
Sensitivities of Beta Decay Neutrino
Experiments to New Physics

James Alexander Lane Canning

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Physics and Astronomy

University College London

August 28, 2024



2

I, James Alexander Lane Canning, confirm that the work presented in this the-

sis is my own. Where information has been derived from other sources, I confirm

that this has been indicated in the work.



Abstract

Neutrino experiments form a key pillar of the search for physics beyond the Stan-

dard Model. Single beta decay experiments are the only direct means of measuring

the absolute values of the neutrino masses. In addition, the discovery of neutrinoless

double beta decay would imply the existence of the first known Majorana fermion.

However, single beta decay experiments also have the opportunity to search for

many other types of new physics. This includes new physics operating at higher

energy scales as well as the production of new sterile neutrinos, measured through

their effect on the energy and angular distributions for the emitted electron. Lorentz

violating effects could also have a significant impact through modifications to the

Fermi interaction or to the fermion propagators. The sensitivity to this new physics

is considered for the next generation of single beta decay experiments, based upon

the new technology of Cyclotron Radiation Emission Spectroscopy. Overall, I find

significant potential for the improvement of existing limits and novel sensitivities in

certain cases. In double beta decay the precise measurement of the spectral shape

and decay rate are important for determining the effective double beta decay mass.

Whilst neutrinoless double beta decay is still undetected, and dominated by large

nuclear matrix element uncertainties, such precision measurements may be essen-

tial in the future. To that purpose, I study the impact of two correction factors on the

conventional double beta spectrum: radiative corrections to the decay and the elec-

tromagnetic interaction between the two emitted electrons. I show the impact they

have on the spectrum and the sensitivity of current experiments to their effects.
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of existence, the Standard Model, has been shown to have great predictive power,

there are still many questions that remain unsolved in the world of particle physics.

In order to progress further in our understanding, precise experimental measure-

ments will be taken to search for discrepancies and hints of new physics. In this

thesis I aim to highlight some of the ways in which the next generation of experi-

ments can be used to probe for these new effects.

Single beta decay experiments are soon to enter a new technological era in their

attempt to measure the mass of the neutrino. The results included here consider a

range of different effects which could be measured using these data as well as how

improving the experiments to measure additional variables could offer improved

or even novel sensitivity to some effects. The search for neutrinoless double beta

decay is essential for understanding the fundamental nature of neutrinos. If the

process were discovered it would have profound implications not only in particle

physics but also in cosmology and astrophysics. I discuss here some of the effects

which need to be considered in order to measure this process accurately.

The results included herein should be of interest to both theorists and experi-

mentalists working in neutrino physics and beyond. This work helps to motivate and

interpret experimental results in fundamental science. This will maximise the effi-

ciency of these experiments and increase investment in scientific progress. Whilst

these results do not have direct technical applications, the development of our under-

standing of the world has led to many technological advancements which underlie

much of modern life.
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Chapter 1

Introduction

The Standard Model of particle physics represents our current best understanding

of the subatomic world around us. It is the culmination of over a century of theo-

retical and experimental work from the discovery of the first fundamental particle,

the electron, in 1897 [1] to the detection of the Higgs Boson in 2012 [2, 3]. Neutri-

nos form a key part of the Standard Model and the outstanding questions that they

pose and the experimental discrepancies they highlight mean that they will play a

significant role in our next steps as we begin to search beyond the Standard Model.

The neutrino was first posited as the solution to a significant problem chal-

lenging the study of radioactive beta decay. In this decay there was seemingly a

violation of both energy conservation and spin statistics in its observed decay prod-

ucts (unlike those of alpha and gamma decays which had fixed energies and con-

served angular momentum). This led to the postulation by Wolfgang Pauli of an

additional, thus-far unseen spin-1/2 particle, the particle that we now know as the

‘neutrino’ [4]. Such a particle would have to be light enough to not cause a signifi-

cant nuclear recoil and sufficiently weakly interacting to have remained undetected

up to that point. A theory incorporating this particle was quickly developed in a

1933 paper by Enrico Fermi [5] in which he highlighted the potential for measuring

the mass of this neutrino by observing the high energy ‘endpoint’ of the observed

electron energy spectrum.

Despite the great challenge of detecting such an elusive particle, the electron

neutrino was first detected in 1953 by the work of Reines and Cowan [6]. In their
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experiment anti-neutrinos produced in the sun and captured by inverse beta decay

led to the dual signatures of an emitted positron and recoiling nucleus which were

interpreted as the first direct detection of a neutrino. Given the evidence for three

generations of matter in both the quark and leptonic sectors, including the discov-

eries of the muon [7] and tau [8] in 1937 and 1975, respectively, there was an

expectation that further generations of neutrino should also exist. This was con-

firmed with the detection of their neutrino counterparts, the muon neutrino in 1962

by a collaboration at the Brookhaven National Laboratory [9] and the tau neutrino

in 2001 by the DONUT collaboration [10]. Further light generations of neutrinos

are not expected. Measurements of the decay rate of the Z boson (which interacts

with all known fermions) are consistent with only three generations of matter (pro-

vided mν <MZ/2≈ 45.6 GeV) [11]. Furthermore, measurements of the relativistic,

effective neutrino degrees of freedom from their impact upon matter clustering and

galaxy formation also finds that only 3 generations are to be expected [12].

Throughout this time of discovery, the underlying theory behind how neutrinos

interact with the other fundamental particles was being developed. The first of these

developments came in the discovery of parity violation in the weak force. Although

the strong force had been shown to largely obey parity (i.e., spatial inversion) sym-

metry, in 1957 Lee and Yang proposed that such a theory might be violated in the

weak interaction [13] with the massless (anti-)neutrinos emitted being with a fixed

(right) left helicity (using the modern choice for assigning particle/anti-particle sta-

tus rather than their choice). This was then rapidly confirmed in the groundbreak-

ing experiment by Wu et.al. which found maximal violation of parity as well as

charge conjugation symmetry violation [14]. This ultimately led to the conclusion

by Feynman and Gell-Mann that the weak force must take the form of a vector-axial

interaction, with all of the interacting particles being left-handed and anti-particles

being right-handed [15].

However, despite these developments of the weak theory problems still

remained. The force was still described as a contact interaction between all

four particles involved, this implied non-unitarity for the interaction at high
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energies. By building upon the 1954 paper of Yang and Mills that first sug-

gested the idea of gauged symmetries under local transformations of fields [16],

Schwinger (1957) [17] first constructed a non-Abelian gauged theory of the

weak interaction. This was then extended by Glashow (1961) [18] and

Salam & Ward (1964) [19] into a new weak theory involving the addition of a

new neutral boson, the Z, and requiring manual symmetry breaking to give the

heavy bosons the required masses. The issue of artificially inducing symmetry

breaking was finally resolved with the theories developed by Englert & Brout [20],

Higgs [21] and Guralnik, Hagen & Kibble [22] in 1964. By introducing a massive,

charged scalar with a vacuum expectation value they were able to define a mech-

anism in which the electroweak symmetry was spontaneously broken, with the

three massless Nambu-Goldstone bosons generated being absorbed into the three

heavy weak bosons, thus giving them mass. This was formalised with the creation

of the electroweak theory in 1967 by Weinberg [23] and in 1968 by Salam [24]

with the previous weak theory being described as a combination of the weak and

hypercharge forces, spontaneously broken by the Higgs mechanism to give the elec-

tromagnetic force mediated by the massless photon and the weak force mediated

by two charged and one neutral heavy bosons.

At the same time as the development of the weak theory, the strong theory

was also being explored to explain the myriad of rapidly and more slowly decaying

heavy particles detected in cosmic ray showers [25, 26]. Gell-Mann’s 1961 pa-

per on the ‘eightfold way’ first recognised the underlying pattern in the properties

of these heavy states [27]. This led him to subsequently develop in 1964 (simul-

taneously with Zweig) the underlying theory that all such states, called ‘baryons’

and ‘mesons’, were composed of an underlying set of fundamental particles called

‘quarks’ [28, 29]. This theory, however, had numerous problems, most importantly

that such quarks had never been observed as free particles, nor did there seem to

exist other massless, long-range bosons that could mediate such a force in the way

the photon does for quantum electrodynamics (QED) [30]. Whilst the development

of Higgs’ spontaneous symmetry breaking allowed for the giving of mass to inter-
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mediate bosons, it was the work of Gross & Wilczek [31] and Politzer [32] who

recognised that the asymptotic freedom (i.e. weakening at short distances) of non-

abelian gauge theories better matched the experimental data coming from collider

experiments for the internal properties of baryons and mesons. This formulation of

the strong force introduced three new integer ‘colour’ charges (called ‘red’, ‘blue’

and ‘green’) with the force being mediated by eight massless bosons called ‘gluons’.

With this development, the theoretical foundations for the Standard Model

were complete. Three generations of matter interact through three fundamental

forces, the strong, the weak and the hypercharge. At lower energies the vacuum

expectation value of the Higgs spontaneously breaks the electroweak segment, giv-

ing masses to the weak bosons and leaving a residual electromagnetic interaction.

This mechanism also gives masses to all of the fermions, apart from the neutrinos

which remain massless due to lacking a right-handed counterpart and a coupling to

the Higgs.

Despite the immense predictive power of the Standard Model, for phenom-

ena such as the electron magnetic moment [33] and the existence of the weak

bosons [34, 35], there are still many outstanding problems which mean that the

theory is incomplete. Some of these are theoretical problems: the question of why

the Higgs mass is so small when it is expected to receive very large quantum correc-

tions from its interactions with high energy physics [36]; the unexplained absence

of a strong CP violating phase when it is expected to be of O(1) [37], and the fact

that the SM has 19 free parameters whose values are unpredicted by theory (or can

take any value within a particular range) [38]. Others are experimental discrepan-

cies including the anomalous muon magnetic moment as measured at Fermilab [39]

and the lack of direct detection of dark matter or energy [40, 41].

One further problem for the Standard Model is the discovery of neutrino oscil-

lations and its implication for neutrino masses. The possibility of neutrinos oscillat-

ing between different flavour states was first suggested by Pontecorvo in 1968 [42]

building upon his previous work on neutrino oscillations and the suggestion of

Maki, Nakagawa and Sakata that the flavour states of neutrinos may be mixings
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of mass states [43]. Pontecorvo accurately predicted that terrestrial experiments

to measure the flux of electron neutrinos produced by the sun would find a deficit

compared to that calculated using solar models, a result verified by the Homes-

take experiment in 1968 [44]. The final proof that this reduction was being caused

by oscillations came jointly from the Super Kamiokande, SNO and KamLAND

experiments between 1999 and 2003 [45, 46, 47]. These results had profound con-

sequences as they implied that at least two of the three neutrino generations have

mass, a result inconsistent with the Standard Model [48] 1.

Given the discovery of neutrino masses, neutrinos initially appeared to be a

potential candidate for dark matter with, if they were the sole contributor, their

masses being required to satisfy ∑mν = 15 eV [50]. However, this is now known to

be incompatible with many different measures of the neutrino mass. Experiments

measuring the matter distribution of the universe, such as Planck, are sensitive to

neutrinos because their free streaming erased anistropies in the early universe. How-

ever, such bounds are highly model dependent and vary significantly with the choice

of data sets and free parameters. Some analyses have placed limits in the range

∑mν < 0.12−0.54 eV at 95% CL [51]. A confirmed measurement of this quantity

could potentially provide information not only about the absolute neutrino masses

but also their mass ordering, given that the oscillation mass splittings imply limits

on the sum of masses of ∑mν ≳ 0.06 eV or 0.10 eV depending upon which neutrino

is the lightest.

Whilst oscillation experiments are able to determine the difference between

neutrino masses, they are insensitive to their absolute value and give no indica-

tion as to how their masses are generated. In addition to cosmological measures

the other two currently competitive ways of measuring their absolute values are

through single beta decay and neutrinoless double beta decay. Single and double

beta decay, the subjects of this thesis and explained in greater detail in future chap-

ters, involve the nuclear decay in which d → u+ e−+νe, where u/d are up/down

1Alternative explanations for neutrino oscillations, not requiring neutrino masses, include
Lorentz/CPT violation which add terms which mix the different neutrino flavours. However, so
far it has not been possible to reproduce all of the neutrino oscillation experimental results using
such a model [49].
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quarks, e− is an electron and νe is an electron anti-neutrino. Single beta decay

is sensitive to the neutrino mass through its impact on the energy spectrum of the

emitted electron [52]. In neutrinoless double beta decay, if the neutrino has equal

particle and anti-particle states (called ‘Majorana’) then the double decay can oc-

cur 2d → 2u+2e−. The rate of this process would be directly dependent upon the

neutrino masses because of the requirement of a neutrino helicity flip and would

identify the neutrino as the first known Majorana fermion [53].

Single beta decay experiments are the only guaranteed method to directly mea-

sure the neutrino mass (with double beta decay experiments requiring that the neu-

trino is found to be Majorana). The current best limit comes from the KATRIN

experiment which measures the integrated spectrum close to the maximum electron

energy and has placed a limit on the effective single beta decay mass (defined in

Section 3.3.1) of mβ < 0.8 eV [54]. Whilst the experiment is currently still in oper-

ation, there are limitations on how small a mass it can measure given its underlying

technology. This has led to work being done on a new generation of experiments

based upon the technique of Cyclotron Radiation Emission Spectroscopy (CRES)

which will attempt to use the detection of cyclotron radiation to precisely measure

the individual electron energies. This, along with a change to use atomic rather than

molecular tritium, will allow for unprecedentedly high energy resolution and statis-

tics along with sensitivity to a much greater range of the energy spectrum. Devel-

opment is currently running both for the Project 8 experiment [55] and the CRES

Demonstration Apparatus (CRESDA) [56]. For this future generation of experi-

ments there is the potential of sensitivity to many additional effects beyond those

for which they are primarily designed, a selection of these being the subject of this

thesis. There is also continued work being performed on increasing the magnitude

and precision of double beta decay experiments including for LEGEND-1000 [57]

and KamLAND2-Zen [58]. Crucially, if neutrinoless double beta decay is discov-

ered, precision measurements of the rate will be essential as an additional means of

identifying the neutrino masses. This thesis will discuss two corrections that affect

the theoretical prediction for this rates.
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In this thesis I will be studying the effects of multiple different examples of

exotic physics within single beta decay as well as an additional correction to the

exotic process of neutrinoless double beta decay. In Chapter 2, I will describe in

greater detail the foundations of the Standard Model and how neutrinos sit within

it. In Chapter 3, I will: derive the expected energy and angular spectra for single

and double beta decay; explain the correction factors to this derivation; describe the

current and future single and double-beta decay experiments and give my statistical

approach to measuring exotic physics. In Chapter 4, I will analyse the effect of

exotic currents on the single beta decay spectrum and in Chapter 5, I will expand

this to the production of heavy, sterile states. In Chapter 6, I will look at the sensi-

tivity to two Lorentz violating effects on the single-beta decay spectrum. Finally, in

Chapter 7, I will explain how to apply two key corrections to the double-beta decay

spectrum and the significance of their impact. A summary of results will be given

in the final conclusion in Chapter 8.



Chapter 2

The Standard Model and Beyond

In this chapter I will give a description of the Standard Model as it currently stands.

Working up from the underlying Lorentz structure I discuss the particles that make

up the Standard Model, how they interact and how their masses are generated. Fi-

nally, I will discuss the ways in neutrino oscillations imply physics beyond the

Standard Model and how neutrino masses could be added.

2.1 Lorentz Structure
The Standard Model of particle physics is formulated in the mathematical language

of a quantum field theory (QFT) - a theory of particles evolving under local interac-

tions which obey special relativity. The fundamental objects (i.e. particles) of this

theory are states of well defined Lorentz structure. They are characterised by their

representation under the two copies of the Lie algebra sl(2,C) which make up the

connected component of Lorentz transformations (i.e. boosts and rotations) which

neither invert the time nor spatial directions. This representation is denoted by the

label (i, j) where i and j take integer or half-integer values (e.g. 0,1/2,1...). This is

often simplified for the three types of particle observed in nature, with these referred

to as spin-0 for (0,0), spin-1/2 for (1/2,0) or (0,1/2) and spin-1 for (1/2,1/2).

These particles are then further grouped into two categories, bosons and fermions.

Bosons are those states with integer spin, they also obey the spin-statistics law

that under the exchange of identical bosons any interaction will remain unchanged.

Fermions are states with half-integer spin which obey the anti-commutation relation
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Name Scalar Weyl Spinor Dirac Spinor Vector

Notation φ ψL ψR Ψ Aµ

Representation (0,0)
(1

2 ,0
) (

0, 1
2

) (1
2 ,0
)
⊕
(
0, 1

2

) (1
2 ,

1
2

)
Table 2.1: Particle categories as defined by their Lorentz properties.

that two interactions related by the exchange of two identical states are opposite in

sign. This has the significant property of forbidding two fermions from occupying

the same quantum state, a law now known for its 1925 discoverer as the Pauli ex-

clusion principle [59].

All particles are expected to follow the special relativity dispersion relation

E2 − |p⃗|2 = m2 where E is its energy, |p⃗| the magnitude of its momentum and m

its mass. In the language of a QFT, for a scalar field φ(x) this becomes the Klein-

Gordon equation:

∂µ∂
µ

φ = m2
φ , (2.1)

where µ = 0, ...,3 labels the temporal and spatial derivatives. The definition of the

state ‘scalar’ and others is given in Table 2.1.

The equivalent expression for the vector state Aµ is the Proca equation:

∂µ∂
µAν −∂

ν
∂µAµ +m2 Aν = 0. (2.2)

For spinors, there are two different states corresponding to the two different

spin-1/2 representations. These are labelled as ψL and ψR for reasons that will be

explored later. It is impossible to construct equations for each of these spinors indi-

vidually that also include a mass. The equation that can be derived is for massless

spinors which will satisfy

iσ µ
∂µψL = 0, iσ µ

∂µψR = 0 (2.3)

where σ µ = (1,σ i), σ
µ = (1,−σ i) form the basis for hermitian 2×2 matrices. In
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order to create a term involving mass a new combined object needs to be created,

Ψ, which transforms in the representation (1/2,0)
⊕

(0,1/2). This has:

Ψ =

ψL

ψR

 , (iγµ
∂µ −m)Ψ = 0, (2.4)

where Ψ is here written explicitly in the chiral basis, the γµ are 4×4 matrices and

satisfy the defining relation 1
2{γµ ,γν} = ηµν , the metric tensor. In this equation,

the mass term couples together the two types of Weyl spinors. Showing this again

in the chiral basis, in terms of the two Weyl fields this equation isiσ µ∂µψL −mψR

iσ µ
∂µψR −mψL

= 0, (2.5)

which shows explicitly how introducing a mass term necessarily requires mixing

of right and left-handed Weyl fermions which is why massive equations cannot be

defined for them each individually.

Ultimately, the above Eqs. (2.1), (2.2) and (2.4) give the free evolution of these

spin-0, 1/2 and 1 states.

2.2 Gauge Theories

Given the equations that dictate the free propagation of these fields, the next key

stage is to consider how to include interactions. In order to describe this, it is more

helpful to change to using the Lagrangian formalism. For example, the appropriate

Lagrangian for a spin-1/2 fermion which will obey the Dirac equation as above is

LDirac = Ψ(iγµ
∂µ −m)Ψ, (2.6)

where Ψ = Ψ†γ0 and † hermitian conjugation.

Interestingly, such a Lagrangian has a symmetry (or redundancy) in the choice

of Ψ with the redefinition Ψ → eiαΨ, for α a real number, leaving the resulting

Lagrangian and thus state evolution unchanged. This implies that there is an under-
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lying redundancy in the choice to use a 4-component spinor to describe the state.

This arbitrariness means that any two states related by this transformation must in

fact be the same state, without any physical difference. Taking this even further, if

the principle is maintained that all physical interactions must be local, and thus the

choice of notation at one place in space-time is independent of the choice at another,

it should be possible to redefine the spinor at each point in space-time independently

of each other. In other words it should be possible to take α → α(x), a function of

space-time co-ordinates. However, such a change clearly causes a problem given

the derivative with the transformation giving

∂µΨ → ∂µ(eiα
Ψ) = eiα

∂µΨ+ ieiα
Ψ∂µα. (2.7)

The solution to this comes in recognising that there are two objects in this term, it

can be required that as well as the transformation of Ψ there should also be a change

in ∂µ to maintain the form of the expression. The modified form of this, called Dµ

the ‘covariant’ derivative, will transform and can be found by requiring

DµΨ → D′
µ(e

iα
Ψ)

!
= eiαDµΨ,

⇒ D′
µ = Dµ − i(∂µα). (2.8)

Inspiration for where such an object can be found comes from looking at the Proca

equation once more. In the massless case the Lagrangian for this is given by

LProca =−1
4

FµνFµν , Fµν = ∂
µAν −∂

νAµ . (2.9)

This equation again has a gauge redundancy with the transformation Aµ → Aµ +

∂ µα describing the same object. By comparing this to what is required from the

modified derivative, it’s clear that the required transformation properties can be

satisfied by using the form Dµ = ∂µ − iAµ with the Aµ and the Ψ transforming

simultaneously as given.

The question then arises what happens if there are multiple fermionic fields in
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our theory. Are they each allowed to transform with their own individual α each of

which simultaneously transforming a different Aµ? In principle, yes. However, it is

also possible that they could all interact with the same vector field but with different

strengths. Thus the final form of the covariant derivative is chosen to be

Dµ = ∂µ − iqAµ → ∂µ − iqAµ − iq∂µα, Ψ → eiqα
Ψ (2.10)

where q is a number which can take different values for different fermions.

Looking back at the Dirac Lagrangian, it can now be seen that there has been

induced an interaction term LAΨΨ = −iqAµΨγµΨ allowing for the exchange of

four-momentum between the different states represented by the spinors and vector.

The value of q is then the strength of this interaction and is given the name of

‘charge’. Overall, what has been described is called a U(1) gauge symmetry, so

called because the transformation of the fermion is given by an element of the group

U(1). This is the basis for quantum electrodynamics.

Whilst U(1) is the simplest example of a gauge theory, it is possible to consider

the use of other groups to describe interactions involving fermions. This is called

a non-abelian gauge theory when the chosen group is non-commutative. These

types of groups have multiple degrees of freedom with the transformations most

often being expanded in a basis of ‘generator’ matrices. Thus in going from U(1)

to a non-abelian theory, α → αaT a where the T a form a basis of matrices for the

transformation and αa =αa(x) are functions which parameterise the space-time de-

pendent transformations. Different objects transform under the action of this group

according to their representation under the group. There are an infinite number of

different representations for the SU(N) groups but of interest here are the trivial,

fundamental and adjoint representations. Whilst the spinors could transform under

any representation, for all cases considered within the standard model the spinors

will transform either trivially or under the fundamental representation of the group.

This means that a number of spinors equal to the dimension of this representation

(which for SU(N) is N) will be coupled to each other and are often depicted as a

single vector transforming under the fundamental. Similarly to before, this takes
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the form 
Ψ1
...

ΨN

→


Ψ′

1
...

Ψ′
N

= exp(iqα
aT a)


Ψ1
...

ΨN

 , (2.11)

for T a being N × N matrices in the fundamental representation. This gives the

transformed fields Ψ′ as a linear combination of original fields Ψ.

From the way in which the vector fields have been included in the covariant

derivative, they will be promoted to N ×N matrices. This is often decomposed

using the generators of the group into a set of N2 −1 fields written as Aa
µ(X). This

field will transform in the adjoint representation of the group as

Aa
µT a → A′a

µT a = Aa
µ UT aU−1 +(∂µU) U−1, (2.12)

where U = exp(iqαaT a) (this expression clearly reduces to the original case when

U is abelian). This, again, gives the transformed fields A′a as a linear combination

of original fields Aa.

Analogously to before, the covariant derivative is defined as Dµ = ∂µ − iqAµ

where now all parts are N×N matrices with an implicit identity matrix multiplying

the derivative. In index notation, this gives a Dirac Lagrangian

LDirac = Ψiγ
µ(∂µδi j − iqAa

µ(T
a)i j)Ψ j, (2.13)

with i, j running from 1 to N and a taking values from 1 to the number of generators,

N2 −1.

To account for the non-abelian nature of these vector fields a redefinition of the

electromagnetic field tensor is required to the form

Fµν =
i
q
[Dµ ,Dν ] = ∂

µAν −∂
νAµ − iq[Aµ ,Aν ], (2.14)

⇒ Fµν
a =

i
q
[Dµ ,Dν ]a = ∂

µAν
a −∂

νAµ
a +qAµ

b Aν
c fabc, (2.15)
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where the square brackets denote commutation and fabc is the structure constant of

the group in question defined as [T a,T b] = fabcT c for the generators of the group.

The new form of the Lagrangian, in order to preserve its gauge invariance, is

LF2 =−1
2

Tr[FµνFµν ] =−1
4

Fa
µνFa,µν , (2.16)

where the normalisation of the generators of the adjoint has been chosen to have

Tr[T aT b] = 1
2δ ab.

This final result is significant as it introduces triplet and quartic terms in the

Lagrangian for the vector fields, meaning they can interact directly between them-

selves. These terms are proportional to the structure constant fabc and thus vanish

for abelian theories. This will cause substantial differences in the behaviour of the

fields, as described below.

This entire procedure can also be applied to scalar fields. The scalar will trans-

form in the same way as the spinor in Eq. (2.11), in the fundamental representation

of the group. The Klein-Gordon equation is modified in the same way as the Dirac

equation with the derivative taking its covariant form to give (in the case of a com-

plex scalar)

LKG = (Dµφ)∗(Dµ
φ)−m2

φ
∗
φ . (2.17)

Due to the presence of two copies of the covariant derivative, there will be terms

which appear quadratically in the vector field. This will have significant conse-

quences later.

2.3 The Standard Model
Given these fundamental mathematical building blocks, it is now possible to de-

scribe the Standard Model. The Standard Model is composed of bosons, of spin

0 and 1, and fermions, of spin-1/2. Its matter (fermionic) content is composed of

three generations, with five types of Weyl fermion in each generation. Notably, all

of these fields in the Standard Model are massless, apart from the Higgs which has
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SU(3)C SU(2)W U(1)Y
H 1 2 1

2

QL 3 2 1
6

uR 3 1 2
3

dR 3 1 −1
3

lL 1 2 −1
2

eR 1 1 −1

G 8 1 0

W 1 3 0

B 1 1 0

Table 2.2: Representations (SU(3)C and SU(2)W ) and hypercharges (U(1)Y ) of all Standard
Model fields.

a mass-like term. Including masses for gauge fields is forbidden because it violates

gauge symmetry for all abelian and non-abelian fields. Similarly, combining left

and right Weyl spinors into a Dirac spinor is forbidden as the left and right spinors

are charged differently under the different gauges.

The following is a description of the spin-1 vector fields, the five fermionic

fields and the spin-0 Higgs Boson. A summary of the UV Standard Model compo-

nents is given in Table 2.2.

2.3.1 Spin-1 Vectors

There are three spin-1 vector fields within the Standard Model, each one mediating

one of the three fundamental forces. The Lagrangian for their kinetic terms is

LVector =−1
2

Tr[GµνGµν ]− 1
2

Tr[WµνW µν ]− 1
4

BµνBµν . (2.18)

The SU(3)C kinetic term, Gµν and the SU(2)W kinetic term, Wµν , are matrices and

functions of their respective fields, Gµ and Wµ , as in Eq. (2.14) and the U(1)Y kinetic

term, Bµν , is a function of Bµ as in Eq. (2.9).

The force obeying the U(1)Y abelian symmetry is called the hypercharge and

has only one mediating field. Fermions charged under this force have different

charges which are expressed as multiples of the fundamental charge g′. The force
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with the non-abelian symmetry SU(2)W is called the weak force. The number of

interacting states, given by the dimension of the adjoint of the symmetry, is three.

All states charged under this symmetry have a charge given as q = g. Finally, the

other non-abelian symmetry, SU(3)C, is called the strong force. This has eight

mediating fields and a fundamental charge q = gs. For both of the non-abelian

forces, the form of the Lagrangian means that there will be self-interactions between

the vector fields of the same type, with both three and four point vertices.

2.3.2 Quarks

The fermion states which are charged under the SU(3) gauge group are called

quarks. They come in three varieties and follow the Lagrangian

LQuark =QLiγµ(∂
µ − igsGµ − igW µ − i(g′/6)Bµ)QL

+uRiγµ(∂
µ − igsGµ − i(2g′/3)Bµ)uR

+dRiγµ(∂
µ − igsGµ + i(g′/3)Bµ)dR, (2.19)

where the inclusion of a further two generations with identical charges has been

omitted.

The left-handed Weyl fermions of this type are charged under both SU(3)C and

SU(2)W . They are in the fundamental representation of SU(3)C, with an interaction

between 3 different ‘colour’ varieties, and are also charged under SU(2)W , meaning

they have 2 ‘weak’ varieties. Overall, this means there are a total of six states which

carry this level of charge. They also all carry a hypercharge of 1/6.

Additionally, there are two right-handed, quark Weyl fermions. Both types are

charged under SU(3)C but not under SU(2)W , meaning that there are 3 varieties of

each. They are differentiated by their hypercharge, with one, called up-type, having

hypercharge 2/3 and the other, called down-type, having hypercharge −1/3.
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2.3.3 Leptons

Those fermion states not charged under SU(3)C are called leptons. They come in

two types with a Lagrangian

Llepton =lLiγµ(∂
µ − igW µ + i(g′/2)Bµ)lL

+eRiγµ(∂
µ + ig′Bµ)eR, (2.20)

where again a further two identically charged generations have been omitted.

The left-handed fermions of this type are charged under SU(2)W and thus come

in two varieties. They also carry hypercharge -1/2. The right-handed fermions are

uncharged in SU(2)W and thus come only in a single variety called electron-like.

They do, however, carry a hypercharge of -1.

2.3.4 Higgs Boson

The Higgs boson is a spin-0 boson which interacts with nearly all of the other Stan-

dard Model fields. The kinetic part of the Lagrangian for the Higgs, including

interactions with the other bosons, is

LHiggs = (DµH)†DµH +µ
2H†H −λ (H†H)2, (2.21)

Dµ = ∂µ − igWµ − i(g′/2)Bµ , (2.22)

where µ2 and λ are self-coupling constants. It is worth noting that whilst µ2H†H

looks similar to the conventional mass term for a scalar field, the sign is opposite to

that in Eq. (2.17). This is very significant for the form the Standard Model takes at

low energies.

The Higgs boson is a scalar charged under SU(2)W and thus comprised of two

scalar fields. It also carries a hypercharge of 1/2. As well as interacting with the

other bosons and itself, it also couples to nearly all of the fermions through its

Yukawa interactions. Crucially these interactions include both left and right handed
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Weyl fermions. They take the form

LYukawa =−Yi jdRiH
†QL j − Ỹi juRiH̃

†QL j −λi jeRiH
†lL j +h.c., (2.23)

where H̃ = iσ2H∗, for σ2 the Pauli matrix, Yi j, Ỹi j & λi j are coupling constants

coupling the ith and jth generations of each type of fermion and h.c. denotes taking

the hermitian conjugate to maintain hermiticity. H̃ is merely a field redefinition of

H with a hypercharge -1/2.

In determining the types of Yukawa couplings possible, it is important to

ensure that the combination of fields within the Lagrangian are gauge invariant.

Firstly, this means that the two fermions must be both quarks or both leptons to

maintain SU(3)C invariance. SU(2)W invariance is maintained by coupling the

Higgs to exactly one left-handed state. Finally, U(1)Y is ensured through cancel-

lation of the hypercharges, this dictates whether H or H̃ is used (noting that the her-

mitian conjugation of the right-handed fermion and H inverts the charge). Overall,

there are three combinations of fermions that meet these conditions: the left-handed

quark fields QL with either of the right-handed up-like uR or down-like dR and the

left-handed lepton field lL with the right-handed electron-like eR. For each of these

pairings there are three generations that can be used for either of the left and right-

handed fermions with the value of the Yukawa coupling constants (Y , Ỹ or λ ) being

different for each choice of generational pair.

2.4 Higgs Field Perturbations and the Low Energy

Standard Model

The properties of the Higgs field depend heavily on the form of the potential it feels

due to its self interaction: V (H†H) =−µ2H†H +λ (H†H)2. In the early universe,

the Higgs field existed within a heat bath with all of the other Standard Model fields

at finite temperature and interacting with the Higgs field. These interactions pro-

vided a positive quantum correction to the Higgs potential, modifying the quadratic

part such that −µ2 → aT 2−µ2 with T the temperature and a a constant function of
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the coupling parameters. When T is sufficiently large this quadratic prefactor will

thus be positive. In this case, the minimum of the Higgs potential will be at H = 0

and fluctuations in the field can be calculated about this as normally expected in

Quantum Field Theories. However, as the universe cooled this prefactor changed

to being negative, leading to a phase transition. Once T = 0, the Higgs potential

has a different minimum at ⟨H⟩†⟨H⟩= µ2/(2λ ) = v2/2. Instead of being perturbed

around 0, at low temperatures the Higgs field should instead be evaluated around

this minimum value (also known as the expectation value as it is the average value

for small fluctuations). The field H is reparameterised as H = ⟨H⟩+ h with ⟨H⟩

being the constant expectation value and h the dynamical field. The solution to

⟨H⟩†⟨H⟩= µ2/(2λ ) = v2/2 constrains only one of the Higgs’ four degrees of free-

dom, but using the SU(2)W and U(1)Y redundancies the conventional choice can be

made to take ⟨H⟩† = 1/
√

2(0, v) (writing H explicitly as an SU(2)W doublet). This

however creates a problem, as the new dynamical field, h, no longer follows the

gauge transformation properties of H and appears to break the gauge invariances of

the terms in which the Higgs appears in the Lagrangian. This can be seen explicitly

by looking at what happens to the Higgs potential

V (h) =λ

(
H†H − µ2

2λ

)2

− µ4

4λ

=λ

(
v2

2
+ ⟨H⟩†h+h†⟨H⟩+h†h

)2

− µ4

4λ
. (2.24)

If the field h is transformed using the usual SU(2)W or U(1)Y gauge groups then the

constant parts of this expression and h†h are still invariant. However, the two terms

of the form h†⟨H⟩ do not follow the gauge symmetry under either of these as the

expectation value is constant and doesn’t cancel out the gauge transformation in h.

Crucially, the underlying gauge invariances have not been broken. This is

merely a redefinition of the Higgs field with gauge transformations of the original

field H still obeying the appropriate invariance. However, at low energies the pertur-

bations around the minimum, the behaviour that will manifest as physical particles

in the theory, do not follow this symmetry and thus the gauge redundancy appears
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to have been lost. This result has great significance not only in the Higgs sector

but for all the particles that have interactions with the Higgs. New combinations

of these particles will be chosen which will all no longer directly follow the gauge

symmetries. The boundary between the full and low energy forms of the Standard

Model is the expectation value of the Higgs, at which the difference between the

choice of H or h as the dynamical field is significant.

