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ABSTRACT

Smart contracts (SCs) signi�cance and popularity increased expo-

nentially with the escalation of decentralised applications (dApps),

which revolutionised programming paradigms where network con-

trols rest within a central authority. Since SCs constitute the core

of such applications, developing and deploying contracts without

vulnerability issues become key to improve dApps robustness to ex-

ternal attacks. This paper introduces a dataset that combines smart

contract metrics with vulnerability data identi�ed using Slither, a

leading static analysis tool pro�cient in detecting a wide spectrum

of vulnerabilities. Our primary goal is to provide a resource for

the community that supports exploratory analysis, such as investi-

gating the relationship between contract metrics and vulnerability

occurrences. Further, we discuss the potential of this dataset for

the development and validation of predictive models aimed at iden-

tifying vulnerabilities, thereby contributing to the enhancement of

smart contract security. Through this dataset, we invite researchers

and practitioners to study the dynamics of smart contract vulnerabil-

ities, fostering advancements in detection methods and ultimately,

fortifying the resilience of smart contracts.

CCS CONCEPTS

• Theory of computation→Datamodeling; • Security and pri-

vacy → Vulnerability management; Software security engineering; •

General and reference→Metrics.
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1 INTRODUCTION

Ethereum smart contracts have emerged as a foundational tech-

nology in the development of decentralised applications (dApps),

enabling secure and automated transactions without the need for

central oversight. These programs are critical in shifting the control

mechanisms of various applications from centralised entities to dis-

tributed networks. Beyond �nancial transactions, smart contracts

are central in a diverse range of applications including notary ser-

vices, gaming platforms, and sectors demanding high reliability and

swift response times, such as IoT and security systems. This broad

applicability shows the transformative potential of smart contracts

across di�erent domains, highlighting the need for rigorous analy-

sis and understanding of their structure, functionality, and security

challenges.

As integral components of dApps, smart contracts must be de-

ployed with a high degree of security assurance. Their role is central

in safeguarding the entire dApp ecosystem from potential threats.

Vulnerabilities in a single smart contract can have a cascading ef-

fect, jeopardising the security of interconnected components and

potentially leading to severe consequences such as unauthorised

access, data breaches, and substantial �nancial losses.

The challenge in achieving secure smart contracts is ampli�ed

by the inherent complexities of dApps. These applications often

operate in a highly interconnected environment, with dependencies

that extend beyond their immediate ecosystem to include external

libraries and services. This complexity is further exacerbated by the

fast paced evolution of blockchain technology, where new patterns

and practices emerge rapidly, making it di�cult to maintain an

up-to-date understanding of security best practices.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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The decentralised nature of these applications means that tra-

ditional centralised security controls are not applicable, requiring

developers to adopt new paradigms of security thinking. As dApps

become more sophisticated, the potential impact of security vulner-

abilities grows. Keeping abreast of vulnerabilities and employing

comprehensive analysis and mitigation techniques are essential

steps in ensuring the resilience and reliability of dApps against the

threats they face.

This data paper introduces a dataset consisting of a selected

collection of Solidity smart contracts containing around 50k con-

tracts (which we are continuously expanding), each accompanied by

vulnerability reports generated by Slither [5]. Slither is renowned

in the software development community for its e�ectiveness as a

static analysis tool, capable of identifying a wide set of vulnera-

bilities within smart contract code. Our dataset goes beyond mere

vulnerability identi�cation; it o�ers an extensive analysis of both

contract-level and function-level metrics. These metrics provide

insights into the structural and operational characteristics of smart

contracts, enabling a deeper understanding of the factors that may

in�uence their security posture.

With this dataset we provide a tool for both researchers and

developers focused on Ethereum smart contracts. The dataset’s rich

detail on vulnerabilities and contract metrics directly supports the

development of more secure coding practices and the improvement

of security analysis tools. It enables detailed study into how con-

tract characteristics correlate with vulnerabilities, paving the way

for advanced vulnerability prediction models. Developers can use

this dataset to test and re�ne their security approaches, aiming to

decrease the occurrence of �aws in deployed contracts.

