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Extended Abstract 
To estimate the mass transfer rate between liquid and particles, correlations for mass transfer coefficient 𝑘𝑘  or its 

dimensionless from, the Sherwood number Sh, are generally used [1-7]. For multiparticle systems, the presence of other 
particles affects the mass transfer of a specific particle, and the correlations must account for this effect. In the literature, the 
available correlations lack rigorous theoretical support and do not consistently agree well with experimental data [2-7]. To 
overcome this, we propose a theoretically sound approach by using scaling and order of magnitude analysis. Based on the 
definition of k and the Fick’s law, the order of magnitude of 𝑘𝑘 and Sh are estimated as follows: 

𝑘𝑘∆𝐶𝐶 ~ 𝐷𝐷∆𝐶𝐶 𝛿𝛿𝑐𝑐⁄ →  𝑘𝑘~𝐷𝐷 𝛿𝛿𝑐𝑐⁄  → Sh~𝑑𝑑𝑝𝑝 𝛿𝛿𝑐𝑐⁄                                                            (1) 
Here, 𝐷𝐷 is the solute diffusivity, ∆𝐶𝐶 is the concentration difference between the particle surface and the liquid bulk, 𝛿𝛿𝑐𝑐 is the 
length scale for significant concentration changes near the particle surface, and 𝑑𝑑𝑝𝑝 is the particle diameter. Because of the 
large Schmidt number Sc in the liquid, provided the Reynolds number Re is not extremely small, the Peclet number Pe is far 
larger than unity. In this case, a thin concentration boundary layer forms around the particles, and 𝛿𝛿𝑐𝑐 is its thickness [8]. 𝛿𝛿𝑐𝑐 
is very small, and this allows us to simplify the mass balance equations for the liquid and the solute within this boundary 
layer. Scaling these simplified equations yields the relation between 𝛿𝛿𝑐𝑐  and the velocity scale at the outer edge of the 
concentration boundary layer, denoted by 𝑢𝑢𝑐𝑐. This relation is: 
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Moreover, 𝛿𝛿𝑐𝑐 and 𝑢𝑢𝑐𝑐 can be linked to the length and velocity scales for the velocity field around the particles, denoted as 𝛿𝛿𝑣𝑣 
and 𝑢𝑢𝑣𝑣. Due to the large Sc, Pe is much larger than Re, and thus we can assume that 𝛿𝛿𝑐𝑐 is much smaller than 𝛿𝛿𝑣𝑣. Using the 
scaling method, we then obtain the following equation: 
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𝛿𝛿𝑣𝑣 and 𝑢𝑢𝑣𝑣 can be estimated by order of magnitude analysis of the drag force acting on a particle 𝐹𝐹𝑝𝑝.  For a uniform suspension 
at equilibrium, 𝐹𝐹𝑝𝑝 features the unhindered terminal velocity 𝑢𝑢𝑡𝑡 through the following equation [9]: 
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Here, 𝜌𝜌𝑒𝑒 is the liquid density, while 𝐶𝐶𝐷𝐷𝑡𝑡  is the particle drag coefficient characterized by 𝑢𝑢𝑡𝑡. This coefficient can be calculated 
with the Dallavalle correlation [10], given by: 

𝐶𝐶𝐷𝐷𝑡𝑡 = �0.63 + 4.8Ret
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,  Ret ≡ 𝜌𝜌𝑒𝑒𝑢𝑢𝑡𝑡𝑑𝑑𝑝𝑝 𝜇𝜇𝑒𝑒⁄                                                     (5) 

where 𝜇𝜇𝑒𝑒 is the liquid viscosity and  Ret is the Reynolds number characterized by 𝑢𝑢𝑡𝑡. 𝑢𝑢𝑡𝑡 can be related to the superficial 
velocity 𝑢𝑢 by the following equation [11]: 

𝑢𝑢 = 𝑢𝑢𝑡𝑡𝜀𝜀𝑛𝑛,𝑛𝑛 = 4.8+2.4∙0.175Ret
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where 𝜀𝜀 is the void fraction. Furthermore, 𝐹𝐹𝑝𝑝 can be estimated by: 
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For multiparticle systems, we can assume that 𝑢𝑢𝑣𝑣  has the same order of magnitude as the interstitial velocity 𝑢𝑢 𝜀𝜀⁄ . 
Accordingly, using Eqs. (2-7), we obtain: 
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, Pe ≫ 1                                                                          (8) 