For the fermions, the impact of this is felt due to the Yukawa interactions which

now introduce Dirac mass terms. For example, in the leptonic sector writing the

left-handed pair as an explicit SU(2)W doublet, lL =(νL, eL )⊺, gives

Lm = Y eR
1√
2

0

v


†νL

eL

+h.c.=
Y v√

2
eR eL +h.c., (2.25)

where we have chosen the same letter e to refer to the left and right-handed fermion

fields to denote that they are now coupled in a Dirac spinor field through their mass

m = Y v/
√

2. This procedure can be repeated for all the Yukawa coupling terms,

giving mass to the new Dirac states of the electron, the up quark and the down

quark. Each generation of fermionic states will have different Yukawa coupling

values and thus will pick up different masses. This has led to the use of separate

names for each of the fermions of each generation. The full way in which this is

realised is explored later in Section 2.5. Notably, the only fermion to not obtain a

mass in this process is the neutrino which lacks a right-handed Weyl spinor νR and a

Yukawa coupling to the Higgs. The addition of such a particle would be simple but

is not included in the Standard Model as there is no direct evidence for the existence

of such a state. Methods for generating neutrino masses will be discussed later.

A similar process of mass generation happens to the bosons that couple to the

Higgs field through the covariant derivative kinetic term

LHiggs ⊃(DµH)†(DµH)

=

((
∂µ − ig′

2
Bµ − igWµ

)
H
)†((

∂
µ − ig′

2
Bµ − igW µ

)
H
)
. (2.26)
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Expanding the W boson in the basis of the generators of SU(2) symmetries, and

expanding H around its expectation value and rearranging gives

LHiggs ⊃
g2v2

4
1√
2

(
W 1

µ − iW 2
µ

) 1√
2

(
W µ1 + iW µ2)

+
(g2 +g′2)v2

8
1√

g2 +g′2
(gW 3

µ −g′Bµ)
1√

g2 +g′2
(gW µ3 −g′Bµ). (2.27)

In other words, the bosonic fields are recombined into new states W±
µ = 1/

√
2(W 1

µ ±

iW 2
µ ) and Zµ = 1/

√
g2 +g′2 (gW 3

µ − g′Bµ) with masses MW = gv/2 and MZ =√
g2 +g′2 v/2, respectively. Significantly, the orthogonal field combination Aµ =

1/
√

g2 +g′2 (g′W 3
µ +gBµ) does not pick up a mass term. This is the field that shall

henceforth be called the ‘photon’.

As stated before, gauge transformations are broken by mass terms which take

the form WµW µ . Again, in this case the symmetries are not broken because terms

of this form have arisen from gauge invariant terms involving the Higgs, they are

merely being obscured by the choice of new field definitions which do not individu-

ally have these symmetries. For these fields, the interaction they mediated has been

broken, they will continue to impact upon the fermions at low energies only through

effective operators (as discussed later). However, for the field that remains mass-

less there is a new gauge symmetry that can be defined. Rearranging of the kinetic

terms for the weak and hypercharge shows that Aµ can propagate as a massless bo-

son following Lorentz symmetry. Furthermore, the re-expression of the covariant

derivative in terms of this field takes the form,

Dµ ⊃−ie Aµ(T 3 +Y ), (2.28)

where T 3 and Y are elements of the representations of the corresponding fermion

being acted upon (T 3 = σ3 or 0 depending upon whether the field is charged under

SU(2)W and Y is the hypercharge multiplied by the identity), e= gg′/
√

g2 +g′2 and

sinθW = g′/
√

g2 +g′2 is the Weinberg angle.

The residual gauge symmetry mediated by Aµ is U(1)Q with the subscript to
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SU(3)C U(1)Q Massive?

h 1 0 ✓

u, c, t 3 2
3 ✓

d, s, b 3 -1
3 ✓

e, µ, τ 1 -1 ✓

νe, νµ , ντ 1 0 ×
G 8 0 ×

W± 1 ±1 ✓

Z 1 0 ✓

A 1 0 ×

Table 2.3: Representations (SU(3)C) and charge (U(1)Q) of all Standard Model fields as
well as the number of fields of each type (per generation for fermions).

distinguish it from the hypercharge. It acts diagonally due to the diagonal form

of T 3 and Y , in other words it doesn’t mix between any of the different types of

fermion. The redefined Zµ boson is similarly also diagonal. The W± bosons how-

ever are non-diagonal and will link together particles that were in the same SU(2)W

doublet. Despite the redefined massive fields not being explicit gauge bosons, they

will still appear as mediators within interactions but now suppressed by their masses

1/M2
W , 1/M2

Z . Due to the self-interaction in the non-abelian theory of SU(2)W , the

W±
µ bosons are charged under the residual U(1)Q symmetry. The Aµ and Zµ are,

however, completely neutral. As the gluons Gµ have no interaction with the Higgs,

they remain massless and require no redefinition. A summary of the new charges

and field combinations is given in Table 2.3.

In summary, at low energies the Standard Model has one massive scalar par-

ticle, 3 massive and one massless fermion per fermion generation, and 3 massive

and 9 massless bosons. The SU(3)C gluon is unchanged and mediates the strong

force between the two types of quark fermions, the up and down. The SU(2)W and

U(1)Y bosons have mixed leaving a residual U(1)Q charge. This charge is mediated

by the massless photon which interacts with all fermions, apart from the neutrino,

and with the heavy charged W bosons. The massive bosons mediate a short-range

weak force, suppressed by their heavy masses, which still only interacts with the
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left-handed component of the Dirac fermions.

2.5 Yukawa Couplings and the CKM Matrix

For the quarks at low energies the Yukawa terms will take the form

LQuark Mass =− v√
2

Yi j dRi dL j −
v√
2

Ỹi j uRi uL j +h.c., (2.29)

where uL (dL) denotes the upper (lower) component of QL, i = 1, 2, 3 denotes the

generation of particle and Yi j & Ỹi j are the Yukawa couplings for the up-like and

down-like states.

When considering the free evolution of states, it is less convenient mathemat-

ically to consider them as continuously mixing between different generations. In-

stead, the states should be redefined with a choice that diagonalises the mass matrix

to give three particles which each evolve independently obeying E2 − |p⃗|2 = m2.

Each of the left and right-handed fermion components can be redefined separately

using unitary (to preserve probability normalisation and the correct form of the ki-

netic Lagrangian) 3×3 matrices V u,d
L,R . The redefined states are related using

u′L =V u
L uL, u′R =V u

R uR, (2.30)

d′
L =V d

L dL, d′
R =V d

R dR, (2.31)

where the redefinition matrices are chosen to give new, diagonalised mass matrices

Mu =V u
R

(
v√
2

Ỹ
)

V u†
L , Md =V d

R

(
v√
2

Y
)

V d†
L . (2.32)

Whilst this now makes the evolution of free states more convenient, it is impor-

tant to go back to the interaction terms and rewrite them in this new choice of basis.

In particular, the weak terms, involving the weak bosons W± and both up-like and

down-like states, will now take a different form due to the way that the up-like and

down-like states have transformed independently. Looking at the weak Lagrangian



2.5. Yukawa Couplings and the CKM Matrix 43

for the quarks (including an implicit sum over generations i):

LQuark Weak ∝− i dLi γ
µ W−

µ uLi +h.c.

=− i d
′
L j γ

µ W−
µ (V d

L V u†
L ) jk u′Lk +h.c. (2.33)

Crucially, the matrix V d
L V u†

L ̸= I, the identity. For the interaction between the first

generation of the redefined states, u′1 and d′
1, there is a reduction by a factor of(

V d
L V u†

L

)
11

compared to the interaction between the first generation of the original

states, u1 and d1. In addition, whilst there was no interaction between different

generations of the u and d states, there are now terms that allow transitions between

different generations of the u′ and d′ states. This will occur whenever there is a

non-zero mixing term
(

V d
L V u†

L

)
i j
̸= 0 for i ̸= j. This combination of the left and

right mixing matrices is called the CKM matrix after Cabibbo [60], Kobayashi and

Maskawa [61] who first hypothesised its existence, VCKM = V d
L V u†

L . The CKM

matrix is, by construction, unitary meaning that it should have at most 9 degrees

of freedom. The freedom in field definitions (6 fields but reduced to 5 degrees of

freedom because an equal shift in all fields would cancel out) can be used to simplify

this to parameterisation by three real mixing angles and one real CP violating phase

(discussed in more detail later). In this paramaterisation

VCKM =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 , (2.34)

where ci j ≡ cosθi j, si j ≡ sinθi j for the three mixing angles θ12, θ13 & θ23, and

δCP is the CP violating phase. Experimentally the CKM has thus far been found to

be unitary and only slightly deviates from the identity with the diagonal elements

being ≥ 0.973 [62].

Interaction terms involving the photon, Z boson and gluons are all unaffected

by this field redefinition as they include terms like uu and dd for which the unitary
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transformation matrices cancel leaving the interaction diagonal and unchanged in

magnitude.

For the leptons the Yukawa interaction is

LLepton Mass =− v√
2

λi j eRi eL j +h.c. (2.35)

where eL is the lower component of lL in the chiral basis. Identically to before, the

states are redefined using unitary matrices to diagonalise the mass matrix

e′L =Ue
L eL, e′R =Ue

R eR, Me =Ue
R

(
v√
2

λ

)
Ue

L
†. (2.36)

Crucially, unlike in the quark sector there is no Yukawa coupling involving the other

component of lL because there is no νR to pair with it. This means that when looking

at the weak force interaction

LLepton Weak ∝− i eLi γ
µ W−

µ νLi +h.c.

=− i e′Li γ
µ W−

µ ν
′
Li +h.c. (2.37)

where the redefined ν ′
L =Ue

L
†

νL has been chosen to cancel out the rotation matrix

coming from the electron part. This is possible because the neutrinos are massless

and thus mixing between the generations is arbitrary. So overall, this means that

within the leptonic sector of the Standard Model the weak force does not induce

transitions between different generations and there is no equivalent of the CKM

matrix.

2.6 Helicity and Chirality

When first considering the Lorentz properties of Weyl fermions the states were

given the notations left or right-handed depending upon their transformation prop-

erties under the SU(2)W representation of the Lorentz group. However, it was not

clearly defined in what sense these fields are ‘left’ or ‘right’ handed. This relates to

two properties of spinors, their chirality and their helicity.
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The chirality of a fermion is dictated by its transformation under the Lorentz

group. Defining γ5 = iγ0γ1γ2γ3 the left/right handed chiral states can alternatively

be defined as eigenspinors with

γ
5
Ψ =±Ψ, (2.38)

where the left (right) chiral state corresponds to the minus (plus) sign. This can

be seen clearly in the chiral basis in which γ5 = diag(−1,−1,1,1). This clearly

operates oppositely on the left and right-handed Weyl spinor components of the

Dirac spinor as originally defined in Eq. (2.4). Recalling that the original definition

came from the form of Lorentz transformation, this property is inherently Lorentz

invariant. It is however physically unmeasurable for free states as it has no impact

on the free evolution of a state with left and right-handed Weyl fermions obeying

the same equation, Eq. (2.3), up to a parity inversion (defined later). Chirality is

thus only observable when an interaction is introduced that violates parity, such as

the weak force which only interacts with left-handed states.

Helicity is instead defined by considering differences in the kinematics of the

spinor state. The helicity is defined as

h =
ŝ · p⃗
|p⃗|

. (2.39)

The helicity is a convenient quantity as it can be directly measured for any particle,

most famously using the Stern-Gerlach experiment in which a magnetic field is

used to infer the spin and from which it was demonstrated that the spin of particles

is quantised.

If Eq. (2.3) is used with the assumption that ψ follows an exponential form

exp(ip · x) and has a well-defined spin then the condition is reached E = ±ŝ · p⃗.

Comparing this to the helicity equation above, along with the massless disper-

sion relation E = |p⃗|, shows that for massless states h = ±1 with positive for the

right-handed states and negative for the left-handed states. Given this, for mass-

less fermions the helicity eigenvalue and chirality eigenvalue are exactly identical,
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hΨ = γ5Ψ =±Ψ. Even for massive states, if their energy is much larger than their

mass then this result will be approximately recovered.

In the low-energy Standard Model the fields are best defined in terms of Dirac

spinors with mass. For these states the helicity and chirality operators are still ap-

plicable but they are no longer identical and the state is not necessarily an eigenstate

of either. In the chirality case this can be seen from Eq. (2.5) in which the mass term

mixes together states of left and right-handed chirality. For the helicity this can be

understood by the fact that the angle between the spin and momentum of a particle

can be changed by Lorentz boosting with a speed faster than the particle.

States of well-defined chirality and helicity can be projected out of the Dirac

spinor through a projection operator. Recognising that (γ5)2 = 1 and h2 = 1 means

that projection operators can be defined for both in the form

Pc =
1
2
(1± γ

5), Ph =
1
2

(
1± ŝ · p⃗

|p⃗|

)
(2.40)

with, again, the positive sign giving a right-handed state and the negative a left-

handed state.

2.7 Discrete Symmetries and CPT Invariance
As well as the continuous symmetry of Lorentz transformations (parametrised by a

continuous variable), there are a set of discrete transformations which are in some

cases symmetries of the interacting theory. These are inversion of charge, parity and

time. All free states are invariant under each of these individually, both the original

and transformed states obey the same evolution equations. However, as discussed

before, the weak theory breaks the individual charge and parity symmetries due to

it only interacting with left-handed Weyl fermions (or right-handed anti-fermions).

2.7.1 Charge Inversion

The charge of a particle, under a certain gauge transformation, gives the relative

magnitude and sign of the interaction compared to other particles interacting in the

same theory. It appears as the parameter q within the covariant derivative, as in
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Eq. (2.10). Charge inversion supposes taking q → −q for all the charges under

which the particle interacts. Whilst the state Ψ has inverted charge compared to

Ψ it also has the opposite chirality. Instead, a charge conjugated state Ψc can be

defined which has opposite charge but the same chirality. This field is related to the

original by

Ψ
c = ηc γ

0 C Ψ
∗, (2.41)

where ηc =±1 is a particle dependent number called the ‘intrinsic charge’ and C is

a matrix satisfying the property C−1γµC =−γ
⊺
µ .

2.7.2 Parity Inversion

Parity inversion is the process of inverting all of the spatial dimensions, x⃗ → −⃗x.

This not only affects the spatial coordinates upon which the fields vary but also

the internal degrees of freedom within the field. A parity inverted Weyl fermion

will have opposite chirality to its original state. Defining xµ = (t , − x⃗), the parity

inverted fermion field is given by

Ψ
p(x) = ηp γ

0
Ψ(x), (2.42)

where similarly ηp = ±1 is the ‘intrinsic parity’. For spin-0 fields, the value of

ηp = 1 is called a scalar and ηp = −1 a pseudoscalar. Similarly for spin-1 fields,

they are called vector and axial fields, respectively.

2.7.3 Time Inversion

Time inversion occurs similarly but with inversion of the temporal dimension t →

−t. A time inverted fermion will have

Ψ
t(x) = ηt C−1

γ
5

Ψ(−x), (2.43)

where ηt is a numerical factor satisfying |ηt |= 1 and C is as before.
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2.7.4 CP Violation and the CPT Theorem

The violation of C and P symmetry in the weak force is evident when considering

the properties of the Weyl fermions listed in Table 2.2. The left and right-handed

states have different charges, meaning that a parity transformed left-handed state

has no right-handed equivalent with the same being true for charge transformations.

For the Standard Model at low energies, this is most evident when considering neu-

trinos. There exists no right-handed neutrino or left-handed anti-neutrino meaning

that decays to left-handed neutrinos must violate C and P symmetry. The com-

bined CP symmetry is also violated due to the CP violating phase in the CKM

matrix, Eq. (2.34). CP transformations of processes will conjugate the CKM ma-

trix, VCKM →V ∗
CKM meaning the complex components from the CP phase will lead

to different interaction rates. An example of this is in the decay of Kaons, in which

the difference between the CP related states us and su leads to CP violation in the

partial decay rates.

On the other hand, it is still believed that transformations under C, P and T

simultaneously are symmetries of the Lagrangian. This theorem is based upon

the calculation that, in general, a unitary (and thus probability conserving), local,

Lorentz-invariant QFT in flat space-time (i.e. following the principles of Special

Relativity) will be CPT invariant. This means that all CP violation must be matched

by an equivalent T violation and has significant consequences. This includes that

matter and anti-matter states of the same field must have equal masses and that the

decay rates of said states must be equal. Whilst the CPT theorem came from as-

suming Lorentz invariance, it is not necessarily the case that all Lorentz violation

would break CPT symmetry.

2.8 Beyond the Standard Model: Neutrino Oscilla-

tions and Mixing
Unlike in the quark sector, in which the two constituents of the left-handed QL are

matched by the two right-handed uR and dR, there is only one right-handed compo-

nent in the leptonic sector of the Standard Model, eR. This means that, as explained
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previously, the neutrino, ν , remains massless and there is no field redefinition be-

tween the flavour and mass eigenstates. However, this is known not to be true from

experimental measurements of neutrino propagation1.

As discussed in the introduction, neutrino oscillations were first discovered

in the measurement of solar neutrinos in the Homestake experiment of 1968 [44].

This experiment sought to measure neutrinos created in the various fusion pro-

cesses in the sun which easily propagate to the earth due to their weak interaction

strength [63]. It did so by measuring the weak process of neutrino capture, with

chlorine being turned into argon which could be easily measured through subse-

quent decays. The experiment found that the flux of neutrinos observed coming

from the sun was approximately one third of that expected from solar calculations.

Whilst initially it was assumed that there was some flaw in the theoretical calcu-

lations or experimental method, the conclusion was later reached that instead the

electron neutrinos being produced in the sun were mixing into muon or tau neutri-

nos in their propagation. This conclusion was verified by the further experiments of

Super Kamiokande, SNO and KamLAND in 1999-2003 [45, 46, 47]. The Homes-

take experiment was only sensitive to charged current interactions, in which a W±

is exchanged leading to the production of an electron from an electron neutrino.

The neutrinos had insufficient energy to generate a muon or tau so muon or tau

neutrinos couldn’t be detected. The later experiments, however, were also sensitive

to neutral current processes, with the exchange of a Z0 leaving the neutrino un-

changed, a process in which all three flavours of neutrino can partake. The nuclear

fusion within the sun is predicted to produce only electron neutrinos. By measur-

ing the neutral and charged currents, these experiments could verify that the total

flux across all three flavours was equal to that predicted with the electron neutrinos

partially changing into other flavours.

In order to explain this new phenomenon inspiration was sought from the quark

sector. The mixing between different flavour eigenstates can be described by an

equivalent to the CKM matrix, the Pontecorvo Maki Nakagawa Sakata (PMNS) ma-

1As mentioned before, attempts to describe neutrino oscillations using Lorentz violation are un-
able to recreate all of the experimental oscillation measurements [49].
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trix. It too can be parametrised by three mixing angles and one CP-violating phase,

identically to Eq. (2.34) (unless the neutrinos are Majorana, as will be discussed

in Section 2.9.3). The 3σ range for the absolute values of the PMNS measured by

experiments are [64]

|UPMNS|=


0.800−0.844 0.515−0.581 0.139−0.155

0.229−0.516 0.438−0.699 0.614−0.790

0.249−0.528 0.462−0.715 0.595−0.776

 (2.44)

with the value of δCP for normal ordering being 261+51
−59 degrees. Unlike the CKM

matrix, the PMNS has much larger off-diagonal elements with all terms in the ma-

trix being ≳ 0.1 [65]. The experimental uncertainties on these values are still sig-

nificant, up to 40% for 3σ uncertainty, meaning that it isn’t yet possible to assess

whether this matrix is unitary.

The PMNS matrix is implemented by considering the flavour eigenstates (those

that appear directly coupled to the electron in the weak interaction term Eq. (2.37))

as being composed of a mixture of mass eigenstates (those that propagate freely

according to the conventional dispersion relation). Mathematically this means

να = ∑
i

Uαiνi (2.45)

where α = e,µ,τ labels the flavour eigenstate, i = 1,2,3 labels the mass eigenstate

and Uαi is the PMNS matrix element.

The similarity between the PMNS and CKM matrices implies that they should

arise from a similar scenario, that of a difference between the flavour and mass

eigenstates of the particles. For the CKM, this mixing comes from both types of

quark having mass matrices that are non-diagonal for the flavour states. Applying

this same idea to the leptonic sector would thus requires that the neutrinos also have

a mass, something not predicted by the Standard Model. The idea of neutrinos

mixing due to a mass was first proposed by Pontecorvo [42] and Maki, Nakagawa
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and Sakata [43] before the first measurements of neutrino disappearance. For the

simplified model of only two generations, if the flavour eigenstate is interpreted as

a mixture of mass eigenstates νe = cosθν1+sinθν2 for PMNS mixing angle θ and

mass states νi, then the probability of disappearance (assuming the masses are much

less than their energy) is [64]

P(νe → νe) = 1− sin2(2θ)sin2
(

∆m2L
4E

)
, (2.46)

where L is the distance propagated, E is the energy of the neutrino and ∆m2 =

m2
2 −m2

1 is the squared mass difference. Thus by measuring the flux of neutrinos

for a range of energies, the mixing angle can be ascertained by looking at the peak

reduction in flux and the difference in masses by the difference in energy values

between peaks. In practice, oscillations have to be calculated in terms of three mass

eigenstates and both disappearance (remaining flux of original state) and appear-

ance (flux of different states) is used to measure the range of mixing angles. The

CP-violating phase can be calculated by measuring equivalent probabilities for neu-

trinos and anti-neutrinos. The CP phase appears suppressed by many products of

mixing angles and thus is subject to their uncertainties. This along with its small

impact on the probabilities means that it has the greatest uncertainty [66].

Due to the squaring in the disappearance probability, the free propagation of

neutrinos is insensitive to the sign of the mass difference between states. However,

the interaction between electron neutrinos and electrons affects neutrino propaga-

tion through matter. In the case of solar neutrinos, the matter effect allows for

the determination that the first mass state (the one which has the greatest electron

neutrino component) is lighter than the second state (with second greatest compo-

nent of the electron neutrino). However, the sign of the mass splitting between

these states and the third state is unknown. Given the magnitude of this splitting

(|∆m2
31| ≫ |∆m2

21|) this leads to two possibilities: either the third state is heavier

than the other two m1 < m2 < m3 which is called ‘normal ordering’ (NO) or the

third state is lighter m3 < m1 < m2 which is called ‘inverted ordering’ (IO).

In addition to the measurements of solar, atmospheric and long-baseline neu-
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trino propagation there are also short-baseline experiments, in which the neutri-

nos typically propagate over distances of around 102 −103 m with energies around

102 −103 MeV. Some experiments such as LSND [67] and MiniBooNE [68] have

found an excess of electron anti-neutrinos in the final flux of these experiments,

interpreted as νµ → νe transitions. For these experiments this could be interpreted

as evidence for an additional neutrino state, N, with a mass splitting of ∆m2 ∼ eV2

relative to the light neutrinos causing the process νµ → N → νe. Such states must

not carry any charges, and are thus called ‘sterile’, because the measurement of the

decay rate of the Z boson (which couples to all matter) to invisible states (neutri-

nos) is consistent only with three generations of neutrino. Whilst this does allow

for super-heavy neutrinos, mν > MZ/2, any light states with splittings as above

must be completely uncharged. In addition, any creation of N through mixing must

be suppressed, implying a small mixing angle with the active states. Despite this,

further searches for light sterile states from experiments, such as the successor Mi-

croBooNE, have found inconsistent results, with MicroBooNE instead observing a

deficit rather than excess of νe [69]. Overall, there are significant tensions between

the different appearance and disappearance data leaving the situation uncertain but

with an overall preference for a splitting of ∆m2 = 13 eV2 [70].

2.9 Beyond the Standard Model: Neutrino Mass

Generation

Given the overwhelming evidence for neutrino oscillations and the general con-

sistency with the theory that this comes from neutrinos masses, the question then

arises as to how neutrino masses are generated. In the Standard Model, neutrinos are

massless and exist only as part of the left-handed lepton lL without a right-handed

counterpart. A range of different ways of generating this mass are considered in this

section.
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2.9.1 Dirac Mass

The simplest way in which to introduce neutrino masses is to follow the pattern

of the Standard Model by introducing a right-handed state and coupling it via a

Yukawa interaction with the Higgs. The new right-handed state would necessarily

be neutral under SU(3)C as a lepton and neutral under SU(2)W as a right-handed

state. It must also have no hypercharge so that at low energies it becomes electrically

neutral under U(1)Q. Thus the right-handed state is completely neutral, a singlet

state under all symmetries, and called ‘sterile’. The mass term would then be

Lν ⊃−λ̃i jνR,iH̃†lL, j +h.c.=−νR,iMi jνL, j +h.c. . (2.47)

This mass matrix Mi j would need to be diagonalised in the same way as before with

ν
′
L =Uν

L νL, ν
′
R =Uν

R νR, Mν =Uν
R

(
v√
2

λ̃

)
Uν

L
†
, (2.48)

with the PMNS then being given by UPMNS =Ue
LUν

L
†.

Whilst this solution is perfectly valid, it requires a remarkably small Yukawa

coupling. The Yukawa couplings inferred from mass measurements for the other

fermions vary between around 10−6 −1 with 9 different states filling the full range

of these values. For the neutrinos, however, the current experimental limits place

the neutrinos at sub-eV masses (this will be discussed further in Chapter 3) meaning

that the Yukawa couplings must be at most ∼ 10−12, six orders of magnitude smaller

than that of the electron. Whilst theoretically possible, it is unappealing and would

make more challenging the search for an origin for the Yukawa coupling values.

This solution also requires the prediction of a brand new particle that is completely

neutral apart from its interaction with the Higgs. Whilst there are many theories that

predict the existence of light, neutral particles (such as to solve the Higgs hierarchy

problem or explain cosmological evolution) [71] such predictions are experimen-

tally uncomfortable as any such particle would be extremely challenging to directly

detect. Both of these facts have led many to consider alternative explanations for

the neutrino mass origins.
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2.9.2 Effective Field Theories and the Weinberg Operator

Thus far, all of the operators considered in the Lagrangian have been of dimension-4

or less, meaning that they can be written as a product of fields with combined mass

dimension less than or equal to 4, multiplied by a coupling constant of positive or

zero mass dimension. Terms of this form are useful because they can be renor-

malised, with the infinities arising from loops in the quantum field theory being

counteracted by counter terms to give finite predictions. However, terms of a higher

dimension can be considered if it is assumed that they are only valid up to a certain

energy scale. These are called Effective Field Theories (EFTs). The most famous

example of this is the weak force with the high energy form being equivalent at low

energies to the EFT

LFermi =− ig u γ
µ W−

µ (1− γ
5) d − ig e γ

µ W−
µ (1− γ

5) νe +h.c.

→−
√

2 g2

8 M2
W

[
u γ

µ (1− γ
5) d

] [
e γµ (1− γ

5) νe

]
+h.c. (2.49)

where, as before, g is the weak force coupling and MW the mass of the W boson. In

this case, the W mass gives the high energy cutoff, calculations with the low energy

form are valid below this energy scale but break down at higher energies (as can be

seen from the loss of unitarity with the interaction rate scaling with the square of

the energy up to infinity). The more accurate first term is valid at all energies scales

(measured thus far) but the low energy format can be easier to calculate with and is

a highly accurate approximation for energies E ≪ MW .

In general, EFT terms will have coefficients of negative mass dimension which

can be written as c/Λn for some cutoff scale Λ. EFT terms will arise from renormal-

isable terms at higher energies, although it is possible to consider multiple scales of

EFT. Many different forms of EFT are used to look for extensions beyond the Stan-

dard Model, all considering different cutoff scales and thus different propagating

fields. Examples include the SMEFT which considers terms involving all the high

energy Standard Model fields [72], LEFT which uses the low energy form of the

Standard Model as described above [73] and HEFT which is similar to the SMEFT
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but more general by not assuming the existence of the Higgs [74]. It isn’t possible

to uniquely find the high energy operators that generate an EFT given its terms,

but measurement of EFT operators would provide evidence for additional physics

beyond the Standard Model.

One way of introducing neutrino masses using an EFT term is the Weinberg

operator. It supposes that there is some UV theory at a high energy scale Λ whose

influence can be expressed at low energies in the form of an EFT operator. The

advantage of this is that it doesn’t require the creation of any new fields, such as νR,

and it naturally explains the smallness of the neutrino mass due to the heavy cutoff

scale. The operator is the only dimension-5 operator that can be created which

satisfies the Standard Model gauge invariances and takes the form

LWeinberg =
ci j

Λ
(lc

Li H̃∗) (H̃† lL j)+h.c., (2.50)

⊃ νc
Li mν i j νL j +h.c., (2.51)

for the mass matrix mν . In general, the mass matrix will be of order v2/Λ for

v the Higgs vacuum expectation value. In order for this to work, the UV theory

would have to exist at an energy scale Λ ∼ 1012v ≈ 1014 GeV to give neutrino

masses (assuming ci j ∼ O(1)) of mν ∼ 0.1 eV as expected (or at a higher scale for

lower masses). This is an incredibly high energy scale compared to that reached by

modern collider experiments, meaning that neutrino masses are a potential probe of

much higher scales than other experiments.

If such an operator exists, it would also be significant as the first instance of

Lepton Number Violation (LNV). In the Standard Model an accidental symmetry

exists (meaning that it isn’t enforced like the gauge redundancies) which ensures

that the total number of leptons minus anti-leptons remains constant in any inter-

action. This operator, however, would allow for the process HH → νν to occur

corresponding to an LNV of ∆L = 2. This would be significant in cosmology where

baryon number violation is sought to explain the observed matter-antimatter asym-

metry in the universe and could be generated via leptogenesis [75].
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2.9.3 Majorana Particles and the Neutrino Seesaw

In formulating the low energy form of the Standard Model, all of the fermionic par-

ticles were described as Dirac states following the Dirac equation. However, before

the creation of the Standard Model Majorana suggested an alternative equation for

free fermionic fields [76]

iγµ
∂µΨ−mΨ

c = 0, (2.52)

which is identical to the Dirac equation, Eq. (2.4), but with the second field replaced

with its charge conjugated field. Solutions to this equation are solutions of the

Dirac equation but with the extra condition Ψ = Ψc. In terms of the left and right

handed fields, ψL = ψc
R, in other words left and right-handed Weyl fields are related

via charge conjugation. In practice, this means that particles and anti-particles are

equivalent, up to a flip in their chirality. The 4-component field can then be written

as Ψ = ΨL +ΨR = ΨL +Ψc
L which clearly satisfies the previous requirement.

For all the particles in the Standard Model this cannot be the case, the left and

right-handed fields transform in different representations of SU(2)W and with differ-

ent hypercharges. However, for the right-handed neutrino there is nothing to forbid

including a Majorana like term using the fact that it is completely uncharged under

all forces. This is significant as it would add LNV and break this accidental sym-

metry in the Standard Model. Combining the Majorana term with other Dirac terms

also involving the charge conjugated fields (and considering only one generation)

gives a new mass term

−2LMajorana = mDνRνL +mDνc
Lν

c
R +MνRν

c
R +h.c.

=

(
νc

L νR

) 0 mD

mD M


νL

νc
R

+h.c. (2.53)

Once again, it is most useful to find the states for which the mass matrix is di-

agonal. The interesting situation occurs if the assumption is made that M ≫ mD.
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Then the eigenvalues of this mass matrix will be approximately M and −m2
D/M (the

negative can be removed by a field rephasing) with the heavy state being approx-

imately proportionate to νR + νc
R and the light state νL + νc

L. Thus the addition of

the Majorana mass term has led to two Majorana states, one light and one heavy.

Assuming that the Dirac mass is generated via the Higgs as before, the smallness of

the light neutrino can be explained as being due to the mD/M suppression without

the requirement for a Yukawa coupling much smaller than the other fermions’. This

mechanism is called the ‘Seesaw’ because the larger the value of M, the smaller the

light neutrino mass [77].

There are many different types of Seesaw depending upon the additional terms

added. Also, in the full picture there should be three generations each of the left and

right-handed neutrinos with the diagonalisation leading to mixing between genera-

tions as before. The PMNS matrix in this case will have two additional Majorana

phases. This is because the constraint of being Majorana reduces the number of

independent fields that can be redefined so these two phases cannot be removed.

Alike the CP phase, these angles would be challenging to measure in oscillation

experiments but could be significant in double-beta decay (discussed in the next

chapter). Crucially, a method such as this allows for the possibility that neutrinos

could be Majorana without violating the Standard Model forces. This would again

allow for LNV and would represent the first Majorana particle ever identified.

The primary way of looking for such a state is through the search for Neutrino-

less Double Beta Decay. Double beta decay occurs in states which are energetically

forbidden from performing single beta decay (due to their nuclear configuration)

but can decay with two simultaneous beta decay processes. Normally such a decay

would emit two electron and two neutrinos. However, if neutrinos are Majorana

then it is possible for the neutrino emitted in one of the decays to be reabsorbed

in the other decay leading to a neutrinoless decay. The signature of such a decay

would be a monoenergetic peak in the spectrum for the combined energy of the two

electrons emitted. The change of the neutrino from right-handed at emission to left-

handed at absorption requires a chirality flip, this means that the decay rate for this
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process will be proportional to the effective double beta decay mass mββ as defined

and discussed in more detail later in Section 3.5.

2.10 Beyond the Standard Model: Sterile Neutrinos

As mentioned before, there have been hints of further generations of neutrinos in

neutrino oscillation data. These neutrinos would have to be sterile to have remained

undetected thus far but could still potentially have many interesting consequences.

Sterile neutrinos can easily be added to the standard neutrino picture at low ener-

gies; they would appear as extra generations which mix via an expanded PMNS

matrix. Whilst it is possible that these sterile states could be stable, if they mix with

the active states and are heavy enough then they will decay to the lighter neutrinos

through the process N → ν + γ [78]. Alternative models also include the possibil-

ity of a decay of the form N → ν + φ with the emission of φ , a new undetected

boson [79].

Sterile neutrinos make valid dark matter candidates, the hypothesised parti-

cle(s) that would explain many astronomical properties such as galactic rotation

curves and cosmological evolution. Dark matter is required to be electrically neu-

tral, long-lived and massive, properties that are all matched by neutrinos. Active

neutrinos are excluded due to their combined mass being too small and their cou-

pling to the other particles too large. However, sterile neutrinos could fulfill these

properties. The masses of such neutrinos are taken to be in the KeV range, with

masses too small being disallowed by Pauli exclusion. For a given mass, there is a

limit on the mixing between the active and sterile states from searches for X-rays

given off in their decay [78].

The constraints on the highest mass neutrinos come from collider experiments

where they could be produced in weak decays. These constraints are generally

strongest in the GeV range [80]. Below this comes the oscillation experiments

which probe the MeV range, constraints on high MeV masses can reach down to

squared mixings of 10−9 [81]. Below this level, most of the constraints come from

beta decay experiments (to be discussed later) with a range of elements. Whilst
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all the beta decay constraints are highly mass dependent, in general their squared

mixings are constrained at the 10−2 −10−4 level.