With this dataset, publicly available on GitHub1, we promote

a collaborative approach to tackling smart contract security chal-

lenges. It encourages input from a wide range of contributors, in-

cluding academics, blockchain developers, and security profession-

als, to work together in addressing smart contract vulnerabilities.

The structure of the paper is as follows: Section 2, details the

motivations driving this research and the creation of the dataset

and discusses related work, analysing existing smart contracts

(SCs) datasets, vulnerability detection, testing tools, and tools for

analysing decentralised applications (dApps). Section 3 outlines the

methodology used to collect data, extract software metrics from SC

source code, and conduct the vulnerability detection process. The

composition and statistical analysis of the dataset are described in

Section 4, while Section 5 o�ers insights into software metrics and

their distribution across di�erent categories and impacts. Poten-

tial applications of the dataset are explored in Section 6. Section 7

discusses the threats to the validity of our research, and the paper

concludes with Section 8 and Section 9, highlighting future research

directions and summarising the content of the study.

2 MOTIVATION AND RELATED WORK

The adoption of smart contracts across various sectors shows their

impact on digital transactions and decentralised applications, but

this rapid integration also brings to light signi�cant security vulner-

abilities that pose risks to users and the integrity of the blockchain

network. Despite the advancements in development practices and

1https://github.com/giacomo�/SmarthER

tools aimed at improve security, the persistent emergence of vulner-

abilities in smart contracts reveals gaps in current methodologies

and the need for new solutions. The motivation behind this work

stems from the critical need to address these security challenges

head-on. By providing a large dataset of Solidity smart contracts,

complete with vulnerability reports and metrics at contract and

function level, we aim to bridge these gaps. This dataset represents

a collection of structural and functional aspects of smart contracts,

o�ering insights into their security dynamics. The dataset intro-

duced in this paper is designed to help researchers, developers, and

security experts to uncover patterns, develop predictive models,

with the goal of obtaining more resilient smart contracts.

Here, we explore the literature to present an overview of the

current state of resources and tools available for smart contract

analysis. Our review covers three main areas: the availability and

scope of smart contracts datasets, the range and e�ectiveness of

vulnerability detection tools, and the frameworks developed for

analysing decentralised applications (dApps) and smart contracts.

2.1 Smart Contracts Datasets

Among the smart contracts datasets, SmartCorpus [14] stands out

as an organised repository that provides access to Solidity source

code, along with relevant metadata such as bytecode and applica-

tion binary interfaces for Ethereum smart contracts. This repository

facilitates easy and systematic retrieval of contract information.

Additionally, SmartCorpus includes software metrics for each con-

tract, obtained through the PASO framework [1], which supports

the extraction of both object-oriented and Solidity-speci�c met-

rics. Similarly, our dataset provides software metrics derived from

smart contract source codes. Yet, it goes a step further by incor-

porating vulnerability reports produced by Slither. This addition

opens avenues for deeper analysis, speci�cally enabling the explo-

ration of potential links between software metrics and the presence

of vulnerabilities. The last update of SmartCorpus dates back to

2022 and encompasses around 35k addresses of veri�ed contracts,

while our repository provides approximately 50k contracts, and is

continuously expanding.

SmartBugs o�ers a dual resource: an analytical framework for

smart contracts (SC) and repositories containing Solidity source

codes. Its curated selection features 143 contracts2 identi�ed with

speci�c vulnerability issues. Meanwhile, the SmartBugswild dataset

[4] compiles a collection of 47,398 contracts from the Ethereum

network. The Skelcodes dataset [3], on the other hand, provides

both the deployment and runtime code of Ethereum main chain

contracts, including those that have been self-destructed, alongside

the application binary interface (ABI) for each.

Our dataset advances beyond these collections by incorporat-

ing software metrics directly extracted from the contracts’ source

codes, an aspect not covered by SmartBugs or Skelcodes. In addi-

tion to these metrics, our dataset o�ers vulnerability reports for

the contracts it includes, providing a more comprehensive tool for

SC analysis and research.

