.4: Example MRI scans using T1, T2 and FLAIR sequences.  
T1 weighted images can easily be distinguished by looking at the cerebrospinal fluid. 
For T1 weighted-images, the cerebrospinal fluid appears dark whereas for T2-weighted 
images it appears as bright (Source: case.edu website).119 
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1.7.3 Imaging of the structural brain in dementia: MRI indices of brain health 

1.7.4 Global and regional brain volumes   

Brain atrophy refers to brain volume loss not related to a specific macroscopic focal 

injury such as those that originate from trauma or infarction.120 It can be generalised  

(representing widespread shrinkage throughout the brain), focal (e.g., localised 

shrinkage preferentially affecting the hippocampus), tissue specific (e.g., 

predominantly affecting GM) and can be further subdivided into subcortical atrophy 

(enlargement of the ventricles) and cortical atrophy (enlargement of the cortical sulci). 

It is best identified through T1-weighted images generated by an MRI machine. 

Neuropathological correlates of atrophy are heterogeneous and diverse including not 

only neuronal loss, but also cortical thinning, cerebrovascular disease, and white 

matter rarefaction (e.g., demyelination).121  

As mentioned above, in addition to the distinction it makes between global and 

regional tissue, MRI can distinguish between GM and WM volumes. At the cellular 

level, both tissue types are composed of neurons; GM consists mainly of cell bodies, 

dendrites, axons, and synapses; while WM predominantly involves myelinated axons, 

glial cells, and vasculature. Theories have argued for both different mechanistic and 

complimentary roles for each tissue. For example, Twin Studies report that GM and 

WM share around 68% heritability whereas other evidence suggests a different 

transcriptomic profile of each tissue type, indicating cellular and functional 

heterogeneity between them and highlighting the importance of studying both tissue 

together as well as separately.122,123 

Exploring WM changes in disease is important especially in the context of the 

noticeable shift from the neuron-centric view of the nervous system. Glial cells (that 

make up the majority of WM tissue) play an important role in a range of functions such 

as  synaptic plasticity, cognition and brain health, with more recent evidence 

highlighting the role of glial cells in potentially exacerbating AD-related 

neuropathology.124,125  
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1.7.5 White matter hyperintensities 

Since small vessels cannot be resolved by conventional MR imaging, parenchymal 

lesions are used as a proxy of SVD. WMHs are mostly bilateral and symmetrical 

hyperintense lesions detected on T2-weighted and FLAIR MR images.120 They 

present as white matter degeneration characterised by neuronal loss, demyelination, 

and gliosis on neuropathologic examination. They are distributed in the periventricular 

and deep WM of the cerebral hemispheres, in the basal ganglia, and, less frequently 

in the posterior parts of the brain.126 

Age is closely related to the onset and development of WMHs with their frequency in 

healthy subjects shown to be around 11–21% in those aged ~64 years, and 64–94% 

in those who are ~82 years.127,128 This makes WMHs a common finding in the older 

general population.22 WMHs have been strongly correlated with cerebrovascular 

disease and cardiovascular risk factors, although post-mortem studies have shown 

that their underlying histopathology is heterogeneous.129 WMHs are also associated 

with cognitive, neurological, and functional symptoms such as walking difficulties and 

depression.130,131 Some studies suggest that WMH burdens may differ by sex, with 

location of the lesions and cardiovascular history being key determining factors.132 

This being said, around 80% of the variation accounting for them remains 

unexplained.133 WMHs can be assessed with visual rating scales, such as the Fazekas 

scale, Scheltens scale,134 age-related white matter changes (ARWMCs) scale135 and 

automated systems (e.g., BAMOS).136 As previously discussed, WMHs are a cardinal 

biomarker of VaD although their role in contributing to or exacerbating AD is beginning 

to be recognised.130,137 Since WMH are thought to mainly represent ischaemia-related 

demyelination and axonal loss due to damage to arteries and arterioles (i.e., SVD),  

the vivo observation of WMH lesions is crucial in guiding towards a VaD diagnosis. 

Neuroimaging and neuropathological studies however show that the aetiology of WMH 

may also include degenerative axonal loss caused by either cortical neuronal loss or 

Wallerian degeneration.138 This highlights the complexity of the aetiologies that 

characterise WMHs. 
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1.7.6 Diffusor tensor imaging 

Diffusor tensor imaging (DTI) is an imaging technique used to assess the 

microstructural properties of cerebral WM. DTI indexes water diffusion as an indirect 

measure of microstructural orientation and integrity of WM tracts in the brain.139 The 

directionality and magnitude of these random water movements in brain tissue can be 

evaluated via multiple quantitative measures such as mean diffusivity (MD), 

transverse or radial diffusivity (RD), axial diffusivity, and the degree of anisotropic 

diffusion.140 For example, fractional anisotropy (FA) is the summative direction of 

water diffusion within a voxel and is thought to be highly sensitive to microstructural 

change. MD captures the mean water diffusion rate with a higher value reflecting 

potential diseases such as oedema or necrosis.  

Anisotropic diffusion and RD quantify water diffusion in a parallel and perpendicular 

direction to the principal direction of fibre tracts, respectively, thus thought to be 

reflective of axonal and myelin integrity. 

Numerous DTI studies of AD and MCI participants have shown that greater cognitive 

impairment is associated with lower FA in a number of brain regions such as the 

corpus callosum, fornix, cingulum, superior longitudinal fasciculus (SLF), and inferior 

longitudinal fasciculus (ILF).141–144 Diffusivity measures have also been shown to 

correlate with widely used clinical or cognitive assessments. Higher FA in the corpus 

callosum and cingulum and lower MD, AxD, and RD in temporal lobe regions were 

associated with MMSE scores, while FA, MD, AxD, and RD in the left cingulum 

correlated with scores from the Clinical Dementia Rating.145 Interestingly, there was 

evidence that FA was the least sensitive measure for detecting differences between 

diagnostic groups and cognitive scores while RD and MD were more sensitive for 

detecting subtle differences in MCI groups.  
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Overall, DTI is an interesting novel research tool that can shed some light into the 

more subtle damage to the brain microstructure which may underlie cognitive decline 

as well as some of the pathologies that characterise dementia subtypes. 

Recent years have seen an alternative to the DTI “signal” model designed to estimate 

microstructural complexity of neurons. One of the common microstructural models is 

Neurite Orientation Dispersion and density imaging (NODDI). The NODDI model 

estimates the signal in three tissue compartments for each voxel – intracellular, 

extracellular, and CSF compartments.146 The intra-cellular compartment is composed 

of neurites (modelled as zero-radius sticks capturing restricted diffusion) with a 

distribution of directions that includes both an average direction and a spread of 

orientations around that direction. The output of the NODDI model produces values 

for: 1) neurite density index (NDI) capturing proportion of brain tissue occupied by 

neurites, 2) orientation dispersion index (ODI) representing the coherence of neurites 

by measuring variability in their orientation and 3) free water fraction (FWF) estimating 

CSF contamination.147  

Advanced techniques such as NODDI can help provide detailed microstructural 

information that can reveal abnormalities in WM, known as normal-appearing white 

matter (NAWM) that may not be detectable with conventional MRI.  
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Figure 1.5: Tissue segmentation in Insight 46 (Source: published work by James and 
colleagues).148 
The scans represent a (A) T1-weighted (B) FLAIR (C) segmented images to create 
WM) (D) WMH mask (E) NAWM mask created by subtracting the WMH mask (F) The 
NAWM mask overlayed on the FA map in the T1 space. The methods behind the 
scanning, preprocessing and postprocessing of these images are discussed in 
Chapter 2.  
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1.7.7 Overview of positron emission tomography (PET) 

PET is an imaging technique that uses metabolically active compounds labelled with 

positron-emitting radioisotopes to assess physiological function. Very briefly, this 

technique requires the intravenous injection of a radioactive tracer (e.g., 18F-amyloid 

PET ligand, 18F-florbetapir) into a peripheral vein. Once injected, the tracer 

accumulates in the area of the body for which the molecule has specific affinity (e.g., 

the brain). The radioactive nuclei within the tracer decay through a process called 

positron emission, whereby the positron combines with an electron leading to an 

annihilation event.149 This generates two gamma photons travelling in opposite 

directions at 180 degrees from each other which are recorded by an array of detectors 

arranged in a circular or ring-like structure around the patient. When these photons 

are recorded simultaneously, this creates “coincidence lines” which provide spatial 

information about the radiotracer's distribution in the body. The coincidence data, 

along with timing information in Time-of-Flight (TOF) PET are processed to generate 

detailed 3D images reflective of metabolic activity in tissue of the brain (e.g., brain), 

which can then be used to guide the diagnosis and management of medical conditions 

such as AD.  

PET is invaluable in research as it provides comprehensive information on metabolic 

and physiological processes in the body. However, the spatial resolution of PET 

imaging is considerably lower than structural imaging techniques such as MRI/CT. 

This may be due to multiple reasons such as photons not always travelling precisely 

in opposite directions following an annihilation event or because the tracer mapping is 

dependent on where positrons and electrons combine not where the positrons are 

emitted. To make up for the imprecision of the anatomical data acquired, PET data is 

often registered to structural images by a different image modality. PET/CT scanners 

can be used to allow for the acquisition of a structural CT scan prior to the PET scan. 

The recent development of PET/MRI technology provides important benefits over 

PET/CT scanners.150 This includes the simultaneous acquisition of MRI and PET 

scans saving scanning time and PET registration.118 
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1.7.8 βeta Amyloid  

PET imaging biomarkers of metabolism have substantially enhanced our 

understanding of AD-specific neural changes in living human subjects. 

The earliest imaging biomarker in this scheme is the presence of Aβ plaques in the 

precuneus/posterior cingulate and orbitofrontal cortex regions of the brain. 18F-fluoro-

deoxyglucose (FDG) PET was initially used to detect glucose uptake as a proxy 

marker of amyloid, but novel radiotracers such as 11Pittsburgh compound-B (PIB)151 

and 18F-florbetapir152 have enabled the direct imaging of Aβ plaques. As discussed 

previously, age and APOE e4 are important risk factors for AD but these have also 

been associated with amyloid deposition.153,154 Despite the high sensitivity of amyloid 

imaging in diagnosis of AD, there is approximately a 15 year time lag between Aβ 

deposition and the appearance of clinical symptoms in AD.7 This means that by the 

time patients become symptomatic, the amyloid load may have reached its plateau 

phase thus limiting the utility of amyloid PET as a staging or prognostic biomarker of 

AD.  
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Figure 1.6: Images from positron emission tomography scans representing the 
difference in amyloid burden (as measured by 11C-PIB) between Alzheimer’s disease 
patients and healthy individuals.  
In panel (a), scans from Alzheimer’s disease patients show evidence of high 11C-PIB 
retention, indicated by the prominent red areas signifying high retention. In contrast, 
panel (b) shows scans from age-matched, healthy control participants who show low 
11C-PIB retention, depicted in cooler colours on the scale. This is an example of how 
amyloid burden is quantified using positron emission tomography imaging (Source: 
published work by Nordberg and colleagues).155 

  



 

51 

 

1.7.9 Tau imaging   

As previously mentioned, NFTs are a key neuropathological marker of AD. Their 

prevalence have been associated with a higher degree of cognitive decline156 and the 

severity of dementia symptoms.94 Thus tau-specific PET imaging is considered an 

important biomarker of cognitive decline and disease progression. Several first- and 

second-generation tau PET ligands have been developed and are currently in clinical 

research (see published work from Leuzy and colleagues for more information).157 

PET tau can have important diagnostic power when used in conjunction with other 

biomarkers of AD. For example, a patient who presents as amyloid positive (A+) but 

shows no indication of neurodegeneration on PET or structural MRI (N–), the detection 

of tau pathology may reflect an AD diagnosis or an advanced stage of the disease. On 

the other hand, if a patient is A + and N + without any evidence of tau, clinicians may 

consider neurodegeneration to be occurring as a consequence of non-AD pathology 

thus learning towards a mixed dementia syndrome.158  

1.7.10 Brain indices of brain health   

To summarise, brain imaging tools have given several indices of brain health. These 

include global, regional and tissue type specific brain volume measures, SVD-related 

markers such as WMHs and their microvascular counterparts originating from DTI and 

NODDI (e.g., FA, MD, ODI, NDI) and measures of neuropathology (e.g., PET amyloid 

and PET tau). 

1.7.11 Other approaches  

Other imaging tools include fMRI to measure task-related and resting state 

activity159,160 as well as functional near infrared spectroscopic (fNIRS) imaging to study 

haemodynamic and inferred activation patterns in the context of brain pathology. 

Alternatively, other non-imaging biomarkers are also being investigated, e.g., plasma 

biomarkers for beta amyloid (Aβ42), total tau and phosphorylated tau.161 These 

biomarkers have shown utility in helping differentiate the aetiology of dementia, assess 
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disease progression and enhance clinical trials. All of these approaches go beyond 

the scope of this thesis and will not be discussed further.  

1.8 Diabetes mellitus 

Diabetes mellitus (DM) describes a group of metabolic conditions characterised by 

chronic hyperglycaemia, a physiological state of elevated blood glucose levels. These 

conditions originate from defects in the production of and/or secretion to insulin.162 

Traditionally, DM has been split into two categories. Type I diabetes (T1D) describes 

a state of metabolic pathology driven by the autoimmune destruction of pancreatic β 

cells resulting in insulin deficiency. Accounting for 10-15% of DM cases, T1D is 

primarily diagnosed in children and adolescents.163 The specific causes driving this 

autoimmune destructive response of β cells are still poorly understood, but genetic 

and environmental effects have been proposed.164 

T2D is characterised by hyperglycaemia that arises primarily from a combination of 

insulin resistance (IR) in insulin-sensitive tissue as well a deficiency in insulin 

production by β cells.165,166 It is thought to be driven by a complex interplay between 

genetic and environmental factors.167 Some of these mechanisms are discussed in 

more detail below. A recent study estimated that in 2021, 529 million people worldwide 

were affected by DM with 96% of cases being those of the T2D subtype.168 The same 

study projects that the number of cases is expected to more than double by 2050 

which will amount to around 1.31 billion people. DM prevalence varies across 

geographical locations with high frequency reported in North Africa and the Middle 

East.168 Studies within the United Kingdom (UK) and US also revealed excess T2D 

incidence in South Asian, African Caribbeans and African Americans.169,170  

The complications of T2D are distinguished between acute and chronic. More acute 

complications include diabetic ketoacidosis (DKA), hypoglycaemia, acute infections 

and hyperglycaemia.171 More chronic complications can be macrovascular (e.g., heart 

disease, stroke etc.) and microvascular affecting small blood vessels (e.g., 

retinopathy, nephropathy and neuropathy).172  
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1.8.1 Risk factors for T2D 

Risk factors for T2D are categorised as modifiable or non-modifiable. Non-modifiable 

risk factors include age, sex, ethnicity, and family history of T2D. Age is an 

independent risk factor for T2D separate of important other well-known factors such 

as obesity. There is a considerable increase in T2D prevalence after the age of 40 

with an important inflection point between the fourth and fifth decade of life. Individuals 

aged 70 with a body mass index (BMI) in the normal range however had similar 

prevalence for T2D to those aged 30 of normal BMI range.173 

 

Figure 1.7: Visual demonstration that type 2 diabetes prevalence (%) increases with 
age across all individuals of all body mass index ranges (Source: published work by 
Fazeli and colleagues).173 

Family history of T2D is recognized as an important risk factor for the disease: the 

odds of having diabetes were found to be considerably higher in those with a family 

history for the condition. The crude odds ratio (OR) for individuals with a family history 

of diabetes was 5.06 (Cl: 4.37-5.85), suggesting that they were over five times more 

likely to have diabetes compared to individuals without such a history.174 

Social factors such as lower childhood social class and lower education levels have 

been associated with higher rates of T2D.175 Obesity and low physical activity are 
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among the most important modifiable risk factors for T2D since evidence shows that 

a healthy diet and active lifestyle reduce the risk of developing the condition.176 More 

specifically, lifestyle change benefits showed a sustained 37% reduction in T2D risk 

(RR = 0.63, Cl: 0.54, 0.74) in those who maintained these changes over a decade.  

1.8.2 Sex differences in diabetes   

There is growing evidence of sex differences in the pathogenesis of various metabolic 

diseases including diabetes. Globally, diabetes in early and midlife has been shown 

to be more prevalent in males than in females.177 Peak age of onset also varies by sex 

with diabetes commonly being diagnosed earlier in males (65–69 years) compared to 

females (70–79 years).178 This being said, postprandial hyperglycaemia increases to 

a larger extent in females as they age, contributing to a higher prevalence of 

undiagnosed diabetes in females after the age of 60, and of total diabetes after 70.179 

Sex-dimorphic differences in diabetes outcomes are thought to be complex and reflect 

differences in the roles that genetic and hormonal contributors play on 

pathophysiology, clinical manifestation and therapeutic response.180,181  

Sex hormones may play an important role in metabolic health, especially during a 

period of change that is the menopause. Before this stage of prominent hormonal shift, 

oestrogen is protective of metabolic health by increasing insulin sensitivity, stimulate 

insulin secretion and protect against β cell apoptosis; 17β-oestradiol, a form of 

oestrogen, has been found to act on two oestrogen receptors (ERs), ERα and ERβ, 

with ERα playing a crucial role in β-cell survival. Premenopausal females are found to 

have higher skeletal muscle, hepatic insulin sensitivity and higher stimulated insulin. 

This is thought to, at least partially, account for females’ lower fasting glucose and 

HbA1c values.180,182 Premature menopause on the other hand, is associated with an 

increased risk of T2D with hormonal replacement therapy (HRT) shown to delay the 

condition.181,183 However, the hormonal changes during the menopause, may result in 

a parallel increase in HbA1c values with changes in body composition suggesting that 

females are at increased risk of impaired glucose tolerance.180 Beyond this, 



 

55 

 

psychosocial factors may also have a strong impact on sex differences in T2D 

development and complication. For example, prolonged night work was shown to be 

associated with a 46% higher risk of T2D in females compared to males.184 Other 

factors such as low levels of education, low socioeconomic and occupational status, 

and low income are all also significant risk factors for the development of T2D, 

especially in females.185,186 

There is growing evidence that there are sex-specific differences in target organ 

damage in the context of T2D.187,188 Females showed greater target organ damage 

(TOD) compared to males over a 3.5-year follow-up across several vascular and renal 

measures, as shown by their annual deterioration in carotid intima-media thickness, 

carotid plaques and pulse wave velocity as well as changes in glomerular filtration 

rates. For example, carotid intima-media thickness increase in mm/per year was 0.018 

in females and 0.0007 in males. There is also evidence of sex differences in 

microvascular disease in the context of T2D. Compared to people with 

normoglycaemia, males with T2D have been found to have a higher risk of sensory 

neuropathy and retinal microvascular damage than females.188 Other studies suggest 

a greater risk of renal failure, renal insufficiency, greater neuropathic pain and nerve 

injury in females with T2D.189,190 Currently, there is little evidence regarding sex 

differences in the impact of diabetes-related pathology on brain and cerebrovascular 

outcomes.  

To summarise, some epidemiological evidence indicates that T2D may affect females 

and males differently and at different stages of the life course. Potential biological 

mechanisms include the changing protective role of sex hormones in metabolic 

wellbeing over the menopause, as well as differences in body composition that are 

linked to the processing of glucose and lipids differently in males and females. 

1.8.3 Treatment of T2D 

Treatment for T2D has undergone tremendous change in past decades. Before the 

discovery of insulin, dietary interventions such as diets rich in fat and protein and low 
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in carbohydrates were recommended.191 During the 20th century, the use of 

pharmacotherapies, such as oral antihyperglycaemic drugs became prominent.  

Metformin is currently considered the first line treatment for T2D. It is a biguanide 

derivative that is thought to work by supressing hepatic glucose production, increasing 

insulin sensitivity in muscles and facilitating glucose uptake in peripheral tissues.192 

Metformin does not affect β cell function.193 Its mechanism of action is debated but a 

common view is that it inhibits the transport of glucose across the intestinal wall, 

reducing the amount of glucose entering the bloodstream, supressing glycogen 

synthesis in the liver and enhanceing glucose uptake in tissue.194,195 

Metformin is often used in combination with lifestyle interventions and has been shown 

to promote weight loss, manage blood lipid concentrations and reduce mortality.196 

Other classes of antidiabetic drugs include sulfonylureas, alpha-glucosidase inhibitors, 

glinides, Dipeptidyl Peptidase-4 inhibitors (DPP-4), meglitinides, thiazolidinediones, 

incretin mimetics, sodium-glucose transporter 2 inhibitors and insulin.197 The 

mechanisms of action vary from drug-to-drug. Sulfonylureas and meglitinides, for 

example, both increase the secretion of insulin from pancreatic β cells producing 

hyperinsulinemia to reduce glycaemic levels (albeit through slightly different 

mechanisms).  

In many patients a single antihyperglycaemic drug may suffice initially, but people with 

T2D frequently require another drug with a different mechanism of action to achieve 

adequate control of their hyperglycaemia. Drugs that increase insulin levels 

independently of glucose concentration carry a risk of hypoglycaemia, whereas 

metformin does not.198 

More recently, Glucagon-like peptide-1 (GLP-1) receptor agonists have been 

approved as a treatment for T2D and obesity. GLP-1 belongs to the family of gut-

derived incretins that also include glucose-dependent insulinotropic polypeptides 

(GIP). These are hormones responsible for a range of glucoregulatory effects 

including glucose-dependent secretion of insulin and suppression of glucagon release. 
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GLP-1 inhibits glucagon secretion from a-cells which can lower glucose levels while 

GIP does not significantly inhibit glucagon levels and may even increase its secretion 

in certain contexts. Since GLP-1 has a more prominent effect on β cell proliferation 

and survival, compared to GIP, GLP-1 based treatments are favourable for the 

treatment of T2D.  

In a healthy individual, the presence of food in the gastrointestinal tract triggers GLP-

1 to be secreted by L-cells in the small intestine.199,200 In people with T2D, the 

pathophysiological mechanisms of the condition cause the effects of GLP-1 to become 

dysfunctional, thereby impairing these glucoregulatory effects and of the postprandial 

insulin response.201 GLP-1 receptor agonists can directly or indirectly target multiple 

defects at the core of T2D (e.g., decreased insulin secretion and decreased glucose 

uptake).202,203 Since the effects of GLP-1 receptor agonists on insulin secretion are 

glucose-dependent, there is a low risk of hypoglycaemia.204 The benefits of GLP-1 

receptor agonists extend beyond their well-established effects on glycaemic control, 

showing their effectiveness for weight loss and blood pressure.205,206 

1.8.4 Diagnosis of T2D  

Based on the criteria set by the World Health Organization (WHO), T2D can be 

diagnosed from a fasting blood glucose concentration ≥7·0 mmol/L (126 mg/dL), a 

random blood glucose concentration ≥11·1 mmol/L (200 mg/dL), or a two hour plasma 

glucose concentration ≥ 11.1 mmol/l two hours after 75g anhydrous glucose in an oral 

glucose tolerance (OGT) test.207 In the absence of symptoms, abnormal glycaemia 

must be present on two different occasions. A diagnosis of diabetes can also be made 

on the basis of a glycated haemoglobin A1c (HbA1c) concentration above 48 mmol/mol 

(6.5%),208 but a value of less than 48mmol/mol does not exclude diabetes diagnosed 

using glucose. 

HbA1c is a measure of long-term glycaemia (since the lifespan for red blood cells is 

around 120 days). However, haemolysis can impact the lifespan of red blood cells and 

thus affect the accuracy of HbA1c measures. Other factors that may also invalidate this 



 

58 

 

variable include older age, alcohol consumption, smoking, iron deficiency, kidney 

disease, and high dietary choices.209–213 This is particularly important as it suggests 

that the sensitivity of HbA1c as a marker of glycaemia can vary by sex because sex-

related differences in erythrocyte properties are commonly observed.214 Differences in 

erythrocyte properties may affect HbA1c values and result in the underestimation of 

values in males.215 Iron and haemoglobin are negatively associated with HbA1c but are 

not associated with fasting glucose. Iron deficiency, on the other hand, increases 

HbA1c values.216 

1.8.5 The limitation of current diabetes classifications  

It is important to note that the diagnostic thresholds for T2D are based on the results 

from epidemiological studies which observed that, as glycaemic health gets worse, 

higher rates of vascular complications, particularly those of microvasculature nature 

increase. For example, there is evidence that higher HbA1c levels, are associated with 

an increased risk of retinopathy.217,218 This is consistent with other research indicating 

that interventions which reduce HbA1c levels, lower the risk for retinopathy.219 

Nonetheless, some studies have shown that in the general population, the relationship 

between fasting glucose and risk is continuous, with no clear threshold.220 Similar 

findings have been reported for HbA1c.221 While initiation of treatment from a clinician’s 

perspective is inevitably a binary decision that must reflect the balance of benefit and 

risk, these findings suggest that there is value, particularly in a research context, in 

looking across the entire spectrum of glycaemia in relation to outcomes. This may be 

even more important when looking at brain outcomes since thresholds based on 

vascular outcomes might not predict neurological disease in the same way. 

Interestingly, there is minimal evidence that interventions that reduce HbA1c have a 

beneficial effect on cognitive outcomes.222  

1.8.6 Prediabetes 

Prediabetes is defined as a state in which individuals have elevated blood glucose 

levels, which are not high enough to be classified as diabetes.223 In the UK, it is defined 
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as a fasting plasma glucose ranging between 5.5 mmol/L to 6.9 mmol/L and HbA1c: 

42 to 47 mmol/mol (6.0 to 6.4%) although there is no internationally agreed 

prediabetes ranges.  

 

It is characterised by impaired fasting glucose, impaired glucose tolerance or elevated 

HbA1c. Prediabetes is associated with a number of co-morbidities and complications 

such as risk for developing stroke and heart disease.224 Annual conversion from 

prediabetes to T2D is between 3 to 11%.225 Through lifestyle and nutritional changes, 

individuals with pre-diabetes can return their blood glucose levels to normal and 

prevent or delay the development of T2D. Research has shown that lifestyle 

interventions are more cost-effective than medication in preventing and delaying the 

progression of prediabetes to diabetes.226 A recent national diabetes statistic report 

from the CDC, showed that a higher percentage of males (41%) than females (32%) 

could be considered to have prediabetes based on their HbA1c or glucose values (as 

per the CDC National Diabetes Statistics report 2023 (based on data from Bryan and 

colleagues)).227 

1.9 Insulin and insulin signalling pathways  

Insulin is an anabolic peptide hormone secreted by pancreatic β-cells in response to 

a glucose load (e.g., ingestion of food). Insulin binds to receptors located in the 

membrane of target cells. These target cells include hepatocytes (where insulin 

promotes glucose utilisation and suppression of glucose production), muscle and 

adipose tissue (for glucose uptake and synthesis) as well as brain cells.228  

The insulin signalling pathway is a network of interconnected components and 

feedback loops that integrate signals from various sources to produce coordinated 

sets of cellular responses. It is described very briefly here based on description by 

Satiel and Kahn and Batista and colleagues.229,230 The binding of insulin to a tyrosine 

kinase receptor, a transmembrane protein composed of two extracellular α and two β-
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subunits, activates the intrinsic properties of the  β-subunit, initiating conformational 

changes to its receptor inducing autophosphorylation of the β-subunits as well as other 

intracellular molecule which further increases kinase activity. This sets in motion a 

cascade of early intracellular signalling events including the phosphorylation of a 

family of proteins known as the insulin receptor substrate (IRS) on specific tyrosine 

residues creating binding sites which recruit intracellular signalling proteins such as 

phosphatidylinositol 3-kinase (PI3K) via the Src Homology (SH2) domain of the p85 

regulatory subunit. The recruitment of PI3K to the membrane results in 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the plasma membrane. PIP3 then 

serves as a docking site for phosphoinositide-dependent kinase-1 (PDK1) and Akt 

(protein kinase B), which both have pleckstrin homology (PH) domains. Akt has a 

series of downstream effects regulating a series of cellular processes (e.g., glycogen 

and protein synthesis) and promotes glucose transporter 4 (GLUT-4) to the cell 

surface of muscle and adipose tissue. The pathway influences liver gluconeogenesis 

and is connected to processes like cell growth and protein synthesis through the 

mTOR pathway. Several other signalling pathways are also activated.  

The overall activation of these pathways is responsible of glucose uptake, metabolism, 

and cell survival. In muscle and adipose tissue, the insulin signalling pathway handles 

glucose uptake and storage, whereas in the liver it inhibits glucose production and 

enhances the synthesis of glycogen. Abnormalities to this complex signalling network 

such as dysfunction to subunit interactions and phosphorylation events are considered 

to be at the heart of IR and T2D.  
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Figure 1.8: A visual representation of the insulin signalling pathway (source: published 
work by Satiel and Kahn).229 
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Insulin receptors are also found in high volumes in the brain with evidence of 

considerable variation in the locations where these are expressed. Animal studies 

uncovered a high insulin receptor density in regions such as the hypothalamus, 

hippocampus, cortices, striatum and cerebellum.231–234 Such widespread receptor 

distribution across different brain regions suggests that insulin signalling is likely to 

play an important and diverse role in the brain. Moreover, insulin also influences gene 

expression, protein synthesis and is implicated in apoptosis (programme cell death) 

and autophagy (degradation of cellular components).  

1.9.1 The pathophysiology of T2D (IR and hyperglycaemia)  

T2D is a complex metabolic disorder characterised by hyperglycaemia, a physiological 

state of elevated blood glucose. Hyperglycaemia is thought to occur as a consequence 

of impairments in the secretion of insulin or the action of insulin (or both). IR is defined 

as the impaired metabolic response to insulin in sensitive tissues such as the liver, 

adipose tissue and skeletal muscle.235 In the early stage of the disease, reduced 

insulin sensitivity triggers hyperfunction of the β-cells in pancreatic islets causing them 

to continuously secrete insulin to maintain normoglycaemia. When compared to 

healthy controls, individuals with IR may show 3- to 4-fold higher rate of insulin 

section.236 This compensatory hypersecretion of insulin may reflect both the expansion 

of β-cell mass and altered expression of key enzymes of β-cell glucose metabolism.237 

Initially, this state of hyperinsulinemia prevents hyperglycaemia in the early stages. 

However since β-cells are undergoing constant dynamic change as evidenced by the 

continued regeneration of islets and concurrent apoptosis, a disruption to this delicate 

balance can have severe consequences.238 Gradually, β-cell function begins to 

decline and can no longer compensate for the decrease in insulin sensitivity,238 

inevitably resulting in hyperglycaemia.239 Thus, β-cell dysfunction is considered to play 

a major role in T2D development, across the spectrum of hyperglycaemia, from 

prediabetes to overt diabetes.240  

Abnormalities in a multitude of other interrelated mechanisms have been linked to IR 

pathogenesis in human and animal studies. These include primary abnormalities in 
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the insulin signal transduction pathway, circulating factors (such as tumour necrosis 

factor-α (TNF-α) and free fatty acids), perturbations of intracellular signalling 

molecules including PKC, ceramides, chronic inflammation, and oxidative stress. More 

recently, sustained hyperglycaemia, also referred as glucose toxicity, has been 

considered to be implicated in IR affecting both the secretion and sensitivity.241 A 

number of studies have shown that IR can be produced by hyperglycaemia in muscle 

in vitro.242 This feedback loop between hyperglycaemia and IR highlights the complex 

interplay of the underlying pathophysiological mechanisms that this metabolic state. 

Factors such as age, increased adiposity, decreased muscle mass and a reduction in 

physical activity have been proposed to contribute to the development of IR.243  

1.9.2 Markers of IR and hyperglycaemia    

Hyperglycaemia describes a state of elevated levels of blood glucose. It is thought to 

occur as a consequence of a disruption in the body’s ability to produce insulin or a 

lack of sensitivity of tissue to it (i.e., IR). Hyperglycaemia results in the production of 

glycated haemoglobin. Very briefly, glycation is a non-enzymatic process resulting 

from an irreversible attachment of glucose and haemoglobin in a two-step process 

firstly involving the attachment of glucose at the N-terminal valine of the beta chain of 

haemoglobin to form a Schiff base and subsequent Amadori rearrangement of this  

structure form more stable Amaradori products or ketoamines.244 The Amadori 

products persist for the lifespan of the red blood cells which can result in the formation 

of glycated haemoglobin.  

The glycation of haemoglobin, particularly of haemoglobin A can be measured in blood 

via HbA1c, a useful marker correlating with the level of ambient glycaemia over a 2-to-

3-month period representing the lifespan of red blood cells.245 Tests for HbA1c are 

inexpensive and easily administered. The concentration of HbA1c strongly predicts the 

risk of incident eye disease, heart failure, vascular, kidney, and nerve disease both in 

people with T1D and T2D.246–248 A meta-analysis of 10 cohort studies involving over 

7000 individuals with T2D showed that a 1% increase in HbA1c was associated with a 
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significant 18% increase in the risk of coronary heart disease or stroke and a 28% 

increase in the risk of peripheral vascular disease.248 

The gold standard test for IR is the hyperinsulinaemic-euglycaemic glucose clamp 

technique.249,250 It is however time-consuming and difficult to use in large samples of 

people. There are a number of clinically useful surrogate measures of IR (or insulin 

sensitivity), including Homeostasis Model Assessment of Insulin Resistance (HOMA-

IR), Homeostasis Model Assessment of β-cell Function) (HOMA-B), QUICKI, serum 

triglycerides, leptin-adiponectin ratio, and triglyceride/HDL ratio.251–253 Recently, 

similar measures were generated using an updated HOMA2 model which can be 

generated using a calculator.254 

Sex differences in glucose metabolism, β-cell function, and insulin sensitivity have 

previously been reported. For example, females have been found to exhibit higher 

post-OGT glucose and lower fasting glucose levels partly due to their shorter stature 

affecting their glucose load.255 Higher postprandial insulin and c-peptide 

concentrations in females may also indicate insulin secretion. GLP-1 levels are higher 

in females following an OGT test, driven by oestrogen, which also promotes β-cell 

function and survival.256,257 Despite greater insulin sensitivity in skeletal muscle, 

females exhibit these markers under specific physiological conditions, such as post-

load glucose levels and insulin response to meals, reflecting intrinsic biological 

differences between genders in metabolic regulation and glucose homeostasis. This 

perhaps highlights the importance of considering several markers of glycaemia and 

related traits when exploring sex differences in the associations.  

Considering multiple glycaemic traits such as HbA1c, fasting glucose, HOMA-IR, and 

HOMA-B allows for a thorough investigation of these differences. HbA1c provides a 

chronic overview of glycaemic heath, fasting glucose may offer more insight into basal 

glucose levels, HOMA-IR assesses tissue IR, and HOMA-B can give a measure of 

beta-cell function. While none of these markers are perfect, their collective 

consideration may give a nuanced understanding of metabolic regulation, essential for 
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advancing research into understanding how the pathophysiological mechanisms that 

underlie metabolic conditions are associated with different health outcomes.  

1.9.3 Hypoglycaemia  

Hypoglycaemia is a state of low plasma glucose set at <70mg (<3.9 mmol/L) by the 

American Diabetes Association. It has been associated with a number of adverse 

events such as myocardial infarctions, arrythmias and stroke.258,259 Risk factors of 

hypoglycaemia include fasting, alcohol consumption, and drugs that increase insulin 

secretion (e.g., sulfonylurea, thiazolidinediones and biguanide). There is evidence that 

hypoglycaemia (<3.0 mmol/L) can impair cognitive function consistently across adults 

with and without diabetes, independent of various clinical factors.260–262 

1.9.4 Hyperglycaemia, IR and inflammation  

The development of IR has been proposed to occur, at least partially, in response to 

the increased production of pro-inflammatory cytokines by adipose tissue in obesity, 

which may consequently have an inhibitory effect on insulin signalling pathways in 

various tissues. For example, TNF-α, which is highly expressed in adipose tissue of 

obese mice, has been hypothesised to induce IR.263 The administration of exogenous 

TNF-α in animal studies has also been shown to cause IR, whereas the suppression 

of TNF-α improves insulin sensitivity.263 It is thought that inflammatory cytokines such 

as TNF-α, interleukin-6 (IL-6) and interleukin-1β) enhance the expression of several 

proteins that suppress insulin signalling pathways which can reduce insulin sensitivity 

and increase the risk of IR developing. In turn, IR further induces inflammation, as 

evidenced by abnormal levels of fibrinogen, c-reactive protein (CRP), IL-6, 

plasminogen activator inhibitor-1 (PAI-1), and elevated white cell count with T2D.264–

268  

Interestingly, insulin has been found to exhibit anti-inflammatory properties reducing 

pro-inflammatory cytokines, improving endothelial function, and reducing oxidative 

stress.269  
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1.9.5 Insulin resistance, diabetes and the cerebrovasculature   

Diabetes-related mechanisms such as obesity, IR and hyperglycaemia have been 

found to cause systemic vascular pathology in animal models. For instance, IR animal 

models with mild hyperglycaemia show significant medial thickening and hypertrophic 

remodelling.270 This also includes vascular remodelling such as extracellular matrix 

deposition and increased wall thickness of middle cerebral arteries (MCA) occurring 

via endothelin-1 (ET-1) processes.271 Some of the adverse remodelling of MCAs may 

be reversed by glycaemic control and ET-1 antagonists suggesting an important role 

of hyperglycaemia and ET-1 processes driving these vascular changes.272 ET-1 

mediated vascular changes are also important as ET-1 is a potent vasoconstrictor with 

proliferative effects on smooth muscle. The role of ET-1 has been recently reviewed 

as it may play an important role in the vascular complications of diabetes.273 

Hyperglycaemia may also damage the cerebrovasculature through other processes 

independent of ET-1, which include but are not limited to oxidative stress, increased 

production of cytokines and activation of the polyol pathways.  

In addition, IR and hyperglycaemia can affect the physiology of blood vessels 

compromising myogenic reactivity, neurovascular uncoupling, and endothelial 

dysfunction. This can result in the disruption of the BBB integrity, produce changes in 

CBF and increase the risk of ischemic events as well as cerebral microbleeds. There 

is consistent evidence that links acute or chronic hyperglycaemia to neurovascular 

uncoupling as supported by the reduced response of retinal veins to flicker 

stimulation.274 Genetic models of T2D  have demonstrated that cerebral arteries 

isolated from diabetic animals tend to develop more myogenic tone than control 

animals which further indicates damage to endothelial function.275,276  

It is well established that the risk and severity of neurological diseases, vascular 

cognitive impairment and AD are increased by metabolic disease such as T2D. A 

meta-analysis of 28 studies found that T2D was associated with a 73% increased risk 

of all-types dementia, a 56% increase of AD and a 127% increase of VaD.277 Since 

CBF and BBB integrity are essential for brain homeostasis, and that cerebral 
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circulation is an early target in these conditions, it is highly likely that changes in 

cerebrovascular structure and physiology play an important role in the onset and 

progressive pathological cognitive decline in T2D.  

1.9.6 The role of genes in hyperglycaemia, glucose and T2D    

There is an important genetic contribution to T2D as evidenced by the higher 

concordance rate for diabetes in monozygotic than dizygotic twins.278,279 Being born 

to one or both parents with diabetes increases the individual’s lifetime risk for the 

condition by 40% and 70% respectively.280  

Despite this, identifying genetic risk variants for T2D has been challenging due to the 

important contributory roles of environmental and lifestyle factors in the pathogenesis 

of the disease. The early focus of genetic studies was on linkage and candidate gene 

association studies. The former successfully identified familial variants for monogenic 

diabetes forms, such as MODY as well as discovery of genes like calpain 10 

(CAPN10) and TCF7L2, found to be associated with T2D across multiple 

populations.281–283 Candidate-gene studies identified PPARG and KCNJ11 as 

susceptibility genes, both becoming targets of anti-diabetes medications.  