Chapter 3

Single and Double Beta Decay:

Spectrum and Experiments

In this chapter I will describe the process of beta decay with a particular emphasis

on the decay of tritium. I will discuss the approximations that go into its derivation,

the correction factors that need to be applied and the validity of the conventional

spectral formula. I will also briefly discuss an approximate description for double

beta decay. Finally, I will give an overview of the past, current and future single and

double beta decay experiments as well as the statistical framework I will be using

to assess the sensitivity of these experiments to new physics. The results and infor-

mation included here regarding single beta decay and the statistical methodology

largely follows that of my previously published work [82].

3.1 General Decay Spectrum

The process of tritium single beta decay is given by T → 3He+e−+ν . The property

of primary interest throughout all single beta decay studies in this thesis is the decay

spectrum. This will be expressed both in terms of the electron energy and the angle

of its momentum direction. The total differential decay is an integral over the phase

space of final states weighted by the squared matrix element. In the case of tritium
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decay this is found by calculating

dΓ =
1

2mH

d3 p⃗e

(2π)32Ee

d3 p⃗ν

(2π)32Eν

d3 p⃗He

(2π)32EHe
|M|2(2π)4

δ
4(PH −PHe −Pe −Pν).

(3.1)

where mH is the tritium mass and Pi, Ei and p⃗i denote the 4-momentum, energy and

3-momentum, respectively, of particle i. |M|2 is the squared matrix element derived

from the Lagrangian and the factor of δ 4(...) is a 4-momentum conserving delta

function.

The integral over the 3-momentum pHe can be performed trivially using the

spatial part of the delta-function. Evaluating this integral in the tritium rest frame,

PH = (mH ,⃗0), allows for the expression of the remaining delta function in an angular

form giving

dΓ

dEedΩe
=

C(Ee)

29π5mH

∫
Ω

dΩν

∫ E+
ν

E−
ν

dEν |M|2δ

(
cosθeν −

p⃗2
He − p⃗2

e − p⃗2
ν

2|p⃗e||p⃗ν |

)
, (3.2)

where Ωi is the solid angle of particle i, E±
ν (Ee) is the maximum and minimum

energies that the neutrino can take for a given electron energy and θeν is the an-

gle between the electron and neutrino momentum directions. The factor C(Ee) is

a combination of all the additional correction factors, such as the Fermi function,

that are required when considering atomic tritium; these will be discussed in greater

detail in Section 3.4. The upper and lower bound energies E±
ν (Ee) can be calculated

by considering the neutrino energy when the electron and neutrino are emitted par-

allel or anti-parallel to each other. Using momentum conservation it can be shown

that

p⃗e · p⃗ν =
1
2
[
m2

H −m2
He +m2

e +m2
ν −2mHEe +2Eν(Ee −mH)

]
=α −mHEe −Eν(mH −Ee), (3.3)

where α = 1/2(m2
H −m2

He +m2
e +m2

ν) is defined by this expression. Squaring this,

taking (p⃗e · p⃗ν)
2 = p2

e p2
ν (giving cosθeν = ±1 as required for parallel or anti-
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parallel emission, corresponding to minimum and maximum neutrino energies) and

solving for E±
ν gives [83]

E±
ν (Ee) =

(mH −Ee)(α −mHEe)±|p⃗e|
√
(α −mHEe −m2

ν)2 −m2
Hem2

ν

m2
12

, (3.4)

where

m2
12 = (PH −Pe)

2 = m2
H −2mHEe +m2

e . (3.5)

The maximum possible energy that the electron can take is found by consider-

ing the situation where both the neutrino and helium-3 are emitted as a composite

object anti-parallel to the electron. Using 4-momentum conservation gives [84]

Emax
e =

m2
H +m2

e − (mHe +mν)
2

2mH
. (3.6)

Crucially, this quantity is dependent upon the neutrino mass. Evaluating this

for mν = 0 gives a maximum kinetic energy Emax
e −me ≈ 18.59 keV, in agreement

with experiment [85]. It is useful at this point to define the quantity y as the amount

by which the electron energy is below the maximum, or ‘endpoint’, value

y = Emax
e −Ee. (3.7)

This quantity is useful to define as the spectrum tends to zero as y goes to zero

with the impact of the neutrino mass being greatest in this region, hence why it is

often the focus of neutrino mass experiments. Re-expressing E±
ν in terms of y gives

E±
ν (Ee) =

(mH −Ee)(mHy+m2
ν +mHemν)±|p⃗e|

√
(mHy(mHy+2mHemν)

m2
12

. (3.8)

When considering the angular distribution of the electron emission, special

care needs to be taken in treating the spin states of the particles. As spin-1/2

fermions, all of the particles can be in spin-up or spin-down states. Typically these

are averaged (summed) over for initial (final) states. However, if the tritium is cho-
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sen to be prepared in a particular spin state this is no longer the case (measuring

the final state spins would be highly experimentally challenging so will not be con-

sidered here). Including the tritium spin is most easily done by inserting a spin

projection operator for the tritium into the matrix element calculation before pro-

ceeding with the usual spin-sum procedure [86],

Ps =
1
2
(1+ γ

5/S), Sµ =

(
p⃗ · ŝ
m

, ŝ+
p⃗ · ŝ

m(E +m)
p⃗
)
, (3.9)

where m and E are for the particle for which the spin is being fixed.

The projector Ps is chosen to satisfy Psup⃗,s′ = δs,s′up⃗,s′ and Psv p⃗,s′ = δs,s′vp⃗,s′

where s,s′ = ±1/2 are spin states and u,v are the basis spinors of the associated

particle. In the case of tritium at rest the spin 4-vector simplifies to Sµ

H = (0, ŝ).

Crucially, this will introduce terms into the matrix element of the form Pi · SH =

−|p⃗i|cosθi where i = e,ν (recalling that p⃗He =−p⃗e − p⃗ν from momentum conser-

vation) and θe, θν are the angles between ŝ and the momenta p̂e and p̂ν , respectively.

As there is only a single factor of SH there will only be a linear dependence upon

these angles. There are no other physical angles upon which the matrix element

could depend as the only independent 3-vectors are p⃗e and p⃗ν ; their absolute di-

rections are physically irrelevant due to the isotropy of the decay and their relative

angle of θeν is fixed by the delta function in conserving energy. This means that the

matrix element must take the form

|M|2 = A(Ee,Eν)+Be(Ee,Eν)cosθe +Bν(Ee,Eν)cosθν . (3.10)

In order to evaluate the integral of cosθν over Ων in Eq. (3.2) a particular choice

of coordinates is required. The z-axis of this solid angle is chosen to be along

p̂e such that the polar angle is θeν and then the azimuthal angle is labelled as ϕ

(choosing ϕ = 0 to be when ŝ, p⃗e and p⃗ν are all co-planar). This means that θν can
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be expressed using cosθν = sinθe sinθeν cosϕ + cosθe cosθeν which gives

∫
Ω

dΩν cosθν δ

(
cosθeν −

p⃗2
He − p⃗2

e − p⃗2
ν

2|p⃗e||p⃗ν |

)
=
∫ 1

−1
d cosθeν

∫ 2π

0
dϕ(sinθe sinθeν cosϕ + cosθe cosθeν)

δ

(
cosθeν −

p⃗2
He − p⃗2

e − p⃗2
ν

2|p⃗e||p⃗ν |

)

=2π cosθe

∫ 1

−1
d cosθeν cosθeνδ

(
cosθeν −

p⃗2
He − p⃗2

e − p⃗2
ν

2|p⃗e||p⃗ν |

)
=2π cosθe

p⃗2
He − p⃗2

e − p⃗2
ν

2|p⃗e||p⃗ν |
= 2π cosθe

α −mHEe −Eν(mH −Ee)

|p⃗e||p⃗ν |
. (3.11)

Given this, the differential decay rate as a function of electron properties is

dΓ

dEedΩe
= a(Ee)+b(Ee)cosθe, (3.12)

which can be expressed as energy or angular dependent derivatives

dΓ

dEe
= 4πa(Ee), (3.13)

dΓ

d cosθe
=

Γ

2
(1+ k cosθe), (3.14)

where the angular correlation factor is

k =
∫ Emax

e

me

b(Ee)dEe

/∫ Emax
e

me

a(Ee)dEe. (3.15)

with a total decay rate

Γ = 4π

∫ Emax
e

me

a(Ee)dEe. (3.16)

If the ensemble of tritium nuclei are not fully polarised, a polarisation factor
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must be included

f =
N↑−N↓

N↑+N↓ , (3.17)

where N↑(↓) is the number or fraction of spin-up (-down) nuclei. Spin-up and down

states are related by taking ŝ →−ŝ and thus Sµ →−Sµ which is why the terms can-

cel in the numerator. The spin projector would thus be modified to have Sµ → f Sµ

in turn leading to cosθe → f cosθe in the final decay rate. As expected, equal pop-

ulations of up and down states leads to f = 0 with the angular effects disappearing

and total polarisation gives f = 1 where the previous result is recovered.

3.2 Standard Model Lagrangian

The beginning of any calculation of the matrix element for beta decay is Fermi’s

approximation of the process as a four-point contact interaction. In terms of the

fundamental fermions it takes the form [5]

LFermi =−GF√
2

Vudηµν

[
ēγ

µ(1− γ
5)νe

][
ūγ

ν(1− γ
5)d
]
+h.c., (3.18)

where h.c. denotes the hermitian conjugate, u and d are the up and down quarks,

e the electron and νe the electron neutrino flavour eigenstate. The factor Vud is

the Cabbibo mixing angle which is the top-left element of the CKM matrix. This

approximate form is an excellent approximation because the exchanged momentum

q is much smaller than the W boson mass, q ∼ 20 keV ≪ MW ∼ 100 GeV.

In order to describe the beta decay of tritium, the up and down quarks need to

be considered as constituents of tritium and helium-3 nuclei. As they are spin-1/2

states this is relatively simple mathematically. Through experimental measurements

of the tritium half-life, it has been found that the use of the more complicated nu-

clear state of tritium leads to a modification of the axial vector part of the decay rate

with an increase by a factor labelled as gA [87]. Conversely, the vector part is pre-

dicted by the Conserved Vector Current (CVC) hypothesis to remain the same [88],

nonetheless a factor of gV is often included to maintain the possibility of deviation
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being observed by experiments. Given this the Standard Model Lagrangian for the

calculation of tritium beta decay is

LSM =−GF√
2

Vud

[
eγ

µ(1− γ
5)νe

][
3Heγµ

(
gV −gAγ

5
)

3H
]
, (3.19)

from which all results henceforth labelled as SM, or Standard Model, are derived.

For my calculations the value gV = 1 is used in agreement with CVC and the value

of gA = 1.247 is extrapolated from the half-life of tritium [89]. There are additional

terms that also contribute to the hadronic part of the Lagrangian, such as the weak

magnetic term, but these are suppressed by powers of q/mH ∼ 10−5 (mH ∼ 3 GeV

[83]) and thus can be safely neglected.

3.3 The Standard Model Case

Given the general framework above, now the Standard Model case can be evalu-

ated by calculating the matrix element from Eq. (3.19). The matrix element to be

evaluated is

|MSM|2 =16G2
F |Vud|2

Tr[(/PHe +mHe)γ
λ (gV −gAγ

5)(1+ γ
5/S)(/PH +mH)γ

ρ(gV −gAγ
5)]

Tr[(/Pe +me)γλ (1− γ
5)/Pνγρ(1− γ

5)], (3.20)

including the spin projection given by Eq. (3.9). When evaluated this gives

|MSM|2 = 16G2
F |Vud|2

×
{
(gA +gV )

2(Pe ·PHe)(Pν ·PH)+(gA −gV )
2(Pe ·PH)(Pν ·PHe)

+(g2
A −g2

V )mHmHe(Pe ·Pν)

+(g2
A −g2

V )mHe [(PH ·Pν)(Pe ·S)− (PH ·Pe)(Pν ·S)]

+(gA −gV )
2mH(Pν ·PHe)(Pe ·S)− (gA +gV )

2mH(Pe ·PHe)(Pν ·S)
}
.

(3.21)
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3.3.1 Energy Distribution

The evaluation of the spin-independent part of this gives

4πaSM(Ee) =
G2

F |Vud|2

2π3 C(Ee)
3

∑
i=1

|Uei|2
m2

H|p⃗e|
m2

12
ỹiΘ(yi)

×

{
(gV+gA)

2

[
mH(mH −Ee)

m2
12

mHEe −m2
e

m2
12

(yi+µimν ,i)(yi+µimHe)

−
m2

H|p⃗e|2

3m4
12

ỹi
2

]
+(gV−gA)

2Ee

(
yi +mν ,i

mHe

mH

)

+(g2
A−g2

V )mHe
mHEe −m2

e

m2
12

(yi +µimν ,i)

}
, (3.22)

where the sum is over all three neutrino eigenstates. The subscript i has been added

to all quantities for which there is a neutrino mass dependence e.g. yi = Emax
e (mi)−

Ee. Energy conservation is maintained by the Heaviside function Θ(yi), µi =(mν ,i+

mHe)/mH and ỹi =

√
yi

(
yi +mν ,i

2mHe
mH

)
. This expression matches that given in [89]

with minor typos corrected.

Most often this expression is simplified by using that mH ≈ mHe ≫ Ee, me, mν

to give

4πaSM(Ee)≈
G2

F |Vud|2

2π3 C(Ee)(g2
V +3g2

A)mHmHe
mHe|p⃗e|

m2
12

mHEe −m2
e

m2
12

×
3

∑
i=1

|Uei|2Θ(yi)

√
yi

(
yi +mν ,i

2mHe

mH

)(
yi +mν ,i

mν ,i +mHe

mH

)
.

(3.23)

This is then often further simplified by the assumption that yi ≫ mν to give the

effective single beta decay neutrino mass [90, 91]

4πaSM(Ee)≈
G2

F |Vud|2

2π3 C(Ee)(g2
V +3g2

A)mHmHe
mH|p⃗e|

m2
12

mHEe −m2
e

m2
12

y0

√
y2

0 −m2
β
,

(3.24)

where the effective single beta decay mass m2
β
= ∑

3
i=1 |Uei|2m2

i . Re-expressing in
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Figure 3.1: Kurie plot of the tritium energy distribution as measured from the zero-mass
endpoint for a massless lightest neutrino with Normal Ordering (red) and Inverted Ordering
(blue) of the three active neutrinos. The red (blue) dashed lines correspond to the effective
mβ approximation for NO (IO) as given by Eq. (3.24). The gray line corresponds to the case
of a single massless active neutrino. The vertical lines are the endpoints for the different
neutrino masses

terms of y0 = y(mν = 0) ensures that all of the neutrino mass dependence has been

combined into mβ . Whilst this approximation is valid for the current generation of

beta decay experiments (discussed further in Section 3.6), the study of [90] con-

cludes that the more precise expression of Eq. (3.23) is required for the next gener-

ation of experiments given their higher energy resolution and exposure.

The full expression of Eq. (3.22) is plotted as a Kurie function (defined as

(dΓ/dEe)/(|p⃗e|2F(Z,Ee)) in Fig. 3.1 for both the normal and inverted orderings

with a lightest neutrino mass of zero. The three different endpoints due to the dif-

ferent neutrino masses are highlighted by the vertical lines and are clearly visible

in the spectrum as kinks. They are located at values equal to their respective neu-

trino mass below the highest endpoint. Also plotted is the approximate expression

Eq. (3.24), showing how it fails at these energies by giving only a single endpoint

and a different rate.
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3.3.2 Angular Distribution

Looking instead at the angular part of the spectrum, as will appear when the nuclei

are polarised, gives

bSM(Ee) =−G2
F |Vud|2

8π4 C(Ee)
mH

m2
12
|p⃗e|2ỹi

×
{[

(gA −gV )
2mH +(g2

A −g2
V )mHe

mH(mH −Ee)

m2
12

+(g2
A −g2

V )
mHmHe

m2
12

Ee +(gA +gV )
2 mH

m2
12
(α −m2

e)

−(gA +gV )
2 m2

H
m2

12
(yi +µimν ,i)

mH(mH −Ee)

m2
12

]
(yi +µimν ,i)

−(gA −gV )
2m2

ν ,i −
1
3
(gA +gV )

2 m3
H(mH −Ee)

m4
12

ỹi
2
}
. (3.25)

This expression can be greatly simplified under the same approximation, as before,

mH ≈ mHe ≫ Ee,me,mνi ,

bSM(Ee)≈−
2g2

A −2gAgV

g2
V +3g2

A

|p⃗e|
Ee

aSM(Ee)≈−0.12
|p⃗e|
Ee

aSM(Ee). (3.26)

This gives a value in Eq. (3.14) of k = −0.0154 meaning that the angular effect is

at the 1% level on the spectrum depending upon the angle.

The angular effect is due to the impact of helicity and chirality effects on the

decay. Decays mediated by a vector current (Fermi) lead to the emission of the

neutrino and electron in an anti-aligned spin state (total spin S = 0) whereas ax-

ial current decays (Gamow-Teller) have an aligned spin (S = 1) [86]. The tritium

and helium-3 are both spin-1/2 nuclei. This means that whilst Fermi decays are

isotropic, the requirement of conservation of angular momentum means that the

Gamow-Teller decay cannot have the fermion pair emitted with opposite angular

momentum to the polarisation direction (Sz ̸= −1). The anti-neutrino is a right-

handed chiral state and, being nearly massless, will be approximately right-handed

helical - it’s momentum and spin will be aligned. Thus the greater possibility of

spin in the ‘upwards’ direction leads to a greater possibility of momentum being

upwards. Due to overall momentum conservation, this leads to a greater probability
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for the electron to be emitted in the ‘downwards’ direction opposite to the nuclear

spin.

3.4 Correction Factors
There are seven correction factors that need to be included in the function C(Ee) to

account for additional effects when considering atomic tritium rather than individual

quarks [92, 93]. These are: the Fermi function, F(Ee), which accounts for the

Coulomb interaction between the helium-3 and the electron; a recoil correction to

this function due to the motion of the helium, Q(Ee) and a screening correction

due to the orbital electron, S(Ee); radiative corrections to the spectrum including

an infinite sum over soft photons, G(Ee); finite size nuclear effects, L(Ee) & B(Ee),

and quantum statistics exchange between the emitted and orbital electron, expressed

as a modified sum. These are described in the following subsections.

3.4.1 The Fermi Factor

The best known beta-decay correction factor is the Fermi function, which accounts

for the Coulomb attraction between the helium nucleus and the emitted electron. It

does this by considering the wave-function of an electron in a point source potential

and evaluating the relative probability of such an electron being measured as being

at the nuclear surface, R, with and without the nuclear charge [5]. The derivation

here follows that as presented in [94].

The derivation begins from the Dirac Hamiltonian (expressed with energy rel-

ative to me such that W = Ee/me),

Hψ =Wψ = (iγ 0⃗
γ · ∇⃗+V (r)+ γ

0)ψ. (3.27)

The spherical harmonics are categorised by defining the operator K = γ0(2S ·L+1)

where S is the spin operator and L the angular momentum operator. From this the

spatial derivative can be re-expressed as

γ⃗ · ∇⃗ = r̂ · γ⃗ ∂

∂ r
− r̂ · γ⃗

r
(γ0K −1). (3.28)
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For a point source central potential, V (r) = −αZ/r with α the fine structure con-

stant and Z the atomic number of the nucleus. Defining J = L+S, for this potential

[J2,H] = [Jz,H] = [K,H] = 0. Given this, it is worth choosing an eigenbasis of these

operators using 2-spinor eigenstates χ
µ

κ where

J2
χ

µ

κ = j( j+1)χµ

κ , (3.29)

Jzχ
µ

κ = µχ
µ

κ , (3.30)

(2S ·L+1)χµ

κ =−κχ
µ

κ , (3.31)

which defines the eigenvalue κ which can be used to label the spherical harmonics.

This then means that ψ can be separated (in the chiral basis) into radial and spherical

functions as

ψ =

 g(r)χµ

κ

i f (r)χµ

−κ ,

 (3.32)

where f and g are real, energy dependent functions. The lower component has op-

posite sign κ to the upper component due to the form of γ0 = diag(1,1,−1,−1) in

this basis choice. The functions f and g will then satisfy the simultaneous equations

d f
dr

=
κ −1

r
f − (W −1−V )g, (3.33)

dg
dr

= (W −V +1) f − κ +1
r

g. (3.34)

The condition is imposed that as r → ∞ the field should tend towards that of a free

particle i.e. the limiting behaviour of f and g should be

r f =−A(W −1)1/2 sin(|p⃗|r+δ ), (3.35)

rg = A(W +1)1/2 cos(|p⃗|r+δ ), (3.36)

for some phase, δ , and normalisation, A. δ has a logarithmic r dependence which

has no impact upon physical results such as scattering amplitudes [94].
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Solving the differential equations with this condition gives

Φ =
Ap(2pr)γ−1eπη/2|Γ(γ + iη)|

Γ(2γ +1)

[
e−i(pr+ξ )(γ + iη)H(γ +1+ iη ,2γ +1,2ipr)

]
,

f =i(W −1)1/2(Φ−Φ
∗),

g =(W +1)1/2(Φ+Φ
∗), (3.37)

where η = αZW/p and γ2 = κ2 −α2Z2. Γ is the usual gamma function and the

hypergeometric function H(γ +1+ iy,2γ +1,2ipr) has the properties H(a,b,0) = 1

and H(a,b,x)→ Γ(b)/Γ(a)xa−bex for |x| → ∞.

The Fermi function is proportional to ψψ ∝ f 2 + g2. Evaluating this at the

nuclear radius Rn ≈ 2.88×10−3/me [93] such that pRn ≪ 1 (ie. H,e−ipr ≈ 1) and

using the 1S1/2 state (ie. g−1 and f1) gives

f 2 +g2 = 2(1+ γ)(2pR)2(γ−1)eπη |Γ(γ + iη)|2

(Γ(2γ +1))2
2pW

π
. (3.38)

Normalising this by requiring that F(0,W ) = 1 gives

F(Z,W ) = 2(1+ γ)(2pR)2(γ−1)eπη |Γ(γ + iη)|2

(Γ(2γ +1))2 , (3.39)

the Fermi function. This derivation has made the assumption that Z is sufficiently

small such that γ remains real, meaning that Z < 138 which is true for all observed

nuclei. It also assumes a purely point-like central potential with the effect of the

nuclear radius being merely accounted for by evaluating the wave-function at this

point. Corrections to this are discussed in the next subsection.

The Fermi function is often presented in a more approximate form called the

‘Simpson approximation’ [95] which takes the form

F(Z,W )≈ 2πη(1.002037−0.001427|p⃗|/E)
1− e−2πη

(3.40)

where, as before, η = αZW/|p⃗|. The expression within the brackets is often also

approximated as 1.
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3.4.2 Finite Nucleus Corrections

In addition to the previous calculation, further modifications need to be made when

considering the effect of the nuclear charge. The finite size of the nuclear charge

can be accounted for by treating the nucleus as a uniform charge distribution with

radius that gives the appropriate value for ⟨r2⟩1/2 [96]. Using this gives [92]

L(Z,W ) = 1+
13
60

(αZ)2 − WRαZ
15

41−26γ

2γ −1
− αZRγ

30W
17−2γ

2γ −1
, (3.41)

which is often approximated for low Z as [97]

L0(Z,W ) = 1+
13
60

(αZ)2 −WRαZ − αZR
2W

. (3.42)

The other finite size nuclear effect is due to the variation of the neutrino and

electron wavefunctions throughout the nucleus. It is important to account for this

by convolving these with the nuclear wavefunction. This should be done differently

for vector (Fermi) and axial-vector (Gamow-Teller) mediated currents with there

being small differences in the correction factors for each. However, as the Gamow-

Teller transition is larger in tritium and including both separately would be highly

challenging (particularly given the interference between the two) I have chosen to

follow the convention and use the Gamow-Teller version. This is given by

B(Z,W ) = 1+B0 +B1W +B2W 2, (3.43)

with

B0 =−233
630

(αZ)2 − 1
5
(W0R)2 +

2
35

(W0RαZ),

B1 =−21
35

RαZ +
4
9

W0R2, (3.44)

B2 =−4
9

R2,

where W0 = Emax
e /me.
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3.4.3 Additional Coulomb Corrections

In addition to these effects, there are corrections to the Fermi function due to the

nuclear recoil and the screening of the nucleus by the orbital electron.

Firstly, the recoil of the nucleus means that the nuclear potential isn’t com-

pletely isotropic in the lab frame. Finding the average recoil velocity and account-

ing for the angular correlations gives an average corrected relative velocity between

the electron and the nucleus. Factoring this out of the approximated Fermi function

gives [98]

Q(Z,W,W0) = 1− παZm2
e

mHe|p⃗e|

(
1+

1− (gA/gV )
2

1+3(gA/gV )2
W0 −W

3W

)
. (3.45)

In addition to this, the single bound orbital electron around the tritium will

act with a screening effect on the nuclear charge. This correction factor effectively

replaces the energy factors in the Fermi function with equivalent energies reduced

by the screening potential of a 1s orbital electron. This gives [97]

S(Z,W ) =
W
W

(
k
k

)−1+2γ
∣∣Γ(γ + iη)2

∣∣
|Γ(γ + iη)2| e

π(η−η), (3.46)

where W =W −V0/me, k =

√
W 2 −1 and η = αZW/k. Here, V0 = (76±10) eV

is the nuclear screening potential of a 1s helium orbital electron [99].

3.4.4 Radiative Corrections

Radiative corrections to beta-decay come from the emission of soft photons (carry-

ing negligible energy) from the initial tritium, final helium or electron. Considering

soft photon emission to all orders removes an infrared divergence near the endpoint
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and gives a correction factor [100]

G(Ee,Emax
e ) =

(
Emax

e −Ee

me

)(2α/π)t(β ){
1+

2α

π

[
t(β )

(
ln2− 3

2
+

Emax
e −Ee

Ee

)
+

1
4
(t(β )+1)

(
2(1+β

2)−2ln
(

2
1−β

)
+

(Emax
e −Ee)

2

6E2
e

)
+

1
2β

(
L(β )−L(−β )+L

(
2β

1+β

)
+

1
2

L
(

1−β

2

)
− 1

2
L
(

1+β

2

))]}
,

(3.47)

where β = |p⃗e|/Ee, t(β ) = arctanh(β )/β − 1 and L(x) =
∫ x

0
ln(1−y)

y dy is Spence’s

function.

3.4.5 Orbital Electron Level

In addition to the electron emitted in the process of beta decay, there is an orbital

electron that will be initially bound within the tritium atom. It’s important that the

transition of this electron from the eigenstates of tritium to that of helium (including

continuum emission) is considered as this affects the energy within the process.

Furthermore, the indistinguishability of the two electrons means consideration is

needed for the exchange of the two particles.

In order to calculate this the sudden approximation is used, in which a tran-

sition amplitude of the form ⟨b|U(t2, t1) |a⟩, for U(t2, t1) some transition function

from time t1 to t2, is approximated by the overlap ⟨b|a⟩ for t2 − t1 ≈ 0 [101].

In practice, the energy of the orbital electron is accounted for by modifying the

tritium and helium masses to give the combined mass of the atom. This will in turn

affect the maximum emitted electron energy with

Emax
e →

Emax
e (n), mH → mH +me −Rh, mHe → mHe +me −4Rh/n2,

Emax
e (τ), mH → mH +me −Rh, mHe → mHe +me +4Rh/τ2,

(3.48)

where n= 1,2, . . . is the integer-valued principle quantum number, τ =−2αme/|p⃗2|

for |p⃗2| the momentum of the orbital electron which will be integrated over and

Rh = 13.61 eV is the Rydberg energy [102]. The discrete values of n give the
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He+ State Energy [eV] Branching Ratio

1s 0 70.36%

2s 40.81 24.98%

3s 48.37 1.27%

4s 51.02 0.38%

5s 52.24 0.17%

continuum ≥54.42 2.63%

Table 3.1: Excitation energy above the ground state associated with final helium orbital
electron states and the corresponding asymptotic branching ratios for detected electron en-
ergies much below the endpoint.

orbital energy levels in the case of a bound final state and τ parametrises the free

energy in the case of displacement into the continuum. It is assumed that the orbital

electron finishes in an s state but, given that it is the only bound electron (decays

to two bound electrons would be undetectable), the energy and thus probability is

unaffected by the final angular quantum numbers.

If the expression for decay to a single state is written as dΓ/dEe(Emax
e ) then

the full expression for the decay will be a weighted sum of decays to the states with

different Emax
e , with the weightings accounting for the probability exchange of the

two electrons. This is given by [103]

dΓfull

dEe
=

∞

∑
n=1

2
dΓ

dEe
(Emax

e (n))
[

256n5 (n−2)2n−4

(n+2)2n+4 +
α2(τ)

n3 −16n
(n−2)n−2

(n+2)n+2 α(τ)

]
+

1
π

∫
τ

−∞

dτ ′

τ ′4
dΓ

dEe
(Emax

e (τ ′))
2πτ ′

e2πτ ′ −1

[
α

2(τ)−α(τ)α(τ ′)+α
2(τ ′)

]
,

(3.49)

where

a(τ) = exp
[

2τ arctan
(
−2

τ

)](
τ2

1+ 1
4τ2

)2

. (3.50)

The first line gives the discrete sum over decays to bound energy levels whilst the

second integrates over the energy of a continuum electron up to it having the energy

of the beta electron. For evaluation of this (n−2)n−2 = 1 for n = 2.
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Figure 3.2: Fraction of decays to helium energy levels 1s (ground state), 2s, 3s, 4s+ 5s
of the orbital electron (higher levels neglected), as well emission of the orbital electron
(continuum) as a function of the beta electron’s energy below the endpoint.

The impact of this on the spectrum can be considered in two ways. In Ta-

ble 3.1, based upon [101], the proportion of decays to each energy state when the

detected electron is far from the endpoint is given. As can be seen, the proportion

of decays to the 2s state is significant at nearly 25%. This is key because it intro-

duces a second endpoint at a fixed energy below the primary one (corresponding to

decays to 1s). This could potentially be of interest as an additional signal for sterile

neutrinos searches or other beta decay experiments that are based upon endpoint

measurements.

Alternatively, the decays to different energy levels can be viewed as a function

of the beta electron’s energy below the endpoint. Decays very close to the endpoint

are forbidden for any of the higher energy levels because of energy conservation.

For decays in which the beta electron is less energetic, there is a chance of some

of that energy being taken by the orbital electron. As the energy decreases the

probability of such decays increases until tending towards the asymptotic values

given before. This can all be seen in Fig. 3.2.
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3.5 Double Beta Decay Spectrum

As described in Section 2.9.3, the primary means of searching for Majorana neutri-

nos is through the measurement of double beta decay with the hopes of detecting

neutrinoless double beta decay. Calculating the decay rate for double beta decay

is significantly more challenging than that of single beta decay due to the much

greater dependence upon the internal dynamics of the decay nucleus. In the pro-

cess, a sum over all potential intermediate nuclear states must be considered with

the transition matrix elements between the initial, intermediate and final states being

calculated. Direct calculation is currently analytically impossible, with instead an

array of different models being used for the nuclear states to calculate transitions.

Here I will discuss the fundamentals of the calculation and derive an approximate

result sufficient for the later discussion.

The beginning of the calculation is similar to that of single beta decay, the

effective Lagrangian appears as two copies of the single beta decay Lagrangian

from before [104]

Lββ =−
(

GF√
2

Vud

)2

[eγµ(1− γ
5)νe][ν

c
eγρ(1− γ

5)ec]

[pγ
µ(gV −gAγ

5)n][pγ
ρ(gV −gAγ

5)n], (3.51)

where, as described before, the superscript c denotes charge conjugation and the

factors of gV and gA are nucleus dependent and not necessarily the same as that for

tritium single beta decay.

There are two different ways of evaluating this Lagrangian into a matrix ele-

ment. In the case of 2-neutrino double beta decay, 2νββ , the two neutrinos will

be emitted in the decay. Conversely, for neutrino-less double beta decay, 0νββ ,

the neutrino will be an internal propagation line with the emitted neutrino from one

decay being recaptured in the other.

To a good approximation, the calculation of the beta decay processes can

be separated into three parts, a phase space calculation, the axial-vector coupling

constant and a Nuclear Matrix Element (NME) [105]. This is often written as
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Γ = G g4
A |M|2 where G is the phase space factor, gA is the axial-vector coupling

as before and |M| is the NME. The phase space calculation is relatively simple, as

shall be shown below. As explained previously for Tritium, the value of gA varies

between different elements due to different amounts of ‘quenching’ and is often

written as geff
A . However, the calculation of the nuclear matrix element, which must

take account of all of the strong forces dynamics between the nucleons as well as

the underlying symmetries, is highly complex. There are multiple different many-

body methods which aim to estimate these quantities for each double beta decay

element. However, their results often vary significantly with factors of up to 3 in

the matrix element (meaning up to 9 in the decay rate which is proportional to its

square) [106, 107].

Calculating this matrix element requires summing over all the different inter-

mediate nuclear states. In order to simplify this process, the ‘closure’ approxima-

tion is used in which it is assumed that all of the intermediate states have an energy

equal to the average of their energies. There are limitations in this approach with

the approximation breaking down for certain nuclei [108]. In general, however, the

results from closure have been found to agree with non-closure results to with an ac-

curacy of around 10%, significantly smaller than the uncertainties between different

nuclear matrix models [109].

From this point, following through the calculation gives the approximate ma-

trix elements for 0νββ (M0) and 2νββ (M2) as [110]

|M0|2 ∝ 4G4
F |Vud|4Hµ

µ Hρ

ρ m2
ββ

(2P1 ·P2), (3.52)

|M2|2 ∝ 4G4
F |Vud|4Hµ

µ Hρ

ρ (2P1 ·P2K1 ·K2), (3.53)

where H is the hadronic matrix element and some non-kinematic terms have been

neglected. The 4-momenta P1,2 refer to the two emitted electrons and K1,2 to the

two neutrinos (in the case of 2νββ ).
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The effective double beta decay neutrino mass mββ is given by

mββ =

∣∣∣∣∣ 3

∑
i=1

(Uei)
2mi

∣∣∣∣∣ , (3.54)

where here the PMNS mixing elements will also have additional Majorana phases as

the neutrino is Majorana. The proportionality of the decay to this quantity is because

of the necessity for a chirality flip in the neutrino. This is because the produced

neutrino in the first decay will be right-handed but must become left-handed in order

to be reabsorbed into the second decay. The potential minimum value of mββ is

very different in the cases of normal and inverted ordering. For normal ordering the

Majorana phases mean that significant cancellation can occur with there effectively

being no lower bound for its magnitude. This requires rather fine-tuning with the

parameter space where this occurs being small [111] but some exotic flavour models

may more favour this parameter region [112]. However, for inverted ordering the

dominance of the necessarily heavy state ν1 means there must be a lower bound of

mββ = 18.6±1.2 meV [113]. Many next-generation experiments hope to get close

to this level (see Section 3.6.5).