The Smart Contract Sanctuary repository [12] serves as another

signi�cant source of smart contracts, extracting Solidity SC not

only from Ethereum’s main net but also from test nets, along with

2https://github.com/smartbugs/smartbugs-curated
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contracts from other blockchain platforms like Polygon, Tron, and

Avalanche. Despite its broad scope and being the most complete

in terms of the sheer volume of smart contract samples, the Smart

Contract Sanctuary lacks detailed artifacts and metadata that ac-

company these contracts. Building on the foundation provided by

the Smart Contract Sanctuary, our dataset signi�cantly extends its

value. We have added software metrics and vulnerability reports for

the contracts derived from this repository. This enhancement intro-

duces a deeper layer of analysis and insight, making it a more potent

tool for researchers and practitioners interested in the security and

performance of smart contracts.

2.2 Vulnerability Detection Tools

Throughout Ethereum’s development, a variety of tools for de-

tecting vulnerabilities have been introduced. Oyente [9], an early

tool, uses symbolic execution compatible with Ethereum Virtual

Machine (EVM) bytecode to identify smart contract bugs.

Osiris [16] focuses on �nding arithmetic bugs in smart con-

tracts by using symbolic execution and taint analysis, expanding

on Oyente’s approach.

Securify [17] analyses contracts’ dependency graphs through

symbolic analysis to extract semantic insights, checking for com-

pliance and violation patterns critical for property validation.

Slither [5], through static analysis, examines smart contract code

to provide feedback aimed at improving code structure. It analyses

source code and binaries without code execution.

SmartCheck [15] translates Solidity code into XML-based inter-

mediate representations for veri�cation against XPath patterns,

also using static analysis.

Mythril, a tool designed for EVM bytecode, excels in �nding secu-

rity vulnerabilities across a range of EVM-compatible blockchains

by employing symbolic execution, SMT solving, and taint analysis.

Additional tools like Manticore [10], Ethainter [2], and Sfuzz

[11] o�er various approaches to vulnerability detection and testing.

Despite the diversity of tools, Slither is particularly noted for balanc-

ing performance, speed, and the breadth and depth of vulnerability

detection.

.

3 RESEARCH METHODOLOGY

This section outlines the methodological approach we used to com-

pile our dataset, as presented by the work�ow in Figure 1.

The �gure provides a visual representation of the steps involved

in assembling the dataset.

The process begins with the application of a Python script that

triggers the execution of Slither, which scans the smart contracts,

generating a detailed vulnerability report for each contract. Con-

currently, our custom-built tool extracts a set of software metrics

for these contracts. These vulnerability reports are then stored as

JSON �les, and the software metrics are compiled into CSV �les,

facilitating easy access and analysis.

The end of this process is the integration of the source codes,

vulnerability reports, and software metrics into a uni�ed repository.

This repository serves as the foundation for subsequent analysis

and research. The following subsections will present each stage of

the methodology in detail, providing insight into the development

and application of the tools used for extracting software metrics

and vulnerability reports.

3.1 Data Collection

For our dataset, we chose to use existing open-source repositories

of smart contracts. Our selection was the Smart Sanctuary dataset3

[12], compared with other options like SmartBugs Wild, Skelcodes,

and SmartCorpus. This decision was based on several factors. The

Smart Sanctuary dataset is extensive, containing over 7 GB of data

from Ethereummain net contracts alone, and includes a broad range

of pragma versions used in smart contracts. Its last update was on

July 13, 2023, which means it contains the most current versions

of Solidity at the time of our research. In contrast, the SmartBugs

Wild dataset’s latest update was in January 2020, missing newer

pragma versions and the latest contract design patterns that could

be valuable for our study.

While the Skelcodes dataset is up-to-date, its source codes were

no longer available in the repository, requiring additional steps to

obtain the source code from Etherscan4. Given these considerations,

the SmartSanctuary dataset was themost practical choice, providing

a solid foundation for our dataset with its recent updates and wide

coverage of contract versions.

3.2 Metrics Extraction

The extraction of software metrics from smart contracts within our

dataset is achieved through the integration of two distinct tools:

Slither [5] (which execution is triggered through a Python script)

and MindTheDapp [6]. Slither is a well-established tool and pro-

vides an extensive set of code metrics. MindTheDapp introduces

the capability to de�ne and compute a specialized metric, “Cou-

pling Between Contracts.” This is facilitated by leveraging ANTLR

(Another Tool for Language Recognition) to create a parser based

on the Solidity grammar5. By merging the capabilities of Slither

and MindTheDapp, our dataset includes both standard code metrics

and assessments of contract interactions.