The arrival of Genome-Wide Association Studies (GWAS) marked a significant 

breakthrough in understanding the genetic basis of a complex condition such as T2D. 

GWAS is a powerful, biology-agnostic method that screens the entire genome of 

individuals with and without a condition or trait for common single-nucleotide 

polymorphisms (SNPs). This genetic approach was enabled by the completion of the 

Human Genome Project and the International HapMap project, which catalogued 

millions of SNPs and established patterns of genetic variation across people. The 1000 

Genomes Project built on this work by expanding on the population studied and using 

high-throughput next-generation sequencing technologies to increase SNP 

information, allowing current GWAS to examine over 2 million SNPs. A SNP's 

association with a disease is determined by its higher frequency in cases versus 
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controls, with a stringent p value of 5 x 10-8 required for genome-wide significance to 

reduce false positives.  

SNPs can contribute to the development and progression of disease by influencing 

the altering gene function, regulating gene expression  and increasing translocational 

efficiency.284 The first GWAS for T2D, conducted in a French cohort, identified novel 

associations at loci such as SLC30A8 and HHEX.285 Since then, risk alleles have been 

reported to be associated with genes that regulate pancreatic β-cell development and 

function, insulin gene expression, secretion, and action.286–288 To date, GWAS have 

identified nearly 40 susceptibility loci for T2D both in European and Asian populations.  

However, disparities in variant allele frequencies among populations from different 

ethnic groups or geographic regions may contribute to varied disease 

susceptibilities.289 This is particularly a problem since most studies are limited by their 

inclusion of mainly individuals of European descent. 

By aggregating multiple SNPs, a polygenic risk score (PRS) for a condition such as 

T2D can be created. A PRS outputs a numerical score that captures an individual's 

genetic predisposition for the condition. SNPs included in the PRS are assigned a 

weight based on their effect size, which captures the strength of its association with 

T2D. Thus, SNPs with larger effect sizes have greater weights and contribute more to 

the overall score. A higher genetic estimate for T2D can be considered a greater 

predisposition for developing the disease. Genetic influences on T2D would be 

expected to be more stable throughout life than measured HbA1c because genetic risk 

factors are established at birth, remaining constant, thus providing a fixed baseline 

risk for developing T2D. By combining information from multiple genetic variants, a 

PRS can provide a more comprehensive assessment of genetic risk compared to 

looking at individual SNPs. PRSs have been shown to be useful for stratifying 

individuals into different risk categories for T2D and have helped identify individuals at 

high risk who may benefit from early interventions such as lifestyle modifications or 

pharmacological treatments aimed at preventing or delaying the onset of diabetes.290 
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More recently, GWAS have been conducted for continuous glycaemic traits identifying 

loci influencing beta-cell function, IR and HbA1c.The Meta-Analyses of Glucose and 

Insulin-related traits Consortium (MAGIC) is a collaborative effort focused on 

understanding the genetic basis of glucose and insulin regulation by pooling data from 

multiple GWAS.291 Key achievements of the consortium include the discovery of loci 

associated with fasting glucose, fasting insulin, HOMA-β (a measure of β-cell 

function), and HOMA-IR (a measure of IR).  

1.9.7 Risk factors  

1.9.8 Diabetes and dementia – shared risk factors 

Many predictors of T2D are also considered potentially modifiable risk factors for 

cognitive impairment and neurocognitive disorders (i.e., dementia). Factors such as 

hypertension, obesity, smoking, low physical activity, unhealthy diet, chronic alcohol 

consumption and high lipid and glucose levels have all shown to be associated with 

an increased incidence of T2D (reviewed in detail by Bellou and colleagues).292 It is 

also well established that cardiovascular risk factors such as hypertension are strong 

predictors of VaD and cognitive decline.293 Studies in the general population have 

demonstrated associations between (midlife) vascular risk factors and dementia 

risk,294,295 and because T2D (and prediabetes) are associated with an adverse 

vascular risk factor profile,163 it has been hypothesised that these vascular 

consequences contribute to dementia risk in these individuals. It is also clear that 

patients with complications of a microvascular (e.g., diabetic retinopathy) or 

macrovascular nature (e.g., myocardial infarction, stroke) are more likely to have 

worse cognitive performance 296,297 and are at an increased dementia risk.298,299 Other 

studies have identified IR, inflammation, and depression as potential risk factors for 

cognitive dysfunction in people with diabetes.297  
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1.10 Mechanisms that may underlie the relationship between T2D 

and brain pathology in dementia 

There are several possible mechanistic pathways through which hyperglycaemia, and 

IR may have its effects on the brain. Some of these are discussed here.  

1.10.1 Oxidative stress   

Hyperglycaemia results in the formation of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) which contribute to oxidative stress. Previous 

evidence has shown that active oxidative products are associated with the 

pathogenesis of diabetes including its onset, progression and complications.300 In 

animal models, hyperglycaemia has been found to reduce antioxidant levels in the 

brain and potentially contribute to cognitive deficits.  

Hyperglycaemia can induce oxidative stress through various pathways. Elevated 

glucose levels can increase oxidative stress via the overproduction of superoxide 

radicals in the mitochondria.301 This can impair endothelial function. For example, the 

induction of hyperglycaemia via the intraarterial injection of dextrose has been 

observed to disrupt endothelium-dependent vasodilation.302 Oxidative stress caused 

by ROS overproduction also plays a key role in the activation of other pathogenic 

pathways involved in diabetic complications, including elevated polyol pathway flux, 

non-enzymatic glycation, and PKC levels, which in turn can lead to the development 

of microvascular complication and in some cases damage to the permeability of the 

BBB.303,304 Glucose can also react with LDL phospholipids and apolipoprotein B 

(APOB) lysine groups to produce advanced glycation end products (AGEs) that 

facilitate lipid peroxidation.305 In addition to their role in atherogenesis and 

macrovascular disease, markers of lipid peroxidation are elevated in brain tissues and 

bodily fluids of several neurodegenerative disorders such as AD and Parkinson’s 

disease.306–308 
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The brain is highly sensitive to oxidative stress because it consumes about 20-30% of 

inspired oxygen and contains high levels of polysaturated fatty acids (PUFAs), making 

is an ideal target of free radical attack. ROS can also interact with both 

deoxyribonucleic acid (DNA) and proteins to cause cellular damage, especially 

targeting mitochondrial DNA, potentially establishing a vicious cycle of mitochondrial 

damage and ROS generation.  

1.10.2 Inflammation   

T2D diabetes is characterised by systemic and cerebrovascular inflammation which 

can have negative repercussions on brain health. Hyperglycaemia increases 

metabolism in the mitochondria which can result in the overproduction of ROS.309,310 

ROS may in turn induce damage to cellular components such as DNA. 

Hyperglycaemia may also result in the formation of AGEs.311–313 This happens 

simultaneously and concurrently with the activation of the NF-κB pathway, a key 

transcription factor in inflammatory responses promoting the activation of pro-

inflammatory cytokines such as TNF-α, IL-1β, and IL-6.314 Some inflammatory markers 

and cytokines cause alteration or damage to the endothelium, and this may 

compromise the BBB contributing to brain damage. Concurrently, microglia may be 

activated to produce more pro-inflammatory cytokines, creating a feedback loop that 

perpetuates inflammation.315 Furthermore, inflammatory and oxidative stress may 

cause excessive glutamate release which may result in neuronal death.316 In addition, 

inflammation does not just result from hyperglycaemia but also exacerbates 

hyperglycaemia by impairing insulin signalling.317  

Some studies have reported differences in systemic inflammation between 

individuals with T2D and healthy controls. Specifically, levels of a range of 

inflammatory markers including TNF-α, eotaxin, CRP, macrophage-derived 

chemokine (MDC), macrophage inflammatory protein (MIP)-1β, and monocyte 

chemoattractant protein (MCP)-1 were found to be significantly higher in individuals 

with T2D.318 Conversely, interleukin (IL)-7 levels were lower in the T2D group 

suggesting a potential impairment in immune function. After adjusting for age and 
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BMI, the differences in TNF-α, eotaxin, and IL-7 remained significant. These findings 

suggest that individuals with T2D exhibit a state of low-grade systemic inflammation, 

some of which may be influenced by factors such as obesity and glycaemic control. 

There is evidence that AD is associated with inflammatory processes.319,320 At least 

two studies link elevated CRP with an increased risk of AD.321,322 There is also some 

evidence that inflammatory cytokines accumulate at different rates in AD’s patients 

compared with healthy control subjects;323 the inflammatory cytokine IL-6 is present in 

senile plaques of AD patients324 and elevated immunoreactivity to IL-6 is found in 

lumbar and ventricular CSF in patients with AD.325  

In a population-based study, midlife systemic inflammation (as indexed by a composite 

score contructed from 5 markers) has been found to be associated with adverse health 

outcomes such as small volumes in AD signature regions, occipital lobe and 

hippocampus as well as increased ventricles.326 However, they did not find a 

convincing association with total brain, frontal, temporal or parietal volumes. Some 

mixed findings on the inflammation-brain associations have also been reported by 

Jefferson and colleagues.327 

1.10.3 Amylin  

Amylin is an insoluble deposit of a misfolded protein in β pleated sheets found in the 

brain and pancreas of those with T2D.328 Amylin was first identified in the pancreas of 

people with T2D.329 The full range of pathophysiological functions of amylin is unclear, 

but they include being amyloidogenic and, in human but not rat models, neurotoxic.330 

Soluble amylin appears to be similar in its neurotoxicity to Aβ331,332 and may share 

similar mechanisms of toxicity.330 Amylin is elevated in obesity and in prediabetes/IR 

and may be a mechanism that underlies the oxidative and inflammatory stress seen 

in T2D.333 

Multiple mechanistic pathways have been proposed to explain how amylin relates to 

cognitive decline and increased risk of AD pathology. One hypothesis is that, since 

amylin deposition is found in blood vessels and the parenchyma of people with AD, it 
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may compromise the BBB and diffuse into the brain.328 This may then affect brain 

microstructural integrity and result in WM damage. Secondly, amylin burden is shown 

to be co-localized with Aβ in cerebral plaques.328 Analysis from the Framingham Heart 

Study revealed an inverse association between plasma amylin concentrations and 

brain volume.334 These observations suggest that the neurodegeneration and 

neuropathology that underlie dementia subtypes may be accounted for, at least in part, 

by abnormal amylin function.  

1.10.4 Advanced glycation end-products  

Advanced glycation end-products (AGEs) are products resulting from nonenzymatic 

chemical reactions between reduced sugars and proteins.311 AGEs naturally increase 

during “normal” ageing, but accumulate faster in a state of hyperglycaemia, and are 

highly expressed in the CNS of people with diabetes.311–313 AGEs are thought to be 

involved in the pathogenesis of AD.335 Aβ is modified by AGEs and AGE-modification 

of Aβ exacerbates its toxicity.336 AGEs are present in both neurofibrillary tangles and 

senile plaques of patients with AD and the receptor for AGE (RAGE) appears to be 

involved in the transport of amyloid peptides across the BBB.337 In addition, AD 

patients with T2D seem to have more severe AD pathology and higher AGE levels in 

the brain compared with those with AD alone.313 AGEs can be measured in plasma 

(circulating AGEs) or estimated in tissue using a relatively simple non-invasive 

measurement of skin autofluorescence (SAF), a method based on the fluorescent 

properties of some AGEs,338 with some suggestions that this is reflective of tissue 

AGEs.339,340 SAF has recently been shown to be associated with lower grey matter 

volume.341 There is some evidence that AGEs might be associated with cognitive 

impairment and decline. Higher levels of serum AGEs were cross-sectionally 

associated with mild cognitive impairment in diabetes patients,342 and higher SAF has 

also been associated with a higher likelihood of cognitive impairment in community-

dwelling subjects.343 Another study also showed that higher urinary pentosidine, a 

biomarker of AGEs, was associated with a greater 9-year cognitive decline in older 

people independent of diabetes status.344  
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1.10.5 Cerebral perfusion  

Impaired cerebral perfusion has also been proposed as a mechanism of 

cerebrovascular disease that plays a role in the relationship between T2D and brain 

health. Since “normal” ageing is associated with CBF reduction of about ~20% at age 

60 as compared to age 20,345,346 further hyperglycaemia-linked hypoperfusion may 

induce additional damage. A study of 166 nondemented individuals from the 

Alzheimer’s Disease Initiative showed that lower CBF measured by Arterial Spin 

Labelled (ASL) in regions such as the medial temporal, inferior temporal gyrus and 

inferior parietal lobe was associated with a faster decline in everyday functioning.347 

Interestingly, brain hypoperfusion was found to predict this poor functional outcome 

independent of other neuropathology (e.g., amyloidosis and CSF tau). Since normal 

ageing is associated with some changes in CBF, any hyperglycaemia-related 

hypoperfusion is likely to have an additional burden on brain health outcomes.  

A recent systematic review and meta-analysis of 13 studies consisting of 407 

individuals with T2D and 443 control participants reported important differences 

between those two populations. This included CBF changes in a number of regions 

including the cerebral lobes, the right supplementary motor area and decreased CBF 

in the bilateral middle occipital gyrus and left caudate nucleus.348 Inconsistencies 

across studies were noted, with some reporting no significant CBF changes and others 

highlighting different affected regions. Although some inconsistencies across studies 

were reported, these may be attributed to methodological differences in the ASL 

techniques used, the diversity of the sample considered, the analytical approaches 

taken as well as publication bias. Despite the mechanisms not being fully understood, 

such studies suggest that cerebral hypoperfusion may be one of the mechanisms 

through which T2D may potentially affect cognitive health and increase dementia risk.  

1.11 The impact of T2D on brain tissue   

As discussed in section 1.7, neuroimaging methods allow the comprehensive imaging 

of the brain. In the last two decades, they have been utilised to study brain structure, 
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and change in the context of T2D. The two common pathways often explored using 

brain imaging are: 1) neurocognitive disorders (or dementia) of AD aetiology (i.e., 

severe neurodegeneration, including hippocampal atrophy and β amyloid burden and 

2) neurocognitive disorders (or dementia) vascular aetiology reflecting 

cerebrovascular disease (i.e., WMHs, lacunes, abnormal diffusion).  

1.11.1 Microvascular pathology 

The relationship between diabetes (and its markers) and WM damage has been 

explored primarily via three different imaging approaches. DTI, T2-weighted and 

FLAIR imaging. As previously discussed, DTI gives insight into the microstructural 

integrity of NAWM tissue, whereas conventional MRI sequences capture global and 

regional WM volumes, as well as SVD-related measures such as WMHs. 

Macroscopically, several studies using conventional MRI sequences and double 

inversion recovery sequences have shown that people with diabetes display a higher 

burden of WMH than controls.349,350 Longitudinal studies have shown that diabetes 

was associated with faster WMH accumulation.351 Prediabetes has also been found 

to be associated with larger volumes of WMHs suggesting that even the early stages 

of impaired glucose metabolism can have a detrimental effect on the brain small 

vessels.351 Participants with diabetes and a HbA1c ≥7.0% showed associated 

increased WMH burdens compared to diabetic individuals with HbA1c <7.0%. 

Similarly, participants with longer duration of diabetes (≥10 years) had a higher burden 

of lacunes compared to those with a diabetes duration <10 years.352 This suggests 

that hyperglycaemia and cumulative exposure to glycaemia may carry more of a risk 

on vascular brain health than just being diagnosed with diabetes.  

It is important to acknowledge that not all studies show the same findings. For 

example, history of diabetes (as assessed by self-report and medication history) was 

found to be negatively associated with WMHV in both in a sample of participants of 

individuals with T2D or in a group of individuals who recently experienced an ischemic 

stroke.353,354 De Bresser and colleagues also failed to find a difference in global WMHV 

between those with T2D and healthy controls.355 However, they found that taking a 
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more nuanced approach to WMH pathology and looking at the shape, number and 

location of these lesions revealed differences between the two groups, with a higher 

number of lesions more non-punctuate WMHs, and a difference in shape (eccentricity) 

of punctuate deep WMHs found in those with T2D. This highlights that the 

characteristics of the sample considered, and the sensitivity of the brain imaging 

measures can impact possibility of detecting an association.  

Micro-analysis of WM tissue using DTI has revealed that with T2D is associated with 

a decrease in FA, suggestive of microstructural disorganisation in the association 

tracts and the forceps minor.356 Associations have been reported between impaired 

glucose metabolism and reduced FA in short association fibres, the ILF, the thalamic 

radiations, and the corpus callosum.349 Reduction of FA in the right parts of corpus 

callosum as well as the right and left SLF have also been found in people with 

prediabetes.357 There is some evidence suggesting that memory and executive 

function impairments in patients with T2D correlate with changes in the integrity of WM 

fibres such as those in the inferior fronto-occipital fascicle (IFOF) and ILF.358 However, 

other studies failed to observe an association between T2D and WM microstructural 

integrity: for example, one study reported no differences in FA and MD between 

healthy controls and individuals who have T2D but with no peripheral microvascular 

complications.359 This has raised the idea that microstructural abnormality of WM 

fibres in T2D is closely tied to peripheral microvascular complications. Other potential 

explanations for inconsistencies may once again likely to be due to the differences in 

the methodology approached used (e.g., confounder adjustments and attrition bias).  

Some studies have studied NAWM using NODDI measures (previously outlined in the 

MRI methods found in section 1.7). They found that, when compared with healthy 

controls, people with T2D showed reduced FA and NDI and increased MD and ODI.360  

1.11.2 Global and volumetric analysis  

There is a consensus that diabetes is associated with lower whole brain volume 

(WBV). with some studies further indicating regional tissue loss. For example, a 
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recently published meta-analysis of over 14,000 journal entries, showed that T2D was 

associated with smaller total and regional brain volumes as well as greater atrophy 

over time.361  

Because of its role in AD, numerous researchers have investigated whether diabetes 

is associated with structural abnormalities in the hippocampus. Results have been 

mixed with some cross-sectional studies reporting that T2D is associated with lower 

hippocampal volumes.362,363 There is also evidence that hyperglycaemia 

(HbA1c ≥7.0%) in individuals with diabetes (and duration of diabetes) is associated 

with smaller WBV, smaller regional brain volumes including frontal, temporal, occipital 

and parietal lobes and deep GM compared to individuals with hyperglycaemia who did 

not have diabetes.352 Other population-based studies have failed to find similar 

associations.364,365  

Findings from longitudinal studies have also been mixed, with some studies showing 

that T2D is associated with greater whole brain atrophy and increased ventricular 

volume.366–368 Other longitudinal studies failed to observe these associations.369,370 

This may be explained by the variations in the methods used to quantify brain atrophy 

(thickness-based vs. volume-based) and the tissue considered (e.g., total brain tissue 

and GM, WM, and ventricular volume). It is also possible that differences between 

studies reflect differences in control of confounding, since not all studies apply 

extensive control for confounding, and by definition unmeasured or residual 

confounding cannot be accounted for. 

It is nonetheless important to acknowledge the possibility that associations between 

diabetes and brain/cognitive health could occur as a consequence of reverse 

causality. Namely, poorer brain and cognitive health may drive behaviours (e.g., poor 

lifestyle) or biological mechanisms (e.g., autonomic dysfunction) that may drive 

hyperglycaemia and diabetes.  
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1.11.3 Amyloidosis  

Amyloidogenesis is a central feature of both AD and T2D. In the former, there is an 

abnormal aggregation of Aβ peptide in the brain whereas for the latter, amylin can be 

found in the pancreas. Both of these can cause respective cell death and contribute 

to the pathogenesis of the diseases. There is also some evidence of overlapping 

pathophysiology. Mechanistically, it has been proposed that IR may promote the 

amyloidogenic processing of APP and Aβ42 formation. In mouse models, diet-induced 

IR was found to promote brain amyloidosis.371 In human studies, the findings have 

been mixed. Some studies have found that HOMA-IR has been associated with brain 

amyloidosis372,373 but others have failed to find a similar association when considering 

glycaemia traits. For example, results from the Baltimore Longitudinal Study of Aging 

cohort revealed no association between glucose and insulin measures on brain 

amyloid both in autopsy samples and in vivo imaging. Criticism about the sensitivity of 

the tracer Pittsburgh Compound B (11C-PiB) has also been raised with some 

suggestions that recently developed tracers such as Florbetapir (18F) with a longer 

half-life, may provide more sensitive imaging measures of β-amyloid accumulation.374 

How these relationships may vary by sex remains relatively unexplored.  

1.12 T2D, cognition and cognitive decline   

Several studies have explored the relationship between T2D, hyperglycaemia and 

cognitive health. The results have once again been mixed with some cross-sectional 

and longitudinal studies showing poorer cognitive outcomes,375,376 whilst others failing 

to observe similar associations.365,377–379 For example, diabetes has been associated 

with faster declines in attention380 and global cognition,375,381 poorer memory 

performance, lower verbal fluency,376 poorer executive function,382 and poor 

performance in semantic memory.383 Other longitudinal studies have however failed 

to observe an association between diabetes and poorer cognitive outcomes.384,385  

The mixed results reported by both cross-sectional and longitudinal studies may have 

many explanations. Firstly, there is considerable variability in the methods 
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implemented both during the assessments of the exposure (i.e., T2D) and the outcome 

(i.e., cognition). Ascertainment of diabetes status is often heterogeneous across 

studies with some using diagnostic tests such as OGT, HbA1c, random blood glucose 

or fasting glucose. Others assessed diabetes status via self-report or self-reported use 

of glucose lowering medications. Such different approaches may have resulted in bias, 

including misclassification and underdiagnosis of participants. Similarly, the cognitive 

tests used varied from study-to-study with some using the MMSE and other studies 

using tests that evaluated a single cognitive domain. Few studies employed a 

composite measure derived from a battery of cognitive tests, which would have helped 

reduce floor and ceiling effects, which is a problem with a test like the MMSE. 

Secondly the characteristics of the samples included in these studies varied 

considerably. For example, some studies consisted of participants aged ≥60 years 

(and even ≥75 years) whereas others included study members of age ≥40 years. The 

variability of selection methods, sampling frame, and in some cases explicit exclusion 

of some individuals, creates a considerable potential for bias. Results may also be 

subject to differences/inconsistencies in the use of confounders such as education, 

lifestyle factors, comorbid medical and neurological conditions. This can often be 

because confounder data was not measured during data collection. Even when 

recorded, it does not rule out errors in measurement. In some cases, variables 

considered in the models may not have been confounders of the relationship, either 

being on the putative causal pathway between the exposure and outcome (i.e., 

overadjustment bias) or being causal consequences of both the exposure and 

outcome (i.e., collider bias). For longitudinal studies, the follow-up period between 

cognitive assessments varied between studies, ranging from one year to twenty years 

with several studies having relatively long follow-up periods (≥10 years).376,386–389 

There were also inconsistencies in the focus between these studies – some studies 

looked at overall cognitive decline with others looking at decline prior to dementia. 

Consequently, the inclusion of cognitive impairment or incident dementia cases 

together with the wide age ranges may introduce a range of problems such as reverse 

causation or collider bias. It is also possible that findings may vary from study-to-study 
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or cohort-to-cohort due to attrition bias. Attrition bias describes a selection bias driven 

by systematic differences between those who continue to take part in the study and 

those who are lost throughout the process. This can potentially introduce a problem 

where associations are observed due to participants, often with characteristics that 

may be important, dropping out (e.g., younger participants may have higher mobility 

or different priorities that affect their study participation).  

1.13 What is still unknown and general aims   

This introductory chapter has given a brief perspective on T2D and dementia, and 

discussed the mechanisms through which these two conditions may be related. An 

overview of the techniques used to study this complex relationship was given and the 

existing evidence linking T2D to brain and cognitive health outcomes was discussed.  

The nature of the relationship through which glycaemia, a defining component of 

diabetes, is associated with brain health in the general population is still poorly 

understood. This introductory chapter highlights that the majority of studies in this 

space have focused on clinical samples with T2D. However, there is value in looking 

at similar associations in population-based studies as that they allow analyses to go 

beyond the clinical thresholds of diabetes to: 1) look more generally at the 

mechanisms that may underlie this relationship across the spectrum of glycaemia, 2) 

be more nuanced about the subtleties of this complex relationship (e.g., look at non-

linearity and sex differences) and 3) further combine different scientific approaches 

(e.g., genetics and time-sensitive medication analysis) to gain a more comprehensive 

insight into this relationship.  

The introductory chapter also makes it clear that sex may be an important modifying 

risk factor for both diabetes and dementia. Despite this, most studies that explore 

diabetes-brain associations do not consider sex as potential effect modifier and do not 

stratify their analyses accordingly. In line with the growing evidence of sex differences 

in the context of metabolic and neurological health, there is important value in testing 

for sex interactions and/or proceeding with stratified analyses.  
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1.14 Research questions and the structure of the thesis:  

In an attempt to better understand these relationships, two flagship UK-based 

population-based studies (the NSHD and UK Biobank samples) were used to examine 

the following research questions:  

Chapter 3: To investigate whether glycaemia at different points in life is associated 

with a range of later-life brain health measures capturing AD-related pathology, SVD 

and cognitive health, and examine how these relationships differ by sex.  

Chapter 4: Following on from the findings from Chapter 3, I aimed to examine whether 

other glycaemic traits were also associated with brain volumes differently in males and 

females. I further considered multiple volumetric measures of brain health to see 

whether any differences reflected preferential tissue loss.  

Chapter 5: Following on from the findings from Chapter 3 and Chapter 4, I aimed to 

examine whether systemic inflammation mediated the glycaemia-volumetric 

associations observed in females.  

Chapter 6: Following on from the findings observed in NSHD, I aimed to examine 

whether glycaemia also shows sex-specific associations with brain volume in the 

bigger UK Biobank sample. I aimed to use the increased power of the sample to look 

for evidence of non-linearity. 

Chapter 7: To strengthen causal inference in the observational findings reported in 

Chapter 5, I aimed to examine whether genetic risk scores for glycaemia support the 

sex-specific associations observed with brain health outcomes. 
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2. General methods 

The thesis required analysis of large multimodal data from two flagship UK-based 

population-based samples; thus, a brief methods chapter is included to introduce the 

data collection process and characteristics of the two key samples considered. The 

samples are the NSHD birth cohort (and its neuroimaging sub-study Insight 46) and 

UK Biobank (and its neuroimaging sub-study).  

2.1 National Health Survey Of Health and Development  

For Chapter 3-5, the sample used was NSHD and Insight 46. The studies conducted 

with this data are approved by the National Research Ethics Service Committee 

London (REC reference 14/LO/1173) and all participants provided written informed. 

NSHD also known as the MRC 1946 birth cohort study, is a longitudinal study of a 

sample (n = 5362) of single births that occurred in the first week of March 1946 in 

Great Britain.390–392 It was initiated to address pressing health and social policies in 

the UK prior to the establishment of the National Health Service (NHS) in 1948. These 

were the declining national fertility rate and distribution and use of obstetric and 

midwifery services.391  

By 2020, the participants of the birth cohort had undergone 25 waves of data 

collection: starting with assessments approximately every 2 years during childhood 

and around 5-10 years during adulthood. Early NSHD data collection was more 

frequent in early life due to rapid growth and development. The focus began on ante-

natal health, post-natal care, survival and socio-economic information of the family. As 

participants aged, the study expanded to further include health assessments by school 

doctors and teacher-administrated psychological and cognitive tests (measuring 

cognitive ability and conduct and behavioural problems). Educational attainment was 

quantified as highest level of educational qualification by age 26 years. 
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Between the ages of 32-53, NSHD researchers collected comprehensive health 

information on participants including those relating to respiratory, cardiovascular, 

metabolic, musculoskeletal and mental health. In addition, data on anthropometric 

measures and lifestyle factors were ascertained. In midlife, female participants were 

asked questions on menopausal status, symptoms, treatments, and monthly HRT 

history. Blood samples were conducted to measure various metabolic markers (i.e., 

HbA1c, cholesterol, HDL, triglyceride and extracted DNA).  

When the participants were aged 60-64, a more extensive array of biomarkers was 

measured to assess broader aspects of metabolic, cardiovascular, and general health. 

Fasting biological samples collected information on thyroid function, insulin, 

cholesterol and, inflammatory markers, and more.   

At age 69, the data collection of NSHD participants focused on capturing detailed 

information on morbidity, functional limitations, and the use of health and social 

services. It repeated and expanded upon previous health and functional assessments, 

collected comprehensive data on common health symptoms, and included the 

collection of a third blood sample to further investigate biological markers of ageing. 

This follow-up aimed to enhance the understanding of the lifetime determinants and 

consequences of health and functional changes in older age. 

NSHD has suffered notable attrition as participants got older. The most prominent 

overall attrition in the sample happened during the early adult years when changes of 

names and addresses were common. This was also when 5 out of the 7 sweeps of 

data collection were conducted via postal questionnaires. By age 53, 8.7% of the 

sample didn’t participate because of death at infancy, 8.6% due to emigration and 

2.2% due to living abroad.391  

At the age 60-64 assessment, of the original 5362 participants, 957 (17.8%) had died, 

620 (11.6%) had previously withdrawn from the study, 448 (8.3%) had emigrated and 

were no longer in contact with the study and 395 (7.4%) had been untraceable for 

more than 5 years. So, 2942 people were eligible and contacted. Of these 2453 
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(83.4%) completed a postal questionnaire.393 At age 69, a home visit was performed 

for detailed phenotyping. Higher participation was associated with higher levels of prior 

contact and lower levels of recent health issues. This visit as well as previous sweeps 

provided a substantial part of the data used in this thesis.  

It is important to note that the general trend of the sample suggests sex differences in 

participation rates. Up to age 69, the follow ups in adulthood indicated that males were 

less likely to take part. Of the 957 people who no longer took part in the study because 

they were deceased, 658 of them were males (20% of the overall sample).  

2.2 Insight 46   

Insight 46 is a neuroscience and clinical sub-study of NSHD.118 It is a longitudinal 

(two-time points, with the third wave currently underway) detailed assessment of 

~500 study members focused on acquiring information on clinical, 

neuropsychological, imaging and blood/urine biomarkers. To avoid potential bias in 

selecting those at risk of cognitive decline, participants were selected based on 

maximising the life course data available. From those who previously attended 

assessments at age 60-64, who had previously shown willingness to attend a clinical 

visit in London, and with data available during childhood and adulthood, 500 

participants were selected at random. The participants undertook a series of 

neuropsychological tests including the MMSE, Choice Reaction time (inc. switching 

and inhibition measures), The Face Name Memory Exam (FNAME-12) and The Digit 

Symbol Substitution Test (DSST).  

The inclusion criteria are further discussed in the Insight 46 protocol paper.118 
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Cognition Neuroimaging 

Cognitive test used Ability assessed Imaging technique Marker yielded:  

WASI Matrix 

Reasoning 

Non-verbal 

reasoning 
T1 and T2 imaging  

Global, tissue-specific 

and regional brain 

volumes  

WMS-R Logical 

Memory 
Free recall PET (via PET/MRI) Amyloid load 

‘What was where?’ 

task 

Visuo-spatial 

working memory 

‘Diffusion-weighted 

MRI  

Measures of 

microstructural integrity 

and normal appearing 

white matter 

FNAME-12 Associative memory 
Arterial spin labelling 

(ASL) 
Cerebral blood flow 

Choice Reaction time 

(inc. switching and 

inhibition measures) 

Task switching and 

response inhibition 

Functional near-

infrared stereoscopy 

(fNIRS) 

Measures of 

haemodynamic 

response 

WAIS-R Digit Symbol 

Substitution; Irrelevant 

Distractor (WAIS-R) 

Attention and 

psychomotor speed 
Resting brain imaging 

Functional cortical 

connectivity (e.g., 

default mode network) 

Mini Mental State 

Examination (MMSE) 

Screening tool 

assessing multiple 

cognitive domains 

    

Table 2.1: Overview of neuropsychological tests and brain imaging conducted as part 
of Insight 46.  
More details on these assessments are discussed in the Insight 46 protocol (further 
discussed by Lane and colleagues).118 

The first stage of recruitment for Insight 46 involved contacting NSHD participants who 

had not previously withdrawn, died, or remained untraced from the main study by age 

69. These participants were then asked if they were willing to undergo a neuroimaging 

study (yes = 40%), and if so, travel if this clinic was in London (yes = 70%). 

 



 

86 

 

 

Figure 2.1: Overview of participant recruitment for phase 1 of Insight 46 (Source: published work by James and colleagues).394 



2.3 Neuroimaging of Insight 46  

The brain imaging data used in this thesis was derived and provided by the expert 

team at the Dementia Research Centre (DRC) at UCL, Queen’s Square, Institute of 

Neurology. The DRC team provided me with data and advice of how to best use the 

key metrics for my analyses. 

2.3.1 Imaging acquisition, preprocessing and quality control   

In this thesis, the brain imaging markers from Insight 46 considered as outcomes in 

the analyses were: structural measures quantifying global and regional tissue 

volumes: (WBV, GM, WM and HV), SVD-related (WMHV), white matter-related (FA, 

MD, ODI, NDI) and a measure of amyloid burden (PET amyloid status).  

WBV, GM, WM and HV, were derived following brain imaging using Biograph mMR 

3T PET-MRI scanner (Siemens Healthcare, Erlangen), with simultaneous acquisition 

of dynamic PET and MRI data, including high resolution 3D (1·1 mm isotropic) T1-

weighted and T2-weighted FLAIR scans. Following manual quality control, automated 

parcellation was performed using the Geodesic Information Flows (GIF) software395 

resulting in GM, WM and CSF tissue separation closely following the pipeline 

described by Eshagi and colleagues.396 WBV was segmented using Multi-Atlas 

Propagation and Segmentation (MAPS) Similarity and Truth Estimation for 

Propagated Segmentations (STEPS) for hippocampal volumes.397,398  

For WMHV, a validated, unsupervised, automated algorithm, Bayesian Model 

Selection (BaMoS)136 was used to segment WMH jointly from 3D T1 and FLAIR 

images, followed by visual quality control. This generated a measure of WMHV 

including subcortical grey matter but excluding infratentorial regions.  

For NAWM measures, the GIF software was used to automatically construct WM 

masks from the T1-weighted images.395 Participant-specific masks were constructed 

by subtracting the BaMoS-WMH mask (see above) from the GIF-WM masks using 

NiftySeg (https://github.com/KCL-BMEIS/NiftySeg), before being eroded by 1 voxel. 

The full details including image correction and visual QC for the diffusion images are 

discussed.148 Z-scores for each participants’ diffusion map were generated (i.e., FA, 

MDI, NDI and ODI) through a comparison using a selected sample of 20 participants 
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with minimal evidence of WMHs (<1mL). Mean z-scores over the NAWM mask were 

then calculated for each diffusion metric. These standardised diffusion measures were 

then considered as outcomes in the regression analyses.  

For amyloid status, a 3 Tesla PET MRI scanner was used for the simultaneous 

dynamic acquisition of PET-MRI (in addition to the T1-weighted and T2 weighted 

imaging). PET data was acquired following the injection of a radio tracer (18F 

florbetapir) that acted as an imaging biomarker for AD. PET data was collected in list-

mode pre- and post-injection to evaluate florbetapir uptake dynamics. The final 

assessment of amyloid burden was conducted over a 10-minute period, approximately 

50 minutes post-injection. If participants were unable tolerate longer scan periods, the 

preceding 10-minute period was used instead. A Gaussian mixture modelling with two 

Gaussians using the 99th percentile of the lower distribution as the cut point (1.031, 

equivalent to 11.8 centiloids) was then used to determine Aβ positivity status.399 

2.4 UK Biobank   

2.4.1 Introduction to the sample   

For Chapter 4 and Chapter 5, data from the UK Biobank was used. The UK Biobank 

received ethical approval from the North West Multicentre Research Ethics Committee 

and informed consent was obtained from all participants. 

 UK Biobank is a population-based, prospective cohort study of over 500,000 

participants recruited between 2006-2010. The recruitment for the UK Biobank study 

recruited individuals aged between 40-69, registered to the NHS and living within 40 

kilometres of one of the 22 assessment centres in England, Wales and Scotland. 

Overall, 9 million invitations were sent and 503,317 (5.45%) accepted the invitation to 

participate.33,400 The sample consists of more females than males.  

Participants recruited initially completed questionnaires, underwent computer-

assisted interviews, were assessed on a range of physical measures and had blood 

and urine samples collected. Following initial baseline measurements, a subgroup of 

participants underwent (or are undergoing) further assessments including repeats of 

baseline assessments (n=20,000-25,000), diet questionnaires (n=210,000), 
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accelerometery (n=100,000) and multimodal imaging including a brain MRI 

(n=100,000).  

Linkage to national datasets was made to acquire details on mortality, cancer 

incidence and hospital admission. With participant ages ranging between 40-69 years 

at baseline, the study provides a valuable open-access dataset to study risk factors 

for diseases in mid to late life.401,402 

Although it is a very rich dataset with a large sample size, analysis of overall invitees 

versus participants indicates a healthy volunteer bias. The UK Biobank participants 

have been found to be different to the UK population across a number of 

sociodemographic, lifestyle and health-related measures.33 Both males and females 

have been found to be less likely to smoke, drink and be obese. Linkage of their health 

records also indicates that that they a lower rate of all-cancer incidence (e.g., lung 

cancer), diabetes, chronic disease and respiratory disease compared to the general 

population of similar age.33 For example, for diabetes, both males and females show 

lower self-reported health conditions at age 45-54 and 55-64 (see Table 2.2).  

 UK Biobank Health Survey for 

England 2008 

Age 45-54 Males 4.5 8.1 

Females 2.4 3.5 

Age 55-64 Males 7.8 10.5 

Females 6.3 8.0 

Table 2.2: Self-reported diabetes prevalence (%) by age and sex in UK Biobank 
participants and Health Survey for England 2008.  
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UK Biobank is a large sample and participants have undergone genetic phenotyping 

which offers statistical power and also has (potentially) unbiased gene-outcome 

associations, despite its low response rate (5.5%) and the concerns over its non-

representativeness. To mitigate biases, it is important to reinforce any findings from 

this sample with data from other sources, such as birth cohorts like NSHD, which 

provide detailed, longitudinal data from representative populations, enhancing the 

ability to identify causal relationships and control for confounding variables. This 

combined approach leverages the strengths of large-scale genetic data and detailed 

cohort studies, providing a comprehensive understanding that informs public health 

and policy more effectively.403  

2.4.2 Neuroimaging of UK Biobank  

Participants underwent brain imaging across four centres in Central, North, South-

East and South-West England by a team responsible for training and monitoring 

quality assurance across all four centres, with all staff members having undergone 

extensive training by a MR physicist. Harmonisation of data across centres was 

assured by employing the same scanner models, software, adjustment and tuning 

techniques, coil types and protocols. In addition, a standardised training programme 

was provided for radiographers in each centre and standard operating procedures, 

alongside phantom measurements, servicing, and performance checks were 

conducted by a UK Biobank physicist. Qualitative and quantitative comparisons were 

performed by external imaging experts to confirm that images were of high quality and 

suitable for research Very briefly, the UK Biobank's brain MRI protocol uses a 3 Tesla 

Siemens Skyra scanner, taking approximately 35 minutes per session. It includes T1-

weighted MRI for volumetric measures, T2 FLAIR for detecting inflammation or tissue 

damage, susceptibility-weighted MRI for iron content sensitivity, diffusion MRI for 

assessing WM integrity, and both resting and task fMRI for evaluating functional 

connectivity and brain responses to stimuli. Preprocessing involves converting images 

from DICOM to NIFTI format and correcting for artifacts. Postprocessing includes 

automated quality control, removing facial images for anonymity, and generating 

thousands of image-derived phenotypes for research, ensuring high-quality, 
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standardised data. This informed was derived from a paper published by Littlejohns 

and colleagues404 where it is discussed in more details.  