For my calculations, I neglect the nuclear matrix elements which only have a

small impact on the spectral shape. Thus the decay rates that I use are [104]

Γ0

dE1dE2d cosθ12
∝m2

ββ
E1E2|p⃗1||p⃗2|

(
1± |p⃗1||p⃗2|cosθ12

E1E2

)
δ (Emax

0νββ
−E1 −E2),

(3.55)

Γ2

dE1dE2d cosθ12
∝E1E2|p⃗1||p⃗2|(Emax

2νββ
−E1 −E2)

5
(

1± |p⃗1||p⃗2|cosθ12

E1E2

)
,

(3.56)

where the subscripts 1 and 2 refer to the two electrons, θ12 is the angle between their

momenta and the minus (plus) refers to a left (right) handed leptonic current. Emax
2νββ

is the maximum available total energy for the electrons in the decay, the Q-value,

for 2νββ and equivalently for Emax
0νββ

.

The maximum available total energies for the two emitted electrons is different
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Figure 3.3: Spectrum for both 2νββ and 0νββ as a function of the total electron energy
ET = E1 +E2, focusing on the region near their endpoints. Both axes are in arbitrary units.

between 2νββ and 0νββ by a factor of 2mν . In both cases, the maximum energy

corresponds to when the two electrons are emitted back to back with equal momenta

with the former also including two neutrinos emitted at rest and the latter not. Thus

Emax
2νββ

= mi −m f −2mν and Emax
0νββ

= mi −m f where mi and m f are the initial and

final nuclear masses. As with single beta decay, there are thus three endpoints for

2νββ , corresponding to the three different neutrino masses. However for 0νββ the

kinematics require the total energy to take a single fixed value, as enforced by the

δ -function in Eq. (3.56). This can be seen in Fig. 3.3 where, as a function of the

total energy, the 2νββ spectrum follows a smooth decrease to the endpoint whereas

the 0νββ is a mono-energetic peak at a point above the 2νββ endpoint.

The spectral shapes for both individual and total electron energies from these

approximate forms are sufficiently close to more precise results calculated in [114]

and other places for the purposes in the following chapters.

3.6 Current and Future Experiments

The current generation of single and double beta decay experiments are built upon

years of development and improvement. However, as attempts to measure the neu-

trino mass or detect Majorana neutrinos continue, new techniques will be required

to reach the levels of precision and exposure required.
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3.6.1 Tritium Beta Decay: KATRIN and TRISTAN

The current strongest bound on the effective single beta decay mass comes from the

KATRIN experiment. Its most recent results place a limit of mβ < 0.8 eV at 90%

confidence limit (CL) [54]. This improved on the previous limits of 2.2 eV and

2.3 eV at 95% CL from the Troitsk and Mainz experiments, respectively [115, 116].

The KATRIN experiment works as a high-pass filter, the emitted electrons are col-

limated using a varying magnetic field with electrons below a certain energy being

then rejected by an electric field. This creates a measurement of the integrated spec-

trum, the count being of all electrons above a certain energy up to the endpoint [54].

Once its full run is complete, the KATRIN experiment is expected to, in the ab-

sence of mass measurement, provide an upper bound of mβ < 0.2 eV [90]. The

limitations on the size of this bound come from the systematic uncertainties in the

collimation of the electron beam. A greater energy resolution would require a spa-

tially larger magnetic field and thus a larger machine apparatus. Given that the main

collimator is already 10 m in dimension, this would be financially and practically

infeasible [117].

The KATRIN experiment is designed to focus on the endpoint of the beta de-

cay spectrum as this is the region most sensitive to the impact of the neutrino mass.

However, the impact of heavy sterile neutrinos could be found anywhere in the

spectrum, with their endpoint being at a point below that of the light endpoint by

an amount equal to their mass. Thus the KATRIN experiment in its current run is

insensitive to sterile neutrinos much heavier than the 300 eV below the endpoint

that it scans, their most recent search has placed limits only on sterile neutrinos

with masses below around 2 keV [118]. In theory, to measure these heavier states

the high-pass electric field could be reduced to measure a greater range of the spec-

trum. However, the current KATRIN detector is limited to measurements of up to

105 counts per second (cps) and measurements of the whole spectrum would need

a detector capable of handling rates of up to 108 cps [119]. To fix this, an up-

grade called TRISTAN is being currently developed. This new detection system

aims to have an energy resolution of 300 eV which will enable measurement of
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active-sterile mixing to a similar sensitivity as astrophysical results, equivalent to

sin2
θ ∼ 10−6 [120]. TRISTAN is aiming to begin installation after the completion

of KATRIN’s main run in 2025 [121].

3.6.2 Future Tritium Experiments: Cyclotron Radiation and

Project 8

Given the limitations on KATRIN-like experiments the future of the single beta de-

cay measurements will have to be performed using novel techniques. The primary

one of these currently in development is that of Cyclotron Radiation Emission Spec-

troscopy (CRES). When a charged particle enters a magnetic field its motion will

bend and precess around the magnetic field lines and it will emit cyclotron radiation.

The frequency of this radiation for an electron is

f =
1

2π

eB
Ee

, (3.57)

where e is the electron charge, B the magnetic field and Ee the electron energy.

This crucially depends upon the energy of the charged particle and, providing that

the magnetic field can be sufficiently well controlled, the energy of the electron

can thus be precisely calculated from measurements using the advanced technology

that already exists for precision frequency measurements [55]. As this technology

doesn’t involve any filtering, such an experiment would potentially be sensitive to

the entire energy spectrum. The Project 8 experiment aims to have a sensitivity of

mβ < 40 meV [55] but with a target energy resolution across the entire spectrum of

100 eV [122]. The other significant change between Project 8 and KATRIN is the

use of atomic rather than molecular tritium. Molecular tritium has an irreducible

uncertainty of around 0.3 eV due to the internal energy dynamics between the two

atoms [123]. This is too large to allow for measurements of mβ in the ‘worst-case’

scenario of the lightest neutrino being massless. In this case, oscillation mass split-

tings imply mβ ∼ 40 meV in the inverted ordering case and mβ ∼ 9 meV in the

normal ordering case [124]. By using atomic tritium instead the Project 8 experi-

ment is expected to reach this worst case scenario for inverted ordering, probing as



3.6. Current and Future Experiments 84

low as 40 meV.

Although Project 8 is expected to form the new frontier of single beta de-

cay measurements, it is possible that even this will be insufficient to measure

the neutrino mass in ‘worst-case’ scenarios. In an attempt to increase the energy

resolution of measurements exploiting CRES technology, and hence to push the

existing and proposed bounds even further, the Quantum Technologies for Neu-

trino Mass (QTNM) consortium, consisting of several UK institutes, has been

formed with a proposal to make guaranteed direct neutrino mass measurements

with the help of quantum technologies [56]. The development of this next-next-

generation experiment is currently beginning with the CRES Demonstration Appa-

ratus (CRESDA) which aims to address: the production and confinement of tritium

atoms; mapping magnetic fields in the CRES detection region with high precision,

and the realisation of high sensitivity microwave electronics devices for detection

and characterisation of the cyclotron radiation.

3.6.3 Expected Statistics in Future Tritium Decay Experiments

Given their primary focus on measuring the neutrino mass, tritium decay experi-

ments are quantified by their count rate within their area of interest near the end-

point. However, for the measurement of exotic currents and sterile neutrinos it is

necessary to look at the entire spectrum, as I shall be modelling in later sections.

With this in mind, it is worth considering what total count rates the next generation

of experiments will be attempting to produce. The total count rate within a certain

window, Nwin, between energies E1 and E2 is easily calculated as

Nwin =
Ntot

Γ

∫ E2

E1

dΓ

dEe
dEe, (3.58)

for a total count rate across the entire spectrum of Ntot and a total decay rate Γ.

In the measurement of the neutrino mass, experiments are expected to focus in

a window of around 1 eV below the endpoint. In Fig. 3.4 the proportional change in

the count rate to that final 1 eV is shown as a function of the lightest neutrino mass

for both the normal and inverted ordering. As mentioned before, the ‘worst-case’
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Figure 3.4: Percentage variation in the number of events in the final 1 eV of the tritium
energy distribution as a function of the lightest active neutrino mass. The red line denotes
the normal ordering case and the blue line the inverted ordering. The gray bands denote the
95% CL for a detectable change in the rate as a function of the total number of events in the
final eV.

scenario is that of mlightest = 0 in which the change in the count rate compared to all

neutrinos being massless is minimal. It is clear from the figure that the difference in

this worst-case between the normal and inverted ordering is significant. For normal

ordering the proportional decrease is negligible but for inverted ordering even the

worst case gives a decrease of around 0.37% in the count rate. Considering that

the Poisonnian statistical fluctuation goes as 1/
√

N1eV (which must be less than the

effect of the neutrino mass in order for the masses to be detected) approximately

N1eV ≈ 2.8× 105 events are required. This corresponds to, using Eq. (3.58), a to-

tal rate across the entire spectrum of Ntot ≈ 1.3× 1018. An experiment with this

count rate would be able to distinguish between the normal and inverted orderings

between the neutrino masses. The TRISTAN experiment is expected to have a total

count rate of 1016 over its three year run period. In order for their detectors to not be

overwhelmed they are reducing the tritium column density by a factor of 100 from

KATRIN [121]. Thus, if they were able to maintain a KATRIN-like event rate they

would measure 1018 events in this time period. This is the number I use throughout

my calculations for sensitivities to new physics as it corresponds to this significant

distinction point between normal and inverted ordering and is experimentally ac-
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cessible within the near future.

3.6.4 Angular Measurements in Tritium Beta Decay

Polarised tritium nuclei have an angular isotropy, as shown by Eq. (3.25), which

leads to a difference in the decay rate to the hemispheres aligned and anti-aligned

to the nuclear spin. Angular measurements of polarised tritium decay have not been

attempted in the past as they offer little additional sensitivity to the neutrino mass

(as discussed in Section 5.1). However, their potential for the detection of exotic

currents is significant, as shall be discussed later.

The primary challenge in generating the angular correlations is polarising the

tritium nucleus. There has already been much interest in polarising tritium nuclei

due to their use in nuclear fusion [125]. For example, the beam used at ANKE for

COSY-Jülich is able to cool the tritium to 20 K, with a roughly 90% polarisation

and roughly 95% disassociation (i.e. separation of the tritium molecule) [126]. This

beam of tritium is storable once generated, with measurements finding no apprecia-

ble decrease in the polarisation over the order of hours [127].

However, given the immense precision required for the next generation of neu-

trino measurements, such levels of cooling and disassociation are insufficient. Due

to the internal dynamics, molecular tritium has an endpoint 10 eV higher than

that of atomic tritium [128]. Given the rapid increase in the spectrum below the

endpoint over-contamination with molecular tritium could drown out the atomic

spectrum. Project 8 thus aims to have a maximum fraction T2/T ≤ 10−4 [128].

In order to prevent recombination this will be cooled to a temperature of around

130−170 mK [129]. The experiment expects to use a magnetic trap in which 4He

is used to maintain contact with the walls. This will allow for cooling whilst pre-

venting the tritium from recombining at the boundaries. The magnetic trap will

hold any T due to its magnetic moment but will allow T2, which has none, to freely

escape [129, 130].

Designing an experiment that can polarise the tritium and measure the angular

distribution may be challenging. However, the technology behind polarisation and

storage already exists and the incorporation of magnetic trapping and guiding within
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future experiments could also be used to enhance or maintain this polarisation. As

shall be shown later, the full angular spectrum doesn’t need to be measured, merely

sensitivity to the hemisphere of emission is required. Tritium is not the beta decay

element best suited to angular measurements due to its low Q-value; as can be seen

in Eq. (3.26), the effect is greater for larger electron energies. However, tritium is

the future of single beta decay experiments and the sensitivities it achieves are still

significant and worthy of discussion.

3.6.5 Double-Beta Decay Experiments

Searches for neutrino-less double beta decay focus on a range of different double-

beta decay elements. Current and future experiments use a range of techniques

such as scintillation light, calorimeters and germanium detectors to measure the

energies of the emitted electrons [131], the signature of 0νββ being a delta peak

in the combined electron energies at the Q-value (i.e. total available kinetic en-

ergy) of the decay [132]. Current searches have yet to detect 0νββ , with the

strongest bound on the effective double-β decay mass, coming from Xenon-136

in the KamLAND-Zen experiment, of mββ < (36− 156) meV [133]. In this the-

sis I will be performing analyses based upon experiments on four different atoms:

Calcium-48, Germanium-76, Molybdenum-100 and Xenon-136. These have been

chosen as they cover a range of Q-values and nuclear charges and are being used in

current experiments [134]. For many experiments the aim is to reach the inverted

ordering lower bound of mββ = 18.6±1.2 meV [113]. A negative result within this

range would rule out Majorana, inverted-ordered neutrinos.

The CANDLES experiment uses CaF2 scintillation crystals to detect the emis-

sion of beta-electrons [135]. The crystals are surrounded by a liquid scintilla-

tion 4π shield which allows for the rejection of background photon events. The

greatest background comes from contamination by thallium-208 and bismuth-212

within the calcium crystals, these are reduced through purification. The most recent

CANDLES result found no detected events within the neutrino-less decay window

with an expected background of one. This corresponds to a half-life lower bound

of 5.6× 1022 yr which gives an estimated upper bound on the neutrino mass of
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mββ ≤ 2.9−16 eV.

Some of the strongest bounds on the neutrino mass come from germanium

based experiments. In these, enriched germanium semiconductors serve as both the

decaying medium and the detectors which maximises the detector efficiency [136,

137]. These detectors are surrounded by liquid argon which both shields and cools

the detectors, along with a further water shield. The enrichment of the detectors and

the strong background veto has led to some of the strongest bounds on the neutrino

mass, with a lower bound half-life of 1.4× 1026 yr at GERDA corresponding to

an upper bound of mββ < 79− 180 meV [137]. With GERDA finishing taking

results in 2019, the focus is now on LEGEND-200 - an upgrade within the GERDA

apparatus with a 200kg source, reduced impurities and an improved scintillation

detection [138]. It is currently taking data with performance verified to be matching

expectations [138]. As well as this, the next generation experiment, LEGEND-

1000, is currently in the design phase with a target 1000 kg mass aiming to detect

neutrino masses down to mββ < 9−21 meV [57].

Searches for 0νββ in molybdenum have taken the rather different approach of

using precise bolometric measurements, called ‘CROSS’ technology. These detec-

tors are cooled to below 10 mK and, as well as scintillation light, tiny oscillations

due to decays are measured using crystals which convert motion into voltage or

current pulses [139]. The benefit of such a technique is the extremely high energy

resolution which helps to distinguish between the 2νββ and 0νββ spectra. The

CUPID-Mo is a demonstration apparatus for the CUPID experiment. Results from

the 1.5 year run of CUPID-Mo found no detection leading to a 1.8× 1024 yr half

life and thus mββ < 0.28− 0.49 eV. The main CUPID experiment is expected to

run with a greater mass and for a longer amount of time, with a predicted sensitivity

allowing for upper bounds on the neutrino mass of mββ < 10− 17 meV, covering

the entire inverted ordering region [140].

The strongest bounds on the neutrino mass come from the KamLAND-Zen

experiment which uses liquid xenon as a source and scintillator. The vast mass

of the experiment has given the high enough statistics for such strong bounds, the
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experiment began in 2011 with nearly 400 kg of xenon (KamLAND-Zen 400) but

has now been upgraded to work with nearly 800 kg (KamLAND-Zen 800) [141].

This work has given a lower bound on the half life of 2.3× 1026 yr [133]. The

future upgrade of this experiment, KamLAND2-Zen, aims to increase the sensitivity

of the experiment by reducing the largest background, spallation products of an

electron and a photon, using machine learning [142]. This, along with an improved

energy resolution from brighter scintillators, gives the potential of reaching mββ <

20 meV [143].

3.7 Statistical Approach to New Physics

Throughout most of this thesis the primary question will be whether a particular

example of exotic or new physics is potentially observable in a given experiment.

The way of approaching this will be in the form of a minimal-χ2 test. Comparison

of the value of the test statistic as a function of the parameters in question to the

critical value will give the range of sensitivity for a particular parameter space. If

there is no evidence for deviation beyond the expected result, the χ2 provides an

upper bound on the parameter in question, in my case at the 95% CL.

In order to perform the χ2 the data needs to be broken into bins that can be

summed over. Typically, this binning will be in either energy segments (for the

energy of the beta-electron) or angular segments (for the angle between the beta-

electron momentum and either the nuclear spin or a Lorentz-violating quantity).

For the energy binning the number of bins is informed by the energy resolution of

the experiment, the bin width is required to be larger than this value [90]. Unless

otherwise stated, I always use 20 bins which is sufficient to satisfy this limit. Using

a greater number of bins than this gives negligible additional sensitivity to new

physics as the scale of variation of the effects (shown later) is typically larger than

this bin width. For the angular distribution the number of bins is 2, corresponding

to opposing hemispheres for the electron momentum direction. This is because, in

most cases, there is a linear cosθ dependence meaning that additional bins would

give no additional information.
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To reflect the experimental lack of sensitivity to the overall magnitude of the

energy spectrum, a nuisance parameter, A, is used. This parameter is minimised and

gives an additional contribution to the χ2. Thus the test statistic is given by

t(X) = minA

[
Nbins

∑
i=1

(N(i)
BSM(X)− (1+A)N(i)

SM)2

(1+A)N(i)
SM

+

(
A
σA

)2
]
, (3.59)

where the subscript BSM denotes the spectrum with new physics (as a function of

some parameter(s) X) and SM is the standard result. The parameter σA = 2 is set

to give a (somewhat conservative) uncertainty on the value of the normalisation. In

practice, this value has very little significance as for all of the calculations performed

herein A will be found to be on the order of 10−4 or smaller.

One way in which the bins could be evaluated would be to run repeated random

calculations, a series of Monte Carlo tests that capture the random fluctuations in

the decay. However, this can be massively computationally expensive and provides

little additional insight for Poissonian process like this. Instead, I use the methodol-

ogy of the Asimov data set [144]. This sets the value in each bin to its expectation

value and treats the test as a question of the presence of an additional signal on top

of the background. Crucially, this means that rather than treating each bin as a ran-

dom variable (meaning there are Nbins −1 free parameters) the test is taken against

the strength of this additional signal. This means in practice that there are as many

free parameters as variables characterising the new physics. When testing for one

signal variable the test is against the critical value 3.84 and for two it is against 5.99

at 95% CL.



Chapter 4

Exotic Currents within Tritium Beta

Decay

Experimental measurements of single beta decay have shown that the weak interac-

tion occurs dominantly via a V −A or vector-axial interaction [15]. The interactions

between the quarks and between the leptons contain the left handed projector 1−γ5

which maximally breaks CP symmetry, as in Eq. (3.18). However, in considering

the beta decay of nuclei this interaction is modified, in Eq. (3.19) this means the in-

teraction between the helium and tritium has the form gV −gAγ5. Whilst this has so

far been found to match with experimental results, it is possible that other currents

also contribute to single beta decay coming from higher energy physics beyond the

Standard Model. In this chapter I study what the signature of such exotic currents

would be in the single beta decay energy and angular spectra as well as tritium beta

decay experiments’ future sensitivities to them. The work in this chapter largely

follows my previously published results in [82].

4.1 Contributions from an Exotic Lagrangian
In this chapter I analyse how the impact of physics beyond the Standard Model

could be realised in single beta decay as an addition to the Standard Model La-

grangian term, Eq. (3.19). I consider this through the language of effective field

theories (as described in Section 2.9.2). New physics can manifest itself in the

Standard Model in the form of higher dimensional EFT terms. Of relevance for
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Current Hadronic Leptonic

Scalar HS = gS
3He 3H j±S = e(1± γ5)νe

Pseudoscalar HP = gP 3He γ5 3H j±P = e (1± γ5)νe

Vector/Axial Hµ

V±A = 3Heγµ(gV ±gAγ5) 3H jµ

V±A = eγµ(1± γ5)νe

Tensor Hµν

T± = gT 3He σ µν(1± γ5) 3H jµν

T± = e σ µν(1± γ5)νe

Table 4.1: Hadronic and leptonic currents expanded in the basis of gamma matrices.

single beta decay are the terms of dimension 6 which will come from some high

energy scale Λ and will be weighted with a suppressing factor of c/Λ2 where c is

a dimensionless constant assumed to be of order 1. This new physics can be fully

accounted for by considering all possible spinor bilinears which could appear in the

Lagrangian, including scalar, pseudoscalar and tensor terms. A summary of all the

different terms appears in Table 4.1, giving the form of the hadronic and leptonic

parts of the Lagrangian. For example, a left-handed tensor term could contribute

additionally to the Lagrangian in the form,

LH =−GF√
2
|Vud|εT gT

[
3Heσ

µν(1− γ
5)3H

][
eσµν(1− γ

5)νe

]
, (4.1)

where the tensor σ µν = i
2 [γ

µ ,γν ], gT is the tensor form factor and εT is a dimen-

sionless multiplicative factor.

All of these terms include nuclear form factors gX = gX(q2) where q is the

exchanged momentum between the nucleus and leptons. In the dipole approxima-

tion they take the form gX(q2) = gX(0)/(1−q2/M2
X)

2 where q2 ≲ (18.6 keV)2 and

M2
X ∼ (1 GeV)2 [89]. Thus it is safe to approximate them with the constant value

gX(q2)≈ gX(0). The form factor values gS = 1.02, gP = 349, gT = 1.02 are calcu-

lated from phenomenological studies and Lattice QCD [145, 146].

Any interaction involving one of these currents I call ‘exotic’. The total con-
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tribution of all the possible currents from Table 4.1 is

Lexotic =−GF√
2

Vud

(
ε̃LHµ

V−A jµ,V+A + εRHµ

V+A jµ,V−A + ε̃RHµ

V+A jµ,V+A

+ εSHS j−S + ε̃SHS j+S − εPHP j−P − ε̃PHP j+P

+ εT Hµν

T− jT−,µν + ε̃T Hµν

T+ j̃T+,µν

)
. (4.2)

The dimensionless constants εi, ε̃i give the interaction strength relative to the Stan-

dard Model V −A Fermi coupling GF . They can be potentially be complex val-

ued. The subscript denotes the hadronic part and the presence (absence) of a tilde

denotes a right (left)-handed leptonic part. They are related to the conventional ef-

fective field theory explanation above as c/Λ2 = εGF |Vud|/
√

2. Any effect beyond

the Standard Model must be small compared to the conventional single beta decay

strength to have escaped detection thus far. Thus I assume that |ε| ≪ 1.

As mentioned, only the left-handed vector-axial term has been observed in ex-

periments, meaning that constraints already exist on the εi parameters. A summary

of these constraints is given in Table 4.2 where it has been adapted from [83, 147].

They largely come from beta-decay processes and LHC measurements with the

strongest limit being given in the table. For the Re(εS) the limits come from

spin-0 nuclei decays [148] whilst for Im(εS) the limits are from LHC measure-

ments [149, 150]. For Re(εT ) the strongest bounds are from radiative pion de-

cay [151] whilst the imaginary part comes from a search for time-reversal symmetry

violation in lithium-8 [152]. For both ε̃S and ε̃T the best limits are from LHC mea-

surements [150]. The strongest limits of εP and ε̃P come from pion decay measure-

ments in the ratio of decays to electron and muon states [147, 153]. The limit on ε̃L

comes from measurements of the beta decay parameters of many nuclei [154, 150].

Upper limits on Re(εR) comes from measurements of CKM unitarity in beta decay

experiments [155] whilst those for Im(εR) come from triple angular correlations

in neutron decay [156]. Finally, the strongest constraints on ε̃R come once again

from LHC measurements [150]. Overall, the strength of constraints that exist vary

considerably between the different currents being considered. This is due, as shall
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Coupling |Reε| | Imε|
εS 8×10−3 1×10−2

ε̃S 1.3×10−2 1.3×10−2

εP 4.6×10−7 2×10−4

ε̃P 2×10−4 2×10−4

εT 1×10−3 1×10−3

ε̃T 3×10−3 3×10−3

ε̃L 6×10−2 6×10−2

εR 5×10−4 5×10−4

ε̃R 5×10−3 5×10−3

Table 4.2: Experimental upper bounds on the real and imaginary parts of the exotic cou-
pling strengths at 90% CL.

be seen in more detail later, to the particular spectral modifications caused by each

current as well as the limitations of each individual method of measurement.

4.2 Exotic Decay Rate

In order to calculate the effect of exotic currents, I follow the same procedure as

in Sections 3.1 and 3.3. As well as the Standard Model term, additional exotic

currents can be included from Eq. (4.2) to the interaction Lagrangian. Within the

matrix element they will add coherently to the previous terms as they produce the

same output particles. The squared matrix element will be composed of standard,

purely exotic and interference terms

|M|2 = |MSM|2 +Re(εY )|MLL,Y |2 + |εY |2|MY |2, (4.3)

where εY parameterises the particular current with MSM the Standard Model result

of Eq. (3.21), interference term MLL,Y (the label LL referring to the left-handed

vector-axial form of the hadronic and leptonic currents used for the Standard Model

result) and purely exotic term MY .
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This will in turn carry through to both the energy and angular spectra:

a(Ee) = aSM(Ee)+Re(εY )aLL,Y (Ee)+ |εY |2aY (Ee), (4.4)

b(Ee) = bSM(Ee)+Re(εY )bLL,Y (Ee)+ |εY |2bY (Ee), (4.5)

where aSM and bSM enter into the decay rate using Eqs. (3.22) and (3.25).

Given the upper bounds already existing on the parameters |εY | ≪ 1 (see Ta-

ble 4.2) the terms with left-handed leptonic currents will have dominant exotic con-

tributions from the interference term. However, for the case of right-handed leptonic

currents the purely exotic term will dominate. This is because of the requirement

for a chirality flip for these currents which will render the interference term propor-

tional to mν . For example, for the contribution with left-handed hadronic current

and right-handed leptonic current (with coefficient ε̃L) the matrix elements are

|MLL,LR|2 = 16G2
F |Vud|2mνme{2(g2

A −g2
V )mHmHe +(g2

A +g2
V )PH ·PHe

−2gAgV mHPHe ·S} (4.6)

|MLR|2 = 16G2
F |Vud|2

×
{
(gA −gV )

2(Pe ·PHe)(Pν ·PH)+(gA +gV )
2(Pe ·PH)(Pν ·PHe)

+(g2
A −g2

V )mHmHe(Pe ·Pν)

− (g2
A −g2

V )mHe [(PH ·Pν)(Pe ·S)+(PH ·Pe)(Pν ·S)]

−(gA +gV )
2mH(Pν ·PHe)(Pe ·S)+(gA −gV )

2mH(Pe ·PHe)(Pν ·S)
}
,

(4.7)

where the purely exotic result is here identical to the Standard Model result except

with gA → −gA and S → −S. The difference between the two is equivalent to

taking γ5 →−γ5 (which has no impact on the final result because it appears in even

numbers of products) alongside gA →−gA and S →−S. Also, here the interference

term is indeed proportional to the neutrino mass. The presence of the factor mν me

rather than Pν ·Pe leads to an approximate reduction of mνme/EνEe.
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This can then be used to calculate the exotic decay rates which are in this case

aLL,LR(Ee) =
G2

F |Vud|2

2π3 C(Ee)
3

∑
i=1

|Uei|2memν ,i
mH|pe|

m2
12

ỹi

[
2(g2

A −g2
V )mHe

+(g2
A+g2

V )(mH −Ee)−(g2
A +g2

V )
mH(mH −Ee)

m2
12

(yi +µmν)

]
, (4.8)

bLL,LR(Ee) =−G2
F |Vud|2

2π3 C(Ee)
3

∑
i=1

|Uei|2gAgV memν ,i|pe|2
mH

m2
12

ỹ
[

1− mH

m2
12
(yi+µmν)

]
,

(4.9)

4πaLR(Ee) =
G2

F |Vud|2

2π3 C(Ee)
3

∑
i=1

|Uei|2
m2

H|p⃗e|
m2

12
ỹiΘ(yi)

×

{
(gV−gA)

2

[
mH(mH −Ee)

m2
12

mHEe −m2
e

m2
12

(yi+µimν ,i)(yi+µimHe)

−
m2

H|p⃗e|2

3m4
12

ỹi
2

]
+(gV+gA)

2Ee

(
yi +mν ,i

mHe

mH

)

+(g2
A−g2

V )mHe
mHEe −m2

e

m2
12

(yi +µimν ,i)

}
, (4.10)

bLR(Ee) =
G2

F |Vud|2

8π4 C(Ee)
mH

m2
12
|p⃗e|2ỹi

×
{[

(gA +gV )
2mH +(g2

A −g2
V )mHe

mH(mH −Ee)

m2
12

+(g2
A −g2

V )
mHmHe

m2
12

Ee +(gA −gV )
2 mH

m2
12
(α −m2

e)

−(gA −gV )
2 m2

H
m2

12
(yi +µimν ,i)

mH(mH −Ee)

m2
12

]
(yi +µimν ,i)

−(gA +gV )
2m2

ν ,i −
1
3
(gA −gV )

2 m3
H(mH −Ee)

m4
12

ỹi
2
}
, (4.11)

where the sum is over all three neutrino eigenstates (the sum over different orbitals

is suppressed within the correction factors). Energy conservation is maintained by

the Heaviside function Θ(yi), µi = (mν ,i +mHe)/mH and ỹi =

√
yi

(
yi +mν ,i

2mHe
mH

)
where yi = Emax

e,i −Ee. Again the purely exotic terms are related to the Standard
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Figure 4.1: Left: Electron energy distribution, in terms of the electron kinetic energy, in
the SM (εT = 0) and with a left-handed tensor current, εT = 0.02. Right: Relative deviation
between the two spectra.

Model result by gA → −gA alongside an overall sign flip in bLR. Looking at the

result for aLL,LR it can be seen that the approximate ratio of this to the Standard

Model result is mνme/Eey ≈ mν/y ≲ 10−5. This is the case for all of the terms with

right-handed leptonic currents. A full list of decay rates for the purely exotic and

the interference terms can be found in Appendix A.

The impact of a single exotic current upon the energy spectrum can be seen

in Fig. 4.1 for an exaggeratedly large value of εT = 0.02. Whilst the inclusion of

a tensor current does cause a significant reduction in the overall energy spectrum,

the change is approximately constant, being slightly greater at lower energies. Sim-

ilarly, the impact of exotic currents on the angular spectrum can be seen in Fig. 4.2.

The impact on the angular spectrum is here seen through the change in the value of

the angular correlation factor k from Eq. (3.14). Recalling that kSM =−0.0154, this

means that these currents are causing a reduction in the magnitude of the correla-

tion. The difference in the impact between the two currents comes from the different

spectral shapes, the εR proportional current has a dominant contribution from its in-

terference term whilst the ε̃L proportional current only has a significant contribution

from the |ε̃L|2 proportional (and thus much smaller) purely exotic term. The exotic

parameters change the angular spectrum due to the way they modify the internal

spin dynamics and momentum exchange as well as by generating left-handed anti-

neutrinos which changes the impact of the helicity-chirality relation.
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Figure 4.2: Deviation of the angular correlation factor k from the SM value kSM as a func-
tion of exotic parameters for the right-handed hadronic current, εR and the right-handed
leptonic current, ε̃L.

4.3 Individual Currents

Ultimately, what is of most interest is to consider the sensitivity that can be reached

to the parameters εX and ε̃X which give the overall strength of the contribution of

these exotic currents. With this in mind, I apply the procedure described in Sec-

tion 3.7 to quantify the impact of these currents for an idealised experiment looking

across the entire energy or angular spectrum. I consider an experiment which has a

total of 1018 events detected, this matches with the requirements for the next gener-

ation of experiments which aim to reach full sensitivity to the neutrino mass in the

case of inverted ordering. For the energy measurements the spectrum is split into

20 equal sized bins, this is small to account for the finite energy resolution of the

experiment and large enough to capture the scale of changes to the spectrum. For

the angular measurements the total number of events in the hemispheres aligned to

and against the spin of the tritium nucleus are measured. For the statistical analysis

the χ2 test is used with the equation Eq. (3.59). The exotic contribution, NBSM(εX),

is calculated as a function of the exotic parameter for the modified spectrum and

the standard result, NSM, comes from the unmodified expressions of Eqs. (3.22)

and (3.25). The nuisance parameter A is used to reflect the uncertainty in tritium

beta decay measurements to the total decay rate and is thus minimised over.



4.3. Individual Currents 99

Figure 4.3: The χ2 deviation for exotic current contributions as a function of the relevant
coupling constant, using the tritium energy distribution. The curves are plotted in solid
below the coupling constant’s upper bound (cf. Table 4.2) and dashed above. The horizontal
black line is the 95% CL sensitivity for Ntot = 1018 events, while the Ntot scale on the right-
hand axis shows the number of events required to reach a 95% CL sensitivity. The labels
denote the relevant parameter for the current.

Figure 4.3 shows the variation in the χ2 difference due to the contribution of

a single exotic current as a function of the relevant exotic parameter. Of interest

is the horizontal line which shows the 95% CL critical value of 3.84, for an ex-

periment with 1018 events the upper bound that can be placed on the parameter is

given by the value at which this line is crossed. For example, this plot shows that

there is a greater sensitivity to currents such as the left-handed tensor and scalar

currents which are further to the left of the plot than the right-handed scalar and

pseudoscalar currents further to the right. The right-side horizontal axis also allows

for the consideration of different numbers of total events. The line for each current

gives the total number of events required to provide a 95% CL upper bound for the

given value of the parameter. This value is inversely proportional to the χ2 value

which scales proportionally with Ntot. For each of the currents the line is shown as

solid below the pre-existing experimental upper bound (as shown in Table 4.2) and

dashed above this. Any line that is still solid at the critical value thus shows the pos-

sibility for an improvement in its measurement by a tritium beta decay experiment.
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Overall, the dependency shown in this plot shows the clear difference in sensi-

tivity to left and right-handed currents. For the left-handed currents (those without

a tilde) the main contribution comes from the interference term meaning that the χ2

scales with ε2. Whilst for the right-handed currents the proportionality to the neu-

trino mass in the interference term (due to the chiral flip) makes this term negligible,

the dominant term is the purely exotic term and the χ2 scales with ε4. Given the

size of ε this means that measurements are more sensitive to the left-handed cur-

rents which have a shallower gradient than the right-handed currents. The variation

in sensitivity to different currents is due to their exact spectral form. In particular,

the lack of sensitivity to the overall scale of the spectrum (reflected in the χ2 by the

normalisation nuisance parameter) means that those terms that are closest in form to

the standard result are going to have a reduced sensitivity. This is most clearly ex-

emplified by the terms with right-handed leptonic contributions (parameters εR and

ε̃R) which each have the weakest sensitivity for the left and right-handed hadronic

currents. The sharp dip that occurs in the right-handed leptonic current at εR ≈ 10−1

is due to near perfect cancellation between the interference and purely-exotic terms

which become comparable in size but opposite in sign at this value.