To ensure the reliability of our metric extraction process, we

conducted manual code inspection, unit and integration testing,

and manual reviews of a subset of contracts. These preliminary

tests were aimed at verifying the accuracy of the extracted metrics.

One drawback in using Slither is its reliance on the AST (Ab-

stract Syntax Tree) generated by the Solidity compiler, and hence its

usage requires compiling the contracts. Compiling a large dataset of

smart contract codebases is a challenging endeavour. The process

of accurately identifying and integrating dApps dependencies is

complex and time-consuming. While manually resolving dependen-

cies might be feasible for analyzing a single dApp, this approach

becomes impractical for large-scale datasets of smart contracts. The

di�culty is particularly pronounced with contracts that incorporate

external libraries and modules. To address this issue and automate

the installation and resolution of dependencies, we leverage the DAI

toolset [7], which is designed to manage these challenges across

large datasets of smart contracts.

3https://github.com/tintinweb/smart-contract-sanctuary
4https://etherscan.io/
5https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4
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Figure 1: Toolchain employed to build the dataset

Additionally, to compile a smart contract correctly, the speci�c

version of the Solidity compiler, as indicated by the contract’s

pragma directive, must be used. To manage the variety of Solidity

contracts and their respective compiler version requirements, a

dynamic approach is essential. This involves the manual installa-

tion of all available versions of the Solidity compiler and using the

solc-select6 tool to change the compiler version as needed when

processing the dataset.

This strategy allows for each smart contract to be compiled

as closely as possible to its original development speci�cations,

ensuring the accuracy of the metrics extracted from these contracts.

The following general cases provide insights into this choice:

• pragma solidity ˆ0.5.0;: The �le employing this pragma ver-

sion will compile with versions greater than 0.5.0, but it will

not be compatible with versions greater starting from 0.6.0,

and lower than 0.5.0.

• pragma solidity =0.5.0;: The �le employing this pragma ver-

sion will compile exclusively if the selected compiler version

is 0.5.0.

• pragma solidity ∼0.5.0;: The �le employing this pragma ver-

sion is compatible with versions aligning with 0.5.0, includ-

ing minor updates and bug �xes. Solidity compiler versions

in which crucial updates have been introduced are incom-

patible.

• pragma solidity>0.5.0<0.7.0;: The �le employing this pragma

version is compatible with versions aligning between 0.5.0

and 0.7.0. This presents a unique challenge due to the non-

trivial nature of precisely determining the matching version

alignment between the compiler and pragma directive. Files

encompassing this pragma necessitate a thorough examina-

tion of smart contract functionalities to ascertain the precise

compatible version.

6https://github.com/crytic/solc-select

From each SC the following contract and function level metrics

are extracted:

• No. of Raw Lines: The number of lines of code (LOC) of

the SC.

• No. of Contracts: The number of contracts de�ned inside

the SC.

• Inheritance Depth: This metric measures the layers of in-

heritance of a speci�c contract. A higher depth could indicate

a more complex contract structure.

• Coupling Between Contracts: Indicates the number of

other contracts or libraries that a contract interacts with.

Higher coupling may lead to increased complexity and po-

tential risks.

• State Variable Count: Represents the number of state vari-

ables in a contract. A higher count could lead to more com-

plex contract interactions.

• Avg Variable Count: The average number of local vari-

ables used across all functions in a contract. This can be an

indicator of how much temporary storage a contract uses.

• Max Local Variable: The maximum number of local vari-

ables used in any single function within a contract.

• Number of Functions: The total number of functions in

a contract. This metric gives an idea of the contract’s func-

tionality and complexity.

• Number of Parameters: The number of parameters given

as input to functions. A higher number could make the func-

tion more complex and harder to use.

• Nesting Depth: Represents the depth of nested loops and

conditionals within a function. Deeper nesting can make a

function harder to understand and maintain.

• Function Calls: Counts the number of times a function calls

other functions. Frequent calls can lead to intricate function

behaviours and interactions.
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• Cyclomatic Complexity: Measures the number of linearly

independent paths through a function’s source code. Higher

values denote more complex functions.