In line with this imaging protocol, the postprocessed measures (provided by the UK 

Biobank) used in this study included HV (cm3) and total volume of WMHV (cm3) both 

adjusted for total intracranial volume (TIV). WMH volume was log-transformed as it 

was positively skewed. Other measures included WBV, GM and WM (normalised for 

head size, cm3). These same measures have been used in previous studies.364,405  

2.4.3 Genetic measures  

Blood samples were collected from participants during their initial assessment visit at 

UK Biobank centres. DNA was then extracted from these samples for genotyping. The 

genotyping and genetic analysis process in the UK Biobank involved several key steps 

to ensure accurate and comprehensive data. The two arrays used were Applied 

Biosciences UK BiLEVE Axiom Array (n=49,950) and the Applied Biosciences UK 

Biobank Axiom Array (n=438,427) capturing a wide range of genetic variation including 

SNPs and indels. DNA extracted from blood samples was automated to minimise bias. 

Genotype calling was conducted using a custom pipeline optimised for large-scale 

data and this was followed by rigorous QC to ensure data reliability (e.g., sample-

based checks for high missing rates or extreme heterozygosity). Marker-based QC 

excluded unreliable markers, while sample-based QC flagged poor-quality samples. 

Principal Component Analysis (PCA) was performed to measure population structure 

revealing diverse ancestral backgrounds. Kinship analysis identified related 

individuals within the cohort (with 30% of participants found to be related to a third-

degree or closer to another participant). Haplotype estimation and genotype 

imputation expanded the dataset to approximately 96 million variants, enhancing 

resolution. Finally, Human Leukocyte Antigen (HLA) alleles were imputed to study 

genetic associations with immune-related diseases. These steps collectively ensure 

high-quality genetic data, facilitating the discovery of new genetic associations and 

insights into complex traits. 
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2.4.4 Assessment of cognition  

At first assessments, participants underwent a range of cognitive tests. These were 

administered via a computerised touchscreen interface.406 The sample size for each 

of the 5 tests administered differed as some examinations were added part-way 

through the baseline assessment period, whilst others were removed due to time 

constraints. Following the original assessment, invitations were sent out by email to 

103,514 participants to attend a repeat assessment visit between 2012-2013. 20,339 

participants (20%) accepted the invitation to the repeat assessment.406 Details about 

characteristics of individuals who accepted the invitation to the repeat assessment 

versus the overall cohort are provided on the UK Biobank website 

(https://www.ukBiobank.ac.uk/).  
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3. The relationship between glycaemia and markers of 

brain and cognitive health in a birth cohort  

This chapter aims to examine whether there are associations between HbA1c levels at 

different timepoints in adulthood (age 53, age 60-64 and age 69) and later life brain 

and cognitive health (at age ~70), using NSHD and its embedded neuroscience sub-

study Insight 46 (introduced in Chapter 2.2 and 2.3). This chapter investigates 

whether: 1) poor glycaemic control and higher cumulative glycaemic exposure are 

associated with worse brain health in the National Survey of Health and Development 

birth cohort, 2) there is a sensitive period (e.g., midlife) where glycaemia is most 

damaging for later-life brain health and 3) glycaemia interacts with sex to affect brain 

health differently in males and females.  

Some of the material in this chapter has been published in the Journal of Neurobiology 

of Ageing.407 Further analyses have been conducted exclusively for the thesis using 

additional markers of brain and cognitive health. The aim of these additional analyses 

was to use more sensitive measures of cognition and microstructural integrity to further 

explore their potential relationships with HbA1c. 

3.1 Introduction 

Past evidence has linked T2D with cerebral pathology.408,409 This includes a higher 

burden of cerebral SVD such as lacunar infarcts and microbleeds, as well as more 

characteristic AD-related pathology affecting brain and hippocampal volumes.362,363 

There is also evidence (albeit inconsistent) that T2D is associated with poorer 

cognitive health (see Chapter 1.12). While growing evidence suggests that 

hyperglycaemia, a defining marker of T2D, may be damaging for the brain, the nature 

of this relationship across the population, i.e., the precise impact it has on the brain, 

whether there is a specific time window in which it affects the brain and whether any 

impact varies by sex remain poorly understood.410 For example, identifying a “sensitive 

window” where poor glycaemic health, in a population sample, specifically carries 

more adverse effects on the brain is of research importance as it may guide time-

sensitive preventative interventions. Some evidence has suggested that an earlier 
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exposure may reflect a greater cumulative burden and thus may pose a greater risk 

for later life brain health.352,411,412 In addition, growing evidence suggesting sex 

differences in diabetes complications warrants further investigation in how these 

relationships manifest in males and females. Females with diabetes may show an 

increased risk of severe complications, when compared to males, as evidenced by 

their higher degree of cardiovascular, renal, and even hippocampal TOD.187,413,414  

By considering various measures of brain (volumetric, diffusion and amyloid 

measures) and cognitive health (PACC and its subcomponents), this project aims to: 

examine whether: 1) higher HbA1c and glycaemic burden (as indexed by A1 months) 

predict poorer brain and cognitive health, 2) there is a “sensitive window” for which 

this exposure (at 53, 60-64 or 69 years) may have its most adverse effects and 3) 

examine interactions between HbA1c and sex on brain and cognitive health outcomes 

to see whether further investigation of differences between males and females is 

needed.  

I hypothesised that higher HbA1c across the different time-points (and greater A1 

months) would be associated with more adverse brain health at age ~70, both when 

looking at markers of SVD (WMHs) and those more of AD pathology (hippocampal 

volume and amyloid burden). I also hypothesised that higher HbA1c would be 

associated with poorer cognitive outcomes. I further hypothesised that the strength of 

these associations of HbA1c with brain and cognitive outcomes would differ by sex.  

3.2 Methods 

3.2.1 Sample  

The NSHD is a British birth cohort originally consisting of 5,362 males and females 

born in mainland Britain during the same week in 1946.392 There have been 25 waves 

of data collections across childhood and adulthood with participants most recently 

assessed at age 68–69. Insight 46 is a neuroscience sub study of this cohort in which 

502 participants underwent further assessments between May 2015 and January 

2018. See Chapter 2.2 and 2.3 for additional information on the samples.  
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3.2.2 Investigations 

Neuroimaging protocol 

The neuroimaging protocol and postprocessed steps are described in detail in Chapter 

2.4. The brain health measures considered in this analysis were structural brain 

imaging measures (WBV and HV), SVD-related measures including WMHV, 

microstructural integrity (FA, MD, ODI, NDI) and amyloid status.  

Cognitive outcome measures  

Cognitive function at age 69-71 was assessed using the Preclinical Alzheimer’s 

Cognitive Composite (PACC). The PACC is a composite measure derived from the 

results of four cognitive assessments: total scores from the MMSE and FNAME-12, 

scores from the DSST and delayed recall scores from the Logical Memory test.415 

These have previously been described and used by Lu and colleagues.416 

The MMSE is a 30-point composite device used to screen for cognitive impairment.38 

This test assesses a range of cognitive capacities including recall, language, 

registration and orientation, and typically lasts ~5-10 mins. A higher PACC score 

reflects a better performance.  

The DSST is a neuropsychological test requiring participants to match symbols to 

numbers using a key.417 It is considered a useful tool for assessing a range of cognitive 

capacities such as executive function, psychomotor speed, and visuo-perceptual 

functioning. It is scored based on the total number of items completed correctly within 

a period of 90 seconds.  

The Logical Memory test assesses free recall of a short prose in which participants 

are asked to recall information following a delay of 20 minutes.418 

The FNAME-12 is a cross-modal assessment of associative memory measuring the 

participant’s ability to recall different unfamiliar pair associations (e.g., face-name and 

face-occupation).419 Participants are first given time to learn different pairs and are 

then subsequently assessed numerous times for their ability to correctly match a face 

to the correct name and occupation. The total scores are based on the total number 
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of name and occupation pairs correctly recalled by the participant. This test and its 

reliance on associative memory, has been found to be especially sensitive to early 

stages of AD.420  

Life course and clinical variables 

HbA1c and Cumulative glycaemic exposure (or A1 months)  

HbA1c was measured in non-fasting blood samples at age 53, overnight fasting blood 

samples at age 60–64, and non-fasting blood samples at age 69-71 using high-

performance liquid chromatography (HPLC) using a Tosoh A1c 2.2 analyser (Tosoh, 

Tokyo, Japan). 

As a measure of cumulative glycaemic exposure, A1 months was calculated by 

multiplying the number of HbA1c units above normal at each cycle by the number of 

months between the midpoints of the preceding and succeeding cycle intervals as per 

methods published by Orchard and colleagues.421 

Type 2 diabetes status 

T2D status was established based on usage of oral hypoglycaemic or injected insulin 

as measured in self-reported questionnaires at ages 36, 43, 53, 60-64 and 69-71 or a 

self-reported clinical diagnosis of diabetes during any home visit. Participant self-

reported diabetes has been previously validated through a comparison with general 

practitioners’ records.422  

Confounders  

Relevant confounders in these relationships were identified on the basis of a literature 

review exploring the associations between diabetes and brain outcomes and 

conceptualised through a directed cyclic graph (see Figure 3.1). Potential confounders 

were considered to be sex, childhood socio-economic position (SEP), adulthood SEP, 

childhood cognition, education, BMI, physical activity level and smoking status.  
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Figure 3.1: Directed acyclic graph constructed to model the relationship between 
HbA1c (exposure) and brain/cognitive measures (outcomes).  
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These confounders were identified through an extensive literature search at the 

beginning of the thesis. The red circles in the directed acyclic graph (DAG) represent 

the confounder variables in these potential relationships with the red arrow pointing to 

their influence. Total intercranial volume (TIV) although not a confounder, was 

adjusted for to reduce variance in the outcome and to control for potential differences 

in the ratio of skull size to brain volumes between males and females. In addition, age 

at scanning was adjusted for in the models because although it is not a confounder, it 

is likely to be strongly associated with the relevant brain health outcomes.  

 

Socioeconomic position 

Childhood SEP was measured as father’s occupational social class recorded at age 

4-5 (or if missing, at age 11). Adult SEP was measured by the occupation of head of 

household at 53 years. These were coded according to the UK Registrar General's 

Standard Occupational Classification, then classified into 6 categories: unskilled, 

partly skilled, skilled manual, skilled nonmanual, intermediate, professional.  

Educational attainment was represented as the highest educational or training 

qualification achieved by age 43, grouped into 5 categories: no qualification, below O-

levels (vocational), O-levels and equivalents, A-levels and equivalents, higher 

education (degree and equivalents).  

Smoking status 

Smoking status was assessed through questionnaire-based self-report (available at 

ages 53, 60-64 and 69) and was classified into three groups: smokers, ex-smokers, 

and non-smokers at each age.  

Physical activity 

Physical activity level (available at ages 53, 60-64 and 69) was ascertained by self-

report and classified into any physical activity (participants exercised at least once a 

week) or no physical activity (no or negligible physical activity in a week).  
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Body mass index 

BMI was calculated as weight(kg)/height(m2) using height and weight measurements 

collected by trained nurses during assessment at each time point to a standard 

protocol. 

APOE status and APOE genotyping 

APOE status classification was based on the two single SNPs rs439358 and rs7412. 

Individuals were subsequently categorised as APOE-ε4 carriers or non-carriers. 

Genotyping was carried out by KBioscience (www.lgcgenomics.com) on DNA 

extracted at the 60–64-year visit and was repeated for all participants with a sample 

collected at the Insight 46 visit to minimise missing data points, resulting in 500 

individuals with known APOE status in Insight 46. 

Childhood cognition 

Childhood cognitive function was derived from four tests of verbal and non-verbal 

ability administered to the participants (at ages 8, 11 and 15) using tests created by 

the National Foundation for Educational Research.423–425 These are shown in Table 

3.1. At each age the four scores ascertained were standardised to a mean of 0 and a 

standard deviation (SD) of 1. These new scores were then re-summed and re-

standardised to create a global measure of intelligence at each age. A summary 

variable of childhood cognition was derived using the average scores of the three ages 

(8, 11 and 15). If the data was only available for two ages, the summary variable was 

derived using this average.  
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Age Tests 

Age 8 Word 

reading 

Reading 

comprehension 
Vocabulary 

Picture 

intelligence test 

Age 11 
Word 

reading 

Arithmetic 

assessment  
Vocabulary 

Alice Heim 

Group ability  

(80 items) 

Age 15 A 47-item 

mathematics 

test 

Reading 

Comprehension 

The Watts-

Vernon reading 

test.  

Alice Heim 

Group ability 

(130 items) 

Table 3.1: The different verbal and non-verbal assessments undertaken by the 
National Survey of Health and Development cohort at different ages during childhood 
to adolescence.  
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3.2.3 Statistical analysis 

Statistical analyses were conducted in Stata version 15.1 and Stata version 17. For 

continuous variables that were normally distributed, means and SD were reported. For 

skewed data, the median and the range were reported. For categorical variables, 

frequency and percentages were reported.  

A comparison of HbA1c levels between the NSHD sample with available data at each 

time point and Insight 46 participants considered in this study for both males and 

females was made using t tests.  

The associations between each HbA1c measure (and A1 months) with brain imaging 

and cognitive outcomes were examined through a series of GLM models.   

For each association a minimally confounder-adjusted model (Model 1) was first 

constructed by adjusting for sex and age at scan. For WBV, WMHV, HV and measures 

of NAWM (FA, MD, ODI and NDI), this simple model additionally adjusted for TIV. 

Model 2 further adjusted for social factors related to cognition including childhood 

cognition, childhood SEP, adulthood SEP and education levels. Model 3 was the fully 

confounder-adjusted model and further included lifestyle factors (BMI, physical 

exercise and smoking status as measured at each time point respectively).  

Prior to running Model 1, interaction terms between each HbA1c indicator and sex were 

examined. Models were subsequently sex-stratified if this term was statistically 

significant (likelihood ratio test, p<0.05). When the outcome was amyloid status, 

interaction terms between HbA1c and APOE e4 were also examined. If any of the 

interaction terms were significant, the sample was stratified accordingly. Owing to its 

skewed distribution, WMHV was log-transformed prior to analysis as commonly 

performed.426,427 One participant was excluded from the analysis for having a HbA1c 

value of more than 3SD from the mean suggestive of a potential error in measurement.  

To account for the effect of diabetic medication (including insulin) on blood glucose 

levels, a value 11 mmol/mol (or 1%) was added to the HbA1c value of any participants 

receiving hypoglycaemic medication at a given time point. The 1% addition is 

consistent with a previous clinical review that reported the effectiveness of antidiabetic 
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drugs to range from 0.9-1%.428 Moreover, the addition of 11mmol/mol, approximately 

1SD reflects the approach used for blood pressure, where again a rough 1SD is added 

to the measured HbA1c, reflecting longstanding exposure to elevated HbA1c.  

Multiple imputation for missing confounder and exposure data was performed using 

the Multivariate Imputation by Chained Equations (MICE) method by fully conditional 

specification (50 imputed datasets) under the assumption of missing at random 

(MAR). MICE results are presented below but were also checked for concordance with 

the complete case data. No auxiliary variables were included as the variables 

considered in the model fulfilled the MAR assumption. 

A sensitivity analysis also was performed using measured HbA1c whereby the 

corrections imposed for diabetes medication were omitted. As further sensitivity 

analyses, I re-ran key results using a complete case approach, excluding people with 

diabetes, and those with neurological conditions in separate analyses.  

For all analyses, the conventional level of 5% was used to represent statistical 

significance. 

The plots presented in the results section were generated using the avplot function 

from Stata. The avplot command used after regression analyses produces added-

variables plots also known as partial-regression leverage plot, partial regression plot, 

or adjusted partial residual plot. It plots the residuals against the values of the predictor 

variable of interest (i.e., HbA1c or A1 months) while holding confounders constant. This 

helps assess the influence of individual data points on the regression model and aids 

with the identification of outliers or points that may have a disproportionate impact on 

the regression coefficients and predictions. The E(Y) reported on the y-axis represents 

the predicted values of the response variable, while E(X|Xn) on the x-axis represents 

the conditional expected values of the predictor variable of interest. 
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3.3 Results 

Following multiple imputation, the final analysis consisted of data for 454 participants. 

All 454 participants had available data for WBV, HV and WMHV and 446 (91%) had 

usable data for amyloid analysis (see Figure 3.2). Participant demographic and clinical 

characteristics for the complete case data are presented in Table 3.4. 

Participants considered had a mean age of 70 years (SD = 0.7) and were more likely 

to be male (52%). 86 participants (~20%) met the threshold to be considered amyloid 

positive. HbA1c levels were mostly similar across each sweep albeit suggestive of a 

small rising trend (see Table 3.4).  

HbA1c levels in the current sample (participants in Insight 46 with a HbA1c value 

available) were compared to all participants in NSHD with HbA1c results at each time 

point to see if glycaemic health varied between samples. The results showed 

differences in HbA1c levels between NSHD and Insight 46 participants, whereby those 

who took part in the sub-sample had slightly lower mean HbA1c (Table 3.2), which was 

exacerbated in males, suggesting a healthier bias towards males with lower HbA1c 

being part of the sub-sample. 

 Variable n NSHD  n Insight 46 p-value 

Males Age 53 1293 38.4 (7.2) 214 36.7 (4.7) 0.0002 

Females Age 53 1289 38.3 (7.7) 198 37.3 (4.7) 0.05 

Males Age 63 989 40.3 (7.1) 223 38.9 (5.1) 0.001 

Females   Age 63 1056 40.5 (8.3) 216 39.9 (6.9) 0.3 

Males Age 69 923 40.1 (7.9) 213 38.6 (6.3) 0.001 

Females   Age 69 994 40.1(7.1) 208 39.3 (6.9) 0.08 

Table 3.2: Comparison of HbA1c levels between the National Survey of Health and 
Development sample with available data at each time point and Insight 46 participants 
considered in this study.  
The comparison is made for both males and females and p-values from t tests are 
presented.  
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Variable Missing 

Exposures 

HbA1c at age 53 42 

HbA1c at 60-64 15 

HbA1c at 69 33 

Confounders 

Childhood socioeconomic position 3 

Adulthood socioeconomic position 0 

Childhood cognition  0 

Body mass index at age 53 0 

Body mass index at age 60-64 0 

Body mass index at age 69 0 

Smoking status at age 69  8 

APOE status  55 

Outcomes 

Age at scanning 0 

Whole brain volumes 0 

Hippocampal volumes  0 

White matter hyperintensity volumes  0 

Amyloid status 8 

Preclinical Alzheimer Cognitive Composite z-score  0 

Logical Memory Delayed mean,  0 

Digit symbol substitution test   0 

Mini-mental state examination   0 

Face Name Memory Exam -12   0 

Fractional anisotropy  57 

Medial diffusivity  57 

Orientation dispersion index  70 

Neurite Density Index  57 

Table 3.3: Missingness numbers for the exposure, confounder and outcome data in 
the sample considered. To be considered, participants had to be part of Insight 46 and 
had to have volumetric imaging data available (n = 454).  
Multiple imputation was only conducted for exposure and confounder data. APOE 
status was grouped in the confounder section but was only considered as a variable 
in relation to its role in interaction analyses with amyloid status. 
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Figure 3.2: Flowchart providing an overview of Insight 46 recruitment and imaging of 
National Survey of Health and Development participants who were part of Insight 46. 
To be considered in the study, participants had to have been part of Insight 46 and 
have volumetric imaging data available, which amounted to 454 participants.  
BaMoS, Bayesian Model Selection; MRI, magnetic resonance imaging; NSHD, 
National Survey of Health and Development; PET, positron emission tomography; QC, 
quality control; WMHV, white matter hyperintensity volume. 



Participant characteristics n  Pooled  n Males n Females 

Age at scanning in years  454 70·7 (0·7) 233 70·7 (0·7) 221 70·7 (0·7) 

HbA1c, mmol/mol 

At 53 years 412 37.1 (4.7) 214 36.7 (4.5) 198 37.3 (4.7) 

At 60–64 years 439 37.4 (5.6) 223 38.9 (5.1) 216 39.9 (6) 

At 69 years   421 39 (6.6) 213 38.7 (6.4) 208 39.3 (6.9) 

A1 months 400 206.4 (483) 206 197.9 (474.8) 194 215.8 (493.1) 

Self-reported diagnosis of diabetes 

At 53 years  454 2 (0.4%) 233 1 (0.2%) 221 1 (0.2%) 

At 60–64 years 454 20 (5%) 233 10 (4%) 221 10 (5%) 

At 69 years 454 28 (6%) 233 14 (6%) 221 14 (6%) 

Diabetes medication use 

At 53 years 448 2 (0.04%) 239 1 (0.5%) 229 1 (0.4%) 

At 60–64 years 448 16 (4%) 239 10 (2%) 229 6 (1%) 

At 69 years 444 27 (6%) 227 14 (3%) 217 13 (3%) 

Smoking status at 70 

Current Smokers 
 

446 

9 (2%) 
 

231 

4 (1.7%) 
 

215 

5 (2%) 

Ex-smokers 207 (46%) 120 (54%) 86 (40%) 

Never smoked 230 (52%) 107 (45.3%) 124 (58%) 

Body-mass index, kg/m2 

At 53 years  454 27.3 (4.4) 233 27.1 (3.4) 221 26.7 (4.7) 

At 60–64 years 454 27.9 (4.5) 233 27.8 (3.5) 221 27.3 (4.7) 

At 69 years 454 27.9 (4.8) 233 27.7 (3.6) 221 27.2 (5.1) 

Adult socioeconomic position 
Non-manual 

454 
120 (26%) 

233 
28 (12%) 

221 
92 ( 

Manual  334 (74%) 205 (88%) 129 (58%) 

Childhood socioeconomic position 
Non-manual  

451 
175 (39%) 

234 
87 (37%) 

217 
88 (40%) 

Manual  276 (61%) 147 (63%) 129 (60%) 

APOE ɛ4 carrier (1 or 2 alleles)  399 116 (29%) 209 64 (30%) 190 50 (26%) 

Childhood cognition 454 0.4 (0.8) 233 0.4 (0.8) 221 0.4 (0.8) 

Amyloid positive status  446 86 (20%) 227 47 (54%) 219 39 (46%) 

Whole brain volume (WBV), mL  454 1101·4 (99.5) 233 1152.4 (87.0) 221 1047.3 (82.2) 
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Hippocampal volume (HV), mL 454 6·1 (0·6) 233 6.5 (0·6) 221 6·0 (0·7) 

White matter hyperintensity volume (WMHV), mL 454 1.15 (1) 233 4.7 (5.1) 221 5.5 (5.7) 

Total intracranial volume (TIV), mL 454 1433·9 (133·4) 233 1519.8 (106·8) 221 1343·1 (92.6) 

Preclinical Alzheimer Cognitive Composite z score (PACC)  454 -0.3 (0·7) 223 -0.18 (0·7) 221 0.14 (0·7) 

Logical Memory Delayed mean, correct answers  454 11.5 (3.7) 223 10.7 (3.7) 221 12.3 (3.5) 

Digital Symbol Substitution Test (DSST), correct answers   454 47.6 (10.4) 223 46.1 (10.4) 221 49.3 (10.1) 

Mini Mental State Examination (MMSE), total score    454 29.3 (1) 223 29.2 (1) 221 29.3 (1) 

12-item Face-Name test (FNAME-12) total score  454 65.2 (18.36) 223 60.9 (18.1) 221 69.7 (17.5) 

Fractional anisotropy (FA) 397 -0.003 (0.2) 204 0.04 (0.2) 193 -0.05 

Medial diffusivity (MD) 397 0.1 (0.3) 204 0.01 (0.3) 193 0.2 (0.3) 

Orientation dispersion index (ODI) 384 -0.1 (0.1) 197 -0.2 (0.1) 187 -0.1 (0.1) 

Neurite Density Index (NDI)  397 -0.2 (0.5) 204 -0.1 (0.5) 193 -0.2 (0.5) 

Table 3.4: Sample characteristics for the participants considered in these analyses (n = 454).  
Values presented are pre-imputation data: n (%), mean (SD) or median (IQR). % are calculated against the max data available for 
that specific measure for the pooled sample. As described above, the participants were considered if they were part of Insight 46 and 
have volumetric imaging data available which amounted to a max number of 454 participants of which 233 were males and 221 were 
females. SD: Standard deviation. IQR: Interquartile range. 



Associations between HbA1c (and A1 months) and whole brain volumes  

Interaction analysis revealed an interaction between HbA1c levels at all three ages and 

sex on WBV. All interaction terms (p < 0.001) suggested that the relationships between 

HbA1c and WBV vary by sex. The results were subsequently stratified.  

 

Higher HbA1c at each time point was associated with lower mean WBV at age 69-71 

in females (see Figures 3.3, 3.4, 3.5 and Table 3.5). In males, the associations 

suggested that higher HbA1c was associated with high mean WBV. These associations 

were negligibly affected by adjustment for potential confounders and the magnitude of 

the associations was similar at the three time-points (see Table 3.5). Analysis of the 

associations between total A1 months and WBV showed essentially similar findings 

with a consistent negative association between cumulative HbA1c in females, but a 

differential pattern in males when there is evidence of a positive but mainly non-

significant association in males (see Table 3.5). 

 

The exclusion of two males who appeared to be possible outliers also had negligible 

effects on the findings.  

Associations between HbA1c (and A1 months) and PET amyloid   

As previously reported and as a positive check, APOE-amyloid associations were 

tested using logistic regression: APOE-e4 was found to be associated with a 4.6 OR 

(Cl: 2-2-9.6, p <0.001) for being amyloid positive. 

 

There were no significant associations between HbA1c at any time-point investigated, 

or A1 months, on amyloid status at age 69-71 with or without adjustment for potential 

confounders (see Table 3.6). There was also no evidence of an interaction with either 

sex (p interaction for all >0.7) or APOE (p interaction for all > 0.5). 

 

Associations between HbA1c (and A1 months) and white matter hyperintensity 
volumes 

There were no significant associations between HbA1c or A1 months at any time-point 

investigated and WMHV at age 69-71 (see Figure 3.8). No associations were observed 

with or without associations for potential confounders (see Table 3.6). There was also 

no evidence of an interaction with sex (p interaction for all >0.7). 
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Figure 3.3: Partial regression plots showing associations of HbA1c at age 53 with 
whole brain volumes (stratified by sex). 
Plot A represents males and Plot B represents females. The regression models 
presented are for the fully confounder-adjusted models (adjusted for total intercranial 
volume, age at scan, childhood cognition, socio-economic position, body mass index, 
physical exercise, and smoking status). E(Y) on the y-axis represents the predicted 
values of the response variable, while E(X|Xn) on the x-axis represents the conditional 
expected values of the predictor variable of interest. 
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Figure 3.4: Partial regression plots showing associations of HbA1c at age 60-64 years 
with whole brain volumes (stratified by sex).  
Plot A represents males and Plot B represents females. The regression models 
presented are for the fully confounder-adjusted models (adjusted for total intercranial 
volume, age at scan, childhood cognition, socio-economic position, body mass index, 
physical exercise, and smoking status). As per the plot above, the predicted values of 
the response variable and the conditional expected values of the predictor variable of 
interest are displayed.  
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Figure 3.5: Partial regression plots showing associations of HbA1c at age 69 years 
with whole brain volumes (stratified by sex).  
Plot A represents males and Plot B represents females. The regression models 
presented are for the fully confounder-adjusted models (adjusted for total intercranial 
volume, age at scan, childhood cognition, socio-economic position, body mass index, 
physical exercise, and smoking status). As per the plot above, the predicted values of 
the response variable and the conditional expected values of the predictor variable of 
interest are displayed.  
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Table 3.5: Regression analyses output of associations between HbA1c (mmol/mol) at 
each time point and cumulative glycaemic exposure (A1 months) on cognitive and 
whole brain volumes stratified by sex.  
The values presented are the standardised coefficients (β and Cl) and p values. The 
models were as follows: Model 1: minimally confounder-adjusted model for total 
intercranial volume and age at scanning. Model 2: Model 1 + further adjustments for 
childhood socio-economic position, adulthood socio-economic position, education, 
and childhood cognition. Model 3: Model 2 + further adjustments for body mass index, 
physical activity, and smoking status.  

  

  Whole brain volumes (WBV)  

  Males Females 

  β 95% CI p β 95% CI p 

  M1 0.82 -0.48 2.12 0.2 -1.58 -2.88 -0.28 0.02 

Age 53 M2 0.88 -0.452 2.21 0.2 -1.67 -3.08 -0.25 0.02 

  M3 0.92 -0.46 2.31 0.2 -1.61 -3.04 -0.18 0.03 

  M1 0.41 -0.72 1.54 0.5 -1.38 -2.53 -0.23 0.02 

Age 60-64 M2 0.4 -0.75 1.55 0.5 -1.34 -2.61 -0.16 0.03 

  M3 0.49 -0.65 1.63 0.4 -1.4 -2.62 -0.17 0.03 

  M1 0.45 -0.6 1.51 0.4 -1.55 -2.58 -0.53 p < 0.001 

Age 69 M2 0.49 -0.58 1.56 0.4 -1.57 -2.66 -0.49 0.01 

  M3 0.72 -0.37 1.81 0.2 -1.66 -2.78 -0.54 p < 0.001 

  M1 0.004 -0.008 0.02 0.5 -0.01 -0.020 -0.001 0.03 

A1 months M2 0.004 -0.008 0.02 0.5 -0.01 -0.022 0.000 0.05 

  M3 0.005 -0.006 0.02 0.4 -0.01 -0.023 -0.001 0.04 
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Figure 3.6: Forest plots representing the associations between HbA1c levels across 
all ages and whole brain volume at age 69-71 stratified by sex for fully adjusted 
models. 
The estimates presented are for the fully confounder-adjusted models (adjusted for 
total intercranial volume, age at scan, childhood cognition, socio-economic positions, 
body mass index, physical exercise, and smoking status).  
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Figure 3.7: Forest plots representing the associations between A1 months 
(cumulative glycaemic burden) and whole brain volume at 69–71 years of age for all 
three models.  
Model 1: minimally adjusted model for total intercranial volume and age at scanning. 
Model 2: Model 1 + further adjustments for childhood socio-economic position, 
adulthood socio-economic position, education, and childhood cognition. Model 3: 
Model 2 + further adjustments for body mass index, physical activity, and smoking 
status. The standardised coefficients are presented here. Standardised coefficients 
are presented here to facilitate comparison. 
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Figure 3.8: Partial regression plots showing associations between expected E(HbA1c) 
at all three time points (and E (A1 months)) with expected E(white matter 
hyperintensities volume). A) HbA1c mmol/mol at age 53. B) HbA1c mmol/mol at age 
60-64 C) HbA1c mmol/mol at age 69. D) A1 months 
The regression models presented are for the fully adjusted model (adjusted for total 
intercranial volume, age at scan, sex, childhood cognition, child, and adulthood socio-
economic position; and BMI, physical exercise, and smoking status at the time of the 
exposure). White matter hyperintensities volumes was log-transformed. As per the 
plots for whole brain volumes, the predicted values of the response variable and the 
conditional expected values of the predictor variable of interest are displayed.  
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Associations between HbA1c (and A1 months) and hippocampal volumes  

There were no convvincing associations between HbA1c at any time-point (or A1 

months) and HV at age 69-71 with or without adjustment for potential confounders 

(see Table 3.5 and Figure 3.9). There was no evidence of a sex interaction (all 

interaction P values>0.1). The associations remained essentially unchanged with 

confounder adjustment.  

 

 
Figure 3.9: Partial regression plots showing associations between expected E(HbA1c) 
at all three time points (and E (A1 months)) with expected E(hippocampal volumes). 
A) HbA1c mmol/mol at age 53. B) HbA1c mmol/mol at age 60-64 C) HbA1c mmol/mol at 
age 69. D) A1 months 
The regression models presented are for the fully confounder-adjusted model 
(adjusted for total intercranial volume, age at scan, sex, childhood cognition, child, and 
adulthood socio-economic position; and BMI, physical exercise, and smoking status 
at the time of the exposure). White matter hyperintensities volumes was log-
transformed. As per the plots for whole brain volumes, the predicted values of the 
response variable and the conditional expected values of the predictor variable of 
interest are displayed. 
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Associations between HbA1c (and A1 months) and cognitive outcomes  

There were no associations between HbA1c at any time-point investigated or A1 

months and the PACC scores at age 69-71 (see Table 3.6 and Figure 3.10). There 

was no evidence of a sex interaction (all interaction P values>0.8). The associations 

remained unchanged with confounder adjustments (Table 3.6). Further analyses were 

conducted to see whether HbA1c was associated with any of the subcomponents of 

the PACC (MMSE, FNAME-12, Delayed Memory and DSST). The analysis did not 

reveal any significant associations between HbA1c at any of the time points (and A1 

months) with these cognitive markers (see Table 3.7). There was some weak evidence 

suggestive of an association between HbA1c in midlife (age 60-64) as well as A1 

months with DSST, but confounder adjustments made these relationships non-

significant. There was once again no evidence of a sex interaction (all interaction p 

values > 0.2). 

 

Associations between HbA1c (and A1 months) and normal appearing white matter 
measures  

There were no associations between HbA1c at any time-point investigated or A1 

months and measures of NAWM at age 69-71. There was no evidence of a sex 

interaction (all interaction p values>0.7). The associations remained largely 

unchanged with confounder adjustments. Findings are presented in Table 3.8. 
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Figure 3.10: Partial regression plots showing associations between expected 
E(HbA1c) at all three time points (and E (A1 months)) with expected E(Preclinical 
Alzheimer Composite score). A) HbA1c mmol/mol at age 53. B) HbA1c mmol/mol at age 
60-64 C) HbA1c mmol/mol at age 69. D) A1 months 
The regression models presented are for the fully confounder-adjusted model 
(adjusted for age at scan, sex, childhood cognition, child, and adulthood socio-
economic position; and BMI, physical exercise, and smoking status at the time of the 
exposure). White matter hyperintensities volumes was log-transformed. As per the 
plots for whole brain volumes, the predicted values of the response variable and the 
conditional expected values of the predictor variable of interest are displayed.  

 

  



Table 3.6: Regression analyses output of the relationships between HbA1c at each time point and cumulative glycaemic exposure (or A1 months) on cognitive and brain imaging outcomes.  
The outcomes considered are amyloid status, white matter hyperintensities volume, hippocampal volume and Preclinical Alzheimer Cognitive Composite. Except for amyloid status where odds ratio 
are shown). For white matter hyperintensities volume and hippocampal volume, the models were constructed as follows: Model 1: minimally adjusted model for total intercranial volume, sex and age 
at scanning. Model 2: Model 1 +further adjustments for childhood socio-economic position, adulthood socio-economic position, education and childhood cognition. Model 3: Model 2 + further 
adjustments for body mass index, physical activity, and smoking status. For amyloid status and Preclinical Alzheimer Cognitive Composite. Model 1: minimally adjusted model for sex and age at 
scanning. Model 2: Model 1 + further adjustments for childhood socio-economic position, adulthood socio-economic position, education and childhood cognition. Model 3: Model 2 + further adjustments 
for BMI, physical activity, and smoking status. Estimates for white matter hyperintensities volume and hippocampal volume were reported in µL (β*1000) to generate bigger coefficients. OR: Odds 
ratio. WMHV: white matter hyperintensities volume, HV: hippocampal volume, PACC: Preclinical Alzheimer Cognitive Composite, CI; Confidence intervals.  

  

  Amyloid status WMHV (µL/(mol/mol) HV (µL/(mol/mol) PACC  

  OR Lower CI Upper CI p β Lower CI Upper CI p β Lower CI Upper CI p β Lower CI Upper CI p 

  M1 1.2 0.7 2.2 0.5 -2.8 -23.2 17.6 0.8 -1.5 -13.1 10.2 0.8 -0.001 -0.01 0.013 0.94 

Age 53 M2 1.2 0.7 2.2 0.5 -1.8 -22.9 19.3 0.8 -2.0 -13.9 9.9 0.7 0.0001 -0.01 0.013 0.97 

 M3 1.2 0.7 2.2 0.5 -2.8 -24.6 18.9 0.8 -2.1 -14.2 10.1 0.7 0.001 -0.01 0.013 0.97 

 M1 1.2 0.7 1.9 0.6 1.2 -16.6 19.1 0.9 -0.4 -8.6 9.9 0.9 -0.002 -0.014 0.011 0.80 

Age 60-64 M2 1.2 0.7 1.9 0.6 1.8 -16.5 20.1 0.8 -0.4 -9.4 9.4 0.9 0.0001 -0.011 0.011 0.98 

 M3 1.2 0.7 1.9 0.5 0.1 -18.5 18.7 0.9 -0.7 -11.4 8.0 0.8 0.001 -0.011 0.012 0.94 

 M1 1.0 0.7 1.4 >0.9 4.1 -12.4 20.5 0.6 -0.6 -12.1 2.8 0.2 -0.001 -0.012 0.010 0.82 

Age 69 M2 1.0 0.7 1.4 >0.9 4.8 -12.1 21.6 0.6 -0.1 -12.0 3.3 0.3 -0.001 -0.011 0.010 0.92 

 M3 1.1 0.8 1.5 >0.8 2.7 -14.7 20.0 0.7 -1.7 -11.5 4.1 0.3 0.001 -0.010 0.011 0.91 

 M1 1.0 0.9 1.3 0.7 0.1 -0.1 0.3 0.3 -5.6 -14.5 3.4 0.2 -0.016 -0.15 0.12 0.82 

A1 months M2 1.0 0.9 1.3 0.7 0.3 -0.1 0.3 0.3 -5.2 -14.4 4.0 0.3 -0.006 -0.13 0.12 0.92 

  M3 1.0 0.9 1.3 0.7 0.1 -0.1 0.3 0.4 -4.4 -13.8 5.0 0.4 0.007 -0.12 0.13 0.91 
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Table 3.7: Regression output of the relationships between HbA1c at each time point and cumulative glycaemic exposure (or A1 months) on additional cognitive outcomes.  
The outcomes considered are the MMSE, FNAME-12, Delayed memory and DSST.  β, Cl and p-values are presented. For these cognitive outcomes, the models are constructed as follows: Model 1: 
minimally adjusted model for sex and age at scanning. Model 2: Model 1 + further adjustments for childhood socio-economic position, adulthood socio-economic position, education and childhood 
cognition. Model 3: Model 2 + further adjustments for body mass index, physical activity, and smoking status. MMSE: Mini-mental state examination, FNAME-12: Face-Name Associative Memory 
Exam, Delayed memory and DSST: Digital Symbol Substitute Test.  

  

  MMSE FNAME-12 Delayed Memory DSST 

  β Lower CI Upper CI p β Lower CI Upper CI p β Lower CI Upper CI p β Lower CI Upper CI p 

  M1 -0.3 -0.26 0.2 0.8 -0.05 -0.3 0.2 0.6 0.09 -0.13 0.3 0.4 -0.2 -0.4 0.1 0.07 

Age 53 M2 -0.002 -0.2 0.2 0.9 0.001 -0.21 0.21 0.9 0.1 -0.1 0.3 0.2 -0.17 -0.4 0.05 0.1 

 M3 -0.001 -02 0.2 0.9 0.001 -0.2 0.22 0.9 0.1 -0.1 0.3 0.3 -0.17 -0.4 0.05 0.1 

 M1 -0.03 -0.2 0.1 0.7 0.002 -0.17 0.17 0.9 0.06 -0.1 0.2 0.2 -0.18 -0.4 -0.01 0.04 

Age 60-64 M2 -0.01 -0.2 0.2 0.9 0.05 -0.1 0.2 0.5 0.1 -0.7 0.3 0.3 -0.14 -0.3 0.02 0.08 

 M3 0.03 -0.2 0.2 0.7 0.05 -0.1 0.2 0.5 0.1 -0.1 0.3 0.2 -0.14 -0.3 0.04 0.1 

 M1 0.02 -0.1 0.2 0.8 0.02 -0.13 0.16 0.8 0.1 -0.1 0.2 0.5 -0.07 -0.2 0.07 0.3 

Age 69 M2 0.3 -0.1 0.2 0.7 0.05 -0.1 0.2 0.5 0.1 -0.9 0.3 0.2 -0.06 -0.2 0.1 0.4 

 M3 0.3 -0.2 0.2 0.7 0.05 -0.1 0.2 0.5 0.1 -0.1 0.3 0.3 -0.06 -0.2 0.08 0.4 

 M1 -0.0004 -0.002 0.002 0.7 -0.0003 -0.002 0.002 0.7 0.001 -0.001 0.002 0.6 -0.002 -0.004 -0.0002 0.03 

A1 months M2 -0.0001 -0.002 0.002 0.9 0.0003 -0.001 0.002 0.7 0.001 -0.001 0.003 0.3 -0.002 -0.004 -0.0001 0.05 

  M3 0.0002 -0.002 0.002 0.8 0.0002 -0.002 0.002 0.8 0.001 -0.001 0.003 0.4 -0.002 -0.004 0.0002 0.07 
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Table 3.8: Regression output of the relationships between HbA1c at each time point and cumulative glycaemic exposure (or A1 months) on measures of normal appearing white matter.  
The outcomes considered are fractional anisotropy, mean diffusivity, neurite density index and orientation dispersion. β, Cl and p-values are presented. For these cognitive outcomes, the models are 
constructed as follows: Model 1: minimally adjusted model for sex and age at scanning. Model 2: Model 1 + further adjustments for childhood socio-economic position, adulthood socio-economic 
position, education and childhood cognition. Model 3: Model 2 + further adjustments for body mass index, physical activity, and smoking status.  