An identical test can be performed when looking instead at the angular dis-

tribution, in which the exotic currents affect the ratio of electrons emitted in the

hemispheres aligned and anti-aligned to the nuclear spin (calculated assuming total

polarisation). As can be seen in Fig. 4.4, the results in this case are similar, except

for some currents which gain a much increased sensitivity. As before, the left and

right-handedness dictates the slope and general sensitivity of the different currents.

The left-handed scalar and tensor currents show only a marginal increase in their

sensitivity. This is because in both cases the primary variation in the energy and

angular spectra due to the exotic current comes from the a term of Eq. (3.12) which

contributes to both rather than the b term that contributes only to the angular spec-

trum. Conversely, for the right-handed leptonic current (denoted by εR) the b term

is of a much different form than the standard result, unlike the small variation in a,

and thus taking an angular measurement gives a significant increase in sensitivity.
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Figure 4.4: As Fig. 4.3, but using the angular distribution.

For similar reasons, for nearly all of the right-handed hadronic terms there is a sig-

nificant increase in sensitivity. Not only does the angular measurement thus provide

a second avenue for measuring these exotic currents, for the majority of them it is

more sensitive and would lead to the placing of stronger upper bounds.

It is worth noting that in the above figures I have taken the assumption that ε is

real and positive for the sake of ease of visualisation. The assumption of positivity is

irrelevant as the sign of the interference term is lost in the χ2 and would only make a

difference if there was significant cancellation or addition between the interference

and purely exotic terms (as was noted for a very small range of values of εR). As for

the assumption of reality, in practice, as can be seen from Eq. (4.5), those terms for

which the limit is interference term dominated (the left-handed hadronic) the limit

should be taken as being on |Re(εX)| and for those that are purely exotic dominated

(the right-handed hadronic) the limit should be taken as being on |ε̃X |.

In addition, for the angular plot I have assumed full polarisation of the tritium

nuclei. In practice, this is likely to be impossible so a factor of the fractional polar-

isation, f , (see Eq. (3.17)) should be multiplying the spin. When worked through

the calculation, this will lead to a reduction in the sensitivity to the angular mea-

surements with the χ2 being reduced by a factor of approximately f 2.
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4.4 Multiple Currents

In the above I have considered the presence of a single additional exotic current

to the standard result. However, in practice multiple of these currents could exist

simultaneously and may act to enhance or cancel out the changes to the energy and

angular spectra. Because of this, a spectrum that contains two exotic currents could

be statistically indistinguishable from the Standard Model spectrum. I consider this

using the same method as before, making sure to include interference terms not just

between the exotic terms and Standard Model term but also with each other. The

test statistic now is expressed as a function of both exotic parameters. As there are

now two parameters of interest the critical value is increased to 5.99. The results

of this test can be seen in Fig. 4.5, which shows the χ2 deviation for three different

examples of pairs of exotic currents for both the energy and angular distributions.

In all cases there is a ‘region of similarity’ in which the χ2 value is less than the

critical value and the result is indistinguishable from having no exotic currents.

In the upper two plots a scalar current is added alongside a tensor (left) or

pseudoscalar (right) current. In both cases the contributions from each of the cur-

rents are of a similar form and thus the region of similarity with the Standard Model

appears as a straight line band, corresponding to the linear combination of the two

currents that will lead to a cancellation. If the figures were viewed on a differ-

ent scale, it would be possible to see that this linear cancellation eventually breaks

down as the quadratic, purely exotic terms begin to also contribute to the spectrum.

Thus their regions of similarity are finite in size. In the scalar-tensor case the dom-

inant contribution to the modification of the spectra comes from the a term and

thus the energy and angular regions of similarity are nearly identical. However, in

the scalar-pseudoscalar case the angular distribution is much more sensitive to the

pseudoscalar current than the energy distribution and thus the lines have different

gradients. This shows that for certain combinations the performance of an angu-

lar measurement provides additional information. If both energy and angular tests

are found to be compatible with the Standard Model, then the upper bounds on the

currents can be restricted to the overlap region depicted.
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Figure 4.5: 95% CL regions for BSM contributions driven by two exotic currents for Ntot =
1018 events. The region based on the energy (angular) distribution is in orange (blue).
The combinations of currents are: scalar and tensor (top left), scalar and pseudoscalar (top
right), right-handed hadronic and right-handed leptonic (bottom, left for energy and right
for angular).

In the lower plot of this figure the effects of a right-handed hadronic current

are compared to that of a right-handed leptonic current. In this case the regions

for the energy and angular distributions have to be plotted separately as the impact

upon the angular distribution from these currents is significantly greater than for

the energy distribution, the axes of the right figure are many orders of magnitude

smaller. In both cases the shape of their regions of similarity is now curved rather

than straight. This is because, as explained before, the dominant contribution for a
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right-handed leptonic current will be the quadratic, purely exotic term rather than

the linear, interference term. This means that the region of similarity will follow an

approximately parabolic shape, centred around both exotic parameters being 0. As

with the other pairs, this approximate parabolic shape breaks down as the quadratic

part of the right-handed hadronic current become significant and thus once again the

region of similarity is kept finite. The difference between the energy and angular

regions is not just in the much greater angular sensitivity but also that it curves in

a different direction. This is due to the difference in sign of the interference term

for the right-handed hadronic current between the two terms a and b. Once again,

the measurement of the angular distribution means that much tighter bounds can

be placed on the exotic currents but this time almost exclusively due to the much

greater angular sensitivity.

4.5 Outcome
Overall, these results demonstrate the potential for improved sensitivity to exotic

currents from tritium single beta decay measurements. Whilst the energy mea-

surements represent an improvement for only some of the currents, the angular

measurements have an increased sensitivity for all but the pseudoscalar currents.

Although there is the potential for cancellation between multiple currents leading

to an obscuring of their presence, the use of simultaneous energy and angular mea-

surements would greatly reduce the parameter space in which this could occur in

many cases.

Recalling the origin of these exotic currents as coming from some new physics

at an energy scale Λ, the probing of these currents down to the level of εR = 10−8

means the potential for sensitivity to energy scales of Λ ∼ 104 MW ∼ 106 GeV.

Whilst this isn’t dramatically large, it is significant when searching for any effect

which is only apparent when considering interactions between different types of

fermions which might be undetectable in measurements such as propagation exper-

iments.



Chapter 5

Sterile Neutrinos in Tritium Beta

Decay

The discovery of additional neutrinos beyond those in the Standard Model would be

ground breaking and could potentially help to solve important outstanding questions

in physics, such as the composition of Dark Matter in the universe [157]. Unlike

the Standard Model neutrinos whose masses are tightly constrained by oscillation

and single beta decay experiments, the mass of any sterile states is completely free,

potentially ranging from ultra-light to ultra-heavy. Of greatest interest for tritium

beta decay experiments is the search for sterile states with masses below the total

available energy for the decay, which could thus be produced on-shell as an outgo-

ing state from the decay. In this chapter I will look at how these states would impact

upon the neutrino spectrum, how sensitive future experiments would be to them as a

function of their mass and how this sensitivity varies depending upon whether they

are produced via active-sterile mixing or through exotic currents. The work in this

chapter largely follows my previously published results in [82].

5.1 Active-Sterile Mixing

One way in which heavy neutrinos could be produced is through their mixing with

the active states. This would involve the flavour eigenstate νe being composed of

the conventional mass eigenstates along with a new heavy state. Considering a
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simplified scenario of one light state and one heavy state with mixing VeN gives

νe =
√

1−V 2
eN ν1 +VeN ν2,

N =−VeN ν1 +
√

1−V 2
eN ν2. (5.1)

In the case that shall generally be taken here of VeN ≪ 1, the state N is an entirely

sterile state which is mostly composed of the heavy state ν2 whilst the active state νe

is mostly composed of ν1 (in order to match with experimental limits). Of particular

interest is when m2 ≲ 18.6 keV (the total energy given off in the decay) meaning

that it can be directly produced in the decay.

Implementing the inclusion of heavy states to the decay calculation is simple.

They are merely included as the other light states are to the previously calculated

expressions Eqs. (3.22) and (3.25). In this case the equations are extended with

i = 1, . . . , 3+ns for ns heavy states with masses m4, . . . , m3+ns and mixing matrix

elements Ve4, . . . , Ve(3+ns). This uses an extension of the PMNS matrix to include

additional mixing terms between the three active & ns sterile flavours with the three

light & ns heavy mass neutrinos. An assumption is made that the full mixing matrix

is still unitary, meaning that the larger the active-sterile mixing angle, the greater

the reduction in the mixing angle to the active states. This doesn’t conflict with ex-

perimental results as the uncertainty on the mixing is large enough to be consistent

with active-sterile mixing angles of the magnitude considered here [65].

The impact on the spectrum of having an additional heavy state mixed into the

electron neutrino can be seen in Fig. 5.1. The most clearly visible impact of the

sterile neutrino is the kink in the spectrum which occurs at an energy below the

endpoint equal to the mass of the sterile state. For electrons with energy above the

kink there is insufficient remaining energy to generate the heavy state whilst below

it sterile neutrinos can be produced. Kinks do also occur for the light neutrinos but

their masses are so small that so far their kinks cannot be experimentally resolved

and would also not be visible on a figure of this scale (Fig. 3.1 uses a scale in which

these kinks are visible). Above the kink, the spectrum is the same as the Standard
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Figure 5.1: Differential decay rate in terms of the electron kinetic energy, for a massless
and various heavy, mostly-sterile neutrinos with a mixing of |VeN |2 = 0.25.

Model result but scaled down due to the reduction in the PMNS mixing to the active

states, as explained above. Below the kink, there is an increase in the spectrum due

to the additional possibility of decay to the heavy state. The heavier the sterile

neutrino, the less the increase in the spectrum as the phase space available for such

a decay is reduced.
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Figure 5.2: Deviation of the angular correla-
tion factor k from the SM value kSM as a func-
tion of the sterile neutrino mass for different
values of the active-sterile mixing VeN .

As well as impacting the energy

spectrum, the addition of a sterile neu-

trino would also change the angular dis-

tribution. The effect of this can be seen

in Fig. 5.2 for the addition of a single

heavy neutrino. The change to the an-

gular spectrum is 0 for sterile neutri-

nos which are either massless or have

masses equal to the maximum electron

kinetic energy. In the massless case this

is because the angular spectrum will

merely be identical to that of an active neutrino, in the heaviest mass case it is

because the state is too heavy to contribute. In between these two extremes the

impact rises and falls, the angular correlation factor is made more positive by the
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heavy state (recalling that kSM < 0) thus diminishing in magnitude. This is because

the anti-neutrino of right-handed chirality has a weaker preference for being right-

handed helicity if its mass is greater. The link thus generated between the spin of the

nucleus and the momentum directions of the particles (as explained in Section 3.3.2)

is diminished and the magnitude of k is reduced. It is worth comparing the change

in k here to that of Fig. 4.2; here the change in k is two orders of magnitude smaller

(10−4 versus 10−2). It can be seen from this that using angular measurements to try

and detect sterile neutrinos produced from mixing will be poor with much weaker

sensitivity than from looking at the energy spectrum.

Given the lack of sensitivity from angular measurements, I choose to focus

on the sensitivity to the mixing from the energy spectrum. In Fig. 5.3 the limit

that can be placed upon the active-sterile mixing is plotted against the mass of the

heavy sterile state for a future CRES based experiment. Also included in this fig-

ure are the pre-existing limits from tritium [158, 159, 160, 161] and nickel [162]

single beta decay experiments, and astrophysical limits from X-ray [163], cosmo-

logical [164] and supernova [165] studies. There are also the predicted sensitivities

for the KATRIN and TRISTAN experiments [121] as well as another experiment

HUNTER [166]. These experiments have been chosen as they have sensitivities to

sterile neutrinos in the same 0− 18.6 keV mass range that a future CRES experi-

ment would be searching for. The physical origins of these limits will be described

in the following paragraphs.

The pre-existing limits on the sterile masses from beta decay experiments are

due to measurements similar as to those described here. By analysing (at least

part of) the electron energy spectrum and comparing it to the expected spectrum an

upper bound can be placed on the active-sterile mixing. For tritium experiments

the bounds are mostly limited to a few keV as most neutrino mass measurement

experiments have concentrated only near the endpoint of the spectrum. For the

nickel experiment a dedicated search was made for sterile neutrinos in the mass

range of 4−30 keV as this region was largely unmeasured at the time [162].

The astrophysical measurements (labelled as X-ray, Supernova and CMB+BAO+H0)
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Figure 5.3: Projected sensitivities to the active-sterile mixing |VeN |2 as a function of ster-
ile neutrino mass mN at 95% CL, for a total number of events Ntot = 1016 (red solid)
and Ntot = 1018 (black solid), alongside corresponding expected sensitivities of TRISTAN
(dashed red and dashed black). The gray shaded band corresponds to the 1σ variation of the
95% CL for a large number of simulations. The shaded regions are excluded by 3H (blue)
and 63Ni (yellow) searches together with future experimental constraints expected from KA-
TRIN (cyan dot-dashed) and HUNTER (orange dot-dashed). The dotted lines show current
astrophysical constraints from: X-ray data (pink), CMB+BAO+H0 observations (green) and
supernova data (purple).

provide a strong means of constraining active-sterile mixing, provided that the un-

derlying astrophysical processes are accurately modelled. The search for neutrino

sourced X-rays places a very strong limit for lower mass neutrinos. If sterile neu-

trinos were present and produced in the early universe then it is expected that their

decay to lighter states over time would produce mono-energetic photons in the X-

ray region. The NuSTAR experiment found no evidence for unexpected lines in the

X-ray spectrum and thus were able to place strong upper bounds for neutrinos with

masses less than 12 keV [163]. Cosmological measurements are particularly sensi-

tive to neutrinos because of the way in which they act differently from other matter,
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they follow fermionic statistics but are much lighter and more weakly interacting

than any of the other fermions. The presence of a decoupled heavy neutrino state

would affect the time evolution of the early universe as well as causing variations

due to heavy neutrino decay. Studying recombination era observables such as the

Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations (BAO) and

the Hubble Constant (H0) can provide limits on the presence of these sterile states

in the early universe and thus their mixing into the active states that we know were

present. Such measurements include that of the value of the Hubble constant, the

scale of the BAO and the CMB shift-parameter which gives the value of the first

peak in the power spectrum of the anisotropies in the CMB temperature [167]. Such

studies limit the impact that these neutrinos could have with the upper bound on

their mixing scaling roughly as |VeN |2 ∼ 1/m2
N [164]. Finally, the study of Type-II

supernovas also acts as a probe intro sterile masses due to the way that sterile neu-

trino production could disrupt the explosion event. Firstly, sufficient numbers of

neutrinos must be trapped in the core in the collapse prior to explosion, neutrinos

mixed away into sterile states will escape without redepositing their energy which

would cause the explosion to stall out. Secondly, the transition of light neutrinos

into heavy state would take away energy from the collapse, cooling it down too

rapidly. Finally, the movement of sterile neutrinos into the core would cause the

production of electron neutrinos with energies above 50 MeV, a supernova signal

that thus far hasn’t been detected. The fact that current supernova detection rates

match the model predictions can be used with these conditions to place constraints

on active-sterile mixing [165].

The future constraints on sterile neutrinos from KATRIN and TRISTAN were

previously discussed in Section 3.6.1. Here the result for KATRIN assumes the

current detector technology with a total count of 6× 1011 events - corresponding

to a 7 day run with a count rate of 106 cps. The results for TRISTAN are those

labelled by the total counts of 1016 and 1018 events, the former refers to the realistic

expected limit given the systematic uncertainties whilst the latter is that reached

by taking the statistical limit [121]. The other future experiment aiming to search
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for sterile neutrinos in this range is that of HUNTER. HUNTER is planning to

use magnetically trapped caesium-131 atoms in a vacuum which will undergo beta

decay after the capture of a ground state orbital electron. As this is a two-body decay

the nuclear recoil should be uniquely determined by the neutrino mass. Precision

measurements of the nuclear recoil will thus search for a secondary decay peak in

addition to that coming from the decay to the light neutrinos. This technology is

limited by the uncertainties in the measurement of the nuclear recoil and thus is

insensitive to sterile neutrinos at the low keV level which will affect the recoil too

insignificantly. Phase 1 of the experiment, currently under construction, will only

be sensitive to neutrinos in the 50-280 keV range. The future phases 2 & 3 shown

here are based upon higher resolutions of the detector which will allow for searches

down to lower masses, these results are based upon conceptual predictions for future

experimental uncertainties [166].

Finally, Fig. 5.3 also shows the expected sensitivity of a future CRES experi-

ment to sterile neutrinos for count rates of 1016 and 1018 events. These results are

very similar to the TRISTAN results given that the underlying process and expo-

sure are the same. The greatest sensitivity to the active-sterile mixing is for masses

around half of the total available kinetic energy. For massless sterile neutrinos there

is no difference between them and the active states so the result will be indistin-

guishable. Conversely, sterile neutrinos with masses equal to or larger than the

maximum kinetic energy will be kinematically impossible to produce. They will

lead to a reduction in the overall spectrum due to the change to the PMNS mixing

but experiments are insensitive to the overall rate so this effect is lost (reflected by

the normalisation over A in the χ2 calculation of Eq. (3.59)). The band around the

limit for 1018 events reflects the 1σ variation, due to statistical fluctuations, in the

limit that would be reached for a given run of the experiment.

Overall, the potential for future tritium beta decay experiments to probe for

active-sterile mixing is significant if they utilise CRES technology to probe the

entire energy spectrum. In practice, however, any real experiment will face ad-

ditional systematic uncertainties that make these results merely an upper bound for
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the future sensitivity. Such systematics include limits on the determination of the

cyclotron magnetic field and background from recombined molecular tritium. For

lighter masses the x-ray and supernova data leads to stronger limits whilst the cos-

mological results are stronger across the entire mass range. However, these results

are based upon highly complex models for universe and stellar evolution and alter-

native models may lead to much weaker limits than those given here. Ideally, the

presence of sterile neutrinos would be observed via a direct detection experiment

such as using single beta decay as considered here.

5.2 Exotic Sterile Currents
The second way in which sterile neutrinos could be generated in single beta decay

is through exotic currents which directly lead to the emission of the sterile state.

These currents would be similar to those explored in the previous chapter but with

the emission of a purely heavy/sterile state (which may or may not mix with the light

states). I don’t consider the underlying mechanism that generates these heavy states

but instead include these additional terms as effective operators (the same as in the

previous chapter). Decays directly to the sterile state can be parametrised similarly

to before where, taking J as j of Table 4.1 but with νe → N, the Lagrangian is

L N
exotic =−GF√

2
Vud

(
ε

N
L Hµ

V−AJµ,V−A + ε̃
N
L Hµ

V−AJµ,V+A

+ ε
N
R Hµ

V+AJµ,V−A + ε̃
N
R Hµ

V+AJµ,V+A

+ ε
N
S HSJ−S + ε̃

N
S HSJ+S − ε

N
P HPJ−P − ε̃

N
P HPJ+P

+ ε
N
T Hµν

T−JT−,µν + ε̃
N
T H̃µν

T+J̃T+,µν

)
. (5.2)

Here, the εN
i , ε̃N

i equivalently parameterise the strength of the exotic sterile cur-

rents. This Lagrangian also has an additional left-handed vector-axial contribution

parametrised by εN
L (which was neglected in the previous case as it could just be

absorbed into a redefinition of GF ).

From this Lagrangian the new decay rate can be calculated. This will follow

exactly the same procedure as before with the exotic Lagrangian leading to addi-
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Figure 5.4: Sensitivity at 95% CL to tensor and right-handed leptonic exotic currents as a
function of the sterile neutrino mass using the energy (solid) and angular (dashed) distribu-
tions for currents parametrised by εN

T (black) and ε̃N
L (blue). The active-sterile mixing is set

to zero, |VeN |2 = 0.

tional matrix element terms which finally add on to the decay rate expression. In

fact, because the Lagrangian is identical to before, just with νe → N, the individ-

ual terms will also be identical (see Appendix A) just with the heavy state neutrino

mass being used, mN . However, unlike in the previous chapter in which the exotic

currents interfered with the standard model current, as the sterile neutrino is a dif-

ferent particle from the active neutrino there can be no interference term here. This

means that the energy and angular terms will take the form

a(Ee) = aSM(Ee)+ |εN
Y |2aY (Ee), (5.3)

b(Ee) = bSM(Ee)+ |εN
Y |2bY (Ee). (5.4)

As is to be expected, the sensitivity to these exotic currents will depend upon
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Figure 5.5: The χ2 deviation from an energy measurement for sterile exotic current contri-
butions as a function of the relevant coupling constant (mN = 10 keV). The horizontal black
line is the 95% CL sensitivity for Ntot = 1018 events, while the Ntot scale on the right-hand
axis shows the number of events required to reach a 95% CL sensitivity. The labels denote
the relevant coupling constant contributing individually.

the mass of the sterile neutrino being generated. The sensitivity to the square of

two of these exotic parameters as a function of the sterile mass is shown in Fig. 5.4.

For the sensitivity due to energy spectrum measurements the results are largely

the same as for active-sterile mixing in the previous section. For near massless

sterile neutrinos the contribution due to the additional current is lost due to the

normalisation uncertainty. The reason why the change due to εN
T is much less than

it was for εT , the light neutrino exotic current, is due to the lack of an interference

term. The interference terms are typically of a much more different spectral shape

compared to the standard result than the purely exotic terms are. Thus the change

induced by these terms, and thus the sensitivity to the parameter in front of them,

is much larger. For the heaviest sterile neutrinos the impact vanishes as before,

if the neutrinos cannot be kinematically produced they have no impact upon the

spectrum. The sensitivity to the sterile exotic current for an angular measurement

is of a comparable magnitude to that from the energy measurement, similarly to the

case of active exotic currents but unlike that of active-sterile mixing. For the same

reason as the energy measurement, the sensitivity here vanishes for the heaviest
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Figure 5.6: As Fig. 5.5 but for an angular measurement.

sterile neutrinos. However, for the lightest sterile neutrinos the sensitivity remains

high. This is because the aX and bX exotic terms differ from the standard results

by different amounts that are not simultaneously obscured by the normalisation

uncertainty. Compared to the case of active neutrino exotic currents, the heavy

mass of the sterile neutrino serves to weaken the angular correlation (because of the

aforementioned weakening of the chirality-helicity link) and thus the sensitivity is

worse. Overall, for most of the range of sterile masses an energy measurement is

more sensitive except for those lightest sterile states where an angular measurement

can be stronger instead.

In the same way as before, in order to quantify the sensitivity to these exotic

sterile currents I perform a χ2 analysis. This is done with the same setup as the

previous chapter including 1018 events, 20 energy bins and 2 angular bins. Simi-

larly as to before, I plot in Figs. 5.5 and 5.6 the dependence of the χ2 deviation as

a function of the exotic parameters looking at both the energy and angular distri-

butions. This is evaluated for a sterile mass of mN = 10 keV, chosen because, as

seen in Fig. 5.4, this is where the spectrum is most sensitive to the exotic currents.

Identically as in Fig. 4.3 all of the dependency follows a straight line, in this case

all of the sterile contributions are quadratic and so all of the lines scale with |εN
X |4.

Here, for the energy sensitivity, there is a significant overlap between many of the
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different currents. This is because many of them have identical or approximately

identical functional forms for the purely exotic term. Once again the pseudoscalar

terms have the weakest sensitivity and the tensor terms the strongest. For the angu-

lar distribution the additional angular contributions break the degeneracy between

different currents. For the most part, however, the angular distribution provides no

stronger limits than that from the energy distribution. This is because, looking back

at Fig. 5.4, the impact of the additional angular term is weak compared to the energy

contribution so this additional term can only make a marginal difference.

The impact of systematics will be different for the angular measurements than

the energy ones. Angular measurements are not subject to the same problems

with measuring the magnetic field and are barely affected by whether the tritium

is molecular or atomic. However, no experimental method has yet been designed

for the measurement of the angular spectrum and whatever method is used will carry

its own systematic uncertainties. This can be mitigated against by using the fact that

only the hemisphere of emission is of interest and potentially by applying angular

cuts to the data.

5.3 Comparing the Impact of Mixing and Exotic

Currents
Here I have considered two possible mechanisms by which the heavy neutrinos

could be generated, directly through exotic currents or indirectly through active-

sterile mixing as a component of the electron neutrino. Given this, it is worth

considering whether in the case of a deviation from expectation it is possible to

ascertain whether this is due to active-sterile mixing or sterile exotic currents.

Firstly, it is worth considering the limits that can be placed in the case of there

being no statistically significant deviation from the Standard Model result. This

‘null’ type bound is shown in the plots of Fig. 5.7. It can be seen in these plots

that bounds on sterile exotic currents and active-sterile mixing are to some extent

interchangeable. In the energy case the results are all very similar regardless of

the chosen sterile exotic current or sterile mass. The primary signature of a sterile
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Figure 5.7: 95% CL regions for sterile neutrino contributions coming from sterile exotic
currents and active-sterile mixing for Ntot = 1018 events. The region based on the energy
(angular) distribution is in orange (blue). The top plots are for an exotic sterile current with
right-handed leptonic current for mN = 0.5 keV (left) or 10 keV (right). The bottom two are
for a tensor exotic sterile current also with mN = 0.5 keV or 10 keV. Note the use of different
scales between the figures. None of the exotic sterile current parameters have pre-existing
limits whilst the limit on |VeN | for either of these masses is too high to be visible here.

state in the energy distribution is the kink in the spectrum which occurs in both

sterile exotic currents and active-sterile mixing. Thus the sensitivity to both types

is roughly of the same scale with limits being on the order of 10−4 − 10−3 in all

of the cases here. For the angular distribution, however, the result is quite different

with significant differences between the different mass cases. Recalling Fig. 5.4,

the sensitivity of angular measurements is greatest for low sterile masses because
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Figure 5.8: Energy and angular distributions showcasing the difference between an active-
sterile mixing and an exotic right-handed leptonic current for producing a 10 keV neu-
trino. Left: Normalised energy distributions with active-sterile mixing, |VeN |2 = 0.25 (blue,
dashed), overlapping with an exotic sterile |εN

R |2 = 0.33 (orange) contribution. Right: Devi-
ation of the angular correlation factor k from the SM value as a function of the active-sterile
mixing |VeN | or the right-handed leptonic current parameter |εN

R |.

the heavy state has a diminished angular effect when it is heavier due to the weak-

ening of the helicity-chirality link. This means that for mN = 0.5 keV the angular

measurements are more sensitive to the sterile exotic current than the energy mea-

surements in both cases, but not for mN = 10 keV. In all of the cases the angular

measurement is much more sensitive to exotic sterile currents than to active-sterile

mixing. For light sterile states the impact of active-sterile mixing is merely to di-

minish the Standard Model term and add on a term that is nearly identical. When

the sterile state is heavier the sterile term differs to a greater extent from the Stan-

dard Model term but still not significantly (hence the slight sensitivity to it on the

right hand plots). Conversely, the sterile exotic currents introduce terms with an en-

tirely different energy dependence. Whilst the aY terms coming from sterile exotic

currents are similar to the Standard Model result the exotic bY terms differ signif-

icantly which is why the angular distribution has a very different shape from the

energy distribution.

It is worth also considering the counter-example of a detected kink in the spec-

trum and asking whether it is possible to tell if this kink is the signature of sterile

neutrinos produced by active-sterile mixing or by sterile exotic currents. In Fig. 5.8

the impact is shown on the energy and angular spectra of sterile neutrino production

through these two mechanisms. In the left plot, it is shown how a particular pair of
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values of the mixing |VeN |2 and exotic current |εN
R |2 for a 10 keV sterile neutrino lead

to nearly identical changes in the energy spectrum. Using only the energy spectrum

these two cases would be indistinguishable - there will always be a pair of values

across the two cases that leads to identical results. However, looking at the right

plot it can be seen that the impact on the angular spectrum of this exotic current

is much greater than that for active-sterile mixing. The pair of values that would

lead to identical angular spectra are significantly different from the pair of values

that would lead to the same energy spectrum. Thus a simultaneous measurement of

both quantities would allow the two scenarios to be distinguished between.

5.4 Outcome
Overall, whilst cosmological and astrophysical limits upon the sterile neutrino mass

are very strong, tritium beta decay experiments represent a significant opportunity

for direct detection searches. Although this search is often interpreted in terms of an

active-sterile mixing, the possibility of sterile exotic currents is worth examining too

with experiments having significant sensitivity to these. If a detection does occur,

the simultaneous use of energy and angular measurements would be invaluable for

distinguishing between these two scenarios.



Chapter 6

Lorentz Violation in Single Beta

Decay

One of the greatest strengths of the quantum field theory formulation of the Stan-

dard Model is the way in which it incorporates Special Relativity. This is included

by maintaining Lorentz invariance, with all terms in the Standard Model Lagrangian

being overall Lorentz scalars which maintain the same functional form in all iner-

tial frames of reference. This provides limitations upon the types of interactions and

propagations of the fundamental fields of the Standard Model. Over the years there

have been many searches for signatures of Lorentz invariance violation, motivated

by theoretical expectations for small amounts of Lorentz violation in quantum the-

ories of gravity [168], particularly within string theory [169]. These searches have

used a wide range of techniques including astrophysical measurements of photon

propagation [170], collider synchotron radiation [171], precision mass measure-

ments [172] and atomic transition frequencies [173]. So far, no evidence has been

found for Lorentz violation.

There are many different ways in which Lorentz violation could occur. Sys-

tematic attempts to consider this often look at modifications to the Standard Model

through the addition of terms which break Lorentz symmetry. For example, in [174]

all possible terms involving fermions, covariant derivatives and boson field tensors

are considered up to dimension-6. These terms break the Lorentz symmetry by

coupling together the Lorentz vectors and tensors of the Standard Model (such as
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the spinor bilinear ΨγµΨ which transforms as a Lorentz vector) with constant fac-

tors which are invariant under the Lorentz transformations. These combined terms

within the Lagrangian are no longer Lorentz invariant and will appear different in

different inertial frames. In this formulation the Lorentz violating tensors will enter

as multiplicative factors, when set to zero Lorentz invariance is restored. It is these

factors which can be searched for and for which limits can be derived as bounds

upon Lorentz violation.

The two effects that I consider here affect different aspects of single beta decay,

the first is a modification to the Fermi interaction mediating the decay whilst the

second affects the propagation of all of the fermions involved in the decay.

6.1 Lorentz Violating Interaction

The first type of Lorentz violation I consider here is a modification to the four-

fermion beta decay interaction. This could come from a range of different types

of high-energy new physics and would manifest itself as an effective field theory

term of dimension-6. This could take the form of a modification to the low energy

W-boson propagator [175]

⟨W µ+W ν−⟩=−i
ηµν +χµν

M2
W

. (6.1)

Here ηµν is the Minkowski metric and χµν is a constant Lorentz violating factor

where it is assumed χ
µ

µ = 0 (the trace part doesn’t violate Lorentz symmetry and

could be absorbed into the W boson mass). No further assumption is made about

χµν other than that it is small compared to 1 (due to a lack of observation in exper-

iments thus far), it is taken to potentially have real and imaginary parts.

Given this the squared matrix element from Eq. (3.20) is modified to become

|Mχ |2 =16G2
F |Vud|2(ηλ µ +χλ µ)((ηρσ +χ

∗
ρσ )

Tr[(/PHe +mHe)(gV γ
λ −gAγ

λ
γ

5)(1+ γ
5/S)(/PH +mH)(gV γ

ρ −gAγ
ρ

γ
5)]

Tr[(/Pe +me)γ
µ(1− γ

5)/Pνγ
σ (1− γ

5)], (6.2)
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where the ∗ denotes complex conjugation and here I choose to neglect the neutrino

mass which would have negligible impact upon the calculations due to its magni-

tude.

From this the matrix element and decay rate can be calculated. At this point

I use the small magnitude of χ to make the assumption that terms quadratic in χ

can be neglected, keeping the term which represents the interference between the

Standard Model result and this Lorentz violation. There will be no effect that makes

the linear terms particularly small (unlike in Chapter 4 where the chirality flip lead

to neutrino mass proportionality and the dominance of the quadratic terms) so this

is a safe assumption to make. The full matrix element is given in Appendix B.

In order to simplify the consideration of this Lorentz violating parameter, I

split it into scalar, vector and tensor parts (so called because χµν is treated as being a

constant in spacetime so its spatial components will transform with spatial rotations

in the usual manner as for fixed vectors or tensors). This is written as

χµν =

χ00 χ0 j

χ j0 χ jk

,

where j and k label the spatial indices from 1 to 3.

Whilst there are many terms which contribute to the decay rate, the final ex-

pressions for each term often simplify from the long form shown in Appendix B. In

many cases this comes from the vanishing of terms when evaluated in the tritium

rest frame and that after integration over the neutrino direction the only remaining

vectors upon which the decay could depend are p⃗e and ŝ meaning that many of the

Levi-Civita sums vanish. In order to more plainly see the impact of this Lorentz

violation, I calculate a more approximate expression for the decay rate similar to

that in [175] using the same approximation as before that mH ≈ mHe ≫ Ee,me. In

many cases approximately similar terms cancel out whilst others are much smaller
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on the scale of |p⃗e|/mH. This gives as the approximate expression then

dΓχ

dEed cosθe
≈
[
(3g2

A +g2
V )− (2g2

A −2gAgV )
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eŝ
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4πaSM(Ee)
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V
, (6.3)

where aSM is the result from Eq. (3.22) and χr and χi are the real and imaginary

parts of χ , respectively.

As can be seen from this expression, nearly all of the components of χ each

modify both the energy and angular distributions for the beta decay. Of particular

note is that the terms involving χ j0 and those involving χ0 j do not take exactly

the same form meaning there will be differences in the sensitivity to them. This is

because the first index of χµν couples to the hadronic part of the matrix element

whilst the second couples to the leptonic part. In the final decay rate there are only

two 3-vectors upon which χ0 j can be dotted with, p̂e and ŝ, which fixes the types

of terms that can arise. However, the proportionality factor for these terms can be,

and is, different. The only term which doesn’t appear is χ00
i which has no impact

upon the spectrum, even in the full non-approximated form. This is because they

appear in terms such as χ00
i ε0 jkl p̂ j

e p̂k
ν ŝl which vanish once the neutrino momentum

integral is performed.