• Local Variable Count: Indicates the number of local vari-

ables within a function. A higher count could imply more

complex computations and logic within the function.

In our catalog, we introduced a new metric: “Coupling Between

Contracts” (CBC). As brie�y explained above, this metric quanti�es

the number of distinct contracts or libraries that a given smart

contract directly interacts with. A higher CBC value suggests a

greater level of interdependence between contracts, which, while

indicative of a potentially rich set of functionalities, also �ags an

increase in complexity and potential security vulnerabilities.

Comparatively, the traditional software engineering metric, Cou-

pling Between Objects (CBO), measures the degree to which di�er-

ent classes are interdependent within object-oriented programming.

While CBO provides insights into the complexity and maintainabil-

ity of software systems by highlighting the tightness of coupling

between classes, CBC is tailored to capture the dynamics of smart

contract ecosystems. Unlike CBO, which focuses on class-level inter-

actions within a single software system, CBC speci�cally addresses

the interactions across the decentralised and distributed nature of

blockchain applications. This distinction is important in the context

of smart contracts, where interactions are not limited to internal

components but extend to other contracts and libraries within the

blockchain network. By measuring CBC, developers and analysts

can gain an understanding of the contract’s integration within the

broader ecosystem, potentially identifying areas where reduced

coupling could mitigate risks and simplify the system.

The extraction of these software metrics could contribute to

giving preliminary insights about dApps complexity and develop-

ment practices [8]. Moreover, studying the correlation between the

exposures detected by Slither and the extracted metrics could give

valuable insights and suggestions on SC’s security improvement.

3.3 Exposures Analysis

The tool generates vulnerability reports by conducting static analy-

sis with Slither, which is also a key part of the tool used for extract-

ing metrics. The structure of this tool, includes components that

are similar to those used in the metrics extraction setup. This setup

allows the tool to e�ciently search through smart contract code

for patterns that could indicate security vulnerabilities, all without

needing to run the contract.

Our focus here is speci�cally on the pragma version of Solidity

de�ned in the smart contracts we are scanning. We have already

covered the challenges of identifying the exact pragma version

and potential complications in compiling smart contracts. The key

distinction with the tool mentioned earlier is its use of Slither.

While we use Slither in the metrics extraction tool to gather basic

components of the smart contract, here it is used di�erently. In

this stage, Slither scans the contract to create a detailed report

of any vulnerabilities it �nds. It classi�es vulnerabilities into �ve

categories based on their potential impact:

• High: this level signi�es critical vulnerabilities that could

lead to severe outcomes, including �nancial loss or data

breaches.

• Medium: vulnerabilities at this level might a�ect how well

di�erent parts of a contract work together or could restrict

what the contract can do.

• Low: these are issues that might cause the contract to be-

have in unexpected ways, though they do not prevent the

contract’s normal operation.

• Informational: here, the tool �ags up minor concerns, such

as unused functions, that do not directly a�ect security or

performance.

• Optimisation: suggestions for improving contract e�ciency,

like reducing gas costs, fall into this category.

The �ndings generated by Slither are serialised into a JSON �le

format, a measure undertaken to enhance readability and expedite

access to pertinent insights. Particularly, we are interested in:

• Type: provides the type of construct exposed to the vul-

nerability issue. The construct could either be a contract,

a function, a variable, an arithmetic operation or function

call (called nodes in the Slither report), or even the pragma

version.

• Name: it represents the name of the construct exposed to the

vulnerability issue. If the structural element labeled as ’type’

aligns with ’node’, the complete line of code is documented

and reported.

• Is Dependency: a boolean value stating if the construct is

whether or not a dependency.

• Lines: the precise line number or line numbers of code of

the vulnerable pattern.

• Description: the description of the exposure detected by

Slither.

• Check: the type of issue detected by Slither. Awide spectrum

of vulnerability issues is covered, which can be examined in

the detector documentation7.

• Impact: the severity level of the exposure.

• Con�dence: the level of con�dence Slither has in detecting

the speci�c issue.

4 DATASET DESCRIPTION AND DISCUSSION

Figure 2 shows the structure of our dataset repository. Themain

net directory contains the source code of 47932 contracts sourced

from the smart sanctuary dataset. In this directory, smart contracts

are organised into subfolders named after the initial characters of

their associated addresses. For instance, contracts whose addresses

begin with “00” are placed in the “00” folder, and those starting

with “0x�” are found in the “�” folder.