  Fractional Anisotropy (FA) Mean Diffusivity (MD) Neurite Density Index (NDI) Orientation Dispersion index (ODI) 

  
β Lower CI Upper CI p β Lower CI Upper CI p β 

Lower 

CI 
Upper CI p β Lower CI Upper CI p 

  M1 -0.0003 -0.006 0.006 0.9 -0.001 -0.01 0.007 0.7 -0.002 -0.01 0.01 0.7 0.0004 -0.003 0.04 0.7 

Age 53 M2 -0.0006 -0.007 0.005 0.8 -0.001 -0.01 0.008 0.8 -0.04 -0.02 0.01 0.5 0.001 -0.003 0.003 0.9 

 M3 -0.0005 -0.006 0.005 0.9 -0.001 -0.01 0.008 0.8 -0.04 -0.2 0.02 0.5 -0.0001 -0.003 0.003 0.9 

 M1 0.0006 -0.004 0.005 0.8 -0.003 -0.01 0.004 0.4 -0.002 -0.01 0.01 0.6 0.0002 -0.002 0.003 0.9 

Age 60-64 M2 0.0004 -0.005 0.005 0.8 -0.003 -0.01 0.004 0.4 -0.003 -0.01 0.01 0.5 0.0001 -0.003 0.003 0.9 

 M3 0.001 -0.004 0.006 0.6 -0.004 -0.01 0.003 0.3 -0.002 -0.01 0.01 0.7 -0.0003 -0.003 0.002 0.8 

 M1 0.0001 -0.003 0.005 0.7 -0.003 -0.01 0.003 0.3 -0.003 -0.01 0.01 0.5 0.001 -0.002 0.003 0.6 

Age 69 M2 0.0001 -0.004 0.005 0.7 -0.003 -0.01 0.003 0.3 -0.003 -0.01 0.01 0.5 0.001 -0.002 0.003 0.6 

 M3 0.001 -0.003 0.006 0.5 -0.003 -0.01 0.003 0.3 -0.002 -0.01 0.01 0.6 0.001 -0.002 0.003 0.8 

 M1 0.0002 -0.0004 0.0007 0.5 -0.001 -0.001 0.0002 0.2 -0.00004 -0.001 0.001 0.9 0.0001 -0.002 0.0004 0.5 

A1 months M2 0.0002 -0.0004 0.0007 0.5 -0.001 -0.001 0.0002 0.2 -0.0002 -0.001 0.001 0.8 0.0001 -0.002 0.004 0.6 

  M3 0.0002 -0.0004 0.0007 0.4 0.0001 -0.001 0.0002 0.1 -0.00006 -0.001 0.001 0.9 0.00004 -0.0003 0.0003 0.7 
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Sensitivity analyses  

Sensitivity analyses were conducted in an attempt to see whether the results would 

change when excluding people with diabetes (age 53: n=2, age 60-64: n=18, age 69: 

n= 27). This did not materially change the results and nor my interpretations of the 

findings (see Table 3.9). Similarly, a complete case analysis did not yield output 

substantially different to the results from the multiple imputation models (see Table 

3.10). Excluding participants with neurological disorders (n = 50) also did not materially 

alter the results. 

 

Table 3.9: Regression analyses output of associations between HbA1c (mmol/mol) at 
each time point and cumulative glycaemic exposure (A1 months) on whole brain 
volumes stratified by sex (excluding participants with diabetes at each respective 
point.  
β, Cl and p-values are presented). The models were as follows: Model 1: minimally 
adjusted model for total intercranial volume and age at scanning. Model 2: Model 1 + 
further adjustments for childhood socio-economic position, adulthood socio-economic 
position, education, and childhood cognition. Model 3: Model 2 + further adjustments 
for body mass index, physical activity, and smoking status. The coefficients are 
unstandardised.  

  

  Whole Brain Volumes (WBV) 

  Males Females 

  β 95% CI p β 95% CI p 

  M1 0.9 -0.4 2.1 0.2 -1.3 -2.7 -0.03 0.05 

Age 53 M2 0.9 -0.4 2.2 0.2 -1.5 -2.9 -0.08 0.04 

  M3 1.0 -0.4 2.3 0.2 -1.5 -2.9 -0.06 0.04 

  M1 0.4 -0.7 1.5 0.4 -1.2 -2.4 0.03 0.05 

Age 60-64 M2 0.4 -0.7 1.5 0.5 -1.3 -2.5 -0.02 0.04 

  M3 0.6 -0.6 1.7 0.3 -1.4 -2.6 -0.1 0.03 

  M1 0.5 -0.6 1.5 0.4 -1.4 -2.5 -0.37 0.008 

Age 69 M2 0.5 -0.5 1.6 0.3 -1.5 -2.6 -0.42 0.007 

  M3 0.8 -0.3 1.8 0.2 -1.6 -2.7 -0.43 0.007 

  M1 0.004 -0.007 0.02 0.48 -0.008 -0.02 0.003 0.14 

A1 months M2 0.004 -0.007 0.02 0.49 -0.009 -0.02 0.002 0.12 

  M3 0.006 -0.006 0.02 0.31 -0.01 -0.02 0.002 0.09 
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Table 3.10: Regression analyses output of associations between HbA1c (mmol/mol) 

at each time point and cumulative glycaemic exposure (A1 months) on whole brain 
volumes stratified by sex (using complete case data).  
The models were as follows: Model 1: minimally adjusted model for total intercranial 
volume and age at scanning. Model 2: Model 1 + further adjustments for childhood 
socio-economic position, adulthood socio-economic position, education, and 
childhood cognition. Model 3: Model 2 + further adjustments for body mass index, 
physical activity, and smoking status. The coefficients are unstandardised.  

  

    Whole Brain Volumes (WBV) 

    Males  Females  

    β  95% CI  p  β  95% CI  p  

   M1 0.97  -0.27  2.2  0.12  -1.97  -3.21 -0.74  p < 0.001  

Age 53 M2 1.1  -0.21  2.35  0.10  -2.09  -3.46  -0.72  0.003  

  M3 1.2  -0.14  2.49  0.08  -1.89  -3.28 -0.51  0.008  

  M1 0.51 -0.57  1.58  0.35  1.73  -1.76  -0.63  0.002  

Age 60-64 M2 0.51 -0.61  1.63  0.37  -1.76  -2.95  -0.58  0.004  

  M3 0.76  -0.49  2.02  0.23  -1.66  -2.87  -0.45  0.007  

  M1 0.54  -0.48  1.55  0.30  -1.94  -2.91  -0.97  0.000  

Age 69 M2 0.59  -0.45  1.64  0.26  -1.97  -3.003  -0.93  p < 0.001  

  M3 0.77  -0.31  1.85  0.16  -1.94  -3.05  -0.83  p < 0.001  

  M1 0.006  -0.005  0.02  0.28  -0.01  -0.02  -0.004  0.006  

A1 months M2 0.006  -0.006  0.02  0.36  -0.02  -0.03  -0.005  0.006  

   M3 0.007  -0.006  0.02  0.27  -0.02  -0.03  -0.004  0.006  
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3.4 Discussion 

Summary of findings  

High HbA1c in late midlife and early late life (and higher cumulative glycaemic 

exposure) were associated with lower WBV at age ~70 in females but not in males. In 

females the associations between glycaemic levels and smaller WBV were consistent 

across all three time points with no temporal period standing out in strength. To put 

the size of this decrement in perspective, a 10 mmol/mol increase in HbA1c at age 60-

64 was equivalent to a reduction of WBV corresponding to 2 years of normal ageing 

(UK Biobank used as a reference). There was no convincing evidence of an 

association between HbA1c levels or A1 months and markers typical of AD pathology 

(PET β amyloid status, and lower HV), or SVD (higher WMH burden), microstructural 

integrity (altered NAWM metrics), nor those of cognitive performance (PACC and its 

subcomponents). For these null results, there was no evidence of effect modification 

by sex.  

 

Specific findings and associations with the literature  

A recent meta-analysis summarising past evidence has shown that T2D is associated 

with smaller total brain volumes.361 The results from this study add to the existing 

evidence by showing that: 1) poorer glycaemic health in a population-based sample is 

also associated with lower WBV and 2) there are sex differences in these associations 

since the effects were exclusively observed in females. 

 

Previous evidence has shown that females with T2D have lower cortical thickness and 

WBV.413,429 However, the findings from this study show that, in a population-based 

sample, higher HbA1c levels are associated with poorer brain health, more specifically 

smaller overall brain size. Following the publication of my findings, a newly published 

cross-sectional study from the UK Biobank also reported associations between HbA1c 

and smaller brain volumes in a pooled sample of males and females.365 In my study, 

the standardised coefficients for the fully confounder-adjusted analysis of HbA1c at age 

60-64 for females were -0.9 (Cl: -0.2-0.3) in line with the -0.07 estimates of those from 

the UK Biobank analyses (Cl not reported). However, since the findings presented in 

this chapter considered multiple time exposures and the analyses were sex-stratified, 
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they provide evidence of sex-specific associations between poorer glycaemic control 

at different times, throughout midlife and early late life and later-life lower WBV.  

 

There is precedent for sex differences in the susceptibility of other TOD in the context 

of T2D. Evidence has shown that females with T2D have a higher degree of vascular 

and renal TOD.187,413,414 Since A1 months was also associated with smaller brains, it 

further suggests that exposure to glycaemia and cumulative exposure to glycaemia is 

potentially damaging for female brain health. Overall, these findings suggest that the 

brain may also be a structure susceptive to sex-specific TOD.   

 

No particular time point when HbA1c was measured, from midlife to early life, appeared 

to be more strongly associated with lower WBV in females. The size of the 

associations between HbA1c at age 53, 60-64 and 69 and WBV in later life were mostly 

similar. This finding does not support the idea that midlife is a sensitive temporal 

window when hyperglycaemia may exert more damaging effects on brain health. This 

contrasts with some studies that have found that an earlier onset of T2D and/or longer 

duration of diabetes predicts a higher risk for dementia and poorer brain health 

outcomes.352,411,430 There are multiple possible reasons behind this apparent conflict 

in results. The first is that the analysis in this thesis only considered glycaemia-related 

markers (as indexed by HbA1c), one of several metabolic pathophysiological 

mechanisms that underlie T2D. Thus, it is possible that hyperglycaemia in midlife, on 

its own, may not be sufficiently impactful and it is the aggregation of multiple correlates 

of T2D (i.e. β cell dysfunction, IR, and hyperglycaemia) that may contribute to the 

midlife sensitive window. However, these measures are often closely related, and 

hyperglycaemia arguably should be a good proxy for all. The second is that since the 

study sample was population-based, the levels of hyperglycaemia were lower than 

other studies which explore similar associations in people with T2D. Perhaps this is a 

reflection that population-based studies such as NSHD can be helpful correctives to 

clinical studies, which may over-estimate association strengths. In line with this, it is 

also possible that this increased hyperglycaemia-driven midlife vulnerability becomes 

more apparent when both a sufficiently high threshold and duration of hyperglycaemia 

is encountered. Previous studies have shown that as the duration of diabetes 

increases, the difference in GM volumes between individuals with and without diabetes 

also increases. For example, a recent meta-analysis reported that for every additional 
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year beyond the average duration of diabetes (which is 10.5 years) in individuals aged 

60 or older, there was an 8.8% difference in GM volumes between those with diabetes 

and those without.361 This being said, it is important to consider that those with a longer 

exposure to HbA1c are also likely to have a poorer overall glycaemic state. This is often 

neglected in the literature which highlights the value of using a measure of cumulative 

glycaemic burden such as A1 months which captures both the magnitude and duration 

of glycaemia outside the normal range. Although higher HbA1c in midlife may not be 

associated with increased susceptibility to poorer brain health, glycaemic burden 

above the “normal range” over the three time points, was predictive of smaller brain 

volumes in females.  

 

There are many potential reasons why hyperglycaemia may exert its effects differently 

on female brains. It is possible that these associations are stronger in females due to 

differences in hormonal health. This is particularly important because most, if not all, 

female participants in this sample would have gone through the menopause or be 

perimenopausal by the time HbA1c was measured at age 53, considering the average 

age for the menopause in the UK is 51 (NHS data). This stage of hormonal 

transformation in a woman’s life has been associated with a reduction in the all-

encompassing neuroprotective hormone oestrogen which has consequences on body 

fat composition, inflammatory health and even brain metabolism.431,432 Previous 

studies have also observed sex differences in chronic inflammation in the context of 

T2D.433 Females with and without T2D have been shown to have higher levels of 

systemic inflammation compared to their male counterparts.413,434 This may be 

important since inflammatory markers have been inversely associated with a range of 

brain outcomes, including global and tissue specific measures.326,435,436 Since 

inflammation is raised during the menopause and post-menopause, and in the context 

of T2D, it is possible that hyperglycaemia may affect brain volumes preferentially in 

females via inflammatory pathways once oestrogen’s anti-inflammatory properties 

may no longer be exerted. Alternatively, hyperglycaemia may drive neurodegeneration 

via increased production of ROS and AGES which are known to aggravate neuronal 

injury and promote neurodegeneration.310,437,438 Other menopausal (and 

perimenopausal) related potential mechanisms that may drive poorer brain health 

include disrupted sleep and reductions in CBF.439 These are all possible explanations, 
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but the data presented in this chapter does not provide an answer into why females 

appear to be more susceptible to glycaemia.  

It must be acknowledged that these differences may also be explained by issues more 

specific to the study itself, including residual confounding from confounders not 

considered such as diet or from those crudely measured such as physical exercise. 

Bias may also arise from selective mortality. In the entire NSHD cohort, out of the 957 

participants that were deceased by the sweep when they were aged ~70, 60% (or 568) 

were males. This raises the possibility that males with both poorer glycaemic health 

and brain atrophy died earlier.392 Attrition may also play a role as historically males 

have been less likely to participate compared to females, raising the possibility that 

the remaining males are healthier and/or keener in taking part in the study. This is 

evidenced by the “healthy bias” that comes with participation into Insight 46 since it 

has been shown to be biased towards people of higher SEP, education, cognitive 

function, and better general health.394 

Other brain health markers   

Although my findings showed that higher HbA1c predicted lower WBV in females, a 

similar pattern was not observed for HV. Previous studies have suggested that 

individuals with T2D show a noticeable decline in HV.361 One study previously reported 

sex differences in the association between HV and T2D, with females found to have 

smaller hippocampi despite having better glucose control.365 However, my null finding 

is consistent with results from previous population-based studies that also did not find 

an association between HbA1c levels and HV.364,365 My standardised estimates at age 

53 suggest a -0.04 (Cl -0.2 0.08, p = 0.3) decrease in HV consistent with the -0.01 (p= 

0.1) decrease observed by Ranglani and colleagues in their fully confounder-adjusted 

model (CI not reported).365 Once again, many possible interpretations can be made 

about this null finding. For example, rather than having a regional or localised 

influence, glycaemia may have a more diffuse effect on brain tissue. Future studies 

should examine these glycaemic associations with different tissue types (GM vs WM) 

and other regions at higher resolution (e.g., 7 Tesla).  

 

There was no evidence of an association between hyperglycaemia at any three of the 

time points (and A1 months) and amyloid status nor an interaction between APOE 
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genotype and hyperglycaemia. These findings are consistent with previous studies 

that have also failed to observe an association between HbA1c levels and the 

accumulation of amyloid in the brain.362 This perhaps suggests that that 

hyperglycaemia might not be associated with the early neuropathological markers of 

AD. However, how glycaemia may be associated with tau or amyloid progression and 

how these interact with cerebrovascular disease still needs to be examined. Despite 

my null findings, a recent population-based study found that IR in midlife, as indexed 

by HOMA-IR, was associated with amyloid accumulation in some regions of the brain, 

such as the prefrontal cortex, parietal lobe and precuneus.373 These findings suggest 

that IR in midlife, a marker closely related to glycaemia, is associated with increased 

amyloid burden. However, the study considered multiple measures of amyloid burden 

including regional measures that may be more sensitive to amyloid accumulation. 

Thus, the association between hyperglycaemia and amyloidosis should be re-

examined using more sensitive measures of this neuropathological marker.  

 

One of the hypotheses investigated in this chapter was that HbA1c throughout life 

and cumulative glycaemic burden would be associated with later-life SVD. There were 

no convincing associations between HbA1c at any time point (and A1 months) and 

WMH burden. Although some cross-sectional studies have previously shown 

statistically significant, but weak associations between high fasting blood glucose 

concentration and WMHV, other studies have also reported no diabetes-SVD 

associations.354,440 When exploring my findings in relation to the published literature, 

the size of the standardised estimates in my analysis are consistent with previous 

evidence. In my study a 1SD increase in HbA1c at age 60-64 was associated with 0.01 

(Cl: -0.1; 0.2 p = 0.8) cm3 increase in WMHV for the fully confounder-adjusted model. 

This estimate is similar to the 0.0099 (p = 0.1 [Cl not reported]) increase observed by 

Ranglani and colleagues in the UK Biobank.365 Overall, inconsistency in the existing 

literature may be explained by variations in the methodological approach taken. Firstly, 

it is important to note that certain studies may report findings that pass the threshold 

for significance due to the large size of their sample, but their coefficients remain 

consistent with my findings. Secondly, studies vary in the sample they consider, with 

some exploring these associations in subgroups of patients with a history of 

cardiovascular disease (CVD), 354 whereas others look at these in healthy subjects.365 

Naturally this could introduce inconsistencies in the associations between T2D-related 
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pathology and WMH burden examined. A wide range of imaging markers have also 

been used to quantify WM burden. It has been found that some participants 

with hyperglycaemia do not show associations with WMH globally but instead have 

more compartmentalised and regional WM pathology, as previously shown.441 One 

study found that although people with T2D did not differ from controls in regards to the 

traditional WMHV measure (akin to the one used in this study), they displayed more 

non-punctuate WMH and a difference in shape (eccentricity) of punctuate deep 

WMH.355 This indicates how the sensitivity of the marker considered can affect the 

results observed and the value of going beyond the traditional WMH assessments as 

this may help uncover more subtle cerebral SVD.  

 

One may also argue that the null finding could also be due to the participants being 

too young or insufficiently burdened by WMHs when they underwent imaging at age 

70. However, age of participants, despite its low range in this birth cohort, was 

associated with higher WMHV suggesting that even quite small relationships of SVD 

burden are detectable in the sample. It may also be possible that poorer glycaemic 

control may specifically relate to more subtle microstructural damage that precedes 

‘full blown’ WMH. Despite using more sensitive measures, supposedly reflective of 

early-stage degeneration of vessels, no HbA1c-NAWM associations were observed. 

Findings were similar when exploring the impact of cumulative glycaemic burden on 

these measures of microstructural integrity. The absence of a detectable association 

between hyperglycaemia and different markers of brain SVD and microstructural 

integrity does not however preclude the possibility that SVD may be occurring 

elsewhere in the body. Research on the organ-specific effects of hyperglycaemia 

highlight the nuanced impact it can have on different tissues. Hyperglycaemia can 

exert diverse effects on small vessels in different organs and tissues, and the response 

may vary due to the unique microenvironments and regulatory mechanisms of each 

structure. There is ample evidence linking T2D with retinopathy, nephropathy and 

microvascular diseases which are not addressed here.442,443 Once again this is a 

population-representative cohort not a clinical sample. In people with more severe 

cases of glycaemic and longer exposure to glycaemia, these associations may still 

exist.  
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Associations with cognitive outcomes  

There were no convincing associations between HbA1c at any time point and cognition 

as assessed by the PACC. Evidence on the relationship between hyperglycaemia (or 

T2D) and cognitive health has been mixed409: Some studies report that poorer 

glycaemic control, as measured by higher HbA1c levels, is associated with worse 

cognitive function, while others report no convincing associations.384,385,444 Thus, this 

finding may be considered to fall within the scope of what is expected from the 

literature. Discrepancies between studies could be explained once again by the 

different population studied (i.e., clinical sample vs population cohort) and the wide 

range of different glycaemic indices considered in many of these studies with some 

focusing on HbA1c, while others considered other biomarkers, such as fasting and 

post‐load glucose. Each of these biomarkers, although related, capture a different 

metabolic pathology. Heterogeneity in the cognitive measures considered or the age 

of the participants studied may also explain the inconsistencies reported in the 

literature. The outcome measures used range from composite scores for global 

cognition445 to single tests that assess a specific cognitive domain.446 This null finding 

in my study is also not surprising considering that the PACC is sensitive to early AD, 

and that I also failed to find an association between hyperglycaemia and amyloidosis, 

a hallmark of AD thought to be an important driver of cognitive decline.  

As additional analyses, subcomponents of the PACC such as the MMSE, DSST, 

FNAME-12 and logical delayed memory were explored. Once again, no convincing 

associations were observed between HbA1c at any time point and these measures of 

cognition. Previous studies have found that T2D is associated with impaired memory, 

attention, psychomotor speed, and executive function.447 In this study, there were 

some suggestions that late midlife hyperglycaemia and cumulative glycaemic 

exposure could negatively impact performance in the DSST, an assessment of motor 

speed, attention and executive function. However, the strength of the associations was 

attenuated with confounder adjustment and there is a possibility that these were 

chance findings due to multiple testing. Nonetheless, it is possible that there is a latent 

period or sufficient glycaemic exposure required for the effects of hyperglycaemia to 

manifest into cognitive impairments. It is also possible that the relationships between 

high HbA1c (and cumulative glycaemic burden) and smaller WBV did not translate to 
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cognitive impairment due to Insight 46 participants possessing cognitive reserve. 

Cognitive reserve describes the brain’s ability to circumvent neuropathological 

damage via compensatory mechanisms such as the recruitment of alternative brain 

networks.448 Education is one of the key components that underlies cognitive reserve 

and previous evidence shows that participation in Insight 46 is biased towards those 

who are more educated.394  

It is also possible that variability in glycaemia plays an important role in brain health. 

In this study, HbA1c at three time points and cumulative glycaemia were considered. 

Measures of day-to-day or weekly variations in glycaemia were not explored. Growing 

evidence suggests that fluctuations in glycaemia may be pathological and have an 

effect on brain health outcomes.449 Similarly, another key component of T2D, IR, was 

not considered. This is particularly important considering previous studies have linked 

the mechanism behind IR with impaired amyloid clearance (thus amyloidosis).  

It remains however important to acknowledge that null findings could also be driven 

by characteristics of this birth cohort. The Insight 46 sub-sample consists of 502 

participants who were selected on the basis of having previously attended a clinic visit 

along with other criteria. Participation into Insight 46 has been found to be associated 

with a bias towards people with a higher SEP, education, cognitive function, and better 

health.394 This may also explain some of the negative findings observed as the Insight 

46 is “cognitively normal” and healthier than the general population. In addition, 

differential survival, and attrition of less healthy individuals from the birth cohort may 

have also biased the results toward the null. Despite benefiting from the deep 

phenotyping of the participants, restricting this analysis to clinic attenders with 

antecedent data may have introduced a selection bias that has affected the results. In 

addition, although many important factors influencing cognitive function were adjusted 

for in the analyses, some confounders including non-APOE genetic predisposition, are 

likely to have been omitted or only partially accounted for resulting in bias.  

 

Strengths and weaknesses 

A major strength of this study is the uniqueness of this birth cohort especially regarding 

its rich longitudinal phenotyping conducted over decades of the participants’ lives. This 

includes the combination of data on cognitive function and brain imaging as well as 
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comprehensive longitudinal data on metabolic and vascular risk factor clusters. To 

further maximise the richness of this dataset and account for the missingness, multiple 

imputation models were conducted. This technique allowed the use of all the available 

data while also preserving the size and statistical power of the sample; under some 

assumptions this will reduce bias. A sensitivity analysis found that sex differences in 

findings with respect to WBV were not different to complete case analysis, which 

excludes individuals with missing values. 

 

I acknowledge that since the participants considered are from a birth cohort, the 

findings may be affected by secular effects. This post-World War II cohort is likely to 

have characteristics and exposures that are different to modern day cohorts, 

especially in terms of lifestyle and diet. This may make it difficult to know the extent to 

which findings from this study apply to other younger cohorts. Another important 

limitation is that this sample consists exclusively of white British participants, and thus 

may not be representative of other populations. This is particularly important since 

both rates of T2D and all cause-dementia have been shown to vary based on 

ethnicity.170,450,451 

 

Future work   

Further work should explore whether these associations suggestive of a sex-specific 

relationship between poor glycaemic control and smaller brains can be replicated in a 

larger sample with different characteristics to NSHD (such as UK Biobank). 

Mechanistically, it may be interesting to see whether operationalising glycaemia using 

a marker that captures a shorter temporal window (e.g., fasting glucose or random 

glucose) or looking at other diabetes-related markers (IR and β cell function) will also 

show similar associations with brain pathology. Further exploring the nature of how 

hyperglycaemia affects brain volumes is of interest, particularly whether these reflect 

specific tissue type vulnerability (i.e., whether poor glycaemia affects glial cells or GM 

volumes preferentially).  
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3.5 Conclusions 

The findings show sex-specific associations between hyperglycaemia and whole brain 

volumes, with higher HbA1c being associated with smaller brains particularly in 

females. This association remained fairly consistent even if glycaemia was measured 

at different time points (i.e., age 53, 60-64 and 69) suggesting that there is no evident 

specific temporal window where hyperglycaemia exerts a stronger impact on brain 

health. There was no convincing evidence of associations between HbA1c and other 

markers of brain health such as those relating to small vessel disease, Alzheimer’s 

disease-related pathology, and cognitive outcomes. The null findings in regard to 

hippocampal volumes and amyloidosis may suggest that hyperglycaemia might affect 

the brain through pathways independent from those typically affected in Alzheimer’s 

disease. Overall, the findings suggest that high glycaemia, even in a normal population 

sample, may still be associated with adverse brain volumes, although repercussions 

on cognition may not appear by age 70.  
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4. Sex-stratified analyses of glycaemic traits and brain 

volume outcomes in NSHD 

I previously reported that elevated HbA1c levels in mid- and later-life were associated 

with lower whole brain volumes in older females but not males (Chapter 3). To provide 

further mechanistic insight into this relationship, I investigated whether similar sex 

differences were apparent for other glycaemic measures including fasting glucose, 

insulin resistance (HOMA2-IR) and β-cell function (HOMA-%B). I also investigated 

whether glycaemic traits were associated with preferential lower white matter or grey 

matter volumes. A manuscript for this chapter was sent to European Journal of 

Endocrinology in June 2024.   

4.1 Introduction 

The relationship between T2D and brain volume has been discussed extensively 

(Chapter 1.12). Most research, primarily focused on combined sex samples, has 

shown that individuals with T2D exhibit smaller WBV.408,452 Furthermore, there is 

emerging research suggesting sex-specific differences in brain health outcomes in 

people with T2D.407,413,429 Sex differences have also been observed in relation to 

glucose metabolism, insulin sensitivity and β cell function.180,255–257  

Although fasting glucose and HbA1c both reflect the combined influence of IR and 

pancreatic β cell dysfunction, studies only show a moderate correlation between these 

measures, and there is evidence of differential genetic influences on fasting glucose 

and HbA1c. It has been argued that each biomarker provides a different 

pathophysiological insight into diabetes risk.453 In addition, insulin is important for brain 

health: its receptors are highly expressed in the brain, and it is thought to support 

neuronal and glial cell growth and survival.454  

In previous work in a population-based British birth cohort (Chapter 3), I demonstrated 

that elevated HbA1c through mid- and later-life (age 53, 60-64 and 69) was associated 

with smaller WBV at age ~70 only in females.407 However, it is valuable from a 

research perspective to explore whether abnormality of other glycaemia-related 

pathophysiological markers: 1) are also related to poorer later-life brain volume, 2) 

affect females preferentially and 3) predicts preferential tissue loss. The latter is 
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particularly relevant since there is some evidence of sex-specific differences in WM 

and GM volumes during ageing.18–20 

Harnessing the unique dataset NSHD and Insight 46, I aim to expand on my previous 

findings and assess whether there are sex differences in associations between a 

range of glycaemia-related markers measured at age 60-64 (HbA1c, glucose, HOMA2-

IR and HOMA%B) and global and tissue-specific brain volumes at age ~70. 

4.2 Methods 

4.2.1 Sample  

The National Survey of Health and Development (NHSD) is a British birth cohort 

originally made up of 5,362 males and females born across mainland Britain during 

the same week in 1946.392 In 2006, the study members (aged 60-64 at the time) 

received postal questionnaires and were invited to attend a clinic visit. Between 2015-

2018, a subset of NSHD were enrolled into the Insight 46 sub-study to undergo 

neuroimaging and further assessments. More details in the sample are discussed in 

Chapter 2.2.  

4.2.2 Investigations 

The brain imaging measures considered in these analyses were the volumetric 

measures WBV, GM and WM. The collection of the neuroimaging data and the 

postprocessing steps were discussed in Chapter 2.4.  

Blood measures 

A fasting blood sample was collected at age 60–64. HbA1c was measured by ion 

exchange HPLC on a Tosoh analyzer (Tosoh Bioscience, Tessenderlo, Belgium). 

Glucose was measured by enzymatic assay using hexokinase coupled to glucose 6-

phosphate dehydrogenase, using a Siemens Dimension Xpand analyzer, Siemens 

Medical Solutions, Erlangen, Germany. Insulin was measured by fluoroimmunoassay 

using a PerkinElmer AutoDELFIA analyzer, PerkinElmer, Waltham, MA, USA. Due to 

delays in analysing blood samples for insulin within the specified one-hour window, 

only 62% of samples collected for insulin measurement were considered valid. 

HOMA2-IR and HOMA-%B were calculated using insulin and glucose values using the 
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validated HOMA2 calculator from the University of Oxford 

(https://www.dtu.ox.ac.uk/homacalculator).254  

Demographics and other measures 

Confounders were identified through a review of the literature exploring the association 

between hyperglycaemia (or T2D) and volumetric brain measures and depicted using 

a directed acyclic graph (see Figure 3.1). Potential confounders considered were 

childhood SEP adult SEP, childhood cognition, education, waist-to-hip ratio (WHR), 

physical activity level, alcohol consumption and smoking status at the time of 

glycaemic measurement, and age at neuroimaging scan. Sex was only included as a 

confounder for the pooled analyses that were conducted for completeness but were 

the focus of this study.  

Childhood SEP was measured as father’s occupational social class recorded at age 4 

(or if missing, at age 11) and categorized into manual or non-manual according to the 

UK Registrar General’s Standard’s Occupation Classification. Adult SEP was based 

on head of household occupation at age 53 years. These were coded according to the 

UK Registrar General's Standard Occupational Classification, then grouped as 

follows: I (professional), II (managerial and technical), IIIN (skilled non-manual), IIIM 

(skilled manual), IV (partly skilled), and V (unskilled).  

Childhood cognitive function was derived from four tests of verbal and non-verbal 

ability administered to the participants at ages 8, 11 and 15.423 Cognitive ability at age 

15 was used. Educational attainment was represented as the highest educational or 

training qualification achieved by age 43, grouped into 5 categories: no qualification, 

below O-levels (vocational), O-levels and equivalents, A-levels and equivalents, 

higher education (degree and equivalents). More details on this are discussed in 

Chapter 3. 

WHR at the time of glycaemic measurement (age 60-64) was obtained by calculating 

the ratio of the circumference of the waist to that of the hips. Based on self-reported 

engagement over the preceding 4 week before the assessment at age 60-64, physical 

activity was categorized as inactive, moderately active, and most active. Alcohol 

consumption at age 60-64 was categorised according to UK guidelines into none, ≤ 

14 units per week, or > 14 units per week assuming that one drink was equivalent to 
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1 unit. Smoking status at age 60-64 was assessed by self-report and was classified 

into three groups: current smokers, ex-smokers, and never-smokers.  

4.2.3 Statistical analysis 

Statistical analyses were conducted in Stata version 16.1. Normally distributed 

continuous variables describing the sample were summarised as means and SD For 

skewed data, the median and interquartile range were reported. For categorical 

variables, frequency and percentages were reported.  

Pairwise linear correlations between HbA1c, fasting glucose, HOMA2-IR and HOMA-

%B were summarized using Pearson’s correlation coefficient when assumptions of 

linearity were satisfied, and Spearman’s if not. Correlation coefficients were reported 

in a correlation matrix separately for males and females.  

Based on evidence suggesting sex-specific differences in the association between 

HbA1c and whole brain volume,407 regression models for each association between 

glycaemic traits and brain volume tested were sex stratified a priori. However, 

interaction terms between sex and glycaemic markers on brain health were reported 

for completeness.  

Associations between HbA1c, glucose, HOMA2-IR and HOMA-%B with brain volume 

measures were quantified using multivariable linear regression models. Associations 

were presented as mean regression coefficients (beta β) with 95% confidence 

intervals (CI). To allow comparison of the strengths of association for different 

glycaemic traits, regression coefficients were also standardised (standardised β*).  

For each association, a minimally confounder-adjusted model (Model 1) adjusted for 

TIV and age at neuroimaging scan was first constructed. Model 2 included Model 1 

plus further adjustments for demographic factors related to cognition (childhood SEP, 

adulthood SEP, childhood cognition and education). Model 3 was the fully confounder-

adjusted model and included Model 2 plus further adjustment for lifestyle factors 

(WHR, physical activity, alcohol consumption and smoking status measured at age 

60-64). Model coefficients are presented in Table 4.2. 
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Multiple imputation for missing confounder data was performed using the MICE 

method by fully conditional specification (50 imputed datasets) under the assumption 

of MAR. Data were combined using Rubin’s rules. Results were checked for 

concordance with the complete case data and in all cases the pattern of effects were 

similar (see Table 4.3). For completeness, pooled analyses were also conducted but 

these were not the focus of this chapter.  

4.3 Results 

Data were available for a maximum of 453 participants based on availability of 

neuroimaging data (see Figure 4.1). Demographic and clinical characteristics for the 

participants considered in this sample are presented in Table 4.1. Around half of the 

participants were males and the mean age of the imaging cohort was 70. On average, 

participants had relatively normal insulin sensitivity and evidence of mildly reduced 

pancreatic β cell function.  
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Figure 4.1: Flowchart providing an overview of Insight 46 recruitment and imaging of 
National Survey of Health and Development participants who undertook imaging. 
 Although 471 participants completed the scan, 18 did not pass quality control. To be 
considered in the study, participants had to have been part of Insight 46 and have 
volumetric imaging data available, which amounted to 453 participants. 
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Participant characteristics n 
Males 

n 
  Females 

  

Standardised childhood cognition score 219 0.36 (0·73) 212 0·44 (0·74) 

Education 231 221 

  

No qualifications 24 (10%) 31 (14%) 

Below O-levels (vocational) 17 (7%) 17 (8%) 

O-levels and equivalents 38 (17%) 56 (25%) 

A-levels and equivalents 83 (36%) 79 (36%) 

Degree or higher 69 (30%) 38 (17%) 

Adult socioeconomic position 231 222 

  
Non-manual (Class I–IIIN) 193 (84%) 193 (87%) 

Manual (Class IIIM-V) 38 (16%) 29 (13%) 

Childhood socioeconomic position 231 218 

  
Non-manual (Class I–IIIN) 142 (61%) 120 (55%) 

Manual (Class IIIM-V) 89 (39%) 98 (45%) 

Characteristics, age 60-64 

HbA1c, % 215 5.71 (0.47) 209 5.8 (0.55) 

HbA1c, mmol/mol 215 39.91 (5.15) 215 38.8 (6) 

Fasting glucose, mmol/L 227 5.9 (0.9) 212 5.5 (1.1) 

Fasting insulin 135 44 (42) 137 35 (24) 

HOMA2-IR 135 1.1 (0.8) 137 0.9 (0.5) 

HOMA-%B,  135 68.1 (28.9) 137 67.2 (31.4) 

Diabetes medication use 231 10 (4%) 222 6 (2.7%) 

Waist-hip ratio  231 0.96 (0.06) 222 0.86 (0.06) 
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Smoking status 231 215 

  

Current Smokers 4 (2 %) 5 (2%) 

Ex-smokers 120 (52%) 86 (40%) 

Never smoker 107 (46%) 124 (58%) 

Alcohol (units/week) 231 222 

  
≤ 14 181 (78%) 203 (91%) 

> 14 50 (22%) 19 (9%) 

Exercise levels 229 219 

  

Inactive 125 (55%) 107 (49%) 

Moderately active 38 (17%) 47 (21%) 

Most Active 66 (28%) 65 (30%) 

Brain imaging markers measured at age ~70 

Mean age at scanning, years  231 70.7 (0.7) 222 70.7 (0.7) 

Whole brain volume (WBV), mL 231 1152.4 (87.0) 222 1047.3 (82.1) 

White matter volume (WM), mL  231 439.6 (2.8) 222 394.3 (2.8) 

Grey matter volume (GM), mL  231 649.6 (3.4) 222 602.6 (3) 

Total intracranial volume (TIV), mL  231 1519.8 (106.8) 222 1343.1 (92.6) 

Table 4.1: Sample characteristics for the participants considered in these analyses (n = 453).  
Values presented are pre-imputation data: n (%), mean (SD) or median (IQR). % are calculated against the max data available for 
that specific measure for the pooled sample. As described above, the number of participants considered had to have been part of 
Insight 46 and have volumetric imaging data available which amounted to 453 participants of which 231 were males and 222 were 
females. Whole brain volume, white matter volume and grey matter volume measurements reported are unadjusted for total 
intercranial volume for these descriptions. Values are n (%) or mean (SD).SD: Standard deviation. HOMA2-IR: Homeostatic Model 
Assessment for Insulin Resistance. HOMA-%B: Homeostatic Model Assessment for β cell function.  
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Pairwise correlations of glycaemic traits at age 60-64 

Overall, the correlation analysis revealed a positive relationship between HbA1c, 

glucose and HOMA2-IR across both sexes, with a slightly stronger association 

demonstrated in males (for example, the correlation between glucose and HbA1c was 

r=0.60 in males vs r=0.54 in females) (Figure 4.2). The positive correlation between 

HOMA2-IR and HOMA%B was stronger in males (r=0.79male, r=0.55female), but the 

negative correlation between glucose and HOMA%B was stronger in females (-0.17 

male, -0.37female).  

Figure 4.2: Correlation matrix displaying the correlation between the glycaemic 
markers HbA1c, glucose, HOMA2-IR and HOMA%B.  
On the first row, the r value represents the direction of correlation (from a Pearson’s 
correlation). In the second row, the p value represents the strength of any association. 
A provides the correlation matrix for the variables in females and B provides the 
correlation matrix for the variables in males. 
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Associations between glycaemic traits at age 60-64 and whole brain volume at age 70 

Plots reporting the standardised coefficients by sex and confidence intervals are 

displayed in Figure 4.3.  