Since the concentration boundary layer theory was used, Pe is required to be much larger than unity. Finally, using Eq. (1) 
and introducing a constant 𝐶𝐶, expected to have unit order of magnitude, the correlation for Sh is given by: 

Sh = 𝐶𝐶
2
𝜀𝜀−2𝑛𝑛/3�0.63Re + 4.8Re1/2𝜀𝜀𝑛𝑛/2�2/3Sc1/3 , Re ≡ 𝜌𝜌𝑒𝑒𝑢𝑢𝑑𝑑𝑝𝑝 𝜇𝜇𝑒𝑒⁄ , Pe ≫ 1                                        (9) 

𝐶𝐶 is estimated by matching Eq. (9) with experimental data from packed and fluidized beds [12-19]. The obtained value has 
unit order of magnitude, and the correlation agrees well with experimental data, with errors less than 30%. These results 
verify the applicability of the newly proposed approach. 
 
References 
[1]  R. B. Bird, Transport phenomena, John Wiley & Sons, 2002. 
[2]  T. Kataoka, H. Yoshida, K. Ueyama, Mass transfer in laminar region between liquid and packing material surface in the 

packed bed, J. Chem. Eng. Japan, 5 (1972) 132–136. 
[3]  Y. Kawase, J. J. Ulbrecht, A new approach for heat and mass transfer in granular beds based on the capillary model, Ind. 

Eng. Chem. Fundam., 24 (1985) 115–116. 
[4]  R. Pfeffer, J. Happel, An analytical study of heat and mass transfer in multiparticle systems at low Reynolds numbers, 

AIChE. J., 10 (1964) 605–611.  
[5]  M. Satish, J. Zhu, Flow resistance and mass transfer in slow non-Newtonian flow through multiparticle systems, J. Appl. 

Mech., (1992). 
[6]  P. K. Agarwal, Transport phenomena in multi-particle systems—ii. particle-fluid heat and mass transfer, Chem. Eng. 

Sci., 43 (1988) 2501–2510. 
[7]  F. Scala, Particle-fluid mass transfer in multiparticle systems at low Reynolds numbers, Chem. Eng. Sci., 91 (2013) 90-

101. 
[8]  L. A. Belfiore, Transport phenomena for chemical reactor design, John Wiley & Sons, 2003. 
[9]  L. Mazzei, P. Lettieri, A drag force closure for uniformly dispersed fluidized suspensions, Chem. Eng. Sci., 62 (2007) 

6129–6142. 
[10]  J. M. Dallavalle, Micromeritics: the technology of fine particles, 1948. 
[11]  J. Richardson, W. Zaki, Sedimentation and Fluidization: Part I, Trans. Insti. Chem. Eng., 1954. 
[12]  L. K. McCune, R. H. Wilhelm, Mass and momentum transfer in a solid-liquid system, Ind. Eng. Chem. Res., 41 (1949) 

1124–1134. 
[13]  B. J. Gaffney, T. B. Drew, Mass transfer from packing to organic solvents in single phase flow through a column., Ind. 

Eng. Chem. Res., 42 (1950) 1120–1127. 
[14]  I. Toshio, D. ohtake, tadayoshi Okada, Mass transfer in packed bed, Chem. Mach., 15 (1951) 255–261. 
[15]  W. Dunn, C. Bonilla, C. Ferstenberg, B. Gross, Mass transfer in liquid metals, AIChE. J., 2 (1956) 184–189. 
[16]  J. Williamson, K. Bazaire, C. Geankoplis, Liquid-phase mass transfer at low Reynolds numbers, Ind. Eng. Chem. 

Fundam., 2 (1963) 126–129. 
[17]  E. Wilson, C. Geankoplis, Liquid mass transfer at very low Reynolds numbers in packed beds, Ind. Eng. Chem. 

Fundam., 5 (1966) 9–14. 
[18]  S. N. Upadhyay, G. Tripathi, Liquid-phase mass transfer in fixed and fluidized beds of large particles, J. Chem. Eng. 

Data, 20 (1975) 20–26. 
[19]  A. Livingston, J. Noble, Mass transfer in liquid—solid fluidized beds of ion exchange resins at low Reynolds numbers, 

Chem. Eng. Sci., 48 (1993) 1174–1178. 


	On The Liquid-Particle Mass Transfer Coefficient Correlation for Multiparticle Systems