The report directory is divided into four directories, each mir-

roring the structure of the main net directory to organise the vul-

nerability reports. Slither generates these reports for every contract

from the main net directory. Following the same organisational

pattern, vulnerability reports for contracts starting with “0x00” are

located in the “00” folder. Importantly, these folders also include

reports for contracts that failed to compile, making it easier to track

errors and improve our analysis.

The software metrics directory houses the metrics for each

contract from the main net directory. For every subfolder in main

net, corresponding CSV �les compile the extracted metrics from

7https://github.com/crytic/slither/wiki/Detector-Documentation
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Figure 2: Visual representation of dataset organisation

the contracts within that folder. For example, the 00metrics.csv

�le contains all the metrics from contracts in the “00” folder. The

speci�cs of these software metrics, including their de�nitions and

signi�cance, are detailed in Section 3.2.

The exposure directory aggregates the vulnerability report data

into CSV �les, making it easy to access information on vulnera-

bilities related to functions and contracts quickly. This directory’s

layout is designed to re�ect the organisation seen in the metrics

folder. For instance, the 00VulnerabilityReport.csv �le summarises

the vulnerabilities for contracts located in the “00” folder. Details

on the types of data included in these CSV �les, such as speci�c

vulnerability attributes, are further discussed in Section 3.3.

The �nal sub-directory under the report main directory features

CSV �les that combine data from both metrics extraction and vul-

nerability analysis. Each �le in this sub-directory lists all metrics for

functions or contracts, along with any identi�ed vulnerabilities, us-

ing information outlined in the exposure CSV �les. For functions or

contracts found to be without vulnerabilities, the relevant columns

in these comprehensive CSV �les are �lled with ‘−’ to indicate the

absence of vulnerabilities.

The vulnerability report counts:

• 53335 informational reports.

• 1443 optimisation suggestions.

• 38673 low impact vulnerabilities.

• 11794 medium impact vulnerabilities.

• 4254 high impact vulnerabilities.

Table 1 reports the high-impact vulnerability issues exposing the

contracts encompassed in our dataset. Reviewing the data in Table 1,

we notice a signi�cant number of vulnerabilities are related to reen-

trancy, known for their potential to cause irreversible ETH losses.

The dataset also reveals issues like unauthorised Ether transfers

Table 1: Vulnerability Samples

Vulnerability Number of Samples Con�dence

reentrancy-eth 2012 Medium

uninitialized-state 419 High

unchecked-transfer 660 Medium

arbitrary-send-eth 614 Medium

arbitrary-send-erc20-permit 5 Medium

arbitrary-send-erc20 109 High

weak-prng 131 Medium

controlled-delegatecall 49 Medium

incorrect-shift 141 High

controlled-array-length 43 Medium

msg-value-loop 8 Medium

suicidal 6 High

shadowing-state 24 High

unprotected-upgrade 30 High

delegatecall-loop 3 Medium

to generic addresses, unchecked transfer call outcomes, and unini-

tialised state variables. Except for the uninitialised state variable

vulnerabilities, which Slither detects reliably, the most frequently

found vulnerabilities are identi�ed with medium con�dence. This

observation points to the need for careful scrutiny to discern possi-

ble false positives among these �ndings. Nonetheless, it is funda-

mental to recognise that even a few high-severity vulnerabilities

can have devastating e�ects. For example, reentrancy issues can

allow attackers to repeatedly execute external calls, manipulating

currency transfer logic to drain a contract’s funds entirely.

Figure 3: Pattern Length Distribution for High Impact Vul-

nerabilities

Figure 3 shows how average pattern lengths vary among high-

impact vulnerabilities identi�ed in our dataset. Vulnerabilities such

as ’controlled-array-length’, ’incorrect-shift’, ’reentrancy-eth’, ’msg

value loop’, and ’suicidal’ stand out due to their longer code pat-

terns compared to other high-impact vulnerabilities. This suggests

that these types are associated with more complex or extensive

code segments within smart contracts, highlighting regions that

may be particularly vulnerable to security breaches. The extended
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pattern lengths of these vulnerabilities underline the importance

of scrutinising these areas closely for potential risks.