Glucose 

There was a significant association between higher glucose and WBV in females (β*=-

0.07 [95%CI: -0.13, -0.01] p=0.02), but not in males (β*= -0.05 [-0.14, 0.03] p=0.2) 

(Figure 4.3, Table 4.2). There was no strong evidence of an interaction by sex (p = 

0.5).  

HbA1c 

I have previously published the results between HbA1c and discussed them in chapter 

3. 407 They demonstrated a significant association between higher HbA1c at age 60-64 

and smaller WBV in females only.  

Beta cell function (HOMA-%B) 

There were no statistically significant associations between HOMA-%B and WBV in 

either males (β*= -0.02 [95%CI: -0.12, 0.09] p=0.8), or females (β*= -0.01 [-0.09, 0.07] 

p=0.8) (Figure 4.3, Table 4.2). There was no evidence of an interaction by sex (p = 

0.7). 

Insulin resistance (HOMA2-IR) 

The association between greater HOMA2-IR and smaller WBV was statistically 

significant in females (β*= -0.12 [-0.2, -0.002] p=0.04), but not in males (β*= -0.06 [-

0.16, 0.05] p=0.31) (Figure 4.3 and Figure 4.2). This represents a ~50% difference 

between males and females in the strength of association between HOMA2-IR at age 

60-64 and WBV at age 70. 

Adjustments for confounders did not materially change the pattern of effects for WBV 

(see Figure 4.3, Table 4.2). There was marginal evidence of an interaction by sex (p 

= 0.05).  

Overall, in females, effect sizes of the relationship between significant glycaemic traits 

at age 60-64 and WBV were ordered as follows: HOMA2-IR (β=-0.12), HbA1c (β= -
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0.09), and glucose (β=-0.07). Whereas in males, none of these relationships were 

statistically significant. 

 

Figure 4.3: Forest plots displaying the associations between glycaemic traits at age 
60-64 (glucose, HbA1c, HOMA-%B, HOMA-IR) with whole brain volumes at age 69-
71, stratified by sex.  
The estimates presented are standardised regression coefficients for the fully 
confounder-adjusted models (adjusted for total intercranial volume, age at scan, 
cognitive measures, socio-economic position, waist-to-hip ratio, physical exercise, 
alcohol status and smoking status). Standardised coefficients are presented here to 
facilitate comparison. 
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Associations between glycaemic traits and brain tissue type 

Plots reporting the standardised coefficients and confidence intervals are displayed in 

Figure 4.8 and Table 4.2.  

Glucose 

In females there was a significant association between higher glucose with smaller 

GM (β*= -0.04 [-0.08, -0.002] p=0.04) and WM (β*= -0.06 [-0.1, -0.02] p=0.02) 

volumes, with a slightly stronger coefficient observed for WM volumes (Figure 4.4, 

Figure 4.8, Table 4.2). In males, no significant associations between glucose and GM 

or WM volume emerged (p>0.05). There was no evidence of an interaction by sex for 

either GM (p = 0.7) or WM (p = 0.3).  
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Figure 4.4: Partial regression plots showing associations between expected E 
(glucose) and expected E (Grey Matter volumes) and expected E (White Matter 
volumes).  
A represents the figures for males. B represent the figures in females. The coefficients 
presented are for the fully confounder adjusted model (adjusted for total intercranial 
volume, age at scan, childhood cognition, child, and adulthood socio-economic 
position, waist-to-hip ratio, physical exercise levels, and alcohol status and smoking 
status at the time of the exposure. E(Y) on the y-axis represents the predicted values 
of the response variable, while E(X|Xn) on the x-axis represents the conditional 
expected values of the predictor variable of interest.  
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HbA1c 

In females there was a significant association between higher HbA1c and smaller WM 

(β*=-0.06 [-0.12, -0.004] p=0.04), but not between HbA1c and GM volume (β*= -0.03 [-

0.07, 0.006] p=0.1) (Figure 4.5, Figure 4.8, Table 4.2), although the confidence 

intervals for the GM and WM volume relationships in females largely overlap, 

suggesting that the difference may not be substantial. In males, no significant 

associations between glucose and GM or WM volume emerged (p>0.05). There was 

some evidence of an interaction by sex for GM (p = 0.08) but not WM (p = 0.4). 

 

Figure 4.5: Partial regression plots showing associations between expected E (HbA1c) 
and expected E (Grey Matter volumes) and expected E (White Matter volumes).  
A represents the figures for males. B represent the figures in females. The coefficients 
presented are for the fully confounder-adjusted model (adjusted for total intercranial 
volume, age at scan, childhood cognition, childhood, and adulthood socio-economic 
position, waist-to-hip ratio, physical exercise levels, and alcohol status and smoking 
status at the time of the exposure. As per the plot above, the predicted values of the 
response variable and the conditional expected values of the predictor variable of 
interest are displayed.  
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Beta cell function (HOMA-%B) 

No significant associations emerged between HOMA-%B and GM or WM volume, in 

either sex (p>0.05) (Figure 4.6, Figure 4.8, Table 4.2). There was no evidence of an 

interaction by sex or both GM (p = 0.5) and WM (p = 0.4) volumes.  

 

Figure 4.6: Partial regression plots showing associations between expected 
E(HOMA%B) and expected E (Grey Matter volumes) and expected E (White Matter 
volumes). A represents the figures for males. B represent the figures in females.  
The coefficients presented are for the fully confounder-adjusted model (adjusted for 
total intercranial volume, age at scan, childhood cognition, childhood, and adulthood 
socio-economic position, waist-to-hip ratio, physical exercise levels, and alcohol status 
and smoking status. As per the plot above, the predicted values of the response 
variable and the conditional expected values of the predictor variable of interest are 
displayed.  
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Insulin resistance (HOMA2-IR) 

In females there was a significant association between higher HOMA2-IR and smaller 

GM volumes in females (β*=-0.05 [-0.1, -0.007], p=0.04), but not WM volumes, despite 

a similar effect size (β*= -0.05 [-0.13, 0.04] p=0.27). In males, no significant 

associations between HOMA2-IR and GM or WM volume emerged (p>0.05). There 

was evidence of an interaction by sex for GM (p = 0.02) but not WM (p = 0.4) volumes. 

 

Figure 4.7: partial regression plots showing associations between expected E 
(HOMA2 %IR) and expected E(Grey Matter volumes) and expected E(White Matter 
volumes).  
A represents the figures for males. B represent the figures in females. The coefficients 
presented are for the fully confounder-adjusted model (adjusted for total intercranial 
volume, age at scan, childhood cognition, childhood, and adulthood socio-economic 
position, and waist-to-hip ratio, physical exercise levels, and alcohol status and 
smoking status at the time of the exposure. As per the plot above, the predicted values 
of the response variable and the conditional expected values of the predictor variable 
of interest are displayed.  
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Figure 4.8: Forest plots showing the associations between glycaemic traits at age 60-
64 (glucose, HbA1c, HOMA-%B, HOMA-IR) with GM and WM at age 70, stratified by 
sex.  
The coefficients presented are for the fully confounder-adjusted model (adjusted for 
total intercranial volume, age at scan, childhood cognition, childhood, and adulthood 
socio-economic position, and waist-to-hip ratio, physical exercise levels, and alcohol 
status and smoking status at the time of the exposure. The associations between 
HbA1c and WBV were previously published by Fatih and colleagues,407 but are 
included in this model for the sake of comparison. 

Overall, adjustments for confounders did not materially change the pattern of effects 

(Table 4.2). The analyses were also repeated with the non-imputed data and had no 

discernible effect on the findings (Table 4.6). 
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Table 4.2: Linear regression analyses of imputed data exploring the relationship between HbA1c, glucose, HOMA2-IR and HOMA%-β on brain imaging outcomes for the whole sample.  
The outcomes considered are whole brain, grey matter and white matter volumes. Models were constructed as follows: Model 1: minimally adjusted model for total intercranial volume, sex and age at scanning. Model 2: Model 
1 +further adjustments for childhood socio-economic position, adulthood socio-economic position, education and childhood cognition. Model 3: Model 2 + further adjustments for waist-to-hip ratio, physical activity levels, and 
alcohol and smoking status. 

  

    Whole Brain Volumes (WBV) Gray Matter volumes (GM) White Matter volumes (WM) 

    Males Females Males Females Males Females 

    

Previously shown in Chapter 3 Previously shown in Chapter 3 

β* 95% CI   p β* 95% CI   p β* 95% CI   p β* 95% CI   p 

  M1 0.015 -0.03 0.06 0.51 -0.04 -0.08 -0.001 0.05 0.01 -0.05 0.07 0.76 -0.03 -0.08 0.16 0.19 

HbA1c M2 0.02 -0.03 0.07 0.38 -0.04 -0.08 -0.002 0.04 0.02 -0.05 0.08 0.61 -0.05 -0.1 0.002 0.06 

  M3 0.02 -0.02 0.07 0.33 -0.03 -0.07 0.006 0.1 0.02 -0.03 0.08 0.4 -0.06 -0.12 -0.004 0.04 

  M1 -0.06 -0.13 0.01 0.1 -0.08 -0.13 -0.02 0.005 -0.02 -0.07 0.03 0.45 -0.05 -0.08 -0.009 0.016 -0.02 -0.08 0.04 0.41 -0.06 -0.1 -0.01 0.02 

Glucose M2 -0.06 -0.13 0.02 0.2 -0.08 -0.14 -0.02 0.007 -0.01 -0.06 0.04 0.705 -0.05 -0.09 -0.01 0.01 -0.01 -0.08 0.06 0.78 -0.07 -0.1 -0.21 0.005 

  M3 -0.05 -0.13 0.03 0.2 -0.07 -0.13 -0.01 0.02 -0.008 -0.06 0.046 0.77 -0.04 -0.08 -0.002 0.04 0.003 -0.06 0.07 0.92 -0.06 -0.1 -0.02 0.02 

  M1 0.004 -0.77 0.89 0.92 -0.002 -0.07 0.07 0.97 -0.003 -0.05 0.047 0.904 -0.15 -0.6 0.03 0.51 -0.008 -0.07 0.06 0.81 0.01 -0.05 0.07 0.77 

HOMA-%B M2 -0.01 -0.09 0.08 0.90 0.001 -0.07 0.08 0.90 -0.007 -0.06 0.047 0.081 -0.01 -0.05 0.04 0.88 -0.016 -0.08 0.05 0.63 0.01 -0.05 0.08 0.67 

  M3 -0.02 -0.12 0.09 0.77 -0.01 -0.09 0.07 0.84 -0.004 -0.06 0.053 0.89 -0.01 -0.05 0.04 0.88 0.003 -0.07 0.07 0.93 0.01 -0.05 0.07 0.68 

  M1 -0.007 -0.07 0.05 0.81 -0.08 -0.17 -0.03 0.04 -0.01 -0.05 0.03 0.66 -0.08 -0.14 -0.023 0.006 -0.001 -0.06 0.04 0.72 -0.04 -0.12 0.03 0.27 

HOMA2-IR M2 -0.03 -0.09 0.04 0.43 -0.09 -0.18 0.004 0.06 -0.01 -0.05 0.03 0.67 -0.07 -0.13 -0.012 0.02 -0.1 -0.07 0.04 0.68 -0.05 -0.13 0.03 0.21 

  M3 -0.06 -0.16 0.05 0.31 -0.12 -0.2 0.002 0.04 -0.007 -0.06 0.042 0.77 -0.06 -0.12 -0.004 0.04 0.01 -0.05 0.07 0.72 -0.05 -0.13 0.04 0.27 
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Table 4.3: Linear regression analyses of the raw, complete case data exploring the relationship between HbA1c, glucose, HOMA2-IR and HOMA%-β on brain imaging outcomes for the whole sample.  
The outcomes considered are whole brain, grey matter and white matter volumes. Models were constructed as follows: Model 1: minimally adjusted model for total intercranial volume, sex and age at scanning. Model 2: Model 
1 + further adjustments for childhood socio-economic position, adulthood socio-economic position, education and childhood cognition. Model 3: Model 2 + further adjustments for waist-to-hip ratio, physical activity levels, and 
alcohol and smoking status. 

 

  

    Whole Brain Volumes (WBV) Gray Matter volumes (GM) White Matter volumes (WM) 

    Males Females Males Females Males Females 

                β* 95% CI p β* 95% CI p β* 95% CI p β* 95% CI p 

  M1 
Previously shown in Chapter 3 Previously shown in Chapter 3 

0.01 -0.03 0.06 0.54 -0.04 -0.07 0.002 0.07 -0.004 -0.06 0.05 0.89 -0.028 -0.76 0.02 0.26 

HbA1c M2 0.02 -0.03 0.07 0.4 -0.04 -0.07 0.003 0.07 0.02 -0.06 0.065 0.93 -0.045 -0.095 0.005 0.07 

  M3   0.02 -0.03 0.07 0.34 -0.03 -0.07 0.01 0.1 0.01 -0.05 0.076 0.67 -0.06 -0.12 -0.004 0.04 

  M1 -0.06 -0.13 0.01 0.1 -0.08 -0.13 -0.02 0.005 -0.02 -0.07 0.03 0.4 -0.05 -0.08 -0.01 0.02 -0.03 -0.1 0.03 0.36 -0.06 -0.1 -0.01 0.017 

Glucose M2 -0.06 -0.13 0.02 0.2 -0.08 -0.14 -0.02 0.007 -0.01 -0.06 0.04 0.7 -0.05 -0.08 -0.007 0.02 -0.01 -0.08 0.05 0.69 -0.07 -0.12 -0.02 0.004 

  M3 -0.05 -0.13 0.03 0.2 -0.07 -0.12 -0.006 0.02 -0.01 -0.06 0.05 0.78 -0.04 -0.08 0.0003 0.05 -0.001 -0.07 0.07 0.98 -0.07 -0.1 -0.02 0.007 

  M1 0.02 -0.05 0.09 0.06 0.01 -0.06 0.08 0.78 -0.012 -0.07 0.047 0.68 -0.02 -0.07 0.03 0.42 -0.03 -0.11 0.04 0.37 0.02 -0.4 0.08 0.47 

HOMA-%B M2 -0.0003 -0.08 0.08 0.99 0.004 -0.07 0.08 0.92 -0.021 -0.08 0.04 0.49 -0.11 -0.06 0.04 0.68 -0.05 -0.13 0.026 0.199 0.01 -0.05 0.07 0.65 

  M3 -0.004 -0.1 0.09 0.93 0.02 -0.06 0.1 0.63 -0.02 -0.09 0.047 0.56 -0.01 -0.06 0.037 0.59 -0.03 -0.11 0.05 0.45 0.007 -0.05 0.066 0.8 

  M1 -0.007 -0.07 0.05 0.81 -0.08 -0.17 -0.03 0.04 -0.006 -0.05 0.04 0.8 -0.1 -0.16 -0.03 0.006 -0.02 -0.08 0.04 0.6 -0.04 -0.12 0.04 0.35 

HOMA2-IR M2 -0.03 -0.09 0.04 0.43 -0.09 -0.18 0.004 0.06 -0.008 -0.06 0.04 0.76 -0.08 -0.15 -0.01 0.03 -0.02 -0.085 0.037 0.44 -0.06 -0.1 0.02 0.13 

  M3 -0.04 -0.13 0.05 0.37 -0.1 -0.2 0.002 0.04 -0.006 -0.06 0.05 0.84 -0.08 -0.15 -0.007 0.03 -0.006 -0.076 0.06 0.86 -0.07 -0.15 0.03 0.1 
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Table 4.4: Linear regression analyses for the whole sample exploring the relationship between HbA1c, glucose, HOMA2-IR and HOMA%-β on brain imaging outcomes for the whole sample.  
The outcomes considered are whole brain, grey matter and white matter volumes. Models were constructed as follows: Model 1: minimally adjusted model for total intercranial volume, sex and age at scanning. Model 2: Model 
1 + further adjustments for childhood socio-economic position, adulthood socio-economic position, education and childhood cognition. Model 3: Model 2 + further adjustments for waist-to-hip ratio, physical activity levels and 
alcohol and smoking status. These pooled analyses were not the focus of the study but are shared for completeness. 

 

    Whole Brain Volumes (WBV) Gray Matter volumes (GM) White Matter volumes (WM) 

    β* 95% CI p β* 95% CI p β* 95% CI p 

  M1 

Previously shown in Chapter 3 

-0.1 -0.04  0.02  0.4 -0.02 -0.05 -0.02 0.32 

HbA1c M2 -0.01 -0.04  0.02 0.6 -0.02  -0.06 -0.01 0.21 

  M3 -0.004 -0.04 0.03  0.8 -0.03  -0.07 -0.006 0.04 

  M1 -0.07  -0.11 -0.03 0.001  -0.03  -0.06 0.004 0.07  -0.05  -0.1  -0.15  0.005 

Glucose M2 -0.08 -0.12 -0.03 0.001  -0.04  -0.07  -0.01 0.03  -0.06 -0.1  -0.18  0.004  

  M3 -0.07 -0.12  -0.03 0.002  -0.04 -0.07  -0.01  0.01  -0.04 -0.08  -0.005  0.02 

  M1 -0.03 -0.08 0.03 0.29 -0.04 -0.08 -0.006 0.02 -0.03 -0.07 0.02 0.27 

HOMA-%B M2 -0.05 -0.1 0.02 0.19 -0.04 -0.08 0.002 0.06 -0.03 -0.08 0.01 0.16 

  M3 -0.1 -0.2 -0.002 0.05 -0.02 -0.06 0.02 0.34 -0.03 -0.08 0.02 0.28 

  M1 -0.01 -0.04 0.06 0.71 -0.02 -0.06 0.02 0.27 -0.03 -0.05 0.04 0.89 

HOMA2-IR M2 0.001 -0.06 0.06 0.98 -0.02 -0.06 0.02 0.26 -0.1 -0.06 0.03 0.56 

  M3 0.01 -0.05 0.07 0.84 -0.01 -0.05 0.03 0.57 -0.1 -0.05 0.03 0.7 
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4.4 Discussion 

Summary of findings 

In a sample from a population-based birth cohort of people born in the same week, 

measures of hyperglycaemia (glucose, HbA1c) and IR (HOMA2-IR) at age 60-64 were 

associated with smaller brain volumes ~10 years later in females only, with limited 

evidence of preferential tissue type. There was no convincing evidence of one specific 

glycaemic marker being more strongly associated with poorer brain health. Generally, 

the associations were fairly weak. No convincing associations emerged between 

glycaemic traits and brain volume for males, or for pancreatic β cell function (HOMA 

%B) and brain volume in either sex. Overall, this suggests there may be a stronger 

association between hyperglycaemia and IR and later-life structural brain volume in 

females. 

Specific findings and associations with the literature  

I previously reported that HbA1c across midlife was associated with smaller whole brain 

volume at age ~70 in females but not in males (Chapter 3 and published work).407 I 

now expand on this work by demonstrating that other related, but mechanistically 

distinct, glycaemic traits (i.e., glucose, and IR) also follow this sex-specific trend. Few 

population-based studies have had the availability of multiple glycaemic markers to 

begin disentangling the complex mechanistic traits of diabetes in the population. 

These results are consistent with the growing evidence demonstrating that poor 

glycaemic health (in the presence and absence of diabetes) is associated with poorer 

brain health, with some findings suggesting an increased vulnerability in females. 

407,413,429 

There are many possible factors that may explain sex-specific vulnerability to poor 

glycaemic health. One important mechanism may be related to the critical changes in 

hormonal health in midlife, specifically the rapid decline of oestrogen in post-

menopausal females. Oestrogen has consistently been found to be neuroprotective 

working via multiple pathways to decrease inflammation, oxidative stress, and 

vascular reactivity,455 and it is conceivable that its withdrawal increases vulnerability 

to hyperglycaemia. Other sex differences, for example the location of adiposity could 

also play a modifying role since higher abdominal adiposity has been associated with 
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poorer brain health.456 Other more gender-related factors related to caregiving could 

contribute, as females with diabetes with caregiving roles are less likely to attain 

glycaemic targets and be screened for long-term complications.457  

Interestingly, in females, the correlations between HbA1c and fasting glucose 

(r=54females), and HbA1c and IR (r=30females), were only of moderate strength, consistent 

with a previous study.458 It therefore seems plausible that associations between 

glycaemic traits and smaller brain volume in females could reflect temporal and 

mechanistic differences between the measures. Fasting glucose represents a single 

‘snapshot’ of glycaemia in a state when insulin requirements are low, whereas HbA1c 

provides an integrated measure of glycaemic load over a preceding period of 2-3 

months. Each marker has been argued to provide different and complementary 

information on diabetes risk459 and there is evidence that fasting glucose, HbA1c and 

IR are subject to different genetic influences.453 Although I acknowledge that they are 

related markers, the inclusion of each marker accounted for a higher total variance of 

the relationship explained (e.g., 72% of WBV variance was explained by the glucose 

and covariate model, which increased to r2=76% when HOMA-IR was included). Other 

issues may also be important in sex differences: these include variation in 

glycosylation rates,460,461 differences in erythrocyte environments214 and heterogeneity 

in erythrocyte lifespan.215 

There were no associations between HOMA-%B and brain volume metrics in either 

sex. HOMA-%B is a measure of β cell response or insulin secretion in the pancreas, 

which may not necessarily reflect glycaemia.462 The relationship between β cell 

dysfunction and IR are complex, with both mechanisms having been shown to 

contribute to the development of T2D. Consistent with it being a population-based 

sample, NSHD only had a small proportion of participants with diabetes. Although in 

some cases, β cell dysfunction is the primary mechanism underlying diabetes, in many 

others, this feature appears in the latter stages of the condition. The small degree of 

variance in HOMA-%B in NSHD may have limited the ability to detect a relationship 

between HOMA-%B and brain outcomes.463 
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Importance of sub-clinical glycaemic traits  

While previous studies have shown that diabetes is associated with smaller 

WBV,413,442,452 this study goes beyond examining its relationship to a clinical diagnoses 

of diabetes, and instead assesses associations with the underlying glycaemic traits. 

These findings show that a negative relationship between glycaemic traits and smaller 

brain volume is present in females, even in a population-based sample with only mildly 

abnormal glycaemic traits. This is consistent with other studies reporting that higher 

glucose in the normal range (3.2-6.1 mmol/L) and higher glucose independent of 

diabetes status are associated with lower brain volumes.410,464 Recent population-

based studies using UK Biobank also reported associations between sub-clinical 

(prediabetes), HbA1c and poorer brain health outcomes including brain volume, 

hippocampal volume and cognitive decline, independently of diabetes status.364,365 

Together, my findings emphasise the need to manage blood glucose levels in the 

population, which in turn may help maintenance of optimal brain health in later life.  

Preferential tissue 

Since diabetes (and hyperglycaemia) are states of abnormal glucose metabolism, I 

aimed to investigate whether this would be associated with reductions in GM and WM 

tissue differently, since the former consists primarily of neuronal cells and the latter of 

supportive glial cells. Previous studies addressing whether diabetes is associated with 

preferential tissue loss have yielded inconsistent results.20,410 In this study there is no 

convincing evidence of an association between glycaemic traits and preferential GM 

or WM tissue loss. No associations with smaller brain tissue volume emerged in males. 

In females, glucose was related to both GM and WM volumes; while HbA1c was slightly 

more related to WM volume; and HOMA2-IR was more strongly related to GM volume, 

but since the CI between tissue types in females were largely overlapping, there was 

no robust evidence of a preferential association of tissue type. More recently, a paper 

explored the relationships between HbA1c and a range of brain volumetric measures 

in the UK Biobank imaging sample.365 Their standardised coefficients for their fully 

confounder-adjusted models for GM (β -0.03) and WM (β = -0.01) volumes were 

largely consistent with my estimates for WM (β*=-0.06 [-0.12, -0.004]) and GM (β*= -

0.03 [-0.07, 0.006]) volumes.  
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Strengths and weaknesses 

By harnessing data from a national birth cohort of deeply phenotyped people who have 

been studied for over 7 decades since their birth in 1946, I was able to characterise 

the relationship between a range of glycaemic traits measured at age 60-64 with brain 

volume metrics, whilst adjusting for an extensive set of key confounders including 

childhood cognition, education and social class, in addition to important lifestyle 

factors such as anthropometric body composition, alcohol and exercise use. This 

enabled me to better characterise the observed relationship between glycaemic traits 

and smaller brain volume in females. Another strength is that the study followed people 

born across the UK in the same week, limiting the confounding effect of age in these 

relationships. 

Ascertainment bias is a potential weakness to consider, similar to other longitudinal 

studies, where individuals who participated in the neuroimaging sub-study were more 

likely to be educated, from a higher SEP, and have with better overall health.394 In 

addition, differential survival rates in this cohort, especially amongst unhealthy males, 

may have biased the results and contributed to these sex-specific differences.392 

There were also fewer people with available HOMA measures, and this will have 

reduced the power to detect associations for these exposures.  

Overall, the findings add to the growing evidence that female brains may have greater 

susceptibility to poorer glycaemic health, even with regard to only mildly abnormal 

glycaemic traits. The effect sizes are quite small; taking the relationship between 

fasting glucose and WBV as an example, (β*=-0.07 [95%CI: -0.13, -0.01]), cm3 per 1 

SD increase of fasting glucose (1.1mmol/L) in females is equivalent to around 6 

months of WBV ageing (1 SD in age = -0.13ml and 1SD in glucose = -0.07) as 

measured in UK Biobank. This may be important, however, as although the effect 

reported is small, small effects within large populations could add up to have a 

significant impact on public health. These findings are also consistent with emerging 

evidence suggestive of a sex-specific effect of diabetes (and its traits) on brain health 

407,413,429 warranting further research.  



 158 

Future research 

Future research should aim to elucidate potential mechanistic mediators of the 

relationship between poor glycaemic health and poor brain health in females. Potential 

factors may include inflammation, CVD or kidney health since these have been shown 

to be impacted by hyperglycaemia which itself has previously been found to be 

predictive of poorer brain health.326,465,466 

In addition, future research should investigate whether the sex-specific vulnerability in 

females with poor glycaemic health is influenced by menopausal status, particularly 

whether the drop of neuroprotective hormones such as oestrogen/oestradiol around 

that stage, plays a role in explaining the vulnerability. It may also be of value to further 

explore whether the relationship between poor glycaemic health and smaller brain 

volume in females reflects tissue loss across a single specific or multiple brain regions. 

4.5 Conclusions  

The findings in this chapter indicate that, similarly to HbA1c, there are sex-specific 

associations between other glycaemic measures in midlife (i.e., fasting glucose and 

Insulin resistance) and lower brain volume later in life, with greater susceptibility in 

females. There was no compelling evidence of preferential tissue loss associated with 

the glycaemic markers in either sex. Overall, this may suggest a greater susceptibility 

in females to adverse effects of hyperglycaemia and insulin resistance in midlife on 

later-life structural total brain volume. 
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5. Examining the role of inflammation as a mediator of the 

glycaemia-brain health associations in females  

Chapter 3 and Chapter 4 revealed evidence of associations between poorer glycaemia 

and its related traits and lower brain volume in female participants of the National 

Survey of Health and Development birth cohort. In line with this, this mediation 

analysis aims to examine whether these associations in females are mediated by 

inflammation.  

5.1 Introduction 

Previous analyses in Chapter 3 and Chapter 4 revealed sex-specific associations 

between glycaemia (indexed by HbA1c and glucose) in midlife and brain volume at age 

~70 exclusively in females (also published by Fatih and colleagues).407 An important 

next step that follows from these findings is to examine the possible mechanisms that 

may mediate these sex-specific associations.  

One potential mediating factor of this relationship could be inflammation since there is 

growing evidence of: 1) higher systemic inflammation in females,434 2) evidence that 

inflammation is a central feature of T2D437 and 3) associations between systemic 

inflammatory markers such as IL-6 and brain health outcomes both in animals and 

humans.28,326,436 Sex differences in inflammation levels may particularly become more 

prominent and influential following the decline of oestrogen’s neuroprotective effect 

during the perimenopause and following the menopause.467,468 Oestrogen is a 

multifunctional hormone with important anti-inflammatory effects. Furthermore, a sex-

specific transcriptomic analysis of human myeloid cells in relation to AD also showed 

that female immune cells, particularly microglia in the brain, exhibit higher activity of 

inflammation-related genes and AD risk genes compared to males.469 Thus, systemic 

inflammation may mediate the sex-specific associations between midlife glycaemia, 

and volumetric brain health exclusively observed in female participants of the NSHD 

sample.  

As such, the research question investigated here is whether the relationship between 

glycaemic markers (HbA1c and glucose) at age 60-64 and the different volumetric 
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measures considered (WBV, WM, and GM) in females at age ~70 is mediated by 

systemic inflammation (as indexed by IL-6, CRP and GlycA).  
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5.2 Methods  

5.2.1 Sample   

The participants were from the NSHD cohort who undertook further assessments as 

part of Insight 46. The recruitment process has been discussed in Chapter 2. In this 

analysis, the participants were included if they had a HbA1c or glucose measure at age 

60-64 and have volumetric data available. Since my previous findings found these 

relevant associations only in females, male participants were excluded from the 

analyses.  

5.2.2 Investigations   

Neuroimaging   

The brain imaging measures considered in this analysis were the volumetric measures 

WBV, GM volumes and WM volumes. The neuroimaging protocol performed was 

described in detail in Chapter 2.  

Variables and confounding variables  

Exposure 

HbA1c: HbA1c was measured in a fasting blood sample collected at age 60–64. HbA1c 

was measured by ion exchange HPLC on a Tosoh analyzer (Tosoh Bioscience, 

Tessenderlo, Belgium). Additional details for these measures are discussed in 

Chapter 4.  

Glucose: Glucose was also measured using a fasting blood sample collected at age 

60-64. It was measured by enzymatic assay using hexokinase coupled to glucose 6-

phosphate dehydrogenase, using a Siemens Dimension Xpand analyzer, Siemens 

Medical Solutions, Erlangen, Germany. Additional details for these measures are 

discussed in Chapter 4. 

Mediators 

IL-6: IL-6 was measured on serum samples derived from overnight fasting blood 

samples taken during clinic or home visits. These samples were initially processed at 
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the Clinical Research Facility (CRFs) laboratories, where aliquots were frozen and 

stored before being transferred to the MRC Human Nutrition Research Laboratory in 

Cambridge for long-term storage. Analyses of IL-6, along with other inflammatory 

markers, were conducted by the British Heart Foundation Research Centre in 

Glasgow using plasma and serum aliquots stored at -70°C using Enzyme-linked 

immunosorbent assay (ELISA) at inter-assay coefficients of variation (CV) of 6.5%. 

Units are reported in pg/L. 

CRP: CRP was collected via blood samples taken at clinic or during a home visit and 

taken to the MRC Human Nutrition Research laboratory in Cambridge to be stored at 

-80°C. It was assayed using Particle-enhanced immunoturbidimetric. This assay was 

chosen for its high sensitivity, which is crucial for accurately measuring CRP levels in 

blood samples. The inter-assay CV for CRP and the detection limit (sensitivity) were 

reported as 6.28% and 1ng/ml respectively, indicating the assay's specificity and the 

minimum level at which CRP could be reliably detected. Units were reported in mg/L. 
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Glycoprotein acetyls: Alpha1-acid glycoprotein (glycA) was measured using 

metabolomic analyses performed on serum collected at ages 60–64. All blood 

samples were collected after an overnight fast and were not subjected to any free-

thaw cycles prior to metabolomics. Serum metabolites were assayed using a high-

throughput NMR metabolomics platform (by Nightingale Health using Bruker AVANCE 

III 500 MHz and Bruker AVANCE III HD 600 MHz spectrometers) able to quantify up 

to 233 metabolite measures and ratios representing a broad molecular signature of 

systemic metabolism. For the majority of the metabolic biomarkers, the inter-assay 

CVs across spectrometers were below 5%. More details have been discussed by 

Soininen and colleagues. 470  

Confounders 

Confounders were identified based on prior knowledge of associations between 

hyperglycaemia and inflammation, and inflammation and brain health, which were 

then represented through a DAG (see Figure 5.1B). Confounders were considered for 

both the exposure-mediator relationships and the mediator-outcome relationships. In 

this analysis, the confounders considered were:  

Socioeconomic position: Childhood SEP was measured as father’s occupational 

social class recorded at age 4 (or if missing, at age 11) and categorised into manual 

or non-manual according to the UK Registrar General’s Standard’s Occupation 

Classification. Adult SEP was based on head of household occupation at age 53 

years. These were coded according to the UK Registrar General's Standard 

Occupational Classification, then grouped as follows: I (professional), II (managerial 

and technical), IIIN (skilled non-manual), IIIM (skilled manual), IV (partly skilled), and 

V (unskilled).  

Education: The highest educational attainment or training qualification achieved by 

26 years was classified according to the Burnham scale471 and grouped into the 

following: no qualification; below ordinary secondary qualifications (e.g., vocational 

qualifications); ordinary level qualifications (‘O’ levels or their training equivalents); 

advanced level qualifications (‘A’ levels or their equivalents); or higher education 

(degree or equivalent). 

https://pubs.rsc.org/en/results?searchtext=Author%3APasi%20Soininen
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Alcohol: Information on alcohol consumption over the previous 7 days was obtained 

by a self-completed questionnaire that participants completed between the ages of 60-

64. Questions asked about drinking choices more specifically the consumption of: 1) 

spirits or liqueurs (number of measures), 2) wine, sherry, martini, or port (number of 

glasses), and 3) beer, lager, cider, or stout (number of half-pints). Responses to these 

three items were totalled to provide an approximate measure of drinks per week, 

where a drink (or unit in UK terminology) contains ∼9.0 g of alcohol. Participants were 

then categorised into two categories: those who drunk under 14 units of alcohol per 

week and those who drunk over 14 units of alcohol per week.  

Smoking: Smoking status at age 60-64 was assessed by self-report and was 

classified into three groups: current smokers, ex-smokers, and never-smokers. 

 

Physical activity: Physical activity was collected at age 60–64 using the EPIC 

physical Activity questionnaire-2, originally derived from Minnesota leisure time 

physical activity questionnaire.472 This assessed how often participants had had taken 

part in any sports, vigorous leisure activities or exercise in the previous 4 weeks. 

Similarly to previous work in the sample, at each age, responses were categorised 

into: 1) not active (no participation in physical activity/month), 2) moderately active 

(participated 1–4 times/month) and 3) most active (participated 5 or more 

times/month) as previously described by Black and colleagues.473 Previous research 

within the NSHD cohort revealed a consistency between patterns of variation obtained 

through self-reported and objective measures of physical activity.474  

 

Body mass index: body mass index was calculated using the following equation: 

(weight(kg)/height(m2)).  

 

Arthritis: Arthritis status was assessed through questionnaires asking whether 

participants had taken non-steroid medication at age 60-64 using a postal 

questionnaire.  

 

COPD: COPD categorisation was made based on the presence of airflow obstruction 

defined by the ratio of FEV1/FVC of less than the lower limit of normal or 0.7.475 
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5.2.3 Statistical analyses  

Statistical analyses were conducted using Stata 17 (StataCorp, College Station, TX, 

USA). Two-component mediation analysis was conducted using the ‘sem’ package 

(StataCorp). This approach, which is analogous to path analysis, decomposes the 

total ‘effect’ (i.e., association between exposure and outcome) into a direct, and an 

indirect (or mediated) effect.476,477 While a three-component mediation analysis which 

also included a mediated interactive effect was contemplated, for reasons that will 

become apparent from the results, this was not performed. Note that in this analysis 

framework the term effect is used to describe the relationships between exposure, 

mediator and outcome. Such relationships or associations can only be interpreted as 

causal under very strong assumptions that are arguably never (or perhaps almost 

never) satisfied. Some eschew the term ‘effect’ in all epidemiological studies for this 

reason, I use the term here since it is standard terminology but emphasise that casual 

interpretations should not be applied to the term effect in this context. This is discussed 

by Hernan and colleagues.478,479  

 

All models were estimated using full information maximum likelihood, which assumes 

linear relationships and multivariate normality but allows for missing data under a MAR 

assumption and was therefore considered preferable to estimation based on complete 

case data. 

 

The exposure variable was HbA1c at age 60-64. The putative mediator variables were 

IL-6, CRP and GlycA measured at age 60-64 (Figure 5.1C). The outcome variables 

were WBV, GM and WM volumes. Due to their skewed distribution, IL-6 and CRP 

were log-transformed to conform with the multivariate normal assumptions of 

structural equation modelling. In addition, participants with CRP values below the limit 

of detection (LOD), (i.e., under the value of 1mg/L) were assigned a value of 1 mg/L.  

The first sets of path analyses were conducted to model the relationship between the 

glycaemic markers and each inflammatory marker (IL-6, CRP and GlycA) and 

outcome (WBV, WM volume and GM volume). This mediation model was initially 

created as a minimally confounder-adjusted model (Figure 5.1B) but then built into a 

fully confounder-adjusted model (Figure 5.1B).  
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The other path analysis approach used to investigate the indirect effect of glycaemic 

markers on brain health outcomes operationalised inflammation as a latent variable 

using IL-6, CRP, and GlycA. As per the model above, the latent variable model was 

initially built as a minimally confounder-adjusted model but then constructed with full 

adjustments for confounders. For the model with a latent variable, a number of fit 

indices were then explored to test model adequacy, more specifically the Chi-square 

test, root mean square error of approximation (RMSEA) and the comparative fit index 

(CFI).The confounders used were SEP, education, BMI, alcohol, smoking status, 

physical activity, arthritis disease, and COPD. In addition, TIV and age at scan were 

adjusted for.  
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Figure 5.1: Path analysis models conducted in the analyses  
A) Simple mediation model as a first step of model building. B) Fully confounder-
adjusted model. Adjustments were made for both exposure-mediator and mediator-
outcome relationships. C) Conceptual latent variable model considering each 
inflammatory marker together (i.e., IL-6, glycA and CRP) to get a more comprehensive 
measure of systemic inflammation. Although not displayed to enhance visibility, the 
same confounder-adjusted approach as diagram B was taken for the latent model. 
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Figure 5.2: A theoretical analysis of the mediation models considered. 
 A) shows the assumed (total) effect, c. B) the total effect decomposed into a direct, c’ 
and indirect (mediated via a and b) effect.  

 

Sensitivity analyses  

Sensitivity analyses were performed, in which CRP values below the LOD were 

replaced with a value of 0mg/L or with a value 1mg/L.   
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5.3 Results  

A flowchart of the participants considered is presented in Figure 5.3 and sample 

characteristics are shown on Table 5.1.  

43 out of 216 participants had a CRP below the LOD of 1mg/L. Assigning these to a 

value of 1mg/L or 0mg/L had negligible effect on the results obtained and hence it was 

assumed that the analysis was insensitive to the values assigned below the LOD.  

For IL-6 analyses, 10 participants with IL-6 levels above the maximum level reliably 

quantified by the current methods (10pg/mL) were not considered.  