In the following subsections I calculate the sensitivity to the scalar, vector and

tensor parts of χ using the prescription described in Section 3.7. This assumes 1018

total events measured across 20 energy bins and 2 angular bins. The uncertainty in

the total decay rate for tritium beta decay is captured by performing a minimisation

over a normalisation parameter for the Standard Model spectrum. Experimental
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limits on χ have been found in a range of decay experiments where they are al-

ways expressed in the sun-centred frame, meaning that z is in the direction of the

earth’s axis of rotation and the x and y coordinates are assumed to be fixed relative

to the sun. Sensitivity to χ
0 j
r + χ

j0
r from kaon decay gives the strongest limits on

χ0x
r & χ

0y
r [176]. In muon decay the combination of χ00

r , χ
0 j
r & ε jklχ

jk
i gives the

best limit on χ0z
r [177]. Limits have also been found for χ

jk
r in pion decay [178] and

for ε jklχ
jk

i in the decay of sodium nuclei [179] but these are not the strongest. Lim-

its from all of these experiments are typically in the range of 10−3−10−5 (assuming

that each component only contributes individually, i.e. there is no significant can-

cellation). The strongest limits for all the remaining measured parameters come

from the study of first-order forbidden decays of yttrium and caesium [180]- all of

these limits were found to be in the range 10−6−10−8. Thus the current best limits

at 95% CL are,

|χr|<



3×10−6 6.3×10−5 6.3×10−5 7.4×10−3

2×10−8 1×10−6 1×10−6 1×10−6

2×10−8 1×10−6 1×10−6 1×10−6

1×10−8 1×10−6 1×10−6 1×10−6


,

|χi|<



− − − −

− − 2×10−8 4×10−8

− 2×10−8 − 4×10−8

− 4×10−8 4×10−8 −


,

where a − denotes that no limit has previously been measured.

6.1.1 Scalar

The scalar component, χ00, affects both the energy and angular distributions of

the beta decay process. As a scalar, it adds no additional directional information

and doesn’t violate rotational invariance. However, it affects the energy and mo-

mentum exchange within the decay leading to additional contributions to both the
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Figure 6.1: The χ2 deviation due to the real scalar component of the Lorentz violating
factor, χ00

r , using the tritium energy distribution. The horizontal black line is the 95% CL
sensitivity for Ntot = 1018 events, while the Ntot scale on the right-hand axis shows the
number of events required to reach a 95% CL sensitivity. The labels denote the measurement
using energy or angular binning.

spin-independent and spin-dependent parts of the decay rate. In order to observe

the impact of this term, measurements of the energy distribution and the angular

asymmetry for a polarised nucleus can be performed and compared to the Standard

Model result. There is no χ00
i dependence in the decay rate as sensitivity to this

term would require measurements also of the neutrino or nuclear momentum after

the decay.

In Fig. 6.1 the sensitivity to χ00
r can be seen. For both considerations, the

relationship between the χ2 and the component χ00 is quadratic (a straight line on

this logarithmic plot) because χ00 appears as a linear term within the decay rate. The

energy distribution is a much weaker measurement than the angular distribution.

Most of the sensitivity in the energy measurement is lost due to the normalisation

uncertainty and the fact that the approximate forms given in Eq. (6.3) have the same

energy dependence as the Standard Model expression. However, the exact form, as

calculated from Appendix B and used in my analysis, does have a slightly different

form leading to the weak sensitivity here. For the angular distribution, the factor

of 2g2
A + 2gAgV is approximately an order of magnitude larger than the Standard

Model value which helps to enhance the sensitivity to this term. The sensitivity

reached here from the angular measurement is approximately an order of magnitude

improvement on that from experiment.
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6.1.2 Vector

There are two vector components, χ0 j and χ j0, with there being a small difference

in the sensitivity to the two of them due to the different factors of gA and gV which

multiply the terms in which they appear. As they are vectors, they will act to vio-

late rotational invariance and impact upon the decay rate through their interaction

with the other two vector-quantities, the electron momentum and the nuclear spin.

The measurements that can be made will give the components of χ0 j relative to

these vectors. In this case, there are three terms involving these which affect the

decay rate, each of which are best approached differently. The first term of the

form p̂ j
eχ

0 j
r measures the real vector component and leads to asymmetries in the

electron momentum angular distribution. The measurement of the components of

χ0 j thus involves taking an ensemble of unpolarised nuclei and comparing decay

rates to opposing hemispheres. Any difference between the opposite hemispheres

will imply the presence of a corresponding component of χ0 j. Performing this for

three perpendicular pairs of hemispheres will give the three components of χ0 j.

Secondly, there is the term ŝ jχ
0 j
r which also measures the real vector component.

It would be searched for by polarising the nuclei and measuring for a change in

the total rate when the spin direction is flipped. This again would need to be per-

formed for three perpendicular axes. Finally, the term χ
0 j
i · (p̂e × ŝ) j is dependent

upon the imaginary vector component and induces an asymmetry in the distribution

which is perpendicular to the direction of the spin. Measurements of hemispheres

perpendicular to the spin direction allows for the determination of the components

of χ
0 j
i perpendicular to the spin and choice of hemisphere. Two components could

be found for each choice of polarisation (from two choices of hemisphere perpen-

dicular to the spin) so the nucleus would need to be polarised in multiple directions

to determine all of χ
0 j
i . Any measurement using the energy spectrum only would

be very poor, the p̂e proportional terms would vanish and the spin only term has

an approximately identical energy dependence which would be largely obscured by

the normalisation uncertainty. This is thus not considered here.

The sensitivity to these measurements is shown in Fig. 6.2. As can be seen,
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Figure 6.2: As Fig. 6.1 but for the real (left) and imaginary (right) components of the vector
terms χ0 j and χ j0.

there is a slight difference in the sensitivity to χ0 j and χ j0 in both the angular mea-

surement of the real parts and in the measurement of the imaginary parts, with the

χ j0 component being the stronger in both cases. For the real component, the spin

measurement is stronger than the angular measurement as it isn’t suppressed by

the kinematic factor |p⃗e|/Ee. The angular measurement would represent an im-

provement on the limits for χ
0 j
r but not for χ

j0
r for which the limits are much

stronger. The spin measurement however has a comparable sensitivity to χ
j0

r as

the pre-existing limits. For χ
j0

i and χ
0 j
i limits do not yet exist so a measurement of

spin-perpendicular asymmetries would provide original bounds on this quantity.

6.1.3 Tensor

For the tensor component there are three different methods of measurement, one

for the real part and two for the imaginary. For the real part, the term looks like

(g2
A p̂ j

eŝk + gAgV ŝ j p̂k
e)χ

jk
r meaning that the nucleus would need to be polarised and

an asymmetry searched for in hemispheres both parallel and perpendicular to the

spin. A measurement performed over a j aligned hemisphere for the spin in the k

direction will measure the quantity R jk = g2
Aχ

jk
r + gAgV χ

k j
r , a combination of the

tensor components. However, comparison of this term with the measurement for a

k aligned hemisphere with the spin in the j direction can utilise the fact that gA ̸= gV

to extract the individual components: χ
jk

r = (gAR jk −gV Rk j)/(g3
A −gAg2

V ). For the

imaginary component, the tensor part appears only as χ̃ l
i = ε jklχ

jk
i meaning that the

sensitivity is only to this combined quantity. The vector quantity χ̃ l
i couples to the

spin and momentum in the same way as the vector component χ0 j and thus the mea-
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Figure 6.3: As Fig. 6.1 but for the real (left) and imaginary (right) components of the tensor
term χ jk.

surement techniques of using separate hemispheres or different spins is the same as

before. As before, measurements just using the energy spectrum are ignored as they

would have no sensitivity to χ
jk

r and very weak sensitivity to χ̃ l
i .

The sensitivity to the real and imaginary parts is shown in Fig. 6.3. For the

real part, the sensitivity shown is actually to R jk, however the relationship between

this and χ
jk

r is such that the sensitivity is nearly identical. What is shown here is

the potential for a nearly two orders of magnitude improvement in the upper bound.

For the imaginary part, once again the spin measurement is more sensitive than

the angular measurement. Whilst the angular measurement is too weak, the spin

measurement shows a slight improvement from the pre-existing bounds.

The tracelessness of χµν (χµ

µ = 0) means that χ00 = −∑ j χ j j. This could be

used as a consistency check to compare the results for the measurements of the real

parts. However, as has been seen the imaginary part has no sensitivity to either

χ00
i or the diagonal elements χ

j j
i so this cannot provide any further information for

determining these.

6.1.4 Summary

Thus to summarise, improvements are possible for nearly all of the components of χ

but are reliant upon polarisation of the nucleus and/or taking angular measurements.

For χ00, an order of magnitude improvement is possible for the real part using an-

gular measurements whilst the imaginary part has no effect upon the decay. For χ0 j

and χ j0, although the limits on χ
j0

r are much stronger, improvements can be made

upon the limits for the real parts of both using polarisation based measurements; the
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imaginary part is currently unmeasured and would require both polarisation and an-

gular measurements to detect but there is the potential for first limits being placed.

Finally, for χ jk the use of angular measurements on a polarised nucleus could lead

to two orders of magnitude improvements in the real part, however the imaginary

part remains only sensitive through χ̃ l
i = ε jklχ

jk
i with spin measurements only rep-

resenting a minor improvement on the pre-existing limits. Of course, all of the limits

described here are idealised experimental setups and represent upper bounds on the

capabilities of future experiments. They do, however, show that angular measure-

ments and the ability to polarise the nucleus in variable ways is essential for probing

Lorentz violation of this nature.

6.2 Lorentz Violating Propagation
There are many ways in which the propagation of fermionic states could be modified

by Lorentz violating effects. These are often parametrised in terms of their effect

on the dispersion relation of the propagating field. For example, modifications due

to quantum gravity may take the form

E2 = |p⃗|2 +m2 + ε|p⃗|2
(
|p⃗|
M

)n

, (6.4)

for some heavy mass scale, M, power, n, and modification parameter, ε [181]. In

this case n > −2 so that energy doesn’t diverge at low momentum and M comes

from some high energy theory scale which modifies the propagation of fields in a

similar way as an electromagnetic plasma. Experimental searches of cosmic ray

processes have placed limits requiring M to be orders of magnitude larger than the

Planck mass when n is positive. Similar studies for n = 0, in which the maximum

speed of propagation is modified to v2 = 1+ ε , have placed stringent bounds of

ε < 10−23 [182].

Other attempts to modify the dispersion relation have also been considered,

such as that of [183] in which the relation becomes

E2 = |p⃗|2 +m2 +2λ |p⃗|, (6.5)
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for some parameter λ . Such a result could have interesting implications for neutrino

oscillations if λ is flavour dependent or for high-energy cosmic rays when λ is large.

In all of these cases the phenomenological study begins from the dispersion

relation. However, here I consider a Lagrangian level Lorentz violating modifica-

tion that affects the propagation of fermions [184]. Such a violation could come

from many different types of Standard Model Extension (SME) which incorporate

perturbative violations of Lorentz and CPT symmetry. These could come from UV

theories such as non-commutative geometry [185] or compactified spatial dimen-

sions [186].

6.2.1 Field Redefinition and Modified Decay Rate

Taking one of the terms from [174], the Standard Model Lagrangian is modified

through the addition of the term

La =−aµ

f ψ f γµ ψ f , (6.6)

where aµ

f is a constant 4-vector (assumed to be real) which may take different values

for different fermions. The effect this has on the Dirac equation is thus to give

[iγµ(∂
µ + iaµ

f )−m f ]ψ f = 0 (6.7)

which leads to the dispersion relation

(E −a0
f )

2 = m2
f +(p⃗− a⃗ f )

2 (6.8)

for aµ = (a0, a⃗). This has the effect not only of modifying the relation between

the energy and the magnitude of the momentum but also of adding a violation of

rotational invariance due to the ‘preferred direction’ of the 3-vector part of a.

Considering the propagation of states with such a relation is mathematically

inconvenient, instead it is more advantageous to perform a field redefinition in order
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to recover the original free propagation. This can be done by taking

ψ f = e−iaµ

f xµ
ψ

′
f ⇒ (iγµ∂

µ −m f )ψ
′
f = 0. (6.9)

This recovers the original dispersion relation with the modified state’s momentum

satisfying P′
f
2 =m2

f . The relation between the momenta of the modified and unmod-

ified states is given by P′
f = Pf − a f . From this it can be seen that, in the absence

of any interactions, the Lorentz violating term would have no effect. The newly

defined states have effectively absorbed the modification and propagate as before.

Lorentz violation of this type is called ‘countershaded’ because it doesn’t affect the

group velocity of the neutrinos and cannot be detected through propagation mea-

surements [187]. However, interaction terms defined using the unmodified states

will also need to be reparameterised in terms of the new states, a transformation

that will modify their form and lead to sensitivity to this Lorentz violation. Note

here that if a were to have imaginary parts this would lead to an exponential growth

in the modified field which is unphysical, hence it is here taken to be real valued.

For diagonal interactions, involving a bilinear of the same fermion and no

derivatives, there is no modification to the interaction. This can be seen for the

photon interaction term

Lγψψ =−iqAµ
ψγµψ =−iqAµ

ψ
′
γµψ

′ (6.10)

where the term is identical regardless of the choice to express the interaction us-

ing the field ψ or ψ ′. This will be true also for the strong force interactions which

similarly do not mix between different types of fermion. Mathematically, the trans-

formation here is identical in form to the sort of U(1) transformations shown in

Section 2.2 in the special case of α =−aµ xµ .

However, a change does arise when considering the fermion-changing inter-

actions of the weak force. Performing the same field redefinition as before (and

assuming that the nuclei can be treated as having a single Lorentz violating factor

in a manner equivalent to the fundamental particles) gives a Lagrangian redefined
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in terms of the modified fields:

LFermi =−GF√
2

Vud

[
3Heγµ

(
gV −gAγ

5
)

3H
][

eγ
µ(1− γ

5)νe

]
=−GF√

2
Vud

[
3He

′
γµ

(
gV −gAγ

5
)

3H′
][

e′γµ(1− γ
5)ν ′

e

]
e−i∑ f aµ

f x f ,µ

(6.11)

where the sum in the exponential is being performed over all four fermions involved,

with x f the spatial position of each fermion.

Given that the only impact of these Lorentz violating terms is an additional

exponential in the Fermi interaction, the derivation of the decay rate largely follows

that given previously in Sections 3.1 and 3.3. The only change to the derivation

comes in the modification of momentum conservation [184]. When calculating the

matrix element, each fermion spinor will contribute a factor of the form eiPµ xµ

for

their momentum P and spatial position x. These terms will add within the exponent

to the Lorentz violating terms. A series of spatial integrals is then performed with

the final integral giving rise to an expression very similar to Eq. (3.1)

dΓ =
1

2mH

d3 p⃗′e
(2π)32E ′

e

d3 p⃗′ν
(2π)32E ′

ν

d3 p⃗′He

(2π)32E ′
He

|M|2(2π)4
δ

4(P′
H +a−P′

He −P′
e −P′

ν).

(6.12)

Thus the resultant effect of the Lorentz violation is to enforce a modified form of

momentum conservation within the interaction

P′
H +a = P′

He +P′
e +P′

ν , a = aH −aHe −ae +aν , (6.13)

with subscripts denoting the relevant field. Taking the Standard Model electromag-

netic charge ratios for the Lorentz violating parameters (aH : aHe : ae : aν = 1 : 2 :

−1 : 0) would give a = 0 and the Lorentz violation would vanish. This is because

this would make the transformation between fields identical in form to the U(1)Q

symmetry of the Standard Model which is respected by the Fermi interaction.

Overall, what has been achieved by the field redefinition is to shift the impact
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of the Lorentz violating terms. For the original fields the Lorentz violation causes

a change in propagation from the typical dispersion relation whilst for the modified

fields the dispersion relation is as normal but any fermion changing interaction will

no longer follow conventional rules of momentum conservation. In either case the

calculation is different from before, but it is much easier and more useful to limit

the impact of Lorentz violation to the point of interaction. In addition, given the

many experiments that have failed to find Lorentz violation in particle propagation,

as explained above, it is more appropriate to identify the actual physical states that

are measured with the modified states. This is in some sense analogous to the

difference between the flavour and mass eigenstate formulations of neutrinos, it is

more convenient to perform calculations with the ‘physical’ states being the mass

eigenstates (propagating with conventional dispersion relations) which interact with

modified interactions (due to their mixing within flavour states) than the other way

around. There is, however, no Lorentz violation equivalent here of flavour mixing

as the transformation between states leads merely to a boost to their momentum.

From here the calculation of the decay rate can be performed. In my original

calculation in Section 3.3 I derived the results in Eqs. (3.22) and (3.25) by directly

expressing the matrix element in terms of Eν and cosθν to be integrated over di-

rectly. However, an alternative approach, as laid out in [184], is easier here. I begin

by re-expressing Eq. (3.21) in a slightly different format to explicit pull out the

elements to be integrated

|M|2 = 16G2
F |Vud|2

×
{(

(gA +gV )
2(Pe,µPH,σ )+(gA −gV )

2(Pe ·PH)ηµσ

)
Pµ

HePσ
ν

+
(
(g2

A −g2
V )mHmHePe,µ

)
Pµ

ν

+
(
(g2

A −g2
V )mHe

[
(Pe ·S)PH,µ − (PH ·Pe)Sµ

])
Pµ

ν

+
(
(gA −gV )

2mHPe ·Sηµσ − (gA +gV )
2mHPe,µSσ

)
Pµ

HePσ
ν

}
, (6.14)

where from now on I stop including the primes on all of the effective momenta for

ease of notation, results henceforth will treat the modified states as the states that
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are being directly measured.

The integrals that need to be calculated to evaluate the decay rate are that of Pµ

ν

and Pµ

ν Pσ
He. The final results of these integrals must have the same Lorentz structure

as before. Also, of the four independent particle momenta, the two being integrated

over in addition to one constraint of momentum conservation means that there is

only one free momentum left over. These integrals can only be a function of this

momentum. I choose to express this momentum parameter to be w = PH −Pe + a

which gives a convenient form for these expressions. Using this, the integrals must

give Pµ

ν Pσ
He → f (w2)wµwσ + g(w2)ηµσ and Pµ

ν → h(w2)wµ where f , g and h are

functions to be found through contraction over the indices and with wµ . They are

given by [184]

f (w2) =
π

3
1

w6

[
w4 +(m2

He +m2
ν)w

2 −2(m2
He −m2

ν)
2]√

(w2 − (mHe +mν)2)(w2 − (mHe −mν)2), (6.15)

g(w2) =
π

6
1

w4

[
w4 −2(m2

He +m2
ν)w

2 +(m2
He −m2

ν)
2]√

(w2 − (mHe +mν)2)(w2 − (mHe −mν)2), (6.16)

h(w2) =π
1

w4 (w
2 − (m2

He −m2
ν))√

(w2 − (mHe +mν)2)(w2 − (mHe −mν)2) (6.17)

Inserting this into the expression for the decay rate thus gives

dΓa

dEed cosθe
=

G2
F |Vud|2

8π4mH
C(Ee)|p⃗e|

3

∑
i=1

|Uei|2[
(gA +gV )

2(PH ·w Pe ·w fi(w2)+PH ·Pegi(w2))

+(gA −gV )
2 Pe ·PH(w2 fi(w2)+4gi(w2))

+(g2
A −g2

V )mHmHe Pe ·w hi(w2)

+(g2
A −g2

V )mHe(PH ·w Pe ·S−PH ·Pe S ·w) hi(w2)

+(gA −gV )
2mH Pe ·S(w2 fi(w2)+4gi(w2))

− (gA +gV )
2mH(Pe ·w S ·w fi(w2)+Pe ·S gi(w2))

]
, (6.18)
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where here the subscript i has been added to the functions to signify that they are a

function of the neutrino mass and thus are being summed over all three mass eigen-

states (although the impact of the neutrino mass is negligible). The dot products

here are again evaluated in the rest frame of the tritium (as defined by the effec-

tive 3-momentum vanishing [184]) with the terms involving the Lorentz violating a

being given by

PH ·w = mH(mH −Ee +a0) (6.19)

Pe ·w = Ee(mH −Ee +a0)+E2
e −m2

e −|p⃗e||⃗a|cosθea (6.20)

S ·w = |p⃗e|cosθe − |⃗a|cosθa (6.21)

w2 = (mH −Ee +a0)2 −E2
e +m2

e +2|p⃗e||⃗a|cosθea − |⃗a|2 (6.22)

where θea and θa are the angles of the 3-vector component of a to the electron

momentum and the nuclear spin, respectively. θe is as before the angle between

the electron momentum and nuclear spin. The three angles cannot be treated as

independent of each other and must instead be related by

cosθea = cosθe cosθa + cosϕ sinθa sinθe (6.23)

where the angle ϕ is the difference in azimuthal angle about the spin for the elec-

tron momentum and the Lorentz violating factor. Effectively, the mutual angle is

constrained by cos(θe −θa)≥ cos(θea)≥ cos(θe +θa). Evaluation of Eq. (6.18) in

the case of a = 0 would recover the results of Eqs. (3.22) and (3.25).

Whilst this calculation gives the decay rate, it is worth also considering how

the electrons are to be detected and whether the results need to be re-expressed

in the original electron properties rather than the modified ones. In both current

beta decay detectors, using high pass filters, and future ones, using cyclotron ra-

diation, the electron is measured using electromagnetic properties. As shown by

Eq. (6.10) the form of photonic interactions with electrons is unchanged by the field

redefinition. Thus the conventional understanding of how the detector measures the

electron properties is unaffected and there is no need for a re-expression in terms of



6.2. Lorentz Violating Propagation 136

18.57 18.58 18.59 18.60 18.61
0

5

10

15

20

Ee-me [keV]

dΓ
/d
E
e
[1
0-
33
]

Figure 6.4: Decay rate near the endpoint for tritium single beta decay without Lorentz
violation (green, dashed) and with |⃗a|= 100 keV (orange) and a0 = 10 eV (blue).

the unmodified properties.

The impact of the Lorentz violating factor is greatest near the endpoint of the

spectrum, as shown in Fig. 6.4. The most significant consequence of the Lorentz

violation is the way in which it modifies the location of the endpoint, due to the

change to momentum conservation. The endpoint is reached when the terms un-

der the square root in Eqs. (6.15) to (6.17) become 0; this is clearly changed by

the impact of a upon w2. The presence of the time-like component, a0, shifts the

endpoint by a value approximately equal to a0. This impacts upon the entire spec-

trum because of the sharp rise in the spectrum below the endpoint, as can be seen

for a kinetic energy of 18.57 keV the rate is nearly twice that in the modified case

compared to the original. Unlike the neutrino mass, which shifts the endpoint and

changes the spectral shape, the shape of the spectrum is largely unchanged by aµ ;

a plot of the Standard Model spectrum with an energy shifted by an amount equal

to a0 would be indistinguishable in the figure from the spectrum modified by a0.

The impact of a⃗ is also to shift the endpoint, but by a much smaller value with an

equivalently smaller overall shift to the spectrum. This can be seen coming from

the form of w2 where a0 modifies the electron energy linearly whereas |⃗a| appears

quadratically and will cause a shift approximately equal to |⃗a|2/mH.
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Figure 6.5: The χ2 deviation due to the Lorentz violating factor a as a function of the
relevant component, using the tritium energy distribution. The horizontal black line is the
95% CL sensitivity for Ntot = 1018 events, while the Ntot scale on the right-hand axis shows
the number of events required to reach a 95% CL sensitivity. The labels denote the relevant
parameter as explained in the text.

6.2.2 Statistical Analysis

Given that the Lorentz violation can be seen to have an impact upon the beta de-

cay it is worth quantifying this by performing another χ2 analysis in the manner

described in Section 3.7. In this case I will be considering the sensitivity within

four measurements: to the zeroth component, a0; to the magnitude of the 3-vector

component when the nucleus is unpolarised, |⃗a|, and to the parallel, a∥, and perpen-

dicular, a⊥, components to the nuclear spin, ŝ, of a⃗ when the nucleus is polarised.

This will again be performed considering measurements binned across the energy

spectrum and in hemispheres of the angular distribution.

I begin by first looking at how sensitive χ2 measurements are to shifts in the

energy spectrum. This can be seen in Fig. 6.5. Firstly, the parameter to which mea-

surements are most sensitive is a0. This is to be expected, in Fig. 6.4 an a0 of 10 eV

is shown to have a larger impact than a |⃗a| of 100 keV. The sensitivity is linear

as the impact upon the endpoint is linear. The sensitivity to measurements of a⃗ is

much more interesting and shows behaviour not seen in any of the other examples

of new physics examined herein. The first thing to notice is the significant differ-

ence between the sensitivity with and without polarising the nucleus. In all of the
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Figure 6.6: As Fig. 6.5 but for angular binning.

previous single beta decay cases examined here, polarisation of the nucleus made

no difference to energy measurements as polarisation merely increased the rate to

one hemisphere by an equal amount to the decrease in the other hemisphere; with

integration over the entire sphere the energy spectrum was unchanged. This, how-

ever, is not the case here in which the many complex angular dependencies, upon

θe, θa & θea, significantly changes the behaviour. These arise from the Lorentz

violation introducing a ‘special direction’ which has a coupling to both the electron

momentum and the spin. Whether or not polarising the nucleus has a significant

impact depends upon which Lorentz violating terms are dominant in the decay rate.

For large values of |⃗a| the term in which it is quadratic dominates. This term has

no angular dependence and the polarised and unpolarised measurements are iden-

tical. When |⃗a| is smaller it is the terms proportional to |⃗a|cosθea which have the

greatest impact, in particular in the way they non-linearise the angular dependence

of the spin dependent terms. There is no distinction in this term between a⊥ and

a∥ and thus when integrating over the entire sphere the sensitivity to these terms is

approximately identical with the only difference coming from the additional small

contribution of the |⃗a|cosθa = a∥ dependent term.

The results for the same analysis performed with angular measurements are

significantly different for a⃗ than from those for the energy measurement, as can be

seen in Fig. 6.6. There is still a significant sensitivity to a0 despite it having no
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directional information. This is because changes to the energy spectrum affect the

kinematics and thus the strength of angular polarisation so this method still has a

reasonable sensitivity to this component, albeit less than the energy measurements.

When it comes to a⃗, of the three measurements now it is the perpendicular compo-

nent in the polarised case which has a much weaker sensitivity. Angular measure-

ments performed with hemispheres aligned to a⃗ have strong sensitivity due to the

dependence upon cosθea, particularly where it appears linearly in Pe ·w. This is true

regardless of whether the nucleus is unpolarised or polarised 1. Much poorer is the

attempt to measure a⃗ through hemispheres perpendicular to it. When the nucleus

is polarised and the hemispheres chosen to be in the spin direction there is a weak

sensitivity due to the impact of a⃗ upon the energy spectrum, in the same manner

as for a0. If the nucleus is unpolarised then symmetry dictates that there can be no

sensitivity whatsoever arising from measurements perpendicular to a⃗.

6.2.3 Experimental Limits and Future Sensitivity

Given these results the best ways of searching for this Lorentz violation is as fol-

lows. For the component a0 the strongest method is through energy measurements

with the sensitivity being, in the best case scenario, strong enough to measure down

to a0 ∼ 10−5 eV. However, this assumes that the endpoint energy is known exactly.

In practice, the uncertainty on the theoretical prediction for the beta decay endpoint

from precision nuclear mass measurements is 0.07 eV [188]. This combined with

any systematic uncertainties in determining the endpoint energy (including the end-

point modification described in Section 3.4 due to atomic effects and the determina-

tion of the neutrino mass) will be a limitation on the potential of future experiments

to measure this effect. As for a⃗, the impact on the energy spectrum alone will allow

for detection of |⃗a| down to the level of keV. This can be improved by polarising

the nucleus, the subsequent rate reduction giving sensitivity down to the level of

10s of eV. Finally, this can be further improved through the use of angular mea-

surements with the associated asymmetry increasing the level down to sub-eV. This

1Not shown here, for ease of visualisation, is the case in which the polarisation is perpendicular
to a⃗ but integration still performed in hemispheres aligned with a⃗. Such a measurement would give
near identical results to the other a⃗-aligned measurements.
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method also has the added benefit of giving the direction of a⃗ as determined by the

directions of the hemispheres of asymmetry.

It is worth comparing the results found here to pre-existing limits from tritium

decay experiments. This requires a slight reparameterisation of a. The vector a⃗ is

generally taken to be a fundamental Lorentz violation existing in the universe, it is

fixed within the cosmological frame. On Earth, the rotation of the Earth will cause

the relative direction of a⃗ to any experiments to shift over time. To accommodate

for this, a reparametrisation is chosen in which a⃗ is broken down into spherical

harmonics about this axis rotation. This leads to the alternative prescription [189]

a00 =
√

4π a0 (6.24)

a10 =−
√

4π

3
az (6.25)

a11 =

√
2π

3
(ax + iay) (6.26)

a1−1 =a∗11 (6.27)

where z is pointed in the axis of the earth’s rotation.

The current best limits on these parameters come from the KATRIN exper-

iment in which a search was performed for an oscillation in the endpoint energy

with frequency equal to the Earth’s rotation [190]. They found upper bounds of

|a00|< 0.03 keV, |a10|< 640 keV and |a11|< 3.7 keV at 90% CL. Clearly there is

the potential for significant improvement upon these results, energy measurements

alone can give a three orders of magnitude improvements on |a10| and angular mea-

surements can probe both this and |a11| down to the sub-eV level. Further im-

provements upon |a00| will be systematics limited but the use of atomic (rather than

molecular) tritium in future CRES experiments should lead to significant improve-

ments in this. Overall, future experiments have significant potential for measuring

this form of Lorentz violation to a much stronger degree.



Chapter 7

Correction Factors for Double Beta

Decay

In Section 3.4 I described all of the corrections factors that are applied in the case

of single beta decay for atomic tritium. Many of these correction factors are also

relevant for double beta decay and have an impact upon the decay spectrum. In

this chapter I look at the most important of these, the radiative corrections, which

is often neglected in calculations. I also use a range of approximations to calculate

a modification to the Fermi function due to the mutual repulsion between the two

electrons being emitted from the decay.

The main elements that I will be considering in my analysis are Calcium-48,

Germanium-76, Molybdenum-100 and Xenon-136. These have been chosen for

their range of nuclear charges and half-lives out of the commonly measured ele-

ments. A summary of their properties is given in Table 7.1 with endpoint energies

and 2νββ half-lives from [131] along with the current lower bounds on their 0νββ

half lives from [133, 135, 137, 140].

7.1 Radiative Corrections in Double Beta Decay
As described previously, radiative corrections are present in beta decays due to the

emission of soft photons in the final state which carry away negligible amounts

of energy. These photons can come from the tritium, helium or electron. In the

calculation of this effect, making sure to include the exchange of soft virtual photons
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Ca-48 Ge-76 Mo-100 Xe-136

Z 22 34 42 54

KEmax
2νββ

[MeV] 4.27 2.04 3.03 2.46

T 2νββ

1/2 [yr] 6.4×1019 1.9×1021 7.1×1018 2.2×1021

T 0νββ

1/2 [yr] > 5.6×1022 1.4×1026 2.8×1024 2.3×1026

Table 7.1: Properties of double beta decay elements including their 2νββ half lives and the
lower bounds on their 0νββ half lives, KEmax

2νββ
= Emax

2νββ
−2me.

between the charged states and summing up to infinite emission of photons resolves

any divergences and leads to the correction factor [100]

G(Ee,Emax
e ) =
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(7.1)

where Ee is the energy of the electron, Emax
e the endpoint or maximum energy that it

can take, β = |p⃗e|/Ee, t(β ) = arctanh(β )/β −1 and L(x) =
∫ x

0
ln(1−y)

y dy is Spence’s

function. Significantly the spectrum depends upon two things, both the energy of

the electron Ee and the energy remaining left to the other particles Emax
e −Ee. This

result has been calculated for nuclei of any charge Z with the assumption that their

nuclear recoil can be neglected. This means that the function has no Z dependence

as effectively the interactions of photons with the nuclei are being ignored. This is

a safe assumption to make as such terms would be of order q/mH and the terms in-

volving the photon interacting with the electron will have the dominant impact upon

the electron spectrum. Radiative corrections will also impact upon the hadronic

process through the modification of the form factors gV and gA. However, as their

values are measured from experiment this effect will already have been included in

their determination.

The shape of this function for a range of different endpoint energies is shown
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Figure 7.1: Radiative correction factor, G(Ee,Emax
e ), as a function of the electron energy

for endpoints Emax
e = 0.2 MeV (blue), 1 MeV (orange) and 5 MeV (green). Shown for the

entire energy range (left) and for the final 10 keV of their ranges (right).

in Fig. 7.1. As can be seen, the smaller the endpoint energy the greater the effect of

the correction factor for a given energy. However, looking across the entire spec-

trum, the overall impact of this correction will be greatest for those elements with

the highest endpoint energies as the correction increases in magnitude for higher en-

ergies. This can be seen in the right figure in which the impact upon the final 10 keV

of the range is shown to be greatest for largest endpoint energies. This effect is over

four times as large for an endpoint of 5 MeV compared to that for 0.2 MeV.

Across most of the spectrum the correction decreases the decay rate apart

from at the lowest energies for a decay with an endpoint larger than around

Emax
e ≈ 3 MeV. This is because of the way in which the addition of soft photons

affects the phase space calculation; they act as additional degrees of freedom that

can increase the phase space but they also reduce the phase space available by taking

away energy from the other particles. The value of the endpoint affects the energy

that can be taken by the photons or other particles and changes in it change the bal-

ance between these two competing effects. Overall, the increase in phase space can

only occur when the electron has a low energy and the endpoint is large enough for

there to be sufficient energy available to the non-electron particles.

For double beta decay two factors of G will appear, one for each emitted elec-
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tron. Using the expressions of Eqs. (3.55) and (3.56) the corrected spectrum is

dΓ
′
2,G ∝ G(E1,Emax

2νββ
) G(ET −E1,Emax

2νββ
) F(Z,E1) F(Z,ET −E1)

p1 E1

√
(ET −E1)2 −m2

e (ET −E1)

(Emax
2νββ

−ET )
5 dE1 dET , (7.2)

dΓ
′
0,G ∝ G(E1,Emax

0νββ
) G(ET −E1,Emax

0νββ
) F(Z,E1) F(Z,ET −E1)

p1 E1

√
(ET −E1)2 −m2

e (ET −E1)

δ (Emax
0νββ

−ET ) dE1 dET , (7.3)

where here the decay rate is reparametrised in terms of ET = E1 +E2, the sum of

the individual electron’s energies. In applying these two factors of G, it is assumed

that each beta decay can be treated separately. There is no problem with this for

the inclusion of soft photon emission or interactions between the electrons and the

nucleus as each can happen concurrently without affecting the other, particularly

given that G has no Z dependence so the ‘order’ of the decays is irrelevant. How-

ever this does neglect the electron-electron photon exchange which will be instead

discussed in the next section.

To measure the change to the spectrum due to additional corrections I define

the quantity

∆i(El)≡

(
dΓ′

i,G

dEl

/
dΓi

dEl

)
−1, (7.4)

where i = 0, 2 refers to 0νββ or 2νββ decays and l = 1, T labels the individual

energy, E1, or the total energy, ET = E1 +E2.