5 QUALITATIVE ANALYSIS

For presenting a preliminary qualitative analysis, we selected the

“0aFullReport.csv” �le in the dataset, without speci�c preference

for its content over others. The �rst step in our analysis involved

processing this �le to extract a unique list of contracts and their

associated metrics, ensuring that each contract was represented

only once to avoid duplication. This process was key for setting

a clear foundation for subsequent visual examination and analy-

sis of the metrics associated with each contract. The second step

focused on a set of prede�ned metrics for assessing the structural

complexity and design aspects of smart contracts. These metrics

included Inheritance Depth, Coupling Between Contracts (CBC),

State Variable Count, Average Local Variables, Maximum Local

Variables, and the Number of Functions.

Figure 4: Distribution of Smart Contract Metrics

Figure 4 o�ers a detailed visual representation of the distribution

of the chosen metrics across the smart contracts. The boxplots

reveal the central tendency, spread, and outliers for each metric,

providing insights into the complexity and design patterns of the

contracts under examination.

• Inheritance Depth: the majority of contracts exhibit low

inheritance depths, indicating a preference for simpler in-

heritance structures. The presence of outliers suggests a few

contracts employ deeper inheritance chains, potentially in-

dicating more complex interactions or feature integrations.

• Coupling Between Contracts (CBC): similar to Inheritance

Depth, the Coupling Between Contracts metric predomi-

nantly shows low values, implying limited inter-contract

dependencies. This could re�ect a design choice aimed at

minimising coupling to enhance modularity and reduce com-

plexity.

• State Variable Count: this metric displays a wider range of

values with a noticeable spread, indicating variability in how

contracts manage state. Contracts with a higher number of

state variables may be handling more data or more complex

state management tasks.

• Average Local Variables: most contracts tend to use a lower

average number of local variables in their functions, sug-

gesting a tendency towards functions with simpler logic.

Outliers in this metric highlight contracts with functions

that might be managing more complex calculations or data

manipulations.

• Maximum Local Variables: exhibiting signi�cant variability,

this metric points to the complexity within the most complex

function of each contract. Contracts with higher values may

contain functions of considerable complexity, potentially

impacting readability and maintainability.

• Number of Functions: the distribution of the number of func-

tions per contract varies, with a trend towards a smaller

number of functions. However, outliers indicate some con-

tracts with a large number of functions, which could suggest

a broader scope of responsibilities or functionalities encap-

sulated within these contracts.

Overall, the boxplots show the diversity in structural complexity

and design choices across the smart contracts analysed. They high-

light the balance between functionality and complexity in smart

contract development, with outliers indicating instances of con-

tracts that deviate from common patterns, either through increased

complexity or through a signi�cantly di�erent approach to contract

design.

Figure 5 o�ers a visualisation of function-level metrics across

unique functions extracted from the “0aFullReport.csv” �le. These

metrics include the Number of Parameters, Nesting Depth, Func-

tion Calls, Cyclomatic Complexity, and Local Variable Count. Each

boxplot encapsulates the distribution of its respective metric, high-

lighting median values, quartile ranges, and the presence of outliers,

thereby illustrating the variability and complexity within the func-

tions of smart contracts.

Figure 5: Distribution of Function Metrics

• Number of Parameters: the distribution for this metric indi-

cates that most functions are designed with a limited number

of parameters, suggesting a preference for simpler interfaces.
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Outliers hint at functions that require more inputs, poten-

tially re�ecting more complex operations or interactions.

• Nesting Depth: this metric shows a general tendency towards

lower nesting levels within functions, promoting readabil-

ity and maintainability. However, functions represented as

outliers demonstrate deeper nesting, which could indicate

more complex logical structures or conditionals.

• Function Calls: the plot reveals a wide range of values, with

a signi�cant number of functions making few to no external

calls. Outliers in this metric suggest functions with extensive

interactions with other functions or contracts, potentially

increasing the interdependence and complexity within the

contract’s ecosystem.

• Cyclomatic Complexity: the cyclomatic complexity measures

the number of linearly independent paths through a pro-

gram’