CRP and IL-6 were both skewed. As a result, quantile-normality plots were run to see 

which function would best fit the data. In both cases, a log transformation was the best 

solution. Figure 5.4 and Figure 5.5 show the plots and respective transformation of IL-

6.  
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Figure 5.3: Flowchart providing an overview of Insight 46 recruitment of National 
Survey of Health and Development participants who undertook imaging and were part 
of my study. To be considered in this study, participants had to have available 
volumetric imaging data, HbA1c data at age 60-64 and be a female. This amounted to 
216 participants being included in the study.  
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Figure 5.4: Quantile-normal plots showing the different possible transformations for 
interleukin-6 (with the limit of detection assigned value of 1mg/L).  
The log-transformation appeared to offer the best fit.  
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Figure 5.5:Transformation of interleukin-6.  
Plot A represents the raw measure of interleukin-6 (pg/ml) and Plot B represents 
interleukin-6 after log transformation.  
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Participant characteristics  n  

Standardised childhood cognition score 212 0·44 (0·74) 

Education  

 

No qualifications 30 (14%) 

Below O-levels (vocational)                     18 (8%) 

O-levels and equivalents 53 (25%) 

A-levels and equivalents 80 (37%) 

Degree or higher 35 (16%) 

Adult socioeconomic position 216 

 Non-manual (Class I–IIIN) 186 (87%) 

Manual (Class IIIM-V) 30 (13%) 

Childhood socioeconomic position 212 

  
Non-manual (Class I–IIIN) 114 (55%) 

Manual (Class IIIM-V) 98 (45%) 

HbA1c, %, 216 5.8 (0.55) 

HbA1c, mmol/mol 216 38.8 (6) 

Interleukin-6 (IL-6) pg/mL 204 2.1 (1.4) 

C-reactive protein (CRP) (mg/L) 212 3.5 (6.6) 

GlycA (mg/L) 202 1.1 (0.3) 

Diabetes medication use 216 6 (2.7%) 

BMI kg/m2 216 27.5 (4.9) 

Smoking status   

  Smoking status 

Current Smokers 10 (5%) 

Ex-smokers    70 (34%) 

Never smoker    125 (61%) 

Alcohol (units/week) 216 
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≤ 14 198 (91%) 

> 14 18 (9%) 

Exercise levels 219 

  

Inactive 107 (49%) 

Moderately active 47 (21%) 

Most Active 65 (30%) 

Neuroimaging metrics, age 69-71   

Mean age at scanning, years  216 70.7 (0.7) 

Whole brain volume (WBV), mL 216 1046.7 (82.4) 

White matter volumes (WM), mL  216 394.3 (2.8) 

Grey matter volumes (GM), mL 216 602.6 (3) 

Total intracranial volume (TIV) 216 1342.4 (91.8) 

Table 5.1: Sample characteristics for the participants considered in the analysis (n = 216).  
Values are n (%), mean (SD) and median (IQR). Whole brain, grey matter and white matter volume measurements reported are 
unadjusted for total intercranial volumes for these descriptions. % are calculated against the max data available for that specific 
measure for the pooled sample. SD: Standard deviation. As described above, to be considered in the study, participants had to have 
available volumetric imaging data, HbA1c data at age 60-64 and be a female which amounted to 216 participants.  
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Linear correlation between inflammatory markers 

 

 

Table 5.2: Correlation matrix displaying the correlation between the different 
inflammatory markers: interleukin-6, glycoprotein-A and c-reactive protein.  
On the first row, the r value represents the direction of correlation (from a Pearson’s 
correlation). In the second row, the p value represents the strength of any association. 
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The correlation matrix shows weak associations between the different inflammatory 

markers. The associations were strongest between CRP and IL-6 and least strong 

between GlycA and CRP.  

Path analysis of HbA1c and brain health outcomes  

The results presented here are the path analysis for the fully confounder-adjusted 

models. Prior to these, minimally adjusted models were run for model construction 

purposes but were not included here.  

Whole brain volumes 

There was a total effect of HbA1c on WBV for all the models that included an 

inflammatory marker (see Table 5.3).  

In the mediator model, a direct effect of HbA1c on WBV was also observed for CRP (β 

= -2.0, [3.3, -0.7], p = 0.002), IL-6 (β = -1.9, [-3.2, -0.5], p = 0.005), and GlycA (β = -

1.8, [-3.2, -0.5], p = 0.006). However, there was no indirect effect of HbA1c on WBV 

through any of the inflammatory pathways: CRP (β = -0.01, [-0.2, 0.2], p = 0.8), IL-6 

(β = -0.1, [-0.3, 0.1], p = 0.28), or GlycA (β = -0.08, [-0.3, 0.1], p = 0.4). The glycaemia-

inflammation pathway was not significant for CRP (β = 0.01, [-0.1, 0.1], p = 0.9) but 

was significant for IL-6 (β = 0.05, CI = 0.02, 0.01, p = 0.001) and GlycA (β = 0.02, 

[0.01, 0.02], p = 0.0001). The inflammatory marker-brain pathway showed no 

convincing effect for any of the three markers: CRP (β = -1.9, [-3.8, 0.1], p = 0.07), IL-

6 (β = -3.1, [-7.7, 1.5], p = 0.2), or GlycA (β = -10.5, CI = -31.4, 10.2, p = 0.3). 

Grey matter volumes   

There was a total effect of HbA1c on GM volumes for all of the models that included an 

inflammatory marker (see Table 5.3). Similarly, a direct effect of HbA1c on GM volumes 

was also observed for CRP (β = -0.6, [-1.1, -0.2], p = 0.004), IL-6 (β = -0.6, [-1.0, -0.2], 

p = 0.006), and GlycA (β = -0.6, [-1.0, -0.2], p = 0.007). However, there was no indirect 

effect of HbA1c on GM volumes through the inflammatory pathways: CRP (β = -0.003, 

[-0.1. 0.05], p = 0.9), IL-6 (β = -0.1, [-1.1, 0.3], p = 0.2), or GlycA (β = 0.0003, [-

0.06,0.3], p = 0.9). The glycaemia-inflammation pathway was not significant for CRP 

(β = 0.01, [-0.1, 0.1], p = 0.9) but was significant for IL-6 (β = 0.05, [0.02, 0.01], p = 

0.001) and GlycA (β = 0.02, [0.01, 0.02], p = 0.0001). The inflammatory marker-brain 
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pathway showed no convincing effect for any of the three markers: CRP (β = -0.5, [ -

1.1, 0.2], p = 0.1), IL-6 (β = -0.3, [-1.8, 1.2], p = 0.7), or GlycA (β = 0.04, [6.9, 7.0], p = 

0.9). 

White matter volumes   

Since there was no total effect of HbA1c on WM volumes, the results for these analyses 

were not decomposed into direct and indirect effects. For completeness, the tables 

are shown in Table 5.3.  



 179 

  
Table 5.3: Path analysis of the fully confounder-adjusted models of the HbA1c -brain associations (whole brain, grey matter and white 
matter volumes) via inflammation (c-reactive protein, interleukin-6 and glycoprotein-A) The table presents the β coefficients, confidence 
intervals and p values.  
Path a is the effect of HbA1c on the respective inflammatory mediator.  
Path b is the effect of the respective inflammatory on the respective brain volume. 
Path c’ is the direct effect of HbA1c on the respective brain volume. 
Path c is the total effect of HbA1c on the respective brain volume 
 

 

Whole brain volumes (WBV) 

    c-reactive protein (CRP) interleukin-6 (IL-6) glycoprotein-A (GlycA) 

  Path β 95% CI p β 95% CI p β 95% CI p 

Total effect c -2.1 -3.4 -0.8 0.002 -2.0 -3.3 -0.7 0.003 -1.9 -3.2 -0.6 0.004 

Direct effect  c' -2.0 -3.3 -0.7 0.002 -1.9 -3.2 -0.5 0.005 -1.8 -3.2 -0.5 0.006 

Indirect effect   -0.01 -0.2 0.2 0.8 -0.1 -0.3 0.1 0.28 -0.08 -0.3 0.1 0.4 

Exposure-mediator a 0.01 -0.1 0.1 0.9 0.05 0.02 0.01 0.001 0.02 0.01 0.02 0.0001 

Mediator-outcome b -1.9 -3.8 0.1 0.07- -3.1 -7.7 1.5 0.2 -10.5 -31.4 10.2 0.3 

Grey matter volumes (GM) 

    c-reactive protein (CRP) interleukin-6 (IL-6) glycoprotein-A (GlycA) 

  Path β 95% CI p β 95% CI p β 95% CI p 

Total effect c -0.6 -1.1 -0.2 0.008 -0.6 -1.0 -0.2 0.008 -0.6 -1.0 -0.2 0.008 

Direct effect c' -0.6 -1.1 -0.2 0.004 -0.6 -1.0 -0.2 0.006 -0.6 -1.0 -0.2 0.007 

Indirect effect   -0.003 -0.1 0.05 0.9 -0.1 -1.1 0.3 0.2 0.0003 -0.06 0.3 0.9 

Exposure-mediator a 0.01 -0.1 0.1 0.9 0.05 0.02 0.01 0.001 0.02 0.01 0.02 0.0001 

Mediator-outcome b -0.5 -1.1 0.2 0.1 -0.3 -1.8 1.2 0.7 0.04 -6.9 7.0 0.9 

White matter volumes (WM) 

    c-reactive protein (CRP) interleukin-6 (IL-6) glycoprotein-A (GlycA) 

  Path β 95% CI p β 95% CI p β 95% CI p 

Total effect c -0.4 -0.9 0.2 0.18 -0.3 -0.8 0.2 0.2 -0.3 -0.8 0.2 0.2 

Direct effect c' -0.4 -0.9 0.2 0.19 -0.3 -0.8 0.2 0.3 -0.3 -0.8 0.2 0.3 

Indirect effect  -0.01 -0.1 0.1 0.8 -0.3 -0.1 0.05 0.5 -0.1 -0.1 0.03 0.2 

Exposure-mediator a 0.01 -0.1 0.1 0.9 0.05 0.02 0.01 0.001 0.02 0.01 0.02 0.0001 

Mediator-outcome b -0.6 -1.4 0.2 0.2 -0.7 -2.5 1.2 0.4 -0.3 -0.8 0.3 0.3 
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HbA1c-glucose brain outcomes   

The findings for glucose on WBV, GM and WM volumes were similar to those for HbA1c 

(fully confounder-adjusted models). For WBV, GM and WM volumes, there was a total 

effect of glucose on WBV for CRP, IL-6, and GlycA, with significant direct effects 

observed across these markers. However, there were no significant indirect effects 

through the inflammatory pathways. The exposure-mediator pathway was not 

significant for CRP but was significant for IL-6 and GlycA. The mediator-outcome 

pathway showed no significant effect for any of the markers. 

Overall, the trends observed for glucose were consistent with those seen for HbA1c, 

suggesting the role of both glycaemic measures in influencing brain volumes through 

direct effects rather than through indirect inflammatory pathways. These are presented 

in Table 5.4.  
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Table 5.4: Path analysis of the fully confounder-adjusted models of the fasting glucose-brain associations (whole brain, grey matter and white matter volumes) via inflammation (c-reactive protein, 
interleukin-6 and glycoprotein-A). 
The table presents the β coefficients, confidence intervals and p values. 

Whole brain volumes (WBV) 

    c-reactive protein (CRP) interleukin-6 (IL-6 ) glycoprotein-A (GlycA) 

  Path β 95% CI p β 95% CI p β 95% CI p 

Total effect c -6.5 -11.4 -1.6 0.009 -6.5 -11.4 -1.6 0.01 -6.4 -11.3 -1.5 0.01 

Direct effect c' -6.4 11.3 -1.5 0.01 -6.1 -11.0 -1.2 0.01 -6.0 -11.0 -1.0 0.02 

Indirect effect   -0.1 -0.8 0.5 0.7 -0.4 -1.1 0.3 0.3 -0.4 -1.5 0.6 0.4 

Exposure-mediator a 0.1 -0.3 0.5 0.7 0.1 -0.04 0.3 0.1 0.05 0.01 0.1 0.005 

Mediator-outcome b -2.0 -3.5 0.4 0.1 -3.4 -8.1 1.3 0.1 -9.4 -30.6 11.6 0.38 

Grey matter volumes (GM) 

    c-reactive protein (CRP) interleukin-6 (IL-6 ) glycoprotein-A (GlycA) 

  Path β 95% CI p β 95% CI p β 95% CI p 

Total effect c -1.7 -3.4 -0.09 0.04 -1.7 -3.4 -0.05 0.04 -1.7 -3.4 -0.04 0.04 

Direct effect c' -1.7 -3.4 -0.06 0.04 -1.6 -3.3 -0.04 0.05 -1.7 -3.4 -0.02 0.04 

Indirect effect   -0.03 -0.2 0.1 0.7 -0.05 -0.2 0.1 0.6 -0.001 -0.3 0.3 0.9 

Exposure-mediator a 0.1 -0.3 0.5 0.7 0.1 -0.04 0.3 0.1 0.05 0.01 0.08 0.005 

Mediator-outcome b -0.4 -1.0 0.2 0.2 -0.4 -1.9 1.0 0.5 -0.03 -7.1 7.0 0.9 

White matter volumes (WM) 

    c-reactive protein (CRP) interleukin-6 (IL-6 ) glycoprotein-A (GlycA) 

  Path β 95% CI p β 95% CI p β 95% CI p 

Total effect c -2.3 -4.3 -0.3 0.02 -2.2 -4.2 -0.2 0.03 -2.2 -4.2 -0.2 0.03 

Direct effect c' -2.2 -4.2 -0.3 0.03 -2.2 -4.2 -0.1 0.04 -2.0 -4.0 -0.3 0.05 

Indirect effect  -0.05 -0.03 0.2 0.7 -0.01 -0.3 0.2 0.5 -0.2 -0.7 0.2 0.3 

Exposure-mediator a 0.1 -0.3 0.5 0.7 0.1 -0.04 0.3 0.1 0.05 0.01 0.08 0.006 

Mediator-outcome b -0.6 -1.4 0.2 0.1 -0.7 -2.5 1.1 0.4 -5.3 -13.7 3.1 0.2 
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Latent variable analysis   

For the latent model with HbA1c, there was a significant total effect on WBV, but no 

total or direct effect on GM or WM volumes (see Table 5.5). There were no significant 

indirect effects observed for WBV, GM, or WM volumes. The exposure-mediator 

pathway was not significant for any of the volumes, and the mediator-outcome 

pathways were constrained. 

For the latent model with glucose, there was a significant total effect on WBV and WM 

volumes, but not on GM volumes. The direct effect was significant for WBV but not for 

GM or WM volumes. There were no significant indirect effects observed for any of the 

associations. The exposure-mediator pathway was not significant for any of the 

volumes, and the mediator-outcome pathways were constrained (see Table 5.5). 

Model checks using several fit indices were used to determine the adequacy of the 

latent variable model. The Chi-square test was significant (p = 0.003), indicating that 

the model was misspecified to some extent. This result is not unexpected, given the 

sensitivity of the Chi-square test to sample size. The RMSEA value was 0.08, which 

is at the upper limit of what is considered a “reasonable fit”, suggesting that there is 

some error in approximation, but it is not excessively poor. The CFI value was 0.9, 

which falls within the range of acceptable fit (0.90 and 0.95 are deemed acceptable). 

In summary, these fit indices present a mixed picture of the model's adequacy: the 

significant Chi-square test and the RMSEA value suggest some limitations in model 

fit, while the CFI indicates an acceptable fit. 
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Table 5.5: Path analysis output of the latent model for the HbA1c brain associations (whole brain, grey matter and white matter 
volumes) via the latent variable of inflammation (constructed using c-reactive protein, interleukin-6 and glycoprotein-a). 
The total effects, direct, indirect effects, exposure-mediator are presented. β, Cl and p-values are presented.  

 

 

      Whole brain volumes (WBV) Grey matter volumes (GM) White matter volumes (WM) 

    Path β 95% CI p β 95% CI p β 95% CI p 

  

   

   HbA1c 

  

  

Total effect c  -1.1 -2.1   -1.0 0.03   -0.2 -0.7   0.3 0.3  -0.2  -0.6   0.2 0.3  

Direct effect c' -0.5 -1.7 0.6 0.3 -0.2 -0.7 0.3 0.3  0.01 -0.5  0.5  0.9  

Indirect effect    -0.5 -1.3   0.1 0.1  -0.02 -0.1   0.1 0.7   -0.2  -0.5 0.08  0.1  

Exposure-mediator a  -0.5 -1.3   0.1 0.1  -0.02 -0.1   0.1 0.7   -0.2  -0.5 0.08  0.1  

Mediator-outcome b 1 Constrained  1 Constrained    1 Constrained 

   Path β 95% CI p β 95% CI p β 95% CI p 

Glucose 

Total effect c  -6.5  -11.4  -1.6  0.009  -0.1 -0.3   1.2 0.3   -2.3 -4.2  -0.3   0.03 

Direct effect c'  -5.3 -10.3  -0.02   0.04  -0.1  -3.2 1.4  0.4  -1.9  -3.9  0.2  0.08  

Indirect effect   -1.2   -3.1  0.7  0.2 -0.07   -1.4  1.3 0.9  -0.4  -1.2 0.3   0.2 

Exposure-mediator a -1.2   -3.1  0.7  0.2 -0.07   -1.4  1.3 0.9  -0.4  -1.2 0.3   0.2 

Mediator-outcome b 1 Constrained  1 Constrained    1 Constrained 
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5.4 Discussion 

Summary of findings 

The aim of this mediation analysis was to get a better insight into an important potential 

mechanism linking hyperglycaemia with smaller brain volumes observed in female 

participants part of the NSHD cohort (reported in Chapter 3 and Chapter 4). In line 

with the literature, the potential role of systemic inflammation as a mediator of these 

relationships was tested.  

The path analyses confirmed (as shown previously) that there was: 1) a total effect of 

glycaemic markers on the brain imaging measures, 2) hyperglycaemia was associated 

with higher inflammation (for IL-6 and GlycA) but 3) there were no credible 

associations between the inflammatory markers and volumetric brain measures. 

Hence overall there was no indirect effect of glycaemia on brain outcomes via the 

inflammation path. Considering the inflammatory markers as a latent variable for 

inflammation had little influence on the results. Considering the fasting glucose 

measure instead of HbA1c as the exposure did not materially change the findings. 

Thus, the findings suggest that while both high glucose and increased inflammation 

are related, inflammation, as measured by serum biomarkers, does not mediate the 

relationship between glucose levels and brain volume reduction in this sample. 

Specific findings and associations with the literature  

The study was motivated by previous research suggesting that individuals with T2D 

show elevated levels of inflammatory markers compared to healthy controls 

(regardless of disease duration).318 Similarly, females with T2D showed higher 

inflammation TNF-α, IL-6 and CRP compared to females without the condition.433,480 

In line with this, there was evidence that inflammatory markers were associated with 

poorer brain health and that cytokines accumulate at different rates in AD patients 

compared with healthy control subjects.323,326,436 

My observation that poorer glycaemic control was associated with higher 

inflammation, is in line with previous evidence in a mixed sample of individuals with 

T2D and healthy controls.481 This is consistent with the known effect of 
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hyperglycaemia on NF-κB–dependent inflammatory cytokine production and other 

mechanisms linked to the activation of inflammatory pathways.437,482 

Evidence linking inflammation to brain health is less consistent. Previous analyses 

from population-based studies have revealed mixed findings in regard to the 

association between markers of inflammation and brain health outcomes. For 

example, recent findings from the ARIC study failed to find an association with WBV 

(a 1 SD change in an inflammation composite score was associated with -1.9 cm3 ([Cl: 

-6.5, 2.5], p = 0.4) cm3 decrease in total brain volume.326 Although null, their 95% Cl 

for the inflammation-WBV relationship were consistent with the results from my NSHD 

analyses where a 1 SD increase in IL-6 was associated with a -3.4 (CI: -8.1, 1.2, p = 

0.1) cm3 decrease in WBV. In contrast, the Framingham study found that most, but not 

all, of the inflammatory markers they considered were associated with lower total brain 

volume.327 Reasons for these differences are not known. More generally, it is possible 

that subtle inflammatory processes within the brain microenvironment, such as glial 

activation or neuronal damage are not captured by systemic markers. It would be 

worth revisiting this question in a few years to assess whether a potential mediating 

role of inflammation emerges with increased age. Also, the on-going study of Insight 

46 (wave 3) will have biomarkers measured in CSF which would allow investigation of 

this question using more direct measures of brain inflammation. 

Few population-based studies have had the availability of multiple inflammatory 

markers. IL-6, CRP, and GlycA, each measure providing unique and complementary 

insights into the inflammatory process. IL-6 is a cytokine that plays a central role in 

initiating and sustaining inflammatory responses, serving as an early indicator of 

inflammation. CRP, an acute phase protein, reflects the immediate inflammatory 

response and is sensitive to short-term changes, although it exhibits high intra-

individual variability. GlycA, a novel composite biomarker offers stability and less 

variability over time by capturing a broader spectrum of markers of systemic 

inflammation via the measurement of glycan complexity and acute phase protein 

levels. This multi-marker approach should enhance the accuracy and depth of 

inflammation assessments, particularly in relation to hyperglycaemia and 

cardiometabolic health.  
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Interestingly, I observed an association between GlycA and IL-6 with glycaemia but 

not for CRP. Mechanistically, studies have shown that IL-6 and CRP are closely 

related, with IL-6 being the major factor that triggers the hepatic synthesis of 

CRP.483,484 However, although inflammatory markers are usually linked, recent studies 

have found them to diverge in certain contexts. For example, differing concentrations 

of IL-6 and CRP have been found in relation to HRT use.485 Recent clinical findings 

have demonstrated that the different effects of HRT on IL-6, CRP, and TNF-α, may be 

due to direct hepatic stimulation of CRP by HRT.464 Similarly, divergent levels of these 

inflammatory markers have been found in relation to other clinical factors such as 

alcohol use and exercise.485 Thus, although CRP and IL-6 are biologically linked, their 

levels can diverge under certain conditions which may account for the weak correlation 

observed in this analysis.   

Considering inflammation as a latent variable offered no additional insight into these 

associations. When designing this study, I made the decision to construct a latent 

variable for inflammation using IL-6, CRP and GlycA. The idea was that combining 

multiple measures may give a more comprehensive insight into systemic inflammation 

by capturing the common variance amongst them and reducing measurement error. 

However, the general lack of correlation between the inflammatory variables may have 

limited the potential utility of this tool. I also ran some model checks using several fit 

indices to determine the adequacy of the latent variable model for inflammation. The 

fit indices used presented a mixed picture of the model's adequacy. The Chi-square 

test and the RMSEA value suggest that are there some limitations in model fit, while 

CFI indicates an acceptable fit. Overall, while the current model provides a reasonably 

good starting point, there is room for improvement to achieve a better fit with the data.  

It is possible that the relationship between hyperglycaemia and brain health is 

mediated by factors other than inflammation. Certainly, while I found no evidence that 

inflammation directly mediates the relationship between HbA1c and WBV, other 

possible mediators to consider may be oxidative stress, SVD and CVD. Oxidative 

stress was not considered due to the current lack of available measures in NSHD that 

can capture it. 

Potential factors not considered in these analyses, but particularly important around 

late midlife include hormonal health such as oestrogen levels. The neuroprotective 
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oestrogen reduces during the perimenopause and the post menopause. This change 

in hormonal health can influence brain structure and function in females.431 

Additionally, non-biological factors in social roles and responsibilities, including 

caregiving duties and family responsibilities, may mediate these sex-specific 

associations found in females. These factors could impose chronic stress and time 

constraints, which might affect brain health. Therefore, future research should 

consider important biological and social factors specific to females to achieve a 

comprehensive understanding of the underlying mechanisms of the glycaemia-brain 

health pathways.  

In this study, I considered that hyperglycaemia precedes inflammation. This is based 

on previous studies suggesting that hyperglycaemia and abnormal glucose 

metabolism can result in the production of ROS contributing to oxidative stress.437 

Hyperglycaemia may also result in the formation of AGES which, with ROS, triggers 

pathways that regulate the inflammatory response resulting in the increase of pro-

inflammatory cytokines (e.g., IL-6 ). However, it is also worth acknowledging that these 

cytokines produced by adipose tissue and macrophage may also result in a state of 

IR thus contributing to the pathophysiology of T2D. For example, IL-6 and CRP have 

previously been found to be significant predictors of T2D in a group of middle-aged 

females in the Females' Health Study.266 This was found even when adjustments were 

made for inflammatory-related confounders (e.g., smoking, exercise, and BMI). In an 

attempt to reduce the likelihood of infection-driven hyperglycaemia, participants with 

an IL-6 value of > 10 pg/mL were excluded prior to my analyses.  

Strengths and weaknesses 

The study has multiple strengths. First, it considered multiple markers of inflammation. 

Similarly, the sample is data-rich with both exposure data (glycaemia), confounders 

(e.g., social and lifestyle factors) and outcome data (later-life measures of brain 

volumes). The confounder data includes those for the exposure-mediator and the 

mediator-outcome paths, which are known problems with causal mediation studies.479 

Furthermore, an important strength of this study is that it considered samples of 

females of the same age. The homogeneity of age ensured age-specific brain changes 

do not confound the results, providing a clearer picture of the relationship between 

HbA1c and brain health.  
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It is worth acknowledging the potential for reverse causation, where changes in brain 

volume could influence metabolic parameters, rather than the reverse. This highlights 

the need for caution in interpreting the directionality of the observed relationships. 

Additionally, other unmeasured variables not considered in this analysis, such as 

genetic factors or specific dietary components, might influence the relationships 

explored. Some of these data are available in NSHD, but analyses of them were not 

possible due to the time constraints of this thesis. 

5.5 Conclusions 

These findings reveal that for the females in National Survey of Health and 

Development cohort, the relationship between glycaemia in midlife and later life 

smaller brains were not mediated by systemic inflammation as measured by selected 

blood markers. As per the findings I reported in my previous chapters, poorer 

glycaemia was directly associated with smaller brains but there was no indirect path 

of this relationship through inflammation. Future studies could investigate these 

associations in a different sample (e.g., UK Biobank) and also consider the role of 

other potential metabolic markers.  

  



 189 

6. Exploring the sex-stratified analyses between glycaemia 

and brain and cognitive health in UK Biobank   

I previously found that HbA1c during adult life was associated with poorer brain 

outcomes at age ~70 in females in a birth cohort. To further elaborate on these 

findings, I performed similar analyses in UK Biobank to validate the previous results 

and used the increased power of the sample to explore the possibility that the 

glycaemia-brain associations were non-linear. 

6.1 Introduction 

Chapter 3 and Chapter 4 examined the sex-specific associations between markers of 

glycaemic health in midlife and later-life brain health in the oldest British birth cohort, 

the NSHD. The results revealed that glycaemic traits (HbA1c, higher fasting glucose 

and IR) at age ~60 were associated with smaller volumetric brain tissue measures at 

age ~70 exclusively in females. The studies had multiple strengths such as 

considering participants of homogenous age, having multiple measurements of 

glycaemia, as well as detailed imaging data of volumetric and biomarkers of the brain.  

The larger sample of UK Biobank, although not population representative, offers much 

more statistical power: it gives the opportunity to undertake a replication of the 

previous analyses to see whether they are generalisable to a different and larger 

sample. The aim of this replication is facilitated by the similar, in-depth, structural 

neuroimaging and deep phenotyping of participants across the relevant biomarkers of 

interest including confounders (i.e., socioeconomic position, BMI, and smoking status) 

of UK Biobank participants. Furthermore, the UK Biobank sample allows the 

opportunity to take a more nuanced perspective on the complex glycaemia-brain 

relationships. For example, the sample size of UK Biobank may allow the identification 

of a non-linear relationship which might appear as a linear relationship in a smaller 

sample with a more restricted range.  

Previous studies using the UK Biobank sample have found that HbA1c is associated 

with poorer brain health for some outcomes.364,365 But these have focused on sex-

pooled samples (aggregating males and females) and/or have assumed linear 

relationships. HbA1c has previously been found to exhibit non-linear relationships with 
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some outcomes; notably it has been observed to have a J shaped relationship with 

cardiovascular events.486 A non-linear approach to modelling these glycaemia-brain 

relationships may therefore offer important benefits: it may shed light on a possible 

threshold effect where both low and high HbA1c (and glucose) are associated with 

poorer brain health, albeit perhaps through different mechanisms. It may help 

understand interactions between variables such as HbA1c and sex on brain health 

outcomes. It also offers the opportunity to re-explore some of the findings from the 

NSHD analysis that may require a more nuanced lens and benefit from the greater 

precision provided by the large sample size of the UK Biobank. For example, 

previously, no convincing associations were found between HbA1c with WMHV and 

HV.  

The overall aims of this chapter are to better understand the relationships between 

markers of glycaemia to those of brain and cognitive health. Based on the previous 

findings in NSHD, and in order to expand on the growing body of work in the UK 

Biobank, the analyses will adopt: 1) a sex-stratified approach, hypothesising that 

poorer glycaemic health will be associated with worse brain health outcomes in 

females and 2) a non-linear approach, hypothesising that glycaemic state will show a 

non-linear relationship with brain health outcomes.  

6.2 Methods 

6.2.1 Sample 

The source sample consisted of participants enrolled to the UK Biobank study. The 

UK Biobank cohort comprises around 500,000 people (94% of self-reported European 

ancestry) aged 40 to 69 at baseline. Participants were recruited between 2006 and 

2010 and attended various assessment centres throughout the UK. Upon recruitment, 

participants completed questionnaires, a computer-assisted interview, and underwent 

data collection for blood, saliva, and urine samples. Other assessments included 

mental and lifestyle measures, as well as linkage to routinely collected data. Since 

2014, a subsample of these participants was re-invited to 4 assessment centres for 

brain imaging scanning (the ‘first imaging visit’). More details on this sample are 

discussed in Chapter 2.5.2. 
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Within this analysis, the number of participants considered were those with imaging 

data available at the time of data analysis.  

6.2.2 Investigations  

Measures  

Glycaemic markers: HbA1c assays were performed on whole blood using five Bio-

Rad Variant II Turbo analysers, manufactured by Bio-Rad Laboratories, Inc., and 

employed a HPLC method. The analysers underwent a multi-instrument comparison 

to ensure that they were in agreement.487 More details are outlined in the UK 

Biobank HbA1c protocol.487 Random glucose was analysed on serum and measured 

by hexokinase analysis on a Beckman Coulter AU5800.  

Anthropometrics: Data on height and weight were collected at baseline when 

participants attended the assessment centre. Height was measured in whole 

centimetres (cm) with a Seca 202 device. Weight was measured to the nearest 0.1 

kilograms (kg). These measurements were made at the time when blood samples 

were collected.  

Neuroimaging protocol: The neuroimaging protocol for UK Biobank was described 

in Chapter 2.5.2.  

The measures considered in the analyses were WBV, GM, WM (normalised for head 

size cm3) and HV and WMHV (adjusted for intercranial volume). These same 

measures have been used in previous studies.364,405  

Cognitive markers: Two cognitive markers representing distinct cognitive domains 

were selected based on the rich availability of this data in participants at baseline: 

reaction time (RT) and visual memory (VM). RT (measured in milliseconds) assessed 

how long participants took to successfully identify a correct match from trials of 

matching symbol pairs. The longer participants took, the higher the RT. VM assessed 

spatial recall of 6 pairs of cards with participants instructed to recall the position of 

each. The number of incorrect attempts were recorded with the higher number of these 

indicating a poorer performance in the task (and poorer VM).  

In line with previous studies, RT was log-transformed due to being skewed.364,406  
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Confounders: Confounders were defined based on background knowledge and 

depicted using the DAG presented in Chapter 3 (Figure 3.1). The chosen confounders 

were closely aligned with those used in NSHD analyses in Chapter 3 and Chapter 4.  

Very briefly, these were age, socioeconomic deprivation (derived from a self-rated 

questionnaire and operationalised into quintiles of Townsend deprivation index, from 

‘least deprived’ to ‘most deprived’), educational attainment (recorded by questionnaire 

and operationalised as years of full-time education completed, as per qualifications 

based on coding from the International Standard Classification of Education), self-

reported smoking status (never, current smoker and ex-smoker) and BMI.  

6.2.3 Statistical analysis 

Analyses were performed in Stata 18.0 using the fp and mfp packages. Plots were 

produced using the fp plot and fracplot commands.  

Fractional polynomials 

Fractional polynomials (fp) were used to model potential non-linear relationships 

between the glycaemic markers (HbA1c and glucose) and the different brain imaging 

and cognitive measures.  

Fp modelling is a useful flexible parametric approach that aims to represent a 

(non)linear relationship that ‘best’ fits the data. This is an improvement over low order 

polynomials which produce a limited number of shapes or high order polynomials 

which are flexible but often fit poorly at extremes. They are an alternative to cubic 

splines and have the advantage that they are based on simple equations for prediction. 

Fps were first proposed by Royston and Altman.488 Fps differ from standard 

polynomials by permitting the use of non-integer powers, logarithms and repeated 

powers allowing for a wider range of shapes to be constructed.  

For example, rather than a simple quadratic term to model a non-linear relationship 

for age such as in:   

y  =  b0  +  b1 xi  +  b2agei + b3agei
2 + ui 

A fractional polynomial function of age could be used: 
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y  =  b0  +  b1 xi  +  b2agei + b3agei
(p)

+ ui 

where p, the fractional polynomial is a vector of powers of degree, m (for example p 

+ -0.5, 2 would be a 2nd degree polynomial). The round bracket around p, indicates 

the Box-Tidwell transformation.  

Xp = {
Xp   if p ≠ 0,
ln X if p = 0,

 

Typically, models are chosen by including m powers from a predefined set {−2, −1, 

−0.5, 0, 0.5, 1, 2, 3} aiming to capture a wide number of functional forms in X that are 

useful in regression models of real data (note that as mentioned above p = 0 denotes 

ln X). 

The procedure involves fitting all possible combinations of powers from the set. A 

deviance statistic between the set of models is generated to select the best fitting 

model for each degree of  fractional polynomial. This can be used to test whether the 

inclusion of an additional  fractional polynomial term significantly improves the model 

fit using a partial 𝐹 test or a likelihood-ratio test. Each model uses a different pair of 

powers for transformation, for example (-2, -2), (-2, -1) or (3, 3). To select the best-

fitting second-order  fractional polynomial (p=2), it fits 8 first-order fractional polynomial 

models and 32 second-order fractional polynomial models.  

In Stata, the fp function outputs a model comparison table showing the best fractional 

polynomial model of HbA1c for each examined degree, m. In practice, fractional 

polynomial functions with 𝑚 ≤ 2 are fitted. There are different ways to choose the ‘best’ 

model, some choose the model with the lowest deviance, I chose the most efficient 

(parsimonious) model, i.e., the lowest degree model that is not significantly (p<0.05) 

different from the degree 2 model which is what was recommended by Royston.489  

Modelling  

In this analysis, a series of sex-stratified fractional polynomials were used to model 

the relationships between glycaemic exposures and brain imaging outcomes. Simple 

and fully confounder-adjusted models were conducted. The confounders considered 

were based on previous analyses.407 Minimally adjusted: adjustment made for age 

and TIV (if appropriate). Fully confounder adjusted models included age, TIV (if 
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appropriate), socioeconomic factors (education and deprivation), and lifestyle factors 

(smoking and BMI). There is little or no literature available on how to compare 

fractional polynomial models across factors (e.g., sex), therefore I investigated 

whether there were sex differences in the non-linear relationships by constraining the 

parameters of the fit in females to those in males and performing a likelihood ratio test 

(LRT). Whether this is an optimal strategy is uncertain.   

Since the interpretation of fractional polynomial generated coefficients can be difficult 

(due to the complexity of the function), graphs were produced to examine the average 

curve for the most efficient polynomial (example see Figure 6.2). 

Previous studies have dealt with the skewed distribution of the VM variable by log 

transforming it. Evidence shows that transformation (e.g., log) of count variables may 

not always be the best approach due to the trade-off between linearity and 

homoscedasticity, the difficulty with dealing with zero values in log transformation and 

the introduction of negative numbers.490 In order to deal with this, a robust Poisson 

regression was conducted. This approach provides more robust parameter estimates 

and standard errors, which can be helpful in situations where the assumptions of 

traditional Poisson regression are violated. 

As part of my sensitivity analyses, each analysis was repeated by: 1) excluding those 

on medication (in case any associations in the low range are driven by hypoglycaemic 

agents) and 2) excluding people with diabetes to explore whether any associations 

are driven only by those diagnosed as having diabetes.  

6.3 Results  

A total of 36,321 participants were included in the analyses (consisting of 47% males 

and a mean age of ~55). A visual representation of those considered in the sample is 

shown in Figure 6.1. Males had higher HbA1c and random glucose levels than females, 

and were more likely to be current or ex-smokers and to have diabetes. A more 

comprehensive representation of sample characteristics stratified by sex is presented 

in Table 6.1. A visual layout of the participants considered is shown in Figure 6.1. 
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Figure 6.1: Flowchart displaying participants considered in this study. UK Biobank 
participants had to have structural imaging data and at least one measure of glycaemia 
to be considered (n= 36,321).  
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Sample Characteristics  Males = 17,105 n Females = 19,216 

Age, years:   55.6 (7.5)  54.2 (7.2) 

Deprivation Least deprived  

 

17,095 

4238 (24%)  

 

19,196 

4518(25%) 

Second least deprived 4067 (24%) 4485 (23%) 

Median deprivation level 3547 (21%) 4036 (21%) 

Second most deprived 3078 (18%) 3614 (18%) 

Most deprived 2165 (13%) 2543 (13%) 

Smoking Never smoker  

17,090 

11,619 (68%)  

19,201 

14,616 (76%) 

Current Smoker 1,242 (7%) 995 (5%) 

Ex-smoker 4,229 (25%) 3,590 (19%) 

BMI, kg/m2 17,083 27.1 (3.7) 19,192 26.1 (4.5) 

HbA1c, mmol/mol 16,505 35.2 (5.5) 18,506 34.7 (4.5) 

HbA1c, mmol/mol, range 16,505 16-122.6 18,506 15.3-91.1 

Glucose, mmol/L mean  13,215 5 (1.1) 15,081 4.9 (0.8) 

Glucose, mmol/L, range 13,215 1.9-26.6 15,081 1.78-24.1 

Diabetes medication  17,105 365 (2.1%) 19,216 222 (1.2%) 

Diabetes diagnosis 17,105 519 (3%) 19,216 233 (1.2%) 

Brain imaging and cognitive markers     

Whole brain volume (WBV) cm3 17,105 1480.7 (70.8) 19,216 1505.3 (73.0) 

Grey matter volume (GM) cm3 17,105 775.6 (930.2) 19,216 807.1 (458.4) 

White matter volume (WM) cm3 17,105 705.3 (407.6) 19,216 698.2 (403.7) 

Hippocampal volume (HV) cm3 17,105 3.8 (0.12) 19,216 3.8 (0.1) 

White matter hyperintensity volume (WMHV) cm3  17,105 8.1 (1) 19,216 7.9 (1) 
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Table 6.1: Sample characteristics for the male and female participants considered in this study (n = 36,321). 
As described above, participants had to have structural imaging and data on least one measure of glycaemia to be considered 
amounting to 36,321 participants of which 17,105 were males and 19,216 were females. Values presented are: n (%), mean (SD) or 
median (IQR). % are calculated against the max data available for that specific measure for the respective sample. Whole brain, grey 
matter and white matter volume measurements reported were already normalised for head size by the UK Biobank. SD: Standard 
deviation. IQR: Interquartile range.  

 

Total intracranial volume (TIV) cm3 17,105 1644.2 (131.1) 19,216 1468.4 (115.7) 

Whole brain volume unadjusted cm3 17,105 1225.3 (98.7) 19,216 1107.1 (89.9) 

Reaction time (ms) 17,070 195.4 (96.6) 19,180 209.8 (98.4) 

Visual memory (incorrect matches) 16,191 3.8 (3) 18,201 3.7 (2.9) 
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Results from fractional polynomials: 

Overall, the fp analyses showed that the model with two fp components best fitted the 

relationships between the glycaemic markers and the brain imaging outcomes for both 

males and females. The first figure of these relationships (Figure 6.2) shows a fully 

confounder-adjusted partial regression plot for the glycaemia and WBV relationship 

with each dot representing a participant for males and females. The remaining plots 

are fully confounder-adjusted partial regression plots of the fp models that best fitted 

the relationship between the glycaemic markers and the different brain imaging 

outcomes with individual data points being omitted for clarity.  

There was no additional utility of using a non-linear fp model to a standard linear model 

when modelling the relationship between the glycaemic markers and the two cognitive 

outcomes, so these were modelled as linear relationships.  