The impact of the radiative corrections on the decay spectrum for 2νββ can

be seen in Fig. 7.2 which shows the proportional changes to the spectrum as a func-

tion of both the individual electron energy and the total energy. In both cases, the

primary reason for the difference between the elements is the difference in maxi-

mum endpoint energy Emax
2νββ

available to the pair of electrons (see Appendix C for a

longer mathematical discussion of the variation of the correction with the endpoint).
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Figure 7.2: Proportional change to the 2νββ spectrum as a function of individual electron
energy E1 (left) and total electron energy ET (right) due to radiative corrections.

For the individual electron spectrum, the impact of the correction is a reduction in

the spectrum for all energies, apart from the lowest energy part of the calcium spec-

trum. This is the same for the spectrum as a function of the total energy, except with

molybdenum also seeing a slight increase at low energies. When considering the

difference between the total and individual energy spectra it is worth remembering

that the decay rate is calculated by integrating over the second electron, either from

0 to Emax
e −E1 in the case of the individual energy spectrum or from 0 to ET for the

total energy spectrum. This means that when E1 is large the individual spectrum

will take a smaller contribution from high energies (where the correction is more

negative) whereas when ET is large the total spectrum takes a greater contribution

from high energies. This leads to the total energy spectrum having a significant

enhancement at low energies (with both electrons necessarily having low energies)

whereas the enhancement to the individual energy spectrum is much less (in which

significant contribution comes from the other electron being of a high energy).

In practice, most neutrino-less double beta decay experiments are sensitive

only to the total energy of both electrons and, as they are searching for a peak

Ca-48 Ge-76 Mo-100 Xe-136

Experiment CANDLES LEGEND-200 CROSS KLZ-800

ROI [keV] 310 4.4 8.4 147

2νββ −2.43% −2.73% −2.79% −2.54%

Table 7.2: Percentage change in the count rate due to radiative corrections. Calculated for
the region of interest (ROI) of the total energy for current experiments.
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Figure 7.3: Proportional change in the count rate to the region of interest as a function of
its size. The dots on each line show the ROI for each experiment from Table 7.2.

beyond the endpoint from 0νββ decay, they will focus only on a window at the

highest energy of the spectrum. The optimum size of this window will be different

depending upon the element and the experimental setup. The size of this window

and the change in the expected rate of 2νββ for an experiment looking in this

region is given in Table 7.2 calculated for windows from [135, 131]. The impact of

the radiative corrections will vary with the choice of size of this region of interest

(ROI), the larger the region the smaller the reduction in count rate, as can be seen in

Fig. 7.3. This is because of the increase in the magnitude of the correction with the

energy of the electron, a larger region of interest includes lower energy electrons

that are less affected by this correction so the overall change is reduced. This is

not the case for 0νββ for which the spectrum is merely a δ peak in terms of ET .

Given the finite energy resolution of the experiment the spectrum will be measured

as a Gaussian about this peak. So long as the ROI already captures all of this peak,

further increases in it will have no impact as there are no lower energy electrons

to detect. Given that the ROI will always be chosen to be much larger than the

energy resolution (otherwise the results of the experiment would be meaningless)

effectively changes to the ROI will have no impact upon the reduction to the 0νββ

spectrum.

The equivalent impact upon the 0νββ spectrum for the individual electron

energy is shown in Fig. 7.4. In this case the behaviour is much different, the δ -
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Figure 7.4: Proportional change to the 0νββ spectrum as a function of the individual
electron energy, E1, due to radiative corrections.

function in the 0νββ decay spectrum Eq. (7.3) means that the integral over ET

is trivial. The ratio of the two functions mathematically ends up being only the

product of the two G correction factors, with all of the other terms cancelling. In

practice, this means that there is a significant reduction in the highest and lowest

energy parts of the spectrum (corresponding in both cases to one of the electrons

having nearly the maximum energy) with a few % level reduction throughout the

rest of the spectrum. Once again, the calcium spectrum is reduced the most due to it

having the highest endpoint. Similarly, Table 7.3 shows the impact of the correction

on the 0νββ peak in the total energy spectrum. As this is a δ peak it cannot be

plotted, but the reduction in the multiplicative factor of this term can be calculated.

In practice, any experiment will have a finite energy resolution and this peak will

be smeared into a Gaussian of finite area directly proportional to the factor in front

of the δ function. As the table shows, the reduction of the peak is nearly identical

across all four elements, ranging from 2.7− 2.8% with the larger values being for

the elements with higher endpoints. As this reduction is on the δ peak the size of

Nucleus Ca-48 Ge-76 Mo-100 Xe-136

∆0(ET )[%] -2.81 -2.74 -2.81 -2.79

Table 7.3: Percentage change to the height of the δ -peak in the endpoint of the 0νββ as a
function of the total electron energy, ET , due to radiative corrections.
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the region of interest is irrelevant; so long as it is larger than the energy resolution

(which it will have been chosen to be in order to be experimentally useful) then the

whole peak will be captured and the result is as given here.

Overall, the impact of this radiative correction upon neutrino-less double beta

decay experiments is roughly the same across all of the elements and for both 2νββ

and 0νββ . Within the region of interest near the endpoint of the total energy spec-

trum, to which the experiments are sensitive, there will be a roughly 2.4− 2.8%

reduction in the count rate. This effect will be slightly larger for the very highest

total energies in the case of 2νββ and will be a flat reduction to any observation of

the peak of 0νββ . This has a limited impact upon the sensitivity to 0νββ through

the reduction to the rate, thus making it harder to distinguish from the 2νββ back-

ground. However, if 0νββ were to be detected, this effect would need to be ac-

counted for in the calculation of mββ from the decay rate.

7.2 Mutual Repulsion Between Emitted Electrons in

Double Beta Decay
Whilst many correction factors exist to take account of the electromagnetic interac-

tion between the emitted electrons and the other particles in double beta decay there

is currently no correction due to the interaction existing between the two emitted

electrons; the Fermi function, F , accounts only for their interaction with the nu-

cleus and the screening factor, S, only for them with the orbital electrons. The

effect of the positive nuclear charge is to increase the phase space available to the

emitted electrons, this is reflected by the fact that the Fermi function F ≥ 1 in all

cases. Similarly to this, there will be a mutual repulsion between the two emitted

electrons which should lead to a reduction in the decay rate. This reduction will be

variable, a function not only of both electrons’ energies but also of the angle be-

tween their emission momenta. Here I present a range of different approximations

to calculate the effect of this correction upon the spectrum.

The starting point for calculating this effect is to look at the full Hamiltonian.

Both electrons emitted in double beta decay will carry a charge, and will interact
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with both the daughter nucleus and each other. If this is written in the momentum

dependent form (i.e. taking ψ ∼ exp(iP ·x) for 4-momentum P and position x) then

this takes the form [191]:

E1ψ1 = H12ψ1 =(
iγ 0⃗

γ · (p⃗1 − A⃗1)−
Zα

r1
+

α

r12 − r⃗12 · v⃗2
+ γ

0me

)
ψ1

E2ψ2 = H21ψ2 (7.5)

where r⃗1 and r⃗2 are the positions of the two electrons with v⃗1, v⃗2 their velocities

and H21 is H12 with all labels reversed 1 ↔ 2. The mutual electron repulsion is

given by the Liénard-Wiechart potential with retarded displacement r⃗i j = r⃗i − r⃗′j

for r⃗′j the retarded position of the secondary electron and vector potential A⃗i [192].

In this the nuclear charge is treated as point-like and the screening effect of the

orbital electrons is neglected. Given that the two emitted electrons are identical

the combined wavefunction which solves these will need to be anti-symmetrised

with respect to their exchange. Given the spatial symmetry of this expression, this

will have to be achieved by using an anti-symmetric spin combination. As we are

not considering a polarised nucleus here this will have no effect on the emission

kinematics and will henceforward be assumed to be included implicitly.

Fully analytically solving Eq. (7.5) is impossible (many attempts have been

made with the similar system of Helium with two bound electrons [193]), however

an approximation of the energy dependence can be made, here taking inspiration

from the existing calculation of the Fermi function. In the standard calculation

for the beta decay matrix element, formally the wave-function for the electron in

a Coulomb field should be used. However, as this is too analytically challenging,

instead a plane wave is used which is then weighted by the Fermi function (which

gives the ratio of probabilities of an electron to be found at the nuclear radius with

a given momentum when it has a coulomb waveform compared to a plane wave-

form [194]). Following this method, treating the electrons as plane waves but with a

modified Fermi function is one way of approaching this problem. I will eventually
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do this by effectively absorbing the electron repulsion into a perturbed, velocity-

dependent Zeff which treats each electron as partially screening the nucleus from

the other electron. In the following I consider how this can be done, as well as how

the problem can be approached using a perturbative method.

7.2.1 Neglecting the electron-electron repulsion

The usual method for evaluating this Hamiltonian is simply to ignore the interaction

between the electrons altogether. Neglecting the term α/(r12 − r⃗12 · v⃗2) in Eq. (7.5)

leads to independent wavefunctions that each satisfy the same expression. In this

case the Hamiltonian becomes entirely separable in terms of r⃗1 and r⃗2 and the so-

lution to each of these is found individually in the manner presented previously in

Section 3.4.1. I present here again the result,

F(Z,E) = 4eπη

∣∣∣∣(2pRn)
(γ−1) Γ(γ + iη)

Γ(2γ +1)

∣∣∣∣2 , (7.6)

where η = αZEe/|p⃗e| and γ =
√

1− (αZ)2. In the construction of this, the choice

|κ| = 1 (corresponding to an S1/2 state) has been taken. This means that γ will

be imaginary if |Z| > 1/α ≈ 137, a case which will arise later in some extreme

cases. This possibility has been considered within the derivation and leads here to

the modulus being taken over more terms than is conventionally written.

For this simplest of approximations, the spectrum is modified simply by mul-

tiplying the two additional Fermi factors, one for each electron, onto the result

derived from the integrated matrix element. The result is then, from Eqs. (3.55)
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and (3.56),

dΓ2 ∝F(Z,E1)F(Z,ET −E1)

p1 E1

√
(ET −E1)2 −m2

e (ET −E1)

(Emax
2νββ

−ET )
5 dE1 dET , (7.7)

dΓ0 ∝F(Z,E1) F(Z,ET −E1)

p1 E1

√
(ET −E1)2 −m2

e (ET −E1)

δ (Emax
0νββ

−ET ) dE1 dET . (7.8)

This result is the standard one used in calculating the double beta decay spec-

trum and is the one against which I shall compare future improved approximations.

This calculation has been improved upon in [114], where the effects of the finite

size of the nuclear charge and the screening of the orbital electrons have been ap-

proximated. These effects will be safely neglected when considering the corrections

herein as they are sufficiently small that when comparing differences proportionally

they would make negligible difference to the sensitivity.

7.2.2 Static Approximation

The simplest approximation for accounting for the mutual repulsion between the

electrons is to treat each electron as seeing the other as a static charge at the centre

of the nucleus. In practice, this means taking Z → Zeff = Z −1 in Eq. (7.6).

In Fig. 7.5 (bottom) the impact of this simplest approximate correction can be

seen (with ∆i taking the same meaning as Eq. (7.4) but with Γ′
i,G → Γ′

i,F where in

this case Γ′
i,F = Γi(Z → Z − 1)). At the lowest energies the reduction is greatest,

in this case the electron has the greatest probability density near the nucleus and

thus feels the repulsion of the other electron the most. At higher energies the effect

is reduced, with the reduction changing more slowly as the energy becomes larger.

This is because further increases to the electron energy have diminishing impact

upon the wavefunction with the integral over ET always including some low energy

electron contributions which are the dominant cause of the reduction here. The
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difference between the elements comes from their different nuclear charges, the

larger the nuclear charge the greater the effect of reducing it by 1 (apart from at

particularly low energies). This is because the impact of the nuclear charge is two-

fold: it increases the strength of the potential that is felt by the electron and it

increases the probability density for the electron to be nearer the nucleus. Overall,

the electron is within a stronger potential and has a greater weighting within the

phase space integral to where the potential is stronger. These two factors combine

to create a greater than exponential increase in the Fermi function as a function

of Z. Thus the impact of reducing the value of Z is more significant for larger Z

values than for smaller ones. This can be seen in the top plot of Fig. 7.5 in which
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Figure 7.5: Ratio of F(Z − 1,E)/F(Z,E) as a function of Z for a range of energies (top).
Proportional change to the 2νββ spectrum as a function of total electron energy for the
simplest mutual repulsion correction of Z → Z −1 (bottom).
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the proportional difference between the reduced-charge Fermi function compared to

the original Fermi function is shown to be greater in magnitude for larger values of

Z. The only exception is for sub-relativistic energies where the different dispersion

relation affects the phase space available and leads to a decreasing change in F for

low Z values.

7.2.3 Perturbative Calculation

In quantum mechanics, the standard approach to deal with introducing a new effect

that cannot be analytically solved is to consider a perturbative approach. In this

case, the perturbation is the addition of the extra electron charge relative to the

charge of the nucleus. This change can be seen as small if the expansion parameter

is taken to be the ratio of the nuclear to electron charge, 1/Z (recalling that Z ≥ 22

for the elements considered here). The dependence of the potential upon 1/r12, the

electrons’ separation, means that this perturbation can become potentially infinite in

magnitude. However, when performing the full phase space integral to calculate the

overlap between the electrons’ wavefunctions the region in which this term diverges

is sufficiently small that the contribution remains finite and an attempt at continuum

perturbation theory can still be made. In order to calculate this I follow the method

for perturbations in the continuum as given by [195]. This calculation contains

multiple stages of integrals over the wavefunction Ψ(E1,⃗r1,E2 ,⃗r2) (the full list of

variables upon which Ψ depends at times being suppressed for ease of notation).

The goal is to find a new modified wavefunction which can be evaluated at the

nuclear radius in the same manner as before to find a modified Fermi function.

As the interaction is happening internally to the two electron system and is

in the continuum, the total energy between the two electrons cannot change. The

choice then of perturbed state Ψi is defined in terms of the unperturbed state Ψ0

so that is has the same perturbed energy under the perturbed Hamiltonian as the

unperturbed state does under the unperturbed Hamiltonian (to first order in 1/Z),

H0Ψ0 = E0Ψ0, (H0 +V )Ψi = E0(1+O(1/Z))Ψi, (7.9)
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where H0 is the unperturbed Hamiltonian with unperturbed energy E0 and V the

perturbation.

Despite the fact that the total energy cannot change, the perturbed state poten-

tially receives contributions from unperturbed states of all possible energies. The

perturbed wave-function which satisfies this energy condition is, as the continuum

analogue of the usual bound state perturbation expression,

Ψi(E1,E2) = Ψ0(E1,E2)+ ∑
µ,κ

∫ ∫ Ui,0(E1,E2,E ′
1,E

′
2)

E1 +E2 −E ′
1 −E ′

2
Ψ0(E ′

1,E
′
2)dE ′

1dE ′
2,

(7.10)

where Ui,0 is the transition element between the two states, given below. The sum

is performed over all possible values of the angular momentum quantum numbers

µ, κ for both of the initial and final state electron wavefunctions with all possible

unperturbed states contributing to the final state. The unperturbed state is that found

assuming no electron-electron interaction, Ψ0 = ψ(E1,⃗r1)ψ(E2,⃗r2), with ψ being

given by Eqs. (3.32) and (3.37). The perturbation matrix element is given by

Ui,0(E1,E2,E ′
1,E

′
2) =

∫ ∫
ψ(E1 ,⃗r1)

†
ψ(E2,⃗r2)

†

α

|⃗r1 − r⃗2|
ψ(E ′

1 ,⃗r1)ψ(E ′
2 ,⃗r2)d3r1d3r2, (7.11)

where each of the states here may have different angular momentum quantum num-

bers µ,κ .

Recalling the derivation in Section 3.4.1, the Fermi function is calculated by

evaluating the wavefunction of the electron at the nuclear radius Rn. Here, I cal-

culate the perturbed wavefunction Ψi as a perturbation of the wavefunctions that

lead to the conventional Fermi function. This perturbed wavefunction is then used

instead in the derivation to generate a modified Fermi function. In practice, calcu-

lating these perturbed wavefunctions is highly computationally expensive as they

require double energy integrals over the matrix element which itself is a double

spatial integral with non-trivial energy dependence due to the complexity of the

wavefunctions involved. Instead as a computational simplification, I consider the
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perturbation of only one of the electrons with the other state treated as a charge

fixed at a distance Rn from the nucleus. I choose this distance because, as in the

derivation of the usual Fermi function before, ultimately the wave-functions will

be evaluated at this point to derive the perturbed Fermi function. Mathematically

this means taking both functions of r⃗2 to be given by ψ (⃗r2) ∝ δ (⃗r2 − R⃗n) where

|R⃗n| = Rn. Using this the calculation is reduced to only a single spatial integral

with the transition matrix element thus being given by Ui,0 =Ui,0(E1,E ′
1). Inserting

this into the expression for the perturbed wavefunction gives a perturbed function

ψi(E1,⃗r1) which can be expressed in terms of modified functions fi and gi in the

manner of Eq. (3.32). Using Eq. (3.38), in the same manner as the Fermi function

was derived from the unmodified wavefunction, the modified wavefunction is then

evaluated at |⃗r1|= Rn and used to derive a modified Fermi function using

F ′(Z,W ) = ( f 2
i +g2

i )
π

2pW
. (7.12)

The use of the simplification of fixing the location of one of the electrons greatly

reduces the computational requirements but does make the approximation substan-

tively less valid. I also only include in my calculation contributions from κ = −1

states, those of the lowest angular momentum which are the ones that are included

in the conventional Fermi function. Contributions from higher angular momentum

states are small and diminish with increasing quantum number.

Due to the simplified consideration of only one electron being dynamically

altered, I end up with a modified Fermi function only of the individual electron’s

energy, F ′(E1) (the angle between the electrons momentum and the other electron

has no impact as it is ‘smeared out’ by the spatial integral to give a purely energy

dependent transition element). I insert this modified Fermi function into Eq. (7.7) to

give a modified decay rate and compare this to the unmodified spectrum in Fig. 7.6.

As can be seen, the impact is to give a similar percentage reduction and identical

ordering with Z as the static approximation but with a greater variation with energy

and a smaller variation between elements. This is because this much simplified re-

sult misses much of the structure of the more advanced method. For example, the
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Figure 7.6: Proportional change to the 2νββ spectrum due to mutual electron repulsion as
a function of total electron energy. This is calculated using a perturbative approach.

loss of the angular information due to the consideration of only lowest angular mo-

mentum state contributions causes the loss of the sharp angular dependence when

the two electrons are emitted close to each other which would reduce the change in

the spectrum. This method also enhances the reduction at low energies because the

non-dynamical second electron is fixed close to the nucleus (and thus closer to the

other electron) rather than moving away. Overall, this perturbation method could be

more successful given greater computational power and fewer approximations but

has some limited validity as is. It does serve to confirm the previous conclusions

that larger Z values lead to a greater correction and that the effect will be largest

for low energies and diminish for higher energies. It also confirms that the effect

should be around the value of several % in magnitude.

7.2.4 Effective Nuclear Charge Approximation

I now return to an analytic approximation for calculating this effect. The way to

improve upon the static approximation used before is to allow for the ‘secondary’

electron to be dynamic. Whilst solving the problem fully is impossible, I aim to
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approximately account for the motion of the secondary electron by defining a modi-

fied Zeff which incorporates the mutual dynamics of the electrons to define a reduced

effective nuclear charge to be used within the Fermi function.

Given the form of the potential in Eq. (7.5), the aim of my approximation is

to derive an expression for some Zeff which can incorporate some of the kinematics

of the decay, Zeff = Zeff(v1,v2,cosθ) where v1, v2 are the speeds of the electrons,

vi = |p⃗i|/Ei, and cosθ is the cosine of the angle between the direction of their

momenta. There will be two Zeff, one for each of the electrons, because if they

have different speeds then the effect each has on the other will be different. The

two expressions will, however, be related merely by changing the labels 1 ↔ 2 in

the expressions given the symmetry of the setup. In calculating this I consider the

primary electron as the one for which the Zeff is being calculated with the change

Z → Zeff being caused by the presence of the secondary electron. The way in which

I calculate this starts from the potential felt by the electron

V (⃗r1 ,⃗r2, v⃗2) =
Z
r1

− 1
r12 − r⃗12 · v⃗2

(7.13)

Figure 7.7: Diagrammatic depiction
of the exchange of a single photon
between two electrons with the pho-
ton emitted at time ti and absorbed
at time t f . Given are the relations
between length and speed assuming
constant speeds.

In order to use a modified form of the Fermi

function involving simply the change Z → Zeff

I wish to effectively absorb the second part of

this potential into the definition of Zeff. I do this

by considering the relationship between r1, r2,

v⃗1 and v⃗2 for the relativistic exchange of a pho-

ton, taking account of the finite speed of pho-

ton propagation that gives a retarded potential.

In this, I neglect the vector potential (which is

small compared to the momentum1) and model

both electrons as having approximately constant

velocities with the photon travelling between

1Both the scalar and vector potentials can become very large for small separations, however this
happens at the point of production near the nucleus where the nuclear charge, a factor of Z larger,
will dominate the behaviour and ‘blow up’ faster.
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them at the speed of light, as is depicted in

Fig. 7.7. Doing this will allow for approximate

expressions to be found for r12 and r⃗12 · v⃗2 in

terms of r1 by solving geometrically.

To begin, I derive a relation between the times of photon emission ti and ab-

sorption t f as a function of v1, v2 & cosθ . This is found to have a direct proportion-

ality ti ∝ t f . I express this relationship through the definition of a ‘retarded speed’,

such that v′2 = v2 ti/t f , which is given by

v′2 = v2

(
E2

me

)2
(
(1− v1v2 cosθ)−

√
(1− v1v2 cosθ)2 − m4

e

E2
1 E2

2

)
. (7.14)

Using this result and the dependence of r12 upon v1 and v2 enables the determination

of r12 also in direct proportionality to t f . Again this is expressed in terms of a

‘relative speed’ v12 satisfying r12 = (r1/v1) v12 to give

v12 =

√
v2

1 + v′2
2 −2v1v′2 cosθ . (7.15)

Finally, using this to find the angle between the second electron’s speed and the

direction of the photon gives

r⃗12 · v⃗2 = r12v2

(
v1 cosθ − v′2

v12

)
. (7.16)

The equivalent expressions for the emission of a photon from the primary electron

to the secondary electron defines r21 identically but with 1↔ 2. The new speeds that

have been defined here, v′2 and v12, are not physical speeds but merely parameters

related to the retarded distance between the electrons.

Using all of these expressions in the potential of Eq. (7.5) gives

Zeff = Z − v1

v12 + v2(v′2 − v1 cosθ)
, (7.17)

and vice versa with 1 ↔ 2. In theory this gives the possibility of Zeff → −∞ for
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v1 = v2 and cosθ = 1 (⇒ v12 → 0) corresponding to the complete overlap of the

two electrons. This might seem problematic but the blowing up of this is no different

from the blowing up of the conventional Fermi function term Z/v1 for v1 = 0 i.e. the

electron is entirely fixed at the nucleus. This is acceptable in the latter case because

it merely represents that the electron has a finite probability of being located at the

nucleus because of its charge, when the usual direct proportionality to |p⃗1| in the

decay rate forbids this. This occurs for the same reason in the former but the other

way around, the repulsion between the electrons completely forbids the electrons

from having identical velocities, as is to be expected. In either case, the actual

phase space for this occurring is small enough to give only a finite contribution to a

full integral over the entire phase space.

This modified Z can finally be inserted into the usual derivation of the Fermi

function. When this is carried through, this in turn modifies the values of γ and η

in Eq. (7.6), which both carry a Z dependence. This gives a new ‘corrected’ Fermi

function

F ′(Z,E1,E2,cosθ) = F(γ → γeff,η → ηeff). (7.18)

Whilst this derivation relies upon some strong approximations, it is useful be-

cause it crucially captures the edge cases of how Z would appear to the primary

electron to vary as a function of the energy of the secondary electron. For example,

in the case v2 = 0⇒ v12 = v1, we find Zeff = Z−1. This corresponds exactly to what

is physically expected and which was used in the previously discussed simplest ap-

proximation of one static electron near the nucleus reducing the nuclear charge by

1 as it appears for the other. Equivalently, v1 = 0 gives Zeff = Z. The static pri-

mary electron has a potential dominated by the nuclear charge which blows up with

the 1/v1 dependence and thus the moving electron is negligible by comparison. In

addition to these cases there is also that of when the primary electron has a very

high energy v1 → 1 ⇒ v12 → 1 (excluding the highly tuned case of both electrons

being co-linear and of similar energies). This gives Zeff = Z − 1, effectively the

primary electron sees the secondary electron and the nucleus as a combined charge.
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This reflects the finite propagation of the photon with the secondary electron’s re-

tarded potential appearing to be sourced at the nucleus. Finally, there is the highly

tuned case mentioned before in which both electrons have the same velocity and

Zeff →−∞. This causes the Fermi function to go to 0 and this outcome is forbidden

as would be expected. Thus overall, in creating this effective charge a great range

of the kinematics that is to be expected has been included within it. Whilst it is not

an exact expression, it is useful as an indication of how each electron’s velocity will

affect the other and is an improvement upon the simpler approximation before of

just using Z −1 regardless of the electron velocities.

Within the decay spectrum there will be two Fermi functions, one for each

of the emitted electrons. Each of these must be corrected to take account of the

interaction with the other, giving corrected spectra:

dΓ
′
2,F ∝F ′(Z,E1,E2,cosθ)F ′(Z,E2,E1,cosθ)

p1E1 p2E2(Emax
2νββ

−E1 −E2)
5
(

1∓ p1

E1

p2

E2
cosθ

)
dE1dE2d cosθ , (7.19)

dΓ
′
0,F ∝F ′(Z,E1,E2,cosθ)F ′(Z,E2,E1,cosθ)

p1E1 p2E2

(
1∓ p1

E1

p2

E2
cosθ

)
δ (Emax

0νββ
−E1 −E2)

dE1dE2d cosθ (7.20)

where the minus (plus) sign is for left (right) handed currents [196]. For 2νββ it has

been experimentally shown that the decay is predominantly left-handed, however

it is possible that there are right-handed contributions from effective operators in

the same manner as was considered here before for single beta decay. The 0νββ

process has never been observed so could potentially be mediated by left or right-

handed interactions.

The impact of replacing the Fermi function with its modified form compared

to the original spectrum is shown in Fig. 7.8 for both left and right-handed interac-

tions. As expected, both left and right-handed interactions tend towards the same
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Figure 7.8: Proportional correction to the 2νββ spectrum as a function of the total electron
energy due to the mutual electron repulsion. This is with both left-handed (solid) and right-
handed (dashed) mediated interactions for a range of double beta decay elements.

magnitude of reduction for negligible total energy. This is because the strength of

the angular correlation is proportional to the product of their momenta, meaning that

there is no difference between the two cases when the momenta tend to zero. As

their energy and momenta increase, the angular correlation becomes stronger and

there is an increasing divergence between the left and right-handed interactions.

For the left-handed currents the correction tends towards an asymptotic value. This

is because in these cases the electrons are ultra-relativistic, over the vast majority

of the range of the integral over their energies, and the retarded potential from the

other electron appears as if it is sourced from the position of the nucleus. Further

increases in energy thus have little impact as the electron is already moving close to

the speed of light. Compared to the static approximation, the reduction in the spec-

trum is smaller. The angular correlation means that the electrons will typically be

emitted in opposing directions, meaning that the separation between the two elec-

trons will typically be larger than that between them and the nucleus. The higher

the energy, the stronger the angular effect and thus the further apart the electrons
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Ca-48 Ge-76 Mo-100 Xe-136

LH −6.1% −7.4% −8.1% −9.3%

RH −14.9% −14.1% −17.3% −18.4%

Table 7.4: Percentage change to the 0νββ rate for left handed (LH) and right handed (RH)
currents.

will on average be. This means that with this approximation the reduction in Z will

average out to being less than the reduction by 1 used in the static approximation.

Conversely, for the right-handed current the electrons are more likely to be emitted

with a small angle between them making the impact of their repulsion larger and

leading to a larger correction to the spectrum. The right-handed correction would

eventually level off for the same reason as the left-handed, but this would require

much higher electron energies than is available from their decays given their smaller

angular separation. Once again, the correction in both cases is larger for higher Z

values for the reasons explained before.

The impact upon the 0νββ rate is given by Table 7.4. In this case, the signature

of 0νββ is a δ -peak in the total energy at the endpoint, thus the percentages given

here are reductions in the expected count rate at this peak. This follows the same

pattern as 2νββ with a much greater reduction for right-handed currents than for

left-handed and a stronger effect for higher Z values. As 0νββ has never been

observed and there is no prediction for its rate there is no experimental result to

compare this to. However, the ultimate aim of these experiments is to extract the

value of mββ , the effective double beta decay neutrino mass, from the rate of this

decay so this correction will be relevant if precision measurements of 0νββ are

made.

Ultimately, whilst this effect appears to cause a substantial reduction in the de-

cay spectrum for 2νββ (nearly 10% in some cases), in practice most of this effect

will already be accounted for in experimental measurements. As described in Sec-

tion 3.5 the decay rate is proportional to both the Nuclear Matrix Element (NME)

and the axial-vector coupling geff
A , both of which take different values for different

elements. The double beta decay rate has for many elements a direct proportionality
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Ca-48 Ge-76 Mo-100 Xe-136

Experiment CANDLES LEGEND-200 CROSS KLZ-800

Ntot 1.1×105 5.7×106 2.1×107 7.3×106

χ2 0.30 21 23 3.1

Nreq 1.4×106 1.0×106 3.6×106 9.0×106

Table 7.5: χ2 difference between the corrected and uncorrected spectra for various elements
calculated using total counts, Ntot, in current experiments. Also, the average total count
required, Nreq, to reach observation at a 95% confidence level.

to the fourth power of the axial coupling, geff
A [197]; attempts to generate a theoret-

ical prediction for its value vary significantly depending upon the model used with

different calculations finding geff
A = 0.57 or geff

A = 0.72 in the case of Xenon [198].

Many attempts have also been made to calculate the NME theoretically. However,

the different methods employed lead to significantly different results with variations

to the decay rate of factors of up to 9 [106]. Rather than using theoretical calcula-

tions, most often the value of both of these quantities is extracted from experimental

measurements for each element. Separation of the product of the NME with geff
A can

be done by considering the different intermediate states with which the double beta

decay can occur, each having different energy dependencies [199]. Ultimately, the

determination of these terms from experiment without the mutual electron repul-

sion correction being considered means that most of the effect of this correction

will already have been accounted for in the determination of geff
A . As the theoretical

uncertainty is so large, there has been no result to compare the experimental mea-

surements to which would show the reduction in the apparent value of geff
A due to

this correction. All that remains as a signature of this correction is the shape of the

energy dependency. This is largest for small Z elements at around 3% for Ca-48

(see Fig. 7.8).

Given the magnitude of the effect upon the 2νββ spectrum it is interesting to

ask whether current or future experiments will be sensitive to the impact of this cor-

rection. Here I use the χ2 methodology explained in Section 3.7 to analyse whether

the impact of this correction upon the spectrum is statistically significant, in this

case measuring the energy spectrum using 20 bins and with a total number of events
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taken from each element’s relevant experiment. I again apply the minimisation over

a nuisance parameter multiplying the overall decay rate to reflect the theoretical un-

certainty in the total decay rate. The results are shown in Table 7.5, calculated using

idealised experimental double beta data taken from [131, 135, 200, 201, 202, 203].

Recalling that for a test of this type the 95% CL critical value is 3.84, it is clear

that LEGEND-200 and CROSS should be weakly sensitive to this correction with

KamLAND-Zen being nearly sensitive. For each of the experiments there is also

given the required total count rate to reach the critical value, for those experiments

already sensitive this is lower than their current count rate, for CANDLES an order

of magnitude improvement in count total is required before the correction will have

a consistently measurable impact. This calculation would imply that this correction

factor is significant enough that it needs to be included in double beta decay mea-

surement analyses. However, these results have been calculated for highly idealised

setups in which the only limitation on the data is statistical and issues of energy

resolution can be neglected.

7.3 Case Study: Impact upon KamLAND-Zen

Whilst it is of interest to perform the idealised calculation of the sensitivity above,

looking at real experimental uncertainties can be more informative. To do this,

I use the experimental uncertainties from the KamLAND-Zen experiment found

in [204] which cover the energy range ET = 0.80− 2.15 MeV using 27 bins. The

uncertainty varies significantly across the different bins but is generally lowest at

low energies and becomes substantially larger for higher energies due to the low

statistics (see Appendix D for the values). In the standard form of the χ2 used

previously a Poissonian distribution in each bin has been assumed, with a standard

deviation given by
√

NSM as in Eq. (3.59). Here instead I use the percentage error

from the experiment, which gives standard deviations as great as over 40% larger
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(the greatest increases being at lower energies). This gives

t = minA

Nbins

∑
i=1

(
N(i)

corr − (1+A)N(i)
uncorr

(1+A)σ (i)N(i)
uncorr

)2

+

(
A
σA

)2
 , (7.21)

where σ (i) is the percentage uncertainty of bin i. I do this for the impact both of the

radiative corrections and the mutual electron repulsion.

If the minimisation over A were not performed, the result of this test would

be t = 11.5 for the radiative corrections and t = 931 for the mutual electron repul-

sion. If the total 2νββ rate were known exactly then the roughly 1% deviation in

the spectrum due to the radiative corrections and 10% deviation due to the mutual

electron repulsion would be greatly significant and accurate theoretical predictions

would be highly dependent upon this correction. However, with the minimisation

the values are instead tmin = 0.94 for the radiative corrections and tmin = 0.011 for

the mutual electron repulsion. In both cases nearly the entire impact of the correc-

tions are absorbed into the uncertainty in the total rate and the remaining energy

dependence of the correction is too small to detect given the levels of uncertainty.

The variation with energy of the radiative correction is much more substantial across

this range than the variation for the electron repulsion which is why the former value

is much larger than the latter after minimisation. Given the scaling with the uncer-

tainty, in order to reach significant levels the percentage uncertainty would need to

be reduced by approximately a factor of 2 for the radiative corrections and 20 for

the electron repulsion. Whilst the former is achievable the latter is something that

will be very experimentally challenging.

Clearly the experimental uncertainty as it currently stands is too large for ei-

ther of these corrections to be observable. Given this, I wish to see how varying the

strength of the correction (which could come from using a higher endpoint element

in the radiative correction case or a lower Z element for the mutual electron repul-

sion) affects the sensitivity to it. In order to calculate this, I define a new scaled
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Figure 7.9: Proportional difference between the corrected and uncorrected 2νββ spectra
due to the radiative correction, weighted to minimise the χ2 deviation, as a function of the
total electron energy alongside the uncertainties from KamLAND-Zen (black). The scaling
of the correction is s = 1 (blue), s = 5 (orange) and s = 10 (green).

variant of the correction as

dΓ
′
s,F =

[
1+ s

(
F ′(Z,E1,E2,cosθ)

F(Z,E1)

F ′(Z,E2,E1,cosθ)

F(Z,E2)
−1
)]

dΓ2, (7.22)

dΓ
′
s,G =

[
1+ s(G(E1,Emax

2νββ
)G(E2,Emax

2νββ
−1)

]
dΓ2, (7.23)

where dΓ2 is as in Eq. (7.8). Thus here, s = 0 gives the uncorrected spectrum, s = 1

gives the corrected spectrum and s > 1 gives an exaggerated size of correction.

In order to compare these scaled spectra to the uncertainty in a way that re-

flects the lack of sensitivity to the total rate, it is useful to define a new weighted

proportional difference

∆s(ET )≡
[

dΓ′
s,c

dET

/(
(1+A)

dΓ2

dET

)]
−1, (7.24)

where c = F, G denotes the correction used and A takes its value from Eq. (7.21)

such that the χ2 difference is minimised.

The result of calculating this difference for the values s = 1, s = 5 and s = 10 is

shown in Figs. 7.9 and 7.10 where they are compared to the uncertainty values. As
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Figure 7.10: As Fig. 7.9 but for the mutual electron repulsion.

can be seen, in both cases the deviation for s = 1 fits clearly within the uncertainties

reflecting the fact that this experiment is not sensitive to these corrections. For

the radiative corrections the difference for s = 5 is significant enough that both at

the lowest energies and for total kinetic energies in the range 1.5− 1.8 keV the

deviation is slightly larger than the uncertainties, with the χ2 value in this case

being tmin = 26. This reflects how this experiment is close to being sensitive to

the radiative corrections, with a moderate increase in scaling leading to a highly

significant deviation. A similar experiment with an element with higher endpoint

value, for which there will be a greater variation in G, could thus be sensitive to

the correction’s impact. The increase to s = 10 approximately doubles the deviation

leading to a highly significant change to the spectrum. For the mutual electron

repulsion the behaviour is quite different. The increase in the correction for s = 5

is barely visible in the figure, whereas for s = 10 it is substantial. This is due to

the non-linearity of the correction as a function of the total energy. The significant

increase in the magnitude of the correction at low energies (only just captured in

this energy range) is not obscured by the normalisation uncertainty. However, for

Xenon this variation is too small to be substantial unless artificially scaled up as in

this case. This does, however, imply that for elements with a greater variation with

energy this correction may play a more crucial role. As seen in Fig. 7.8, the lower
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Z elements have a larger variation with energy even whilst their overall correction

is smaller. This is reflected in Table 7.5 in which the required number of events

to measure the correction is lower for the lower Z elements. Whilst this will lead

to a higher sensitivity, it is most likely not enough to be detectable and would also

require a reduction in the experimental uncertainties.

To conclude, the current experiment of KamLAND-Zen is not sensitive to ei-

ther of these corrections with the sensitivity to the mutual electron repulsion being

particularly weak. The impact of the radiative corrections will be more substantial

for those elements with higher endpoint energies, Emax
2νββ

, and, given the current sen-

sitivity levels, the impact of this correction on the spectrum may soon be apparent

and need to be included in theoretical calculations. For the mutual electron repul-

sion, conversely, the sensitivity is very weak. Whilst for low Z nuclei the effect may

be larger, experiments will need to significantly improve their uncertainties before

this correction has a significant impact.



Chapter 8

Conclusions

Given the immense power of the Standard Model and the vast array of accurate

predictions it has made, pushing beyond to reach a greater understanding of the

forces which underlie everything has been one of the greatest challenges of the last

few decades. Fortunately, the discovery of neutrino oscillations has acted as a key

window into new physics beyond the Standard Model. The future generation of ex-

periments seeking to probe more deeply into the neutrino sector offers an important

opportunity to search for new effects and the breaking of the understood rules.

In Chapters 2 and 3, I gave an overview of our understanding to date of how

neutrinos fit into the Standard Model and of how they are measured in single and

double beta decay experiments. Crucially, the discovery of neutrino oscillations led

to the conclusion that neutrinos must have a mass, something not predicted in the

Standard Model. There are many ways in which this mass could be added such

as the effective Weinberg operator or with the addition of right-handed neutrino

states for which there is no theoretical prohibition upon them having a Majorana

mass. The attempt to measure the absolute value of the neutrino masses in single

beta decay requires precise measurements of the energy spectrum for the emitted

electron, particularly the endpoint of the spectrum. The nature of this process means

that these measurements are sensitive to new physics, whether it affects the nucleus

or leptons involved. I here focus my study to those decays involving tritium, the

current favoured element for the future of single beta decay experiments. Searches

for a Majorana neutrino mass in double beta decay are immensely important, a
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positive signal would be the first evidence of lepton number violation as well as

helping to explain the process by which neutrinos gain their mass. It is important

that the decay spectrum is well understood so that any precision measurements in

the future are accurate.

The way in which new physics acting at high energy scales would manifest in

current experiments can be described through the language of effective operators.

In Chapter 4, I considered how the effective operators relevant to single beta decay

would affect both the energy and angular spectra of the electron. I do this by con-

sidering all possible spinor bilinears with sensitivity being given to the parameters

εX ∼ (MW/ΛNP)
2 which quantify the strength of this relative to the Standard Model

weak decay. The results vary significantly depending upon the current with energy

based measurements giving at best εT ≲ 3× 10−8 and at worst ε̃R ≲ 8× 10−1 for

a total count rate of Ntot = 1018 events (see Fig. 4.3). Unlike for the energy based

measurements for which single beta decay offers improved sensitivity to only a few

of these parameters, the angular sensitivity is much stronger with improvements

for nearly all of the different currents. For example, the sensitivity improves sig-

nificantly to ε̃R ≲ 2× 10−4 for the angular measurements, an order of magnitude

improvement on the current limits (Fig. 4.4). This assumes that the nuclei can be

perfectly polarised with the limits scaling inversely with the fraction of polarisa-

tion. Considering these results in the context of new physics, this translates to a

sensitivity to energy scales of up to Λ ∼ 104 MW ∼ 106 GeV.

Many models which seek to explain neutrino masses also include additional

heavy states which are neutral under all the Standard Model charges and are thus

called sterile neutrinos. Provided that these states are light enough to be produced,

their presence could have a significant impact upon single beta decay. I consid-

ered in Chapter 5 the two mechanisms through which this could occur, through

the mixing of the active and sterile neutrino states and through sterile exotic cur-

rents. Whilst much interest and work has been performed in analysing the case of

active-sterile mixing, spurred on by oscillation experiment results and the search

for dark matter, no work has yet been done in directly placing limits on the ster-



171

ile exotic currents. Energy measurements have a relatively consistent sensitivity

across the spectrum to active-sterile mixing, capable of providing limits in the range

|VeN |2 ∼ 10−7 − 10−8 for a keV-mass sterile neutrino (apart from sterile neutrinos

with masses equal to within a few 100s of eV of zero or the endpoint energy, see

Fig. 5.3). For the sterile exotic currents the case is rather similar to the active exotic

currents considered before with a significant variation in sensitivity between the

different types of currents. The strongest is to tensor currents with εN
T ≲ 2× 10−5

and the weakest to pseudoscalar with εN
P ≲ 5×10−2, again for an experiment with

1018 total events (Fig. 5.6). However in this case, the mass of the heavy state re-

duces its impact on the angular spectrum making energy measurements better than

angular measurements for all currents. In both cases, the greatest impact upon the

energy spectrum is through the kink that occurs at the endpoint of the heavy neu-

trino spectrum. This is significant as it means that there is a high level of degeneracy

between these two cases for energy based measurements. Whilst angular measure-

ments don’t provide any greater sensitivity to either active-sterile mixing or sterile

exotic currents, they do provide a means of distinguishing between the two cases.

The sterile exotic currents have a much greater impact upon the angular spectrum

than any active-sterile mixing meaning that, as can be seen in Fig. 5.8, simultaneous

measurements of both energy and angular spectra enables discrimination between

the two possibilities.

The inclusion of special relativity within the quantum field theory description

of the Standard Model is essential given the relativistic energies involved in many

physics processes. However, Lorentz symmetry violation is predicted by many the-

ories that go beyond the Standard Model such as quantum theories of gravity and

string theory. In Chapter 6, I have analysed two ways in which this could affect

single beta decay, with a modification to the 4-point Fermi interaction and with a

change to the propagation of the particles involved. In the first case, the modifica-

tion to the Fermi interaction could come from a change to the W boson propagator

with the change to the factor ηµν → ηµν +χµν introducing a small degree of sym-

metry breaking. The 32 variables that make up the Lorentz violating tensor χµν
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could be split into real and imaginary parts of scalar, vector and tensor terms (clas-

sified with respect to spatial rotations). Each of these terms impact the spectrum

differently, whether through their interactions with the nuclear spin or electron mo-

mentum or their modification of the energy spectrum. The current best limits on

the parameters come from beta decay experiments such as for caesium and yttrium.

For future tritium experiments, the most significant improvements on these limits

come in the measurement of χ
0 j
r , which could have a three orders of magnitude

improvement through rate measurements for different nuclear polarisations, and the

first measurement of the imaginary vector terms χ
0 j
i and χ

j0
i , provided that angular

measurements could be made perpendicular to the spin of a polarised nucleus. The

other type of Lorentz violation I consider involves adding the propagation modi-

fying terms aµ

f . These terms are countershaded, meaning that their impact upon

propagation can be removed mathematically by a field redefinition. Instead, the

impact of these is manifested at the weak decay vertex with a violation of conserva-

tion of 4-momentum. The component a0 has the strongest impact upon the decay,

leading to a shift in the endpoint by a comparable amount ∆Emax
e ∼ a0. Precision

measurement of the expected endpoint from mass measuring experiments imply

this quantity should currently by limitable down to a0 ≲ 0.07 eV. The impact of

the vector component a⃗ is much smaller but still measurable. By introducing a pre-

ferred direction in space, this introduces the effect that polarising the nucleus will

change the total decay rate, something not predicted for the Standard Model result.

However, the strongest sensitivity to this component comes once again from angular

measurements which can probe this term potentially down to the sub-eV level.

Finally, in Chapter 7 I have looked at two corrections to the double beta de-

cay spectrum, radiative corrections (due to soft photon emission) and the mutual

repulsion between the two emitted electrons. I have considered the impact of these

corrections for a range of elements commonly used in double beta decay experi-

ments. For the radiative corrections the impact is strongest near the endpoint of

the spectrum, the region of interest for searches for neutrinoless double beta de-

cay. If neutrinoless double beta decay is observed, precision measurements will
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be performed in order to infer the effective double beta decay mass to which the

rate of the process is proportional. I have found that radiative corrections are ex-

pected to lead to an approximately 2.7−2.8% decrease in the decay rate for 0νββ .

Calculating the impact of the mutual repulsion between the emitted electrons is an-

alytically impossible, so instead I have shown a range of approximations for this ef-

fect. The most advanced of these is one which considers an effective nuclear charge

Zeff(v1,v2,cosθ12) which is a function of the speeds of the electrons and their angu-

lar separation. The impact of this correction is large, an up to 10% decrease in the

spectrum for the elements considered here. Crucially, the energy dependence of this

correction is almost entirely at the lowest energies with the effect being relatively

constant for total electron energies above ∼ 0.1− 0.5 MeV. This means that most

of the impact of the correction is degenerate with the large theoretical uncertain-

ties upon the nuclear matrix elements that give the total rates of this process. In an

attempt to quantify the sensitivity to these corrections for a real experiment, I calcu-

late whether the KamLAND-Zen experiment should be sensitive to them given its

uncertainties. Whilst the radiative corrections do have a statistically larger impact,

neither correction is significant enough to be observed yet.

The future generations of single and double beta decay experiments have many

exciting prospects in their attempts to measure the neutrino mass and search for

neutrinoless double beta decay. The high levels of statistics required offer a precise

measurement of the spectrum which can be utilised in the search for new physics.

Detailed understanding of both the single and double beta decay spectra will prove

essential for seeking out unexpected signatures. As well as the conventional at-

tempts to measure the energy spectrum, I hope I have shown here the great potential

there can be from attempting to polarise the nuclei involved and perform angular

measurements of the emitted electrons. Not only can these improve the sensitivity

to processes and resolve degeneracies between them, it also adds new windows to

the observation of certain effects. Overall, what can be said for certain is that in the

years to come neutrino based experiments will continue to play a significant role in

the continued search for new physics beyond the Standard Model.



Appendix A

Analytic Expressions for Exotic

Currents in Single Beta Decay

The β -decay rate can be generally written in the form

dΓ

dEedΩe
= a(Ee)+b(Ee)cosθe (A.1)

If two effective operators OX , OY contribute to the decay for a given neutrino mass

eigenstate, the transition matrix element may be composed as

M = εX MX + εY MY , (A.2)

where MX and MY are the individual matrix elements and εX , εY are the associated

effective coupling constants. The terms in the differential decay rate Eq. (A.1) can

then be written as

a(Ee) = |εX |2aX(Ee)+Re(εX ε
∗
Y )aX ,Y (Ee)+ |εY |2aY (Ee), (A.3)

b(Ee) = |εX |2bX(Ee)+Re(εX ε
∗
Y )bX ,Y (Ee)+ |εY |2bY (Ee). (A.4)

Most importantly, as the SM contribution with both left-handed lepton and quark

vector currents is always present, we consider its interference with an exotic oper-

ator. Thus, X = LL, εX = 1 (for a single active neutrino) and Y is one of the exotic

operators.
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Below are presented the exact expressions for some of these terms. I concen-

trate on the individual contribution of each operator and the interference of exotic

operators with that in the SM. The expressions are written in terms of a single

generic neutrino mass eigenstate ν with mass mν , which can be either one of the

active neutrinos, ν1,2,3, or a sterile neutrino νN . In the latter case, there is no inter-

ference with any contributions from active neutrinos. For simplification, we define

C̃(Ee) =
1

4π

G2
F |Vud|2

2π3 C(Ee)Θ(Emax
e −Ee −mν),

m2
12 = (pH − pe)

2 = m2
H −2mHEe +m2

e ,

|p⃗e|=
√

E2
e −m2

e ,

µ = (mν +mHe)/mH,

y = Emax
e −Ee,

ỹ =

√
y
(

y+mν

2mHe

mH

)
α = mHEmax

e +m2
ν +mHemν . (A.5)

A.1 Individual SM and Exotic Contributions

Here I give the electron energy dependent expressions for the purely exotic terms.

Some of these terms can be related to each other through either γ5 →−γ5 (which

has no impact upon the final expression as only even multiples contribute) and/or

gA →−gA. For the angular expressions any relation of γ5 →−γ5 must also come

with S →−S to ensure the spin-up state is still the one being projected out.

Vector Currents LL, RR, RL, LR

The SM contribution (LL) is related to that of ε̃R (RR) by using γ5 →−γ5 (and
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S →−S). This has the same energy distribution and reverse angular correlation,

aLL(Ee) = aRR(Ee)

= C̃(Ee)
m2

H|p⃗e|
m2

12
ỹ

×
{
(gV+gA)

2
[

mH(mH −Ee)

m2
12

mHEe −m2
e

m2
12

(y+µmν)(y+µmHe) −
m2

H|p⃗e|2

3m4
12

ỹ2
]

+(gV−gA)
2Ee

(
y+mν

mHe

mH

)
+(g2

A−g2
V )mHe

mHEe −m2
e

m2
12

(y+µmν)

}
,

(A.6)

bLL(Ee) =−bRR(Ee)

=−C̃(Ee)
mH

m2
12
|p⃗e|2ỹ

×
{[

(gA −gV )
2mH +(g2

A −g2
V )mHe

mH(mH −Ee)

m2
12

+(g2
A −g2

V )
mHmHe

m2
12

Ee +(gA +gV )
2 mH

m2
12
(α −m2

e)

−(gA +gV )
2 m2

H
m2

12
(y+µmν)

mH(mH −Ee)

m2
12

]
(y+µmν)

−(gA −gV )
2m2

ν −
1
3
(gA +gV )

2 m3
H(mH −Ee)

m4
12

ỹ2
}
. (A.7)

The contributions related to ε̃L (LR) and εR (RL) can be obtained from the SM

(LL) terms by applying gA →−gA with an additional S →−S for the right-handed

lepton term,

aLR(Ee) = aRL(Ee) = aLL(Ee)(gA →−gA), (A.8)

bLR(Ee) =−bRL(Ee) =−bLL(Ee)(gA →−gA). (A.9)

This makes a negligible difference in form.
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Scalar Currents

aS(Ee) = aS̃(Ee) =
1
2

g2
SC̃(Ee)

m2
H|p⃗e|
m2

12
ỹ

×

{
(mHe +mH −Ee)

mHEe −m2
e

m2
12

(y+µmν)−
1
3

m2
H|p⃗e|2

m4
12

ỹ2

− mH(mH −Ee)

m2
12

mHEe −m2
e

m2
12

(y+µmν)
2

}
, (A.10)

bS(Ee) = bS̃(Ee) = 0. (A.11)

Pseudoscalar Currents

aP(Ee) = aP̃(Ee) =
1
2

g2
PC̃(Ee)

m2
H|p⃗e|
m2

12
ỹ

×

{
− (mHe −mH +Ee)

mHEe −m2
e

m2
12

(y+µmν)−
1
3

m2
H|p⃗e|2

m4
12

ỹ2

− mH(mH −Ee)

m2
12

mHEe −m2
e

m2
12

(y+µmν)
2

}
, (A.12)

bP(Ee) = bP̃(Ee) = 0. (A.13)

Tensor Currents

aT (Ee) = aT̃ (Ee) =

= 16C̃(Ee)g2
T

m2
H|p⃗e|
m2

12
ỹ

[
mH(mH −Ee)

m2
12

mHEe −m2
e

m2
12

(y+µmν)(3y+2µmHe +µmν)

− 1
3

m2
H|p⃗e|2

m4
12

ỹ2 +2Ee

(
y+mν

mHe

mH

)
−2(mH −Ee)(y+µmν)

mHEe −m2
e

m2
12

]
,

(A.14)

bT (Ee) =−bT̃ (Ee)

= 16C̃(Ee)g2
T

m2
H

m2
12
|p⃗e|2ỹ

[
1
3

mH(mH −Ee)

m2
12

mH|p⃗e|
m2

12
ỹ

+

(
2+

mHEe −m2
e

m4
12

mH(y+µmν)−
mHEe

m2
12

− 2m2
ν

mH|p⃗e|

)
(y+µmν)

]
.

(A.15)
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A.2 Interference Terms

Here I give the interference terms between the Standard Model current (here la-

belled as LL because it has a left-handed vector-axial hadronic current and left-

handed vector-axial leptonic current). These terms cannot be related to each other

as before because the Standard Model term is fixed as LL.

Vector Currents: (LL) with (LR)

aLL,LR(Ee) = C̃(Ee)memν

mH|p⃗e|
m2

12
ỹ

[
2(g2

A −g2
V )mHe +(g2

A+g2
V )(mH −Ee)

−(g2
A +g2

V )
mH(mH −Ee)

m2
12

(y+µmν)

]
, (A.16)

bLL,LR(Ee) =−C̃(Ee)gAgV memν |p⃗e|2
mH

m2
12

ỹ
[

1− mH

m2
12
(y+µmν)

]
. (A.17)

Vector Currents: (LL) with (RL)

aLL,RL(Ee) =−C̃(Ee)
mH|p⃗e|

m2
12

ỹ

×
{
(g2

A−g2
V )

[
mH(mH−Ee)

m2
12

mHEe−m2
e

m2
12

(y+µmν)(y+µmHe)−
m2

H|p⃗e|2

3m4
12

ỹ2
]

+(g2
A−g2

V )Ee

(
ymν

mHe

mH

)
+(g2

A+g2
V )mHe

(
mHEe−m2

e

m2
12

(y+µmν)

)}
,

(A.18)

bLL,RL(Ee) =−C̃(Ee)
mH

m2
12
|p⃗e|2ỹ

×
{[

(g2
A −g2

V )mH +(g2
A +g2

V )mHe
mH(mH −Ee)

m2
12

+(g2
A +g2

V )
mHmHe

m2
12

Ee

+(g2
A−g2

V )
mH

m2
12
(α−m2

e)−(g2
A−g2

V )
m2

H
m2

12
(y+µmν)

mH(mH−Ee)

m2
12

]
(y+µmν)

−(g2
A −g2

V )m
2
ν −

1
3
(g2

A −g2
V )

m3
H(mH −Ee)

m4
12

ỹ2
}
. (A.19)
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Vector Currents: (LL) with (RR)

aLL,RR(Ee) =−C̃(Ee)memν

m2
H|p⃗e|
m2

12
ỹ

[
(2(g2

A +g2
V )mHe +(g2

A −g2
V )(mH −Ee)

−(g2
A −g2

V )
mH(mH −Ee)

m2
12

(y+µmν)

]
,

(A.20)

bLL,RR(Ee) = 0. (A.21)

LL with Left-handed Scalar Current

aLL,S(Ee) = C̃(Ee)gSgV me
mH|p⃗e|

m2
12

ỹ

×
[

mH

(
1+

mHe(mH −Ee)

m2
12

)
(y+µmν)−m2

ν

]
, (A.22)

bLL,S(Ee) =−C̃(Ee)gSgAmemHe
m2

H
m2

12

|p⃗e|2

m2
12

ỹ(y+µmν). (A.23)

LL with Right-handed Scalar Current

aLL,S̃(Ee) =−C̃(Ee)gSgV mν

mH|p⃗e|
m2

12
ỹ

×
[
(mH +mHe)Ee −m2

e −mH
mHEe −m2

e

m2
12

(y+µmν)

]
, (A.24)

bLL,S̃(Ee) =−C̃(Ee)gSgAmνM
|p⃗e|2

m2
12

ỹ
[

m2
H

m2
12
(y+µmν)− (mH +mHe)

]
. (A.25)

LL with Left-handed Pseudoscalar Current

aLL,P(Ee) = C̃(Ee)gPgAme
mH|p⃗e|

m2
12

ỹ

×
[

mH

(
mHe(mH −Ee)

m2
12

−1
)
(y+µmν)+m2

ν

]
, (A.26)

bLL,P(Ee) =−C̃(Ee)gPgV memHe
m2

H
m2

12

|p⃗e|2

m2
12

ỹ(y+µmν). (A.27)
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LL with Right-handed Pseudoscalar Current

aLL,P̃(Ee) = C̃(Ee)gPgAmν

mH|p⃗e|
m2

12
ỹ

×
[
(mH −mHe)Ee −m2

e −mH
mHeEe −m2

e

m2
12

(y+µmν)

]
, (A.28)

bLL,P̃(Ee) = C̃(Ee)gPgV mνmH
|p⃗e|2

m2
12

ỹ
[

m2
H

m2
12
(y+µmν)− (mH −mHe)

]
. (A.29)

LL with Left-handed Tensor Current

aLL,T (Ee) =−12C̃(Ee)gT me
mH|p⃗e|

m2
12

ỹ

×
[

mH

(
(gA +gV )

mHe(mH −Ee)

m2
12

+(gA −gV )

)
(y+µmν)− (gA −gV )m2

ν

]
,

(A.30)

bLL,T (Ee) = 12C̃(Ee)gT (gA +gV )memHe
m2

H
m2

12

|p⃗e|2

m2
12

ỹ(y+µmν). (A.31)

LL with Right-handed Tensor Current

aLL,T̃ (Ee) = 12C̃(Ee)gT mν

mH|⃗⃗pe|
m2

12
ỹ

×
[
(gA+gV )

(
mHEe −m2

e −mH
mHEe −m2

e

m2
12

(y+µmν)

)
+(gA−gV )mHeEe

]
,

(A.32)

bLL,T̃ (Ee) = 4C̃(Ee)gT mνmH
|p⃗e|2

m2
12

ỹ

×
[

3(gA −gV )mHe +(gA +gV )mH − (gA +gV )
m2

H
m2

12
(y+µmν)

]
. (A.33)
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Lorentz Violating Interaction Matrix

Here are the terms linear in the parameter χµν (defined in Section 6.1) which con-

tribute to the Lorentz violating interaction. This is split into spin independent and

dependent terms |M|2 = |M0|2 + |Ms|2

|M0|2 = Λ
(
g2

A(PH ·Pν Pe ·PHe +PH ·Pe PHe ·Pν +mHmHePe ·Pν

+PHe ·Pν Pµ

H Pσ
e χ

r
µσ −Pe ·Pν Pµ

H Pσ
He χ

r
µσ

+PHe ·Pe Pµ

H Pσ
ν χ

r
µσ −PHe ·PH Pµ

e Pσ
ν χ

r
µσ

+PHe ·PH Pµ

ν Pσ
e χ

r
µσ −Pe ·Pν Pµ

He Pσ
H χ

r
µσ

+PH ·Pν Pµ

He Pσ
e χ

r
µσ +PH ·Pe Pµ

He Pσ
ν χ

r
µσ

−mHmHe Pµ

ν Pσ
e χ

r
µσ −mHmHe Pµ

e Pσ
ν χ

r
µσ

+mHmHe χ
iµσ

Pλ
e Pρ

ν εµσλρ +PH ·PHe χ
iµσ

Pλ
e Pρ

ν εµσλρ

+PHeµ χ
iµσ

Pλ
H Pα

e Pρ

ν εσλαρ −PHµ χ
iµσ

Pλ
He Pα

e Pρ

ν εσλαρ)

+g2
V (as above with mHe →−mHe)

+2gAgV (PH ·Pν Pe ·PHe −PH ·Pe PHe ·Pν

+PHe ·Pν Pµ
e Pσ

H χ
r
µσ −PH ·Pν Pµ

e Pσ
He χ

r
µσ

−PHe ·Pe Pµ

ν Pσ
H χ

r
µσ +PH ·Pe Pµ

ν Pσ
He χ

r
µσ

+Pe ·Pν χ
iµσ

Pλ
H Pρ

He εµσλρ

+Pν σ χ
iµσ

Pλ
H Pα

e Pρ

He εµλασ +Peσ χ
iµσ

Pλ
H Pα

ν Pρ

He εµλασ )
)
,

(B.1)
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|Ms|2 = Λ
(
g2

A(mHePH ·Pν Pe ·S+mHPHe ·Pν Pe ·S

−mHePH ·Pe Pν ·S+mHPHe ·Pe Pν ·S

+mHePν ·S Pµ
e Pσ

H χ
r
µσ +mHPν ·S Pµ

e Pσ
He χ
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H χ
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)
,

(B.2)

where Λ = 16G2
F |Vud|2 and ε is the standard Levi-Civita tensor. The terms χr and

χ i are the real and imaginary parts of χ , respectively.
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Radiative Corrections in Double Beta

Decay: Endpoint Dependence
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Figure C.1: Proportional variation in the rate
for various ROI below the endpoint as a func-
tion of endpoint value E0 (calculated for Z =
50).

In Section 7.1 it was shown that the

primary variation in the impact of the

radiative corrections between different

nuclei is due to their different end-

points, the maximum kinetic energy

available to the emitted electrons. In

this Appendix I explore in greater detail

the mathematical cause for and interest-

ing dependence upon the endpoint en-

ergy. In Fig. C.1 the proportional devi-

ation in the rate can be seen for a range

of regions in the 2νββ spectrum and for the delta peak of 0νββ as a function of

the endpoint energy. This has an interesting behaviour with the deviation largely

growing in magnitude with the value of the endpoint apart from a bump for an end-

point of the order of 10 MeV. To understand this bump it is necessary to consider the

decay spectra being modified and the behaviour of G with variations in the endpoint.

The decay spectra as a function of individual electron energy for 2νββ and

0νββ are given in Fig. C.2. As can be seen, in both the 0νββ and the windowed

2νββ cases the spectrum peaks at half the endpoint energy. This is to be expected
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Figure C.2: Fractional partial decay spectra for 2νββ (left) and 0νββ (right). For 2νββ

the spectrum has been evaluated by integrating over the entire range of total energies (or-
ange) and for a total energy within a 100 keV window of the endpoint (blue) (calculated for
Z = 50).

given the symmetry between the two electrons and that in both these cases the total

energy is required to be equal (or nearly equal) to the maximal value. Thus the

individual electrons are most likely to have half the maximum kinetic energy. This

means that these spectra are more sensitive to corrections near the midpoint of the

spectrum than at the extremes. Conversely, the 2νββ spectrum for total energy

across the entire range peaks nearly at 0, meaning this spectrum will be most sensi-

tive to reductions at low energies.

Figure C.3 shows the variations in a single G factor (left) and a product of G

factors, as appears in Eqs. (7.2) and (7.3) for double beta decay, (right) . For this

second plot, the sum of the energies for each factor is equal to the endpoint value as

happens exactly for 0νββ and approximately when looking at the endpoint window

for 2νββ . These figures are plotted as functions of the fraction of the total avail-

able kinetic energy taken by the electron so that different endpoint values can be

compared equivalently. For the individual G factor, increasing the endpoint leads to

a decrease at higher energies and an increase for lower energies. For the product of

G factors, as the endpoint value is increased the middle part of the spectrum is di-

minished whilst the higher and lower energy parts are increased. This is because for

the individual G the increase in the lower energy part is greater than the decrease in

the higher energy part, overall making the extremes of the product of two G factors

increase. However, the point at which the individual G begins decreasing is at less



185

2.5 5 10 20 40 80

0.0 0.2 0.4 0.6 0.8 1.0

0.90

0.95

1.00

1.05

1.10

(E1-me)/(Ee
max-2me)

G
[E
1,
E
0]

2.5 5 10 20 40 80

0.0 0.2 0.4 0.6 0.8 1.0

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

(E1-me)/(Ee
max-2me)

G
[E
1,
E
0]
G
[E
0-
E
1,
E
0]

Figure C.3: Plots showing the behaviour of the correction factor G (left) and the product
of two G factors (right) as a function of the ratio of the individual kinetic energy to the
maximum kinetic energy available for a range of maximum energies (calculated for Z = 50).
For the product of Gs the sum of the energies between them equals the total energy.

than half the endpoint; the region around the midpoint for the product of G factors

has greater contributions from the decreasing part of the individual spectrum than

from the increasing part. Overall, this behaviour informs the variations in the pro-

portional difference as a function of the endpoint. As explained before, corrections

to the central part of the spectrum are more significant than those at the endpoint

when the total energy is near the maximum, leading in general to a greater decrease

for larger endpoints. However, when going from endpoints of around 2.5 MeV to

20 MeV the increase in the lower and higher parts of the spectrum are of signif-

icantly larger magnitude as to outweigh the decrease in the central region leading

to an overall decrease in the magnitude of the correction to the double beta spec-

trum. This is what leads to the bump around 10 MeV in Fig. C.1 It is this complex

behaviour that leads to the dependence upon the choice of region of interest.
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KamLAND-ZEN Uncertainty Data

In Section 7.2.4 I used data taken from [203] to calculate the sensitivity to the mu-

tual electron repulsion. This is calculated using the proportional uncertainties in the

spectrum for each of 27 bins across the spectrum. The data is as follows:

Energy [MeV] Uncertainty [%] Energy [MeV] Uncertainty [%]

0.80-0.85 2.0 1.5-1.55 3.7

0.85-0.90 2.1 1.55-1.60 4.3

0.90-0.95 2.3 1.60-1.65 4.7

0.95-1.00 2.2 1.65-1.70 5.1

1.00-1.05 2.2 1.70-1.75 5.7

1.05-1.10 2.3 1.75-1.80 6.5

1.10-1.15 2.4 1.80-1.85 7.5

1.15-1.20 2.5 1.85-1.90 8.8

1.20-1.25 2.6 1.90-1.95 10.4

1.25-1.30 3.0 1.95-2.00 12.0

1.30-1.35 2.9 2.00-2.05 15.1

1.35-1.40 3.0 2.05-2.10 17.9

1.40-1.45 3.1 2.10-2.15 22.1

1.45-1.50 3.5

Table D.1: Experimental uncertainty in 27 bins over the energy range ET = 0.8−2.15 MeV
from KamLAND-Zen data.
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[108] F. Šimkovic et al. Relation between the 0νββ and 2νββ nuclear matrix

elements reexamined. Phys. Rev. C, 83:015502, Jan 2011.

[109] R. A. Sen’kov and M. Horoi. Neutrinoless double-beta decay of 48Ca in

the shell model: Closure versus nonclosure approximation. Phys. Rev. C,

88(6):064312, 2013.

[110] M. Fukugita and T. T. Yanagida. Physics of neutrinos : and applications

to astrophysics / Masataka Fukugita, Tsutomu Yanagida. Texts and mono-

graphs in physics. Springer, Berlin ;, 2003.

[111] Z.-z. Xing and Z.-h. Zhao. The effective neutrino mass of neutrinoless

double-beta decays: how possible to fall into a well. The European Phys-

ical Journal C, 77(3):192, 2017.

[112] P. B. Denton and J. Gehrlein. Survey of neutrino flavor predictions and the

neutrinoless double beta decay funnel. Phys. Rev. D, 109:055028, Mar 2024.



Bibliography 197

[113] M. Agostini et al. Testing the inverted neutrino mass ordering with neutrino-

less double-β decay. Phys. Rev. C, 104:L042501, Oct 2021.

[114] J. Kotila and F. Iachello. Phase-space factors for double-β decay. Phys. Rev.

C, 85:034316, Mar 2012.

[115] V. N. Aseev et al. An upper limit on electron antineutrino mass from Troitsk

experiment. Phys. Rev. D, 84:112003, 2011.

[116] C. Kraus et al. Final results from phase ii of the mainz neutrino mass searchin

tritium βdecay. The European Physical Journal C - Particles and Fields,

40(4):447–468, 2005.

[117] J. Angrik et al. KATRIN design report 2004. Technical report, KATRIN, 2

2005.

[118] M. Aker et al. Search for kev-scale sterile neutrinos with the first katrin data.

The European Physical Journal C, 83(8):763, 2023.

[119] M. Aker et al. KATRIN: status and prospects for the neutrino mass and

beyond. J. Phys. G, 49(10):100501, 2022.

[120] T. Houdy et al. Hunting kev sterile neutrinos with katrin: building the first

tristan module. Journal of Physics: Conference Series, 1468:012177, 02

2020.

[121] S. Mertens et al. A novel detector system for katrin to search for kev-

scale sterile neutrinos. Journal of Physics G: Nuclear and Particle Physics,

46:065203, 06 2019.

[122] M. Drewes et al. A White Paper on keV Sterile Neutrino Dark Matter. JCAP,

01:025, 2017.

[123] B. Monreal and P. . Collaboration. Project 8: Update on a radiofrequency

tritium spectrometer. In AIP Conference Proceedings, volume 1441, pp. 441–

443. American Institute of Physics, 2012.



Bibliography 198

[124] P. J. Doe et al. Project 8: Determining neutrino mass from tritium beta de-

cay using a frequency-based method. In Snowmass 2013: Snowmass on the

Mississippi, 9 2013.

[125] G. Hupin et al. Ab initio predictions for polarized deuterium-tritium ther-

monuclear fusion. Nature Communications, 10(1):351, 2019.

[126] M. Mikirtychyants et al. The Polarized H and D Atomic Beam Source for
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