Very briefly, the table shows a comparison of different model fits for the HbA1c-WBV 

relationship in males. The row labelled “omitted” describes the null model, which 

entirely omits HbA1c. A separate row is provided for the model with a linear function of 

HbA1c because it is often the default when including a predictor in the model. The 

model deviance, defined as twice the negative log likelihood, is given in the Deviance 

column. The Deviance Diff. column reports the difference in deviance compared with 

the model of the exposure-outcome relationship with the lowest deviance, which is 

always the model with the highest-degree fp. Based on the model-comparison table, 

the model without HbA1c and the linear model can be rejected and models with m=2 

which includes HbA1c and with powers of -2 and -0.5 offer the best fit (see Table 6.2).  

 

Model Test df Deviance Deviance Diff. p Powers 

Omitted 4 181408.4 52.062 p <0.001  

Linear 3 181370.7 14.353 0.002 1 

m = 1 2 181367.3 11.028 0.004 2 

m = 2 0 181356.3 0.00 N/A -2 -0.5 

Table 6.2: Model comparison table for the fully adjusted fractional polynomial models 
for HbA1c and whole brain volumes for males.  
It shows the best fractional polynomial model of weight for each examined degree, m, 
which is obtained by searching through all possible power combinations. The m=2 
model (powers -2, -0.5) has lower deviance, and the fit is superior to the other models 
(indicated by p<0.05 for these models). df: degrees of freedom. Deviance Diff: 
deviance difference. p: p-value.  
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Model Test df Deviance Deviance Diff p Powers 

Omitted 4 165592.91 59.842 p <0.001   

Linear 3 165570.07 59.799 p <0.001 1 

m = 1 2 165557.44 59.773 0.04 3 

m = 2 0 165551.24 0.00 N/A -2 -2 

Table 6.3: Model comparison table for the fully confounder-adjusted fractional 
polynomial models for the relationship between HbA1c and whole brain volumes for 
females.  
The most parsimonious model was the fractional polynomial model with powers -2 and 
-2. df: degrees of freedom. Deviance Diff: deviance difference. p: p-value. 
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The relationship between glycaemic markers and WBV   

HbA1c 

The model that best fitted the data for both males and females had 2 components and 

was not monotonic (see Figure 6.2). Both lower HbA1c and higher HbA1c were 

associated with smaller WBV (with ~35 mmol/mol being most optimal). There was no 

evidence of sex differences in the relationship between HbA1c and WBV in either the 

minimally adjusted or fully adjusted models based on the LRT. The plots also show 

that WBV are higher in females at the lowest range of HbA1c. As evidenced by their 

different means, the partial regression plots show that females tend to have higher 

WBV for the same HbA1c levels. However, the overlapping of the confidence 

differences make it difficult to assert confidence in these differences at high levels of 

HbA1c.  

Glucose 

The relationship that best fitted the data for both males and females had 2 components 

and was not monotonic (Figure 6.2). Both lower and higher glucose were associated 

with smaller WBV (with ~5 mmol/L being most optimal). There was no evidence of sex 

interactions between glucose and WBV in either the minimally or fully adjusted models. 

Despite this, above 5 mmol/L of glucose, the decline in WBV in females appeared to 

be steeper than in males. However, the overlapping of the confidence differences 

make it difficult to assert confidence in these potential sex differences. 
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Figure 6.2: Multivariable fractional polynomial models with 95% confidence limits of 
the relationship between HbA1c (A and B) and glucose (C and D). and whole brain 
volumes.  
Females are represented in green (A and C) and males in blue (B and D). E(Y) on the 
y-axis represents the predicted values of the response variable, while E(X|Xn) on the 
x-axis represents the conditional expected values of the predictor variable of interest.  
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The relationship between glycaemic markers and: GM and WM 

HbA1c 

The relationship that best fitted the HbA1c-GM relationship for both males and females 

had 2 components and was not monotonic (see Figure 6.3). For GM, both low and 

high HbA1c were associated with a smaller brain volume in males and females (with 

~38 mmol/mol being most optimal, i.e., the highest level of brain volume). As HbA1c 

increased, the decline appeared visually steeper in females, but the precision of the 

estimates reduced. As evidenced by their different means, the partial regression plots 

show that females tend to have higher GM for the same HbA1c levels. However, the 

overlapping of the confidence differences make it difficult to assert confidence in these 

potential sex differences at high levels of HbA1c.  

The relationship that best fitted the HbA1c-WM relationship for both males and females 

had 2 components and was not monotonic (see Figure 6.3). For WM, the estimates 

largely overlapped across the range of HbA1c.  
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Figure 6.3: The partial regression plots of the fractional polynomial models that best 
fitted the relationship between HbA1c and grey matter and white matter volumes. 
These relationships for females are represented in green and for the males in blue. 
Confidence limits are represented by the shading surrounding the line. The models 
presented are the fully-confounder adjusted models. As per described in the caption 
of Figure 6.2 above, the predicted values of the response variable and the conditional 
expected values of the predictor variable of interest are displayed. 
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Glucose  

The relationship that best fitted the glucose-GM relationship for both males and 

females had 2 components and was not monotonic (see Figure 6.4). For GM, both low 

and high glucose were associated with a smaller brain volume in males and females 

(with ~5 mmol/L being most optimal). As glucose increased, the decline appeared 

visually steeper in females, but the precision of the estimates reduced. As evidenced 

by their different means, the partial regression plots show that females tend to have 

higher GM for the same glucose levels. However, the overlapping of the confidence 

differences make it difficult once again to assert confidence in these potential sex 

differences at high levels of glucose.  

The relationship that best fitted the glucose-WM relationship for both males and 

females had 2 components and was not monotonic (see Figure 6.4). For WM, the 

estimates largely overlapped across the range of glucose.  
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Figure 6.4: The partial regression plot of the fractional polynomial models that best 
fitted the relationship between glucose and grey matter and white matter volumes. 
These relationships for females are presented in green and for the males in blue.  
Confidence limits are represented by the shade surrounding the line. The models 
presented are the fully confounder-adjusted models. As per plot above, the predicted 
values of the response variable and the conditional expected values of the predictor 
variable of interest are displayed. 
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The relationship between glycaemic markers with hippocampal volumes  

HbA1c 

The relationship that best fitted the HbA1c-HV relationship for both males and females 

had 2 components and was not monotonic (see Figure 6.5). For HV, the estimates by 

sex largely overlapped across the range of HbA1c.  

Glucose 

The relationship that best fitted the glucose-HV relationship for both males and 

females had 2 components and was not monotonic (see Figure 6.5). Both low and 

high glucose was associated with a smaller HV in males and females (with ~5 mmol/L 

being most optimal). As glucose increased, the decline appeared visually steeper in 

females, but the precision of the estimates reduced.  

 

 

Figure 6.5: The partial regression plots of the fractional polynomial models that best 
fitted the relationship between the glycaemic markers and HV.  
These relationships for females are presented in green and for the males in blue. 
Confidence limits are represented by the shade surrounding the line. The models 
presented are the fully confounder-adjusted models. As per the plot above, the 
predicted values of the response variable and the conditional expected values of the 
predictor variable of interest are displayed.  
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Glycaemic markers and white matter hyperintensity volume 

HbA1c 

The relationship that best fitted the HbA1c-WMHV relationship for both males and 

females had 2 components and was not monotonic (see Figure 6.6). For GM, both low 

and high HbA1c were associated with higher WMHV (with ~30 mmol/L being most 

optimal). As HbA1c increased, the decline appeared visually steeper in females, but 

the precision of the estimates reduced. As evidenced by their different means, 

the partial regression plots show that females tend to have higher WMHV for the same 

HbA1c levels. However, the overlapping of the confidence differences make it difficult 

to assert confidence in these potential sex differences.  

Glucose  

The model that best fitted the glucose-WMHV relationship for both males and females 

had 2 components and was not monotonic (see Figure 6.6). The estimates largely 

overlapped across the range of glucose and the imprecision makes it difficult to 

interpret the associations.  
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Figure 6.6: The partial regression plot of the predicted model that best fitted the 
relationship between HbA1c and glucose on white matter hyperintensity volumes. 
These relationships for females are presented in green and for the males in blue.  
Confidence limits are represented by the shade surrounding the line. The models 
presented are the fully confounder-adjusted models. As per the plot above, the 
predicted values of the response variable and the conditional expected values of the 
predictor variable of interest are displayed. 
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The relationship between glycaemic markers with cognition: reaction time and visual 
memory  

Based on Table 6.4, there is no evidence that any model fits the data. Since no model 

fits best, the most parsimonious (in this case, the linear) was used to get an idea of 

the uncertainty in the estimates (95% CI) recognising that there is no evidence of 

association.  

Model Test df Deviance Deviance Diff p Powers  
Omitted 4 93.774 5.495 0.241    

Linear 3 93.761 0.707 0.872 1  

m = 1 2 60.760 0.481 0.787 0.5  

m = 2 0 60.762 N/A N/A -2 -1  

Table 6.4: Model comparison table for the fully adjusted fractional polynomial models 
for glucose and reaction time for males.  
It shows the best fractional polynomial model of weight for each examined degree, m, 
which is obtained by searching through all possible power combinations with no 
evidence that any models fitted the data. df: degrees of freedom. Deviance Diff: 
Deviance difference. p: p value.  
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Glycaemic markers and visual memory 

Due to the skewed distribution of this count variable, a robust Poisson was used.  

For both males and females, there were no convincing associations between the 

glycaemic markers and VM (see Table 6.5) albeit higher glucose was associated with 

lower number of errors in the VM in males.  

 

Glycaemic markers and reaction time 

 

For females, higher HbA1c was associated with longer RT in females (see Table 6.5). 

The associations were in a similar direction for glucose but were of smaller magnitude. 

For males, higher glucose was weakly associated with a shorter RT. The associations 

were in a similar direction for HbA1c but were once again of smaller magnitude.  

 

Visual Memory (VM) 

    β  95% CI p 

HbA1c 
Males -0.001 -0.002 0.001 0.1 

Females -0.001 -0.003 0.004 0.1 

Glucose 
Males -0.01 -0.02 -0.001 0.02 

Females -0.001 -0.01 0.01 0.7 

Reaction Time (RT) 

    β 95% CI p 

HbA1c 
Males -0.03 -0.3 0.2 0.8 

Females 0.4 0.05 0.6 0.02   

Glucose 
Males -1.6 -3.1 -1.3 0.04 

Females 0.9 -0.9 2.8 0.3 

Table 6.5: Table representing the output from robust Poisson regression (for visual 
memory) and the linear regression (for reaction time) when modelling the relationship 
between markers of glycaemia and those of cognition. 
These are presented both for males and females. The β coefficients, confidence 
intervals and p-values are presented.  
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Sensitivity analyses 

Sensitivity analyses were conducted excluding individuals who were either on diabetes 

medication or had diabetes (see Figure 6.7 and Figure 6.8). Examples are only shown 

for the relationship between glycaemic markers and some of the brain imaging 

measures (WBV and GM volume). These analyses demonstrated that the exclusion 

of the participants did not materially change the findings nor my interpretations. 

Similarly, analyses were conducted this time considering the cognitive markers as the 

outcomes. The exclusion of people on diabetes medication attenuated the previously 

weak finding that higher glucose in men was associated with better VM and that higher 

HbA1c was associated with slower RT (see Table 6.6).  
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Figure 6.7: The partial regression plot of the fractional polynomial models that best 
fitted the relationship between HbA1c and glucose on grey matter (A and B) and whole 
brain volumes (C and D). The models presented are the fully confounder-adjusted 
models excluding those on diabetes medication. 
These relationships for females are presented in green and for the males in blue. 
Confidence limits are represented by the shade surrounding the line. As per the plot 
above, the predicted values of the response variable and the conditional expected 
values of the predictor variable of interest are displayed. 
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Figure 6.8: The partial regression plot of the fractional polynomial models that best 
fitted the relationship HbA1c and glucose on grey matter (A and B) and whole brain 
volumes (C and D). The models presented are the fully confounder-adjusted models 
excluding participants with diabetes.  
The β coefficients, confidence intervals and p-values are presented. These 
relationships for females are presented in green and for the males in blue. Confidence 
limits are represented by the shade surrounding the line. As per the plot above, the 
predicted values of the response variable and the conditional expected values of the 
predictor variable of interest are displayed. 
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  Visual Memory (VM) 

  β 95% CI p 

HbA1c 
Males -0.001 -0.002 0.001 0.3 

Females -0.001 -0.003 0.001 0.3 

Glucose 
Males -0.01 -0.02 -0.001 0.2 

Females -0.001 -0.01 0.01 0.9 

  Reaction Time (RT) 

  β 95% CI p 

HbA1c 
Males -0.07 -0.3 0.5 0.7 

Females 0.1 -0.2 0.5 0.5 

Glucose 
Males -2.1 -3.9 -0.3 0.03 

Females -0.7 -3.1 1.6 0.5 

Table 6.6: Table representing the output from robust Poisson regression analyses (for 
visual memory) and the linear regression (for reaction time) when modelling the sex-
stratified relationships between markers of glycaemia and those of cognition.  
These analyses exclude participants on diabetes medication. These analyses are sex-
stratified presenting them for males and females separately. The β coefficients, 
confidence intervals and p-values are presented. 
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Minimally confounder-adjusted models 

The results presented above were for the fully confounder-adjusted models. As a 

preliminary step, a number of minimally confounder-adjusted fp models adjusted only 

for age of scanning (and TIV, if appropriate) were conducted. These plots for WMHV, 

GM and WM volumes are shared here for completeness (see Figure 6.9 and 6.10). 

Overall, the findings were mostly in line with the results described above with some 

slight differences (e.g., HbA1c-WMHV relationships being more imprecise).  
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Figure 6.9: The partial regression plots of the fractional polynomial models that best 
fitted the relationship between the glycaemic markers on grey matter (A and B) and 
white matter volumes (C and D).  
The models presented are for minimally confounder-adjusted models. These 
relationships for females are presented in green and for the males in blue. Confidence 
limits are represented by the shade surrounding the line. As per the previous plots, the 
predicted values of the response variable and the conditional expected values of the 
predictor variable of interest are displayed. 
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Figure 6.10: The partial regression plots of the fractional polynomial models that best 
fitted the relationship HbA1c and glucose on hippocampal volumes (E and F) and white 
matter hyperintensitity volumes (G and H).  
The models presented are for minimally confounder-adjusted models. These 
relationships for females are presented in green and for the males in blue. Confidence 
limits are represented by the shade surrounding the line. As per the plot above, the 
predicted values of the response variable and the conditional expected values of the 
predictor variable of interest are displayed. 
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6.4 Discussion  

Summary of findings 

Overall, the results from this large sample provide evidence of non-linear associations 

between the glycaemic markers (HbA1c and glucose) and some of the brain health 

measures. The lower and upper ranges of glycaemia were mostly associated with 

poorer brain health outcomes especially for some of the volumetric tissue measures 

such as lower GM and WBV (and less convincingly for HV). 

Across the different associations explored, the 2-degree fp models were generally the 

most efficient in capturing these nuanced relationships. The only exceptions to this 

were the relationships between glycaemia and cognition where linear models were not 

inferior to fp models. There were some visual distinctions in the shape of the 

glycaemia-brain outcome associations between males and females although generally 

the imprecision of the estimates makes it difficult to be confident about possible sex 

differences. Across the various relationships investigated, HbA1c and glucose behaved 

mostly consistently with each other in their relationship with the brain health outcomes. 

Analyses taking participant diabetes status or medication use into account had some, 

although negligible effects on the results.  

Specific findings and associations with the literature  

Non-linear results in context 

The findings suggest that glycaemic health (as indexed by HbA1c and glucose) has a 

non-linear, J shaped, association with some of the brain health markers: specifically, 

both low and high HbA1c were associated with lower WBV, GM volumes and to some 

extent HV. 

The finding that HbA1c has a non-linear (or J-shaped) association with health 

outcomes has previously been reported in the context of CVD.486 In a sample of over 

100,000 participants, researchers observed that both low and high HbA1c levels were 

associated with a high incidence of CVD (i.e., stroke and coronary heart disease). 

Another study of the UK Biobank reported a statistically nonsignificant non-linear 

relationship between HbA1c variability and incidence of dementia and HV in adults 

without diabetes.491 Although nonsignificant, these findings are consistent with mine 
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by suggesting that that glycaemic traits (i.e., HbA1c variability, HbA1c and glucose) at 

the lower and upper range may be associated with adverse brain health outcomes. I 

mention these study findings while acknowledging that reverse causality cannot be 

ruled out when discussing such J-shaped relationships (e.g., CVD driving the drop in 

HbA1c levels). I similarly observed a non-linear association between HbA1c and 

adverse brain health. Although important confounding variables (e.g., BMI) were 

controlled for and a sensitivity analysis was conducted excluding those with 

medication (in case that was driving hypoglycaemia), I acknowledge that reverse 

causality cannot be ruled out in my study. It is plausible that the associations in the 

low glycaemic range were driven by changes in brain health outcomes in regions 

important for glucose metabolism. Similarly, it is possible that participants with poorer 

brain health may have nutritional deficiencies, demonstrate dietary inadequacies or 

possess metabolic or endocrine disorders which may then have manifested in these 

associations observed in the lower range of glycaemia.  

More specifically, I observed evidence of non-linear associations between glucose and 

HV without clear differences between males and females, although estimates were 

imprecise. A previous study in the UK Biobank found that stratifying HbA1c at different 

ranges, had different relationships with HV: Low HbA1c (under 35 mmol/mol) was 

associated with higher HV but prediabetes (42 ≤ 48 mmol/mol), undiagnosed diabetes 

and known diabetes (≥48 mmol/mol) were associated with lower HV (although clinical 

criteria use 47 mmol/mol as the upper limit for prediabetes).364 It may be argued that 

these findings, particularly the associations observed in the upper range, are 

consistent with the findings from the HbA1c models reported here since both sets of 

results suggest that as HbA1c increases, HV decreases.  

The observation that HbA1c in the higher range (or hyperglycaemia) is associated with 

smaller brains has previously been reported both in a population-based sample and in 

those with T2D.352,407,410 Hyperglycaemia has previously been linked to poorer 

cognition and brain health via multiple potential mechanisms (e.g., oxidative stress, 

cerebrovascular health, impaired neuronal signalling, amyloid metabolism, and 

inflammation).437 In regard to sex differences, higher HbA1c has previously been 

associated with smaller WBV in females,407 as discussed in Chapter 3. In this study 

there was some modest evidence of sex differences in the relationship between 
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glycaemia and brain volume associations. HbA1c and glucose in the upper ranges 

were associated with smaller WBV (and WM volumes) both in males and females, 

although the steepness of the decline in those above the normoglycaemia range 

appeared to be more prominent in females. However, once again the imprecision of 

the estimates warrants exercising caution when interpreting the results. Potential 

mechanisms that may explain the differential brain changes related to sex in the 

context of hyperglycaemia include differences in inflammatory or hormonal states 

related to oestrogen’s neuroprotective effect. For example, one study found that 

hippocampal atrophy in females with T2D could be potentially explained by sex 

differences in markers of low-grade inflammation such as fibrinogen and CRP.413 

Analyses into preferential tissue loss 

There were some suggestive sex differences in the associations with the tissue 

measures. HbA1c and glucose, particularly in the upper ranges, were associated with 

smaller GM volumes. These were convincing when examining the associations with 

WM volumes. This is consistent with previous studies, which have found that HbA1c 

and T2D were associated with lower WBV and GM but not WM volumes.365,452 The 

findings from my study demonstrate that poorer glycaemic health across the 

population spectrum is associated with reduced GM volume while also highlighting 

potential sex differences in these associations. The precise reasons why the 

glycaemic markers may be more robustly associated with lower GM but not WM 

volumes are still poorly understood. It has been proposed that neurons found in 

abundance in GM tissue may be more susceptible to oxidative injury due to their high 

metabolic activity and energy demands. Hyperglycaemia can exacerbate oxidative 

stress in neurons, resulting in direct oxidation of cellular components such as proteins, 

lipids, and DNA.437 This oxidative damage can contribute to neurodegenerative 

processes and affect GM volume. On the other hand, there is some evidence that glial 

cells such as oligodendrocytes, responsible for producing myelin in WM tracts, are 

also vulnerable to oxidative injury but may possess greater resistance when compared 

to neurons.492 Astrocytes and microglia, which provide support and immune 

surveillance in the CNS, have also been proposed to be more resistant to oxidative 

stress and may play protective roles in WM regions.492 This being said, chronic 

hyperglycaemia can still disrupt myelin integrity and WM connectivity, albeit perhaps 

to a lesser extent than GM regions. Although my findings from Chapter 4 failed to find 
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convincing sex differences between different glycaemic indices and GM volumes, the 

estimates were consistent with previously published work.365 I do however 

acknowledge that the confidence limits once again suggest applying caution due to 

the uncertainty of the estimates. Based on the confidence intervals of these estimates, 

any sex difference in these relationships is likely to be small. Future studies are 

required to examine whether poorer glycaemia is indeed predictive of preferential 

tissue loss.  

There is a similar case for the associations between the glycaemic markers and 

WMHV. The modelling of both glycaemic markers with WMHV imply a very weak non-

linear association with considerable imprecision of the estimates. For HbA1c the non-

linear findings appear slightly more convincing (i.e., low, and higher HbA1c associated 

with the higher burden of WMHV) and thus perhaps in line with the WBV/GM volume 

findings, with both hypoglycaemia and hyperglycaemia appearing to be associated 

with poor brain health outcomes, especially in females. A previous study of 1904 

Japanese participants also reported non-linear associations between HbA1c and 

WMHV in females.449 My previous analysis reported in Chapter 3 did not find 

convincing evidence of a linear association between HbA1c and WMHV in the pooled 

sample (also published),407 and potential explanations such as those relating to the 

sensitivity of the measure considered in the analyses were given. In this chapter, 

although weak associations were reported, abnormal glycaemic health has 

mechanistically been associated with damage to small vessels.493 In terms of sex-

specific findings, there is some suggestion of increased vulnerability in females, but 

this once again must be interpreted with caution in the context of the imprecision of 

the estimates and the non-linear model. Previous evidence has also suggested that 

females generally have a higher WMHV despite having a lower prevalence of diabetes 

than males.133,494 Since WMHs may mediate some of the associations between 

diabetes and cognitive health, a lower prevalence of diabetes being associated with a 

higher burden of WMHV may suggest an increased susceptibility to cerebral small 

vessel damage in females. Future studies are required to further examine these sex-

specific associations using more sensitive measures of SVD (e.g., location and shape 

of lesions).355  
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In regard to the effects observed in the hypoglycaemic range, previous studies have 

shown that hypoglycaemic events in those with T2D can be detrimental to the brain 

increasing the risk for dementia and cognitive decline,260–262 although these studies 

often include states of considerably lower glucose. Hypoglycaemia can be associated 

with a range of negative neurophysiological consequences such as oxidative stress, 

microgliosis, impaired synaptic plasticity and neuronal death.495–497 One potential 

mechanistic explanation of low glycaemic states being associated with lower brain 

volumes may be related to the very high and sensitive metabolic demands of neuronal 

cells. My findings suggest that low glycaemia, even without being in the extreme lower 

range, may still be associated with poorer brain health. Once again, the possibility that 

these effects observed in this range may be a consequence of reverse causality must 

be acknowledged.  

The cognition findings 

Unlike the glycaemia-brain volume associations, modelling of the relationship of HbA1c 

and glucose to the cognitive outcomes did not support non-linear models. Thus, a 

series of robust Poisson (for VM) and linear regressions (for RT) were used. Broadly, 

the findings suggested some weak evidence of sex-specific associations between the 

glycaemic markers and the cognitive outcomes: poorer glycaemic health suggested 

slower RT in females (mainly for HbA1c). Previous evidence suggested that increasing 

HbA1c is associated with slower RT as well as poorer performance across a range of 

other cognitive measures.365 Prediabetes (categorised as HbA1c between 42 and 

48 mmol/mol) was associated with a 1% slower RT.365 The findings from this analysis 

go further by suggesting that continuous HbA1c is associated with slower RT in 

females, but this has to be considered in the context of multiple testing. For VM, there 

was some evidence that higher glucose in males predicted better performance, 

although these associations were attenuated when adjustments were made for T2D 

medication. Previous studies have reported mixed findings in the associations 

between glycaemic markers and VM performance. For example, Garfield and 

colleagues found no association in those with low-normal HbA1c and those with 

undiagnosed diabetes, but surprisingly those with T2D showed better VM making 

fewer errors than their peers with normal glycamia.364  
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The incongruence between the glycaemia-brain and glycaemia-cognition findings may 

be explained in many ways. Firstly, even in the case of AD, the pathological onset of 

imaging biomarkers of disease has been shown to precede the onset of the symptoms 

by decades.8 It is thus possible that the time between the measurements of the 

glycaemic markers and those of cognitive outcomes is too short for the deficits to 

become apparent. To maximise data availability, only two measures of cognition were 

considered in this study. However, these are unlikely to assess the full complexity of 

the cognitive spectrum. It is also worth acknowledging that the discrepancy between 

brain volume outcomes and cognition may be due to the participant’s cognitive 

reserve. Cognitive reserve denotes the capacity to withstand brain pathology either 

due to structural benefit, compensatory mechanisms or functional reorganisation 

which may involve changes in neural activation patterns, synaptic connectivity, or 

neurotransmitter systems.448 This may particularly be of relevance in a sample such 

as UK Biobank which has been found to be non-representative and considerably 

healthier than the general population.33  

The value of considering different glycaemia markers 

Overall, my results suggest that HbA1c and glucose were mostly similar in their 

associations with the brain health outcomes. This is important since HbA1c and 

glucose are markers representing different aspects of glucose metabolism.459 HbA1c 

is formed when haemoglobin, the protein in a non-enzymatic blood cell that carries 

oxygen, becomes glycated through a non-enzymatic reaction with glucose in the 

bloodstream. The concentration of HbA1c reflects the average plasma glucose 

concentration over the lifespan of red blood cells, which is typically around 120 days. 

Blood glucose provides a snapshot of immediate glucose levels at the time of 

measurement. It is important to note that HbA1c levels can be affected by medical 

conditions that influence erythrocyte turnover, as well as genetic hereditary anaemia 

and iron storage disorders.214,215 But glucose is unaffected by this issue. The drawback 

of using random glucose is that each participant may be at a different postprandial 

state which may influence their glucose serum levels measured. Thus, the 

consideration of both HbA1c and glucose is complimentary offering a more 

comprehensive capture of the glycaemia-brain health associations. Since both 

measures mostly behave similarly in relation to the outcomes, confidence in the 
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findings is reinforced while also suggesting that both short and long-term glycaemia 

are associated with poorer brain health. 

My sensitivity analyses did not reveal that the poorer glycaemic health in the upper 

range was driven exclusively by participants with diabetes nor those with medication. 

Naturally it may be expected that excluding individuals with more extreme 

hyperglycaemia such as those with diabetes or on diabetes medication will tend to 

attenuate relationships, but these sensitivity analyses did not change my interpretation 

of the findings.   

Strengths and weaknesses 

The study possesses some important strengths. First, the UK Biobank sample is one 

of the largest studies to have both glycaemic markers and neuroimaging measures. It 

also has a breadth of lifestyle and metabolic variables that can be used to reduce 

confounding in these relationships. And perhaps most important to this study, is that 

its sample size offers sufficient power to explore the possibility of non-linear 

relationships between the glycaemic markers and those of brain health. Furthermore, 

UK Biobank is a community-based sample this may have advantages over a clinical 

case-control sample (e.g., selecting people with diabetes and ‘controls’). However, an 

important limitation is that the UK Biobank is not population representative. For 

example, there is an important healthy bias in the participation in this study.33  

A benefit of fp models is that they offer more flexibility for modelling and potentially 

provide a better fit to the observed data. But at the same time, the interpretation of the 

fp models is complex as the coefficients outputted are transformed variables which do 

not have straightforward interpretation in the original units of the predictor (in this case 

glycaemia). It is also important to note that the lower and upper ranges of glycaemia 

had fewer participants which resulted in wide CI.  

6.5 Conclusions 

The findings in this chapter revealed a non-linear association between markers of 

glycaemia and some brain health outcomes in UK Biobank. Both low and high HbA1c 

and glucose were associated with lower whole brain volumes and grey matter 

volumes. Evidence for associations between markers of glycaemia and white matter 



 225 

hyperintensity volumes and white matter volumes were less convincing and there were 

no convincing associations with hippocampal volumes and cognitive outcomes. There 

were some suggestions that these associations differed by sex, although the lack of 

precisions in the estimates make it difficult to claim this with confidence.   
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7. Use genetic tools to strengthen causal inferences in the 

glycaemia-brain volume associations  

In order to strengthen causal inference in the observational findings reported in 

Chapter 6, the aim of this study is to examine whether genetic risk scores for glycaemia 

(HbA1c and glucose) support the sex-specific associations observed with brain health 

outcomes and the differences between people in the low and high glucose strata.  

7.1 Introduction 

HbA1c and blood glucose show considerable heritability: for HbA1c levels, heritability 

estimates range between 47% to 59% whereas for fasting glucose it is around 35%.453 

The past decade of research has identified common genetic variants, SNPs, 

associated with these glycaemic measures. An individual SNP accounts for only a 

small proportion of increased risk conferred by one’s genetic background. However 

the aggregation of these SNPs (i.e., by constructing a PRS) can produce a summary 

effect of these multiple variants, which can then be used to predict the glycaemic 

measures of interest. Recent studies have identified 60 and 139 SNPs for HbA1c 

explaining between 2.8% and 5.8% of total variance,206,364 although other studies do 

not report the variance explained by their glycaemia/diabetes-related PRS.365,498 Thus, 

PRSs can be considered useful quantitative measures of genetic susceptibility for 

glycaemia. The utility of these predictive tools can further be reinforced by changing 

the parameters around their construction (i.e., constructing multiple PRS instruments), 

allowing a more comprehensive investigation of their possible contribution in predicting 

health outcomes. PRSs are particularly useful since they are unconfounded: they rely 

on the random allocation alleles at conception and independent assortment, which 

ensures that genetic associations are free from confounding factors.  

Some studies have suggested that PRSs for T2D have predictive utility for brain health 

outcomes such as dementia risk. In a recent population-based study, they were 

predictive of all-cause dementia, mixed dementia, and vascular dementia.499 With this 

in mind, it is of further interest to examine whether this predictive utility can also be 

applied when looking more specifically at markers of brain pathology (such as 

volumetric brain measures or WMHV). Following from the observational findings of the 
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previous chapters, it is also of value to examine whether an unconfounded genetic tool 

supports the previous the sex- and strata-specific associations described. To be more 

specific, Chapter 6 showed non-linear associations between glycaemia and some of 

the volumetric brain health outcomes in UK Biobank participants (since both lower and 

higher levels of glycaemia were associated with smaller WBV, GM and WM volumes).  

Thus, the aims of this project are to use genetic tools to strengthen causal inference 

in the observational findings reported in Chapter 3, Chapter 4, and Chapter 6. More 

precisely, examine whether the PRSs show: 1) sex-specific associations with the brain 

health outcomes and 2) differences between individuals in low and high glucose strata. 

7.2 Methods  

7.2.1 Sample   

The sample included participants from the UK Biobank, a prospective cohort study of 

approximately 500,000 individuals, aged 40 to 69 years at baseline, recruited from the 

general UK population. Participants underwent physical examinations, completed 

questionnaires on sociodemographics, lifestyle and health history, and provided blood, 

urine, and saliva samples. The sample was previously introduced in more detail in 

Chapter 2.4.1.  

7.2.2 Investigations 

HbA1c and glucose 

HbA1c assays were performed using five Bio-Rad Variant II Turbo analysers, 

manufactured by Bio-Rad Laboratories, Inc., and employed a HPLC method.487 More 

details are given in Chapter 6. Random serum glucose was analysed and measured 

by hexokinase analysis on a Beckman Coulter AU5800. These were previously used 

in published work.364,500 

Confounders  

Although adjustments for confounders have previously been made in studies that 

consider genetic tools for hyperglycaemia, this approach was not implemented in this 

study. This is because including these covariates may introduce bias through opening 

a path between the PRS, and the outcome trait via an unmeasured common genetic 
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or environmental cause of the covariate and the outcome trait (collider bias). The 

complexity and pitfalls of adjusting for confounders in genetic studies is discussed by 

Aschard and colleagues.501 The exceptions to this were age, which was considered a 

covariate in the model on the basis that it substantially reduces variance in the 

outcomes of interest and thereby increases the precision of the estimates and principal 

components (PC) to ensure that the results were not affected by population 

stratification. Adjustment for 10 PC has previously been done in similar studies and its 

importance in genetic studies is discussed here in more details.502,503  

Outcomes  

The neuroimaging protocols are the same as those listed in Chapter 6.2.  

7.2.3 Genotyping in UK Biobank  

The following subsections describe the steps taken to construct and validate the 

genetic tools. The same genetic data was used in previous publications.364,502,504  

The full details of the genotyping as well as the QC steps conducted were described 

in Bycroft and colleagues and on the Biobank website.505 In brief, 488,377 

participants were initially genotyped (after QC). The first 50,000 participants in the 

sample were genotyped using two arrays. The UK Biobank then used to a combination 

of the UK10K, 1000 Genomes Phase 3, and the Haplotype Reference Consortium 

(HRC) reference panels to conduct imputation.505 More details are discussed in 

Chapter 2.5.3.  

A number of variant- and individual-level QC steps were conducted. For the former, 

this included, checking for minor allele frequency <1% and a missing call rate of more 

than 5%. Individual-level QC was also applied resulting in the exclusion of extreme or 

minimal heterozygosity rates, of those with more than 10 putative third-degree 

relatives, of participants who did not consent to their DNA being extracted, of sex 

mismatches between self-reported and genetic-inferred sex, absent QC information 

and non-European ancestry (based on how individuals had self-reported their ancestry 

and the similarity with their genetic ancestry, as per a PC analysis of their genotype). 

More details of the QC steps conducted are once again described by Bycroft and 

colleagues.505  



 229 

The construction of PRS tools  

PRS instruments for HbA1c and fasting glucose were constructed using GWAS 

summary statistics from the recent MAGIC Consortium.506 For consistency with the 

NSHD analyses, and based on the availability of MAGIC consortium genetic data, only 

the summary data of White Europeans were used. The study used GWAS summary 

statistics aggregated from 281,416 individuals without diabetes, of whom 

approximately 70% were of European ancestry. This meant that the HbA1c PRSs were 

generated in a sample different to UK Biobank. The calculation of the PRS tools only 

included SNPs that showed a GWAS association p-value below a specified threshold 

(e.g., p < 1 × 10−8).  

Prior to construction, a few QC assessments were made in line with previous studies 

502 using a previously published pipeline.507 Checks were made for duplicates SNPs, 

but none were found. SNPs were checked for strand alignment. Once these QC steps 

were taken, the PRS tools were constructed with β coefficients being used as external 

weights. The datasets were also checked to see if they were genotyped using the DNA 

strand conventions (i.e., one to the forward strand and the other to the backward 

strand). In the case of any inconsistencies, the strands were flipped in PLINK2. 

Controlling for Linkage disequilibrium  

Linkage disequilibrium (LD) among SNPs was accounted for by carrying a two-step 

clumping procedure on PLINK 2. The SNPs were clumped to ensure that only those 

with the locus with the smallest GWAS p-values were used, i.e., those largely 

independent from each other. LD clumping ensures that each PRS comprises of 

independent genetic variants, enhancing the overall predictive power and allowing for 

the exploration of potential genetic heterogeneity across populations or subgroups. 

This was combined with thresholding. Thresholding is conducted by removing SNPs 

with a p-value larger than a certain threshold to reduce noise in the score generated. 

PRS tools were created by choosing different r2 values within a 250kb range. Here I 

used a priori selected r2 of <0.01, <0.1 and <0.2 for each glycaemic marker. These 

PRS tools were labelled as PRS1, PRS2 and PRS3 respectively. 

Genetic scoring was conducted on PLINK2 using the –score command. This 

generated a score for each participant by summing across the number of risk alleles 
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for each of the SNPs, weighted by the effect size. This generated 6 PRSs, 3 for HbA1c 

and 3 for fasting glucose. Each PRS was standardised and centred, so that the mean 

was zero and a 1-unit increase is equal to 1 SD. This facilitates the interpretation of 

the associations observed.507  

7.2.4 Statistical analysis   

The validity of all assumptions was assessed by visually inspecting the normality and 

homoscedasticity of the data. Variables displaying non-normal distributions underwent 

log transformation. WMHV was log-transformed as per the previous Chapters in this 

thesis. Brain MRI volumes were standardised to z-scores for analysis. 

Validation of the PRS tools  

The different PRS tools were regressed against observed HbA1c and glucose 

respectively in the UK Biobank sample. The PRS-glycaemia associations were 

examined both for the entire UK Biobank sample, as well as the subset of participants 

who only underwent brain imaging. The analyses were sex-stratified and β 

coefficients, CI, p values and variance explained (r2) were reported.  

PRS-outcome sex-stratified analyses  

For the PRS-brain associations examined, each PRS was regressed against the brain 

imaging (WBV, WMHV, HV, GM and WM) and cognitive outcomes (RT and VM) in 

males and females separately to further examine differences and maintain consistency 

with the rest of the thesis. As described in the methods, for each model, the only 

adjustments made were for age and 10 PCs.  

Stratified analysis   

Participants were stratified into groups based on their observed HbA1c and glucose. 

For the HbA1c analyses, participants were split into the following categories: low HbA1c 

(< 35 mmol/mol) and hyperglycaemia (≥ 42 mmol/mol) based on criteria published in 

previous papers.364,508 This stratification was consistent with the shape of the non-

linear associations reported in Chapter 6. For the glucose analyses, participants were 

categorised as: low glucose (< 6 mmol/L) and high glucose (≥ 7 mmol/L).  



 231 

Statistical Software and Packages 

All data management and analyses were performed using R Studio version 4.0.2 and 

Stata 17. 

7.3 Results  

Sample characteristics 

Genotype data was available for 407,869 participants. 389,988 had at least one 

glycaemic marker, and of those 36,321 also had structural imaging data (see Figure 

7.1). These were the same participants considered in the analyses described in 

Chapter 6.  
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Figure 7.1: Flowchart displaying participants considered in this study. UK Biobank 
participants had to have structural imaging data and at least one measure of glycaemia 
to be considered (n= 36,321).  
This means that the participants were the same as those considered in Chapter 6.  
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Sample Characteristics  Males = 17,105 n Females = 19,216 

Age, years:   55.6 (7.5)  54.2 (7.2) 

Deprivation Least deprived  

 

17,095 

4238 (24%)  

 

19,196 

4518(25%) 

Second least deprived 4067 (24%) 4485 (23%) 

Median deprivation level 3547 (21%) 4036 (21%) 

Second most deprived 3078 (18%) 3614 (18%) 

Most deprived 2165 (13%) 2543 (13%) 

Smoking Never smoker  

17,090 

11,619 (68%)  

19,201 

14,616 (76%) 

Current Smoker 1,242 (7%) 995 (5%) 

Ex-smoker 4,229 (25%) 3,590 (19%) 

BMI, kg/m2 17,083 27.1 (3.7) 19,192 26.1 (4.5) 

HbA1c, mmol/mol 16,505 35.2 (5.5) 18,506 34.7 (4.5) 

HbA1c, mmol/mol, range 16,505 16-122.6 18,506 15.3-91.1 

Glucose, mmol/L mean  13,215 5 (1.1) 15,081 4.9 (0.8) 

Glucose, mmol/L, range 13,215 1.9-26.6 15,081 1.78-24.1 

Diabetes medication  17,105 365 (2.1%) 19,216 222 (1.2%) 

Diabetes diagnosis 17,105 519 (3%) 19,216 233 (1.2%) 

Brain imaging and cognitive markers     

Whole brain volume (WBV) cm3 17,105 1480.7 (70.8) 19,216 1505.3 (73.0) 

Grey matter volume (GM) cm3 17,105 775.6 (930.2) 19,216 807.1 (458.4) 

White matter volume (WM) cm3 17,105 705.3 (407.6) 19,216 698.2 (403.7) 

Hippocampal volume (HV) cm3 17,105 3.8 (0.12) 19,216 3.8 (0.1) 

White matter hyperintensity volume (WMHV) cm3  17,105 8.1 (1) 19,216 7.9 (1) 

Total intracranial volume (TIV) cm3 17,105 1644.2 (131.1) 19,216 1468.4 (115.7) 
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Table 7.1: Sample characteristics for the male and female participants considered in this study (n = 36,321). 
 As described above, participants had to have genetic, structural imaging and data on least one measure of glycaemia to be 
considering amounting to 36,321 participants of which 17,105 were males and 19,216 were females. Values presented are: n (%), 
mean (SD) or median (IQR). % are calculated against the max data available for that specific measure for the respective sample. 
Whole brain, grey matter and white matter volume measurements reported were already normalised for head size by the UK Biobank. 
SD: Standard deviation. IQR: Interquartile range.  

Whole brain volume unadjusted cm3 17,105 1225.3 (98.7) 19,216 1107.1 (89.9) 

Reaction time (ms) 17,070 195.4 (96.6) 19,180 209.8 (98.4) 

Visual memory (incorrect matches) 16,191 3.8 (3) 18,201 3.7 (2.9) 
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Analysis 1: Description and validation of the PRS  

For HbA1c, the three different PRSs included 92, 143 and 210 SNPs respectively (see 

Appendix, Supplementary Table 1 and Supplementary Table 2). The results of the 

sex-stratified validation are reported in Table 7.2. Briefly, there was minimal evidence 

that the PRS instruments predicted observed HbA1c in either the whole UK Biobank 

sample or the neuroimaging sub-sample in either sex. The size of the r2 suggested 

that the PRS had miniscule predictive power in explaining observed HbA1c. 

Nonetheless, the coefficients and direction suggested that an increase in genetic score 

for glycaemia (as indexed by the HbA1c PRS) was weakly related to higher measured 

HbA1c, especially when looking at the whole UK Biobank sample. This being said, the 

size of the coefficients did not materially change between looking at the whole sample 

or only at the neuroimaging sub-sample.  

For glucose, the three different PRSs included 84, 148 and 190 SNPs respectively 

(see Table 7.3). Results were very similar for those of HbA1c yet there was some 

slightly stronger evidence that the PRS-glucose instruments predicted measured 

glucose in the whole UK Biobank sample although once again not convincingly in the 

imaging sub-sample. As per the HbA1c PRS tools, the explained r2 was small. 

As a positive control, logistic regressions were conducted to see if the PRS 

instruments predicted T2D diagnoses (see Table 7.4). There was some evidence that 

the glucose PRSs were associated with an increased risk of T2D in the whole sample: 

for PRS3, the OR was 1.02 (Cl: 1.01-1.02, p = 0.003). This, however, was not 

observed for the HbA1c genetic instruments since all three PRSs had an OR of 1.01 

(CI: 0.9, 1.02), p = 0.2). 
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Whole Biobank Sample (n = 389, 988) 

    PRS SNPs β 95% CI p  r2 

Males 179,170 

PRS1 92 0.03 0.001 0.010 0.04 

<1% 

PRS2 143 0.01 -0.02 0.05 0.3 

PRS3 210 0.02 -0.001 0.008 0.2 

Females 210,818 

PRS1 92 0.002 -0.002 0.005 0.4 

PRS2 143 0.002 -0.001 0.006 0.2 

PRS3 210 0.002 -0.001 0.006 0.1 

Pooled  389, 988 

PRS1 92 0.02 0.001 0.04 0.04 

PRS2 143 0.02 -0.005 0.04 0.05 

PRS3 210 0.02 -0.01 0.04 0.06 

Neuroimaging sample (n = 36,321) 

    PRS SNPs β 95% CI p  r2 

Males 17,105 

PRS1 92 0.04 -0.007 0.021 0.34 

<1% 

PRS2 143 0.02 -0.011 0.017 0.69 

PRS3 210 0.03 -0.009 0.018 0.54 

Females 19,216 

PRS1 92 -0.003 -0.011 0.010 0.93 

PRS2 143 -0.01 -0.01 0.012 0.84 

PRS3 210 0.01 -0.009 0.012 0.77 

Pooled 36,321 

PRS1 92 0.02 -0.04 0.08 0.50 

PRS2 143 0.01 -0.04 0.07 0.60 

PRS3 210 0.02 -0.03 0.07 0.50 

Table 7.2: Validation analyses regressing each polygenic risk score for HbA1c against observed HbA1c measured in: 1) the whole UK 
Biobank sample and 2) its neuroimaging sub-sample.  
r2 column describes total variance explained by the genetic tools. β, confidence intervals and p-values for males, females and pooled 
are presented. Units presented are standardised. 
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Table 7.3: Validation analyses regressing each polygenic risk score for glucose against observed glucose measured in the 1) whole 
UK Biobank sample and 2) its neuroimaging sub-sample.  
r2 column describes total variance explained by the genetic tools. β, confidence intervals and p-values for males, females and the 
pooled sample are presented. Units presented are standardised.  

Whole sample (n = 345, 865) 

 n = PRS SNPs β 95% CI p  r2 

Males 159,754 

PRS1 84 0.008 0.002 0.013 0.01 

<1% 

PRS2 148 0.006 0.001 0.011 0.03 

PRS3 190 0.006 0.001 0.012 0.03 

Females 186,111 

PRS1 84 0.007 0.003 0.011   0.001 

PRS2 148 0.007 0.003 0.011 <0.001 

PRS3 190 0.007 0.003 0.011 0.001 

Pooled 345, 865 

PRS1 84 0.008 0.005 0.013 <0.001 

PRS2 148 0.008 0.003 0.011 <0.001 

PRS3 190 0.008 0.003 0.01 <0.001 

Neuroimaging sample (n = 36,321) 

  PRS SNPs β 95% CI p  r2 

Males 17,105 

PRS1 84 0.005 -0.011 0.02 0.57 

<1% 

PRS2 148 0.004 -0.012 0.02 0.59 

PRS3 190 0.005 -0.011 0.02 0.58 

Females 19,216 

PRS1 84 0.004 -0.007 0.015 0.45 

PRS2 148 0.004 -0.007 0.015 0.49 

PRS3 190 0.005 -0.006 0.016 0.42 

Pooled 36,321 

PRS1 84 0.005 -0.01 0.02 0.5 

PRS2 148 0.005 -0.009 0.02 0.5 

PRS3 190 0.005 -0.007 0.02 0.4 
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Table 7.4: Regression of the HbA1c and glucose polygenic risk scores on Type 2 diabetes diagnosed in the pooled (males + females) 
1) whole UK Biobank sample and 2) its neuroimaging sub-sample.  
β, confidence intervals and p-values are presented. Units presented are standardised. 

  
Whole sample (n = 389, 988) 

  n = PRS OR 95% CI p  

HbA1c 

389. 988 

PRS1 1.01 0.9 1.02 0.2 

PRS2 1.01 0.9 1.02 0.2 

PRS3 1.01 0.9 1.02 0.2 

Neuroimaging sample (n = 36,321) 

n =  PRS β 95% CI p  

36,321 

PRS1 1.0 0.9 1.07 0.3 

PRS2 1.0 0.9 1.04 0.3 

PRS3 1.0 0.9 1.03 0.3 

  Whole sample (n = 345, 865) 

  n = PRS β 95% CI p  

Glucose 

345, 865 

PRS1 1.02 1.01 1.03 0.02 

PRS2 1.02 1.01 1.04 0.005 

PRS3 1.02 1.01 1.04 0.003 

Neuroimaging sample (n = 36,321) 

n =  PRS β 95% CI p  

36,321 

PRS1 1.0 0.9 1.04 0.3 

PRS2 1.0 0.9 1.05 0.3 

PRS3 0.9 0.9 1.02 0.3 
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Analysis 2: sex stratified PRS-outcome relationships 

Glycaemia PRS and WBV associations 

Overall, there were no convincing associations between PRS-HbA1c and WBV in either 

males or females (see Table 7.5). Some coefficients were larger in females (e.g., the 

size of the coefficient for PRS2 was triple that of males), but this could easily be a 

chance finding since the CI were wide and compatible with no relationship. The 

estimates from the different PRS instruments also did not substantially vary between 

them.  

There were also no associations between PRSs for glucose and WBV in either males 

or females (see Table 7.5). The estimates from the different PRSs did not vary 

between them, although there may be some suggestions that the size of the 

coefficients increased as more SNPs were considered (i.e., PRS3 had the biggest 

coefficient, followed by PRS2 then PRS1).  

Glycaemia PRS and GM and WM volume associations  

Overall, there were no convincing associations between PRS-HbA1c and GM in either 

males or females in any models (see Table 7.5). The association between PRS-HbA1c 

and WM suggest some small associations in females but not in males. PRS2 and 

PRS3 in females weakly predicted smaller WM suggesting that the addition of more 

SNPs increased the size of the estimates for these associations, however this needs 

to be considered in the context of multiple testing. Neither of the PRSs predicted WM 

in males.  

There were no convincing associations between PRS-glucose and GM or WM in either 

males or females in any models, albeit some weak evidence of PRS3 predicting 

smaller GM volumes in males (see Table 7.5).  

Glycaemia PRS and WMHV  

Overall, there were no convincing associations between PRS-HbA1c and WMHs in 

either males or females (see Table 7.5).  

There were also no convincing associations between PRS-glucose and WMHs in 

either males or females (see Table 7.5). Some evidence for an association between 
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PRS1 and WMHs in males were found but were considered dubious due to multiple 

testing undertaken.  

Glycaemia PRS and HV  

Overall, there were no convincing associations between PRS-HbA1c and PRS-glucose 

instruments and HV in either males or females (see Table 7.5).  
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  Whole brain volumes (WBV) 

  
PRS 

Males Females 

  β 95 CI p β 95% CI p 

HbA1c 

PRS1 0.001 -0.013 0.014 0.93 -0.003 -0.016 0.009 0.58 

PRS2 -0.003 -0.017 0.010 0.61 -0.011 -0.024 0.001 0.07 

PRS3 -0.004 -0.017 0.009 0.56 -0.009 -0.021 0.003 0.15 

Glucose 

PRS1 -0.003 -0.016 0.010 0.66 -0.001 -0.014 0.011 0.81 

PRS2 -0.008 0.243 0.005 0.24 0.004 -0.009 -0.009 0.57 

PRS3 -0.011 -0.024 -0.024 0.11 0.001 0.001 0.001 0.82 

  White matter hyperintensity volumes (WMHV) 

  
PRS 

Males Females 

  β 95% CI p β 95% CI p 

HbA1c 

PRS1 -0.002 -0.016 0.013 0.84 -0.004 -0.016 0.009 0.57 

PRS2 -0.001 -0.016 0.013 0.85 0.001 -0.012 0.014 0.89 

PRS3 -0.008 -0.022 0.006 0.25 -0.004 -0.017 0.009 0.56 

Glucose 

PRS1 0.013 -0.001 0.027 0.08 0.004 -0.008 0.017 0.49 

PRS2 0.008 -0.006 0.022 0.28 0.278 -0.009 0.017 0.53 

PRS3 0.008 -0.007 0.022 0.29 0.002 -0.011 0.014 0.79 

  Hippocampal volumes (HV) 

  
PRS 

Males Females 

  β 95% CI p β 95% CI p 

HbA1c 

PRS1 0.001 -0.015 0.017 0.91 -0.003 -0.011 0.01 0.83 

PRS2 0.001 -0.015 0.016 0.94 0.004 -0.01 0.02 0.62 

PRS3 -0.001 -0.017 0.015 0.90 0.004 -0.01 0.02 0.77 

Glucose 
PRS1 -0.003 -0.019 0.012 0.68 0.008 -0.005 0.02 0.25 

PRS2 -0.008 -0.023 0.008 0.36 0.010 -0.003 0.023 0.11 
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PRS3 -0.004 0.012 0.002 0.6 0.008 -0.005 0.020 0.25 

  Grey matter (GM) volumes 

  
PRS 

Males Females 

  β 95% CI p β 95% CI p 

HbA1c 

PRS1 0.0001 -0.012 0.012 0.96 0.0001 -0.011 0.011 0.96 

PRS2 -0.001 -0.013 0.011 0.84 -0.002 -0.013 0.009 0.68 

PRS3 -0.001 -0.012 0.011 0.91 0.000 -0.011 -0.011 0.94 

Glucose 

PRS1 -0.003 -0.014 0.009 0.66 -0.005 -0.016 0.006 0.39 

PRS2 -0.006 -0.018 0.006 0.31 0.001 -0.010 0.012 0.86 

PRS3 -0.011 -0.023 0.001 0.07 -0.002 -0.013 0.009 0.72 

  White matter (WM) volumes 

  
PRS 

Males Females 

  β 95% CI p β 95% CI p 

HbA1c 

PRS1 0.003 -0.012 0.018 0.72 -0.004 -0.018 0.010 0.60 

PRS2 -0.002 -0.017 0.013 0.76 -0.015 -0.029 -0.001 0.03 

PRS3 -0.004 -0.019 0.011 0.58 -0.014 -0.028 0.000 0.05 

Glucose 

PRS1 0.001 -0.014 -0.014 0.95 0.002 -0.012 -0.012 0.8 

PRS2 -0.005 -0.020 0.010 0.53 0.002 -0.012 -0.012 0.77 

PRS3 0.002 -0.012 0.016 0.77 0.003 -0.010 0.017 0.63 

Table 7.5: Results from the regression analyses between the different glycaemic polygenic risk scores and the brain imaging 
outcomes stratified by sex.  
Adjustments were only made for age and principal components as described in the methods. The values presented are standardised 
β coefficients, confidence intervals, and p values.  
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Analysis 3: Stratified analyses exploring associations between PRSs in the low 
glycaemia and high glycaemia groups 

There was some weak evidence that the PRS tools for HbA1c were associated with 

smaller WBV and WM in the low glycaemia strata. There was no other convincing 

evidence that PRS tools for HbA1c or glucose were associated with brain health 

measured in either the high or low glycaemic strata (Table 7.6).  

In all of my analyses for this study, I adjusted for 10 PCs which meant that the findings 

presented are unlikely to suffer from issues related to population stratification.  
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PRS 
WBV WMHV HV GM WM 

 
  β 95% CI p β 95% CI p β 95% CI p B 95% CI p β 95% CI p 

  Hypoglycaemia PRS1 -0.007 -0.019 0.006 0.30 0.000 -0.013 0.014 0.94 -0.003 -0.018 0.011 0.65 -0.006 -0.018 0.006 0.33 -0.006 -0.020 0.008 0.41 

  (< 35 mmol/mol) PRS2 -0.013 -0.026 -0.001 0.04 0.007 -0.006 0.020 0.29 -0.003 -0.017 0.012 0.74 -0.010 -0.022 0.002 0.09 -0.012 -0.026 0.002 0.09 

    PRS3 -0.012 -0.025 0.000 0.06 -0.002 -0.015 0.011 0.74 -0.005 -0.020 0.009 0.49 -0.006 -0.018 0.006 0.32 -0.014 -0.028 0.000 0.06 

  Hyperglycaemia PRS1 0.003 -0.030 0.036 0.87 -0.007 -0.042 0.028 0.70 -0.002 -0.040 0.037 0.94 -0.003 -0.035 0.029 0.840 0.009 -0.029 0.046 0.64 

HbA1c (≥ 42 mmol/mol) PRS2 -0.001 -0.034 0.031 0.94 -0.001 -0.036 0.033 0.94 0.010 -0.028 0.048 0.61 -0.005 -0.037 0.027 0.77 0.005 -0.032 0.043 0.77 

    PRS3 -0.001 -0.034 0.031 0.93 -0.001 -0.035 0.034 0.97 0.006 -0.032 0.043 0.77 -0.005 -0.037 0.026 0.74 0.002 -0.035 0.039 0.91 

  Hypoglycaemia PRS1 -0.001 -0.011 0.009 0.86 0.006 -0.005 0.017 0.25 -0.003 -0.015 0.009 0.59 -0.004 -0.014 0.005 0.38 0.005 -0.007 0.016 0.45 

  (< 6 mmol/L) PRS2 -0.002 -0.013 0.008 0.69 0.004 -0.007 0.015 0.49 -0.006 -0.018 0.006 0.33 -0.001 -0.011 0.009 0.86 -0.003 -0.014 0.009 0.67 

    PRS3 -0.004 -0.014 0.006 0.45 0.003 -0.008 0.013 0.64 -0.004 -0.016 0.008 0.51 -0.004 -0.014 0.006 0.44 -0.001 -0.013 0.011 0.85 

Glucose Hyperglycaemia PRS1 -0.006 -0.025 0.013 0.52 0.015 -0.005 0.035 0.14 0.023 0.001 0.045 0.04 -0.003 -0.021 0.015 0.74 -0.007 -0.029 0.014 0.49 

  (≥ 7 mmol/L) PRS2 0.004 -0.015 0.023 0.71 0.011 -0.009 0.032 0.28 0.021 -0.001 0.043 0.06 0.003 -0.015 0.020 0.78 0.000 -0.021 0.022 0.97 

    PRS3 -0.001 -0.020 0.018 0.96 0.003 -0.008 0.013 0.64 0.014 -0.008 0.035 0.22 -0.002 -0.020 0.016 0.82 -0.002 -0.023 0.020 0.86 

Table 7.6: Results from the regression analyses between the different glycaemic polygenic risk scores and the brain imaging outcomes in the low and high glucose strata (pooled sample).  
Adjustments were only made for age and principal components as described in the methods. The values presented are standardised β coefficients, confidence intervals, and p values. WBV: Whole 
brain volumes. WMH: white matter hyperintensity volumes. HV: hippocampal volumes. GM: grey matter volumes. WM: white matter volumes.  
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7.4 Discussion  

Summary of findings   

The aims of this project were to investigate whether PRS instruments for HbA1c and 

fasting glucose showed: 1) sex-specific associations with brain health outcomes and 

2) accounted for differences between people in low and high glucose strata. 

The three fasting PRS-glucose instruments weakly predicted a modest increase in 

observed glucose in both sexes in the whole cohort (n ≈ 400,000). The estimates for 

the PRS-HbA1c associations suggested that the genetic instruments predicted higher 

measured HbA1c, but the estimates were very weak and there were imprecisions in 

the predictions made. When examining these associations in the smaller imaging sub-

sample of UK Biobank (n = 36,321), the size of the associations remained the same, 

but their precision reduced (i.e., CI widened). 

While there were some small and modest associations observed with the outcomes 

(e.g., two of the HbA1c PRS tools predicted smaller WM volumes in females), 

considering the number of statistical comparisons made, there is limited confidence in 

the relationship between the glycaemic genetic tools and brain health outcomes in 

either males or females. There were also no convincing associations of the PRS tools 

explaining brain health vulnerabilities in those part of the low or high glucose strata.  

Specific findings and associations with the literature  

Validation of the genetic tool  

The PRSs did not predict as much variance in glycaemic measures as expected. 

However, the associations with observed HbA1c and glucose were in the expected 

direction (i.e., higher genetic predisposition to the glycaemic measures was 

associated with higher fasting glucose measured in life). Each PRS explained less 

than 1% of the total variance for its respective glycaemic marker. Previous studies 

have estimated that their HbA1c or T2D PRSs explained between ~2-5% of total 

variance.206,502 However, there is limited capacity to make direct comparisons to 

previous work because: 1) many published articles do not share the variance 

explained by their genetic tool and 2) it has not always been made clear whether the 

explained variance described refers to the entire variance explained by a confounder-
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adjusted model that includes the PRS, or one solely accounted by the genetic tool. 

Running sensitivity analyses revealed that SNPs used in this analysis were 

independent of important confounders such as BMI. As an exploratory check, an 

adjustment for BMI in my validation model increased the explained variance to 12%. 

Although, it is never possible to exclude horizontal pleiotropy when using genetic 

instruments, this finding suggests that pleiotropic effects via BMI are unlikely. 

As a positive control, the PRSs were also regressed against lifetime T2D diagnosis. 

The glucose PRS was more convincingly associated with an increased risk, but for 

both glycaemic markers, the predictive power of the tool was small as evidenced by 

the size of the OR. A new recently published study argues that a HbA1c PRS 

instrument with fewer SNPs may offer the strongest association with observed HbA1c 

and is less likely to suffer from weak instrument bias.509 They found that although the 

PRS instruments with the 16 glycaemic or 19 erythrocytic SNPs explained slightly less 

of the total variance for HbA1c, they showed a higher F statistic (187.5 and 184.3) than 

a PRS with more 157 SNPs (27.43 and 27.9). This perhaps suggests that future 

studies should use fewer SNPs for a better signal-to-noise ratio and reduced risk of 

pleiotropy and weak instrument bias.  

As discussed below, despite its limitations, the associations between the PRS and the 

brain health outcomes are mostly consistent with previous published findings.  

Sex-stratified findings between PRS and the brain imaging outcomes  

Overall, there were no convincing associations between the HbA1c PRS and glucose-

PRS tools with any of the different brain health outcomes in either males or females. 

There was no evidence that the different constructed PRS tools offered different and 

meaningful associations to any of the brain health outcomes in either sex groups.  

Out of all the analyses, some revealed small and modest associations between the 

PRS tools and the brain health outcomes; for example, two of the HbA1c PRS tools 

were associated with smaller WM volumes and one with smaller HV in females. But 

these were small effects that may reflect a false discovery due to the total number of 

analyses conducted. Null associations between genetic tools for T2D and brain health 

outcomes have previously been reported in an mendelian randomisation (MR) 

study.502 A recently published study of the Biobank sample also failed to find an 
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association between a HbA1c PRS and a range of brain imaging outcomes including 

WMHV, diffusion metrics, HV, and WM volumes.365 Since the analyses presented in 

this chapter are mostly sex-stratified (as motivated by previous results), they further 

add to past published work by showing that genetic predisposition for glycaemia may 

not predict sex-specific vulnerabilities in tissue types. But the stratification by sex 

further reduces the strength of an already weak tool. Thus, the previously reported 

power issues commonly characteristic of PRS tools are magnified.  

Despite all those nulls, Ranglani and colleagues reported that in their fully adjusted 

models, their HbA1c PRS predicted smaller GM volumes.365 Although this may differ 

from the findings reported here, some small associations between the PRS tools and 

some of the brain health outcomes were also found in my study as listed above. A 

direct comparison may also be challenging, as my study did not consider confounder 

adjustment. In my analysis of the association between PRS instruments for glycaemia 

and brain volumes, I did not adjust for other variables due to concern about collider 

(such as those raised by Aschard and colleagues).501 In causal terms the genetic tool 

‘precedes’ any observed data and so should be inherently unconfounded. Mistakenly 

adjusting for a collider could create a spurious association between the PRS and brain 

volume, compromising the validity of these findings. 

My findings suggest that, based on this PRS, genetic predisposition to hyperglycaemia 

may not strongly predict brain health outcomes. Since a unit change in HbA1c itself 

only predicts a small decrease in brain tissue in observational studies, the weak PRS-

outcome associations may be within the range of what is expected from a tool of such 

minimal power. This being said, a more robust genetic instrument for T2D, explaining 

around 2.8% variance, also failed to find any convincing associations with brain health 

outcomes in both sexes combined.502 It is established that the regulation of HbA1c and 

glucose is complex – it is influenced by a multitude of factors beyond genetics, 

including environmental factors, lifestyle choices, medication and physiological 

processes. Thus, other factors which are not captured by the PRS may be contributing 

significantly to the observed variance of a genetic tool for glycaemia.  

Some of the sex-stratified analyses suggested associations between the PRS and the 

brain health outcomes. For example, for HbA1c, the two PRS tools with the most SNPs 

were also associated with lower WM volumes in females. However, since 3 PRS tools 
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for two glycaemic markers were each regressed against 5 different outcomes 

separately for males and females, the possible consequences of multiple testing have 

to be considered, i.e., increased risk of Type I error (false positives).  

Stratified results  

In Chapter 3, the findings showed that low and high HbA1c (<35 mmol/mol & ≥42 

mmol/mol) and low and high fasting glucose (<6 mmol/L & ≥7 mmol/L) predicted 

smaller WBV and GM volumes. The aim of this analysis was to test whether increased 

genetic vulnerability for glycaemia predicted poorer brain health outcomes in those in 

the lower and upper tiers of recorded glycaemia in life. There were no convincing 

associations observed for any of the PRS and brain health investigations. A few 

models suggested significant associations (e.g., in those with low HbA1c, two of the 

PRS tools predicted smaller brains) but the findings were not convincing and were 

found in both directions. One of the drawbacks of this analysis is that it further suffers 

from power issues; the sample size was reduced upon stratification with the majority 

of participants excluded in the normoglycaemic range (i, e. ≥35 mmol/mol & <42 

mmol/mol). This exclusion reduces the predictive power of an already weak 

instrument. Thus, although the aim of introducing genetic tools to strengthen causal 

inferences in my previous observational non-linear results was interesting, it became 

a methodological challenge to address it in this study.  

Although genetic tools were used aiming to strengthen causal inferences in non-linear 

findings reported in Chapter 6, non-linear MR methods were not considered when 

modelling these associations. This is due to the growing evidence highlighting the 

important flaws in their methodology. For instance, studies have shown that non-linear 

MR can introduce biases such as non-constant genetic effects and collider bias, which 

can distort the true relationship between variables.510 For example, in the case of BMI 

and mortality, non-linear MR has yielded biologically implausible J-shaped 

associations. Furthermore, negative control studies have revealed that non-linear 

methods can produce nonsensical results such as impossible causal associations 

between BMI and assigned sex. Thus, in line with the current field’s stance doubting 

the reliability of non-linear MR, this method was not used to model the previous non-

linear observational findings of Chapter 6.  
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Strengths and weaknesses   

The PRSs were weighted and generated using published GWAS estimates for HbA1c 

and fasting glucose. This two-sample method reduces bias in the results since the UK 

Biobank, the target dataset in this analysis, was not part of the summary statistics 

used to derive the PRSs. In addition, the analyses involved constructing PRS 

instruments for two different glycaemic markers (fasting glucose and HbA1c). Although 

HbA1c and fasting glucose are both markers of glucose metabolism, they are 

influenced by different mechanisms and differ to some degree with regard to 

heritability.459 Fasting glucose values represent glucose tolerance and IR whereas 

HbA1c captures levels of glycaemia over time and is influenced by factors such as IR, 

β-cell dysfunction, hepatic glucose production and red cell lifespan. Another strength 

of this analysis is that it takes a novel approach by looking at the relationship between 

genetic tools for glycaemia and brain health outcomes through a sex-stratified lens. 

Traditionally, analyses have looked at the relationship in pooled samples of males and 

females.365,502  

One limitation is that the PRS instruments generated were developed and tested 

predominantly in a highly selected white British population and thus may not apply to 

other ethnic groups. It has been argued that the UK Biobank cohort is not 

representative of the UK population for a number of sociodemographic, physical, 

lifestyle, and health-related characteristics (e.g., participants have been found to be 

less likely to drink, smoke and be obese).33 Participants who were willing to undergo 

scanning (time, inconvenience etc.) differ from those who did the less onerous UK 

Biobank study. Further sampling bias is related to scanning. Those with MRI 

contraindications such as pacemakers, metallic intraocular foreign bodies, cochlear 

implants, drug infusion pumps etc. did not take part. This selection may produce bias 

and an underrepresentation of specific demographic groups, leading to limited 

generalisability of study findings. Another weakness is that this study uses genetic risk 

scores as a proxy for lifetime exposure to higher HbA1c. Additionally, the PRS 

construction did not distinguish between the different mode of signals (i.e., erythrocytic 

vs glycaemic SNPs vs other).   
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Future work: 

Future work should aim to replicate these analyses in other Biobank samples (e.g. 

China Kadoorie Biobank, Shanghai Zhangjiang Biobank and the new emerging 

Biobanks in the Middle East). This will shed important light on whether genetic 

vulnerability for glycaemia is useful in predicting lifetime glycaemic health in other 

ethnic group and whether has predictive value in relation to brain health and dementia 

outcomes. Future work should also follow up similar PRS analyses to explore the 

pathways through which genetic risk for hyperglycamia may exert its effects (e.g. 

insulin signalling pathway, neurotrophic signalling and glucose transport pathway).  

7.5 Conclusions 

The aim of this chapter was to strengthen causal inference in the observational 

findings reported in Chapter 6. This project examined whether genetic risk scores for 

glycaemic markers supported the different sex-specific associations between 

glycaemia and brain health outcomes and differences between people in the low and 

high glucose strata. There was little evidence of the genetic tools predicting brain 

health outcomes in males or females as well as those in the low and higher glucose 

strata.  
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8. General discussion 

8.1 Aims  

With growing evidence suggesting that Type 2 diabetes is a risk factor for poorer brain 

health, there is an important need to better understand the precise nature of this 

complex relationship.1 To take a more nuanced perspective on these relationships, 

associations between its underlying mechanisms, primarily glycaemia, with different 

measures that encapsulate brain health were examined in the National Survey of 

Health and Development. In line with the growing evidence suggesting that there are 

important sex differences in metabolic and neurological outcomes, these associations 

were examined separately in males and females. The analyses were then further 

extended to the UK Biobank sample to test whether glycaemia has a non-linear 

relationship with brain health outcomes and whether genetic instrumental variables 

could be used to confirm the observational associations, with less risk of confounding 

or reverse causality. Finally, in an attempt to begin unravelling the mechanisms behind 

this relationship, the mediating role of inflammation was considered in the glycaemia-

brain volume association in female participants of NSHD.   

8.2 Summary of findings 

The findings from NSHD and Insight 46 show that poor glycaemic health (Chapter 3) 

and related metabolic markers, such as those of insulin resistance (Chapter 4), are 

associated with lower volumes of different brain measures in females compared to 

males. This suggests that there are sex-specific differences in the relationship 

between glycaemia-related metabolic health and brain health in a population-based 

sample. Further examination of these relationships revealed that the glycaemia-brain 

associations observed in females did not appear to be mediated by inflammatory 

pathways (Chapter 5).  

In the larger UK Biobank sample, the relationship between the markers of glycaemia 

and brain health appeared to be non-linear with both low and high strata of glycaemia 

being associated with smaller brain volumes (Chapter 6). There were some 

suggestions of increased susceptibility in these relationships for females, although 

analyses were complicated by the non-linear nature of those associations. Polygenic 
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risk scores for glycaemia were not convincingly associated with the different brain 

imaging outcomes, despite the associations being mostly consistent with previously 

published work (Chapter 7). This being said, the weakness of the genetic instrument 

limited the conclusions that could be drawn from the findings.  
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8.3 The value of population-based research  

The recent Lancet Commission on Dementia Prevention, Intervention and Care 

identified diabetes as a risk factor for dementia.1 Type 2 diabetes is traditionally 

diagnosed in those with an HbA1c of ≥ 48 mmol/mol. However, an advantage of 

population-based studies, such as those considered in this thesis, is that they allow 

researchers to go beyond the clinical thresholds for diabetes to: 1) look more precisely 

at the mechanisms that may underlie this relationship and 2) be more nuanced about 

the subtleties of this complex relationship (e.g., look at non-linearity and examine sex 

differences). Although thresholds are valuable for clinicians, considering exposures as 

continuous and graded allows for more flexibility in examining the underlying 

mechanistic relationship between glycaemia and brain health. The findings revealed 

a consistent association between several glycaemic traits and brain health in females. 

These were observed independently of medication and diabetes status, suggesting 

that high glycaemia in a sample with population characteristics is associated with 

measures of poorer brain health. But it is worth noting that the size of the associations 

was small. To put the size of this decrement in perspective, a 10 mmol/mol increase 

in HbA1c during midlife (as reported in Chapter 3) was equivalent to a reduction of 

whole brain volumes in late life corresponding to 2 years of normal ageing. This is still 

valuable knowledge as small effects across an entire population can have important 

repercussions on public health. However, we should not discount the possibility that 

these associations are due to reverse causation (i.e., small brain volumes indicative 

of brain atrophy, resulting in alterations in glucose metabolism and insulin sensitivity) 

or residual confounding.  

Interestingly in the UK Biobank sample, non-linear associations were observed with 

both low and high HbA1c (and glucose) being associated with smaller whole brain, 

hippocampal, and grey matter volumes. As expected from the NSHD, higher HbA1c (> 

42 mmol/mol) was predictive of poorer brain health. Although this is consistent with 

the traditional threshold for glycaemia, the findings that participants with low HbA1c 

(<35 mmol/mol) showed poorer brain outcomes from those in the “normoglycaemic” 

range between 35 and 42 mmol/mol further demonstrate the value of examining HbA1c 

across the whole range. These findings highlight the complexity of the associations 

between glycaemia and brain health outcomes.  
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8.4 Sex differences 

An important finding of this thesis is that sex moderates the associations between 

glycaemia and brain health outcomes. Poorer glycaemic health as assessed by 

different traits such as HbA1c, glucose and insulin resistance were found to be 

associated with smaller brains in female but not in male participants of the NSHD 

sample. In UK Biobank, the non-linear models revealed some visual suggestions of a 

difference in the glycaemia-brain relationship between males and females.  

This adds to the growing evidence suggestive of sex differences in metabolic and 

neurological outcomes (e.g., dementia being more prevalent in females). I believe that 

moving forward, it may be a necessity for all future research studies that explore 

similar associations, to present sex-stratified results, or at the very least, test for sex 

interactions, as the impact of glycaemia and its related metabolic factors on brain 

health can evidently vary between males and females.  

In regard to what factors drive these relationships, the analyses in NSHD (Chapter 5) 

suggest that glycaemia may not impact the brain through inflammatory pathways. 

Future studies should, I think, examine other potential mediating factors in this 

relationship, particularly those relating to sex hormones (e.g., ovarian functions) and 

gender-related psychosocial stressors (e.g., caregiving responsibilities and workplace 

discrimination).  

Beyond this, it remains important to acknowledge potential methodological flaws that 

come with these analyses. Some of these may emerge as possible issues during the 

process of adjusting for important confounders related to the sex-specific analyses. 

For example, I considered body mass index or waist-to-hip ratio as two anthropometric 

indicators playing a potential confounding role in my glycaemia-brain analyses. It is 

established that body fat distribution is not well captured by body mass index, and only 

to a limited extent by waist-to-hip ratio, such as that any imprecisions in measurement 

of these (or any other confounder) potentially result in residual confounding.  This is 

particularly relevant to my sex-specific findings as during unique events in a female’s 

life (e.g.  the menopause), HbA1c has been found to increase in parallel with 

unfavourable changes in body fat distribution which has important repercussions on 

glucose metabolism in females.180 
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8.5 Mismatch between brain imaging and cognition   

The thesis revealed associations between glycaemia and some of the brain health 

measures, but not cognition. This was the case whether a composite cognitive score 

sensitive for Alzheimer’s disease, or single cognitive capacities were considered. 

There are many possible explanations for this.  

The first possibility is there may be a lag between brain pathology from poor glycaemia 

and the manifestations of the respective cognitive deficits. This is commonly discussed 

in the Alzheimer’s disease literature where the pathological changes can precede the 

cognitive presentation by many years.8 It may be that the effect of poor glycaemia on 

cognitive outcomes becomes more prominent when corresponding age-related 

impairments become noticeable. Insight 46’s third wave of cognitive phenotyping 

should shed light on this question. It may also be possible that the participants do not 

show cognitive impairment as they have built cognitive reserve throughout their earlier 

life. Cognitive reserve describes the brain’s ability to circumvent damage by finding 

novel or compensatory systems to support cognitive function.448 This may particularly 

be relevant to the participants recruited to the UK Biobank or to those who remain 

involved in longitudinal assessment of Insight 46 as they have previously been shown 

to be healthier than the general population, and the entire NSHD sample from which 

they were drawn respectively. Thus, they are likely to have been exposed to more 

protective lifestyle factors, such as higher education, that are crucial in building 

cognitive reserve explaining the null cognition findings.33,394  

Hyperglycaemia did not appear to predict small vessel-related disease. This was the 

case irrespective of the different proxy measures of cerebral small vessel disease 

considered. Mechanistically, hyperglycaemia has been found to be damaging to small 

vessels by causing endothelial dysfunction, blood-brain barrier disruption, vascular 

structural changes and oxidative stress.437 Considering the mixed findings in the 

literature, the results from this thesis are not inconsistent with past evidence.409 As 

previously mentioned, it is plausible that that the effects of glycaemia on vessels may 

become more prominent as participants get older, or manifest when they co-exist with 

other comorbidities such as those related to cardiovascular health or neurological 

pathology such as tau burden. Other studies have also begun to show that diabetes-

related small vessel disease may only become more apparent when more sensitive 
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measures, looking at the shape and location of these lesions are considered.355 Future 

studies that examine glycaemia-small vessel disease associations should also aim to 

consider these more subtle measures.    

8.6 Future directions  

The findings from the thesis revealed associations between glycaemia and its related 

metabolic markers and some, but not all of the brain imaging outcomes. It is thus 

possible that these mechanisms may follow a specific temporal manifestation where 

structural gross brain imaging changes precede small vessel disease, amyloidosis and 

cognitive pathology. More recently, Insight 46 participants are midway through a third 

round of scanning at age 75. Longitudinal brain imaging and cognitive assessments 

may shed light on the trajectory of these associations; more specifically on whether 

glycaemia continues to possibly exert its effect on the brain by resulting in a decline in 

brain volumes (and if so, quantify the size of it). In line with this, the longitudinal 

measures will give an insight on whether small vessel disease pathology, usually 

characteristic of hyperglycaemia, becomes more prominent as people age. This would 

address the question of whether the effects of poorer glycaemia on brain health 

accelerates with age. Similar questions can also be asked about cognition.  

Future research should investigate whether the structural vulnerabilities observed in 

females reflect specific regional damage: i.e., does it reflect vulnerability in specific 

areas of the brain such as the frontal lobes. In line with this, considering data from 

functional neuroimaging may uncover the possible compensatory mechanisms that 

could explain the mismatch between the structural brain imaging results and the null 

cognitive findings. As mentioned above, there is a possibility that NSHD and UK 

Biobank participants with poorer glycaemic health may show preserved cognitive 

capacities due to cognitive reserve, mechanisms through which different circuits of the 

brain compensate for previous damage through engaging novel pathways.  

The findings from Chapter 6 revealed non-linear associations between the glycaemia 

and brain health outcomes. Future research should aim to elucidate the underlying 

mechanisms through which both low and high blood glucose levels exert their 

detrimental effects on the brain. This may involve investigating the cellular and 
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molecular pathways that underlie glucose metabolism, oxidative stress, 

neuroinflammation, synaptic dysfunction, and neurovascular coupling. 

Future research should consider additional factors that may mediate the relationships 

between poorer glycaemia and smaller brains in females. Chapter 5 began to examine 

this question by investigating whether inflammation may mediate smaller brain 

volume. I found that although HbA1c was directly associated with brain volume and 

increased inflammation, there was no indirect path through which it affected brain 

health through this mediator. Other potential candidates may include cerebrovascular 

disease and small vessel disease (although both of these were not found to be 

associated with glycaemia).  

Overall, the findings from the thesis highlight the importance of continuing the study of 

the relationship between glycaemia and brain health given the escalating burdens of 

obesity, diabetes, and cognitive impairment in society. In line with the findings of this 

thesis and the other growing evidence suggestive of prominent sex differences in the 

relationship between metabolic health and brain health, future studies should further 

examine how these relationships manifest in males and females in an attempt to better 

understand the pathophysiological mechanisms through which glycaemic traits may 

damage the brain and contribute to dementia.  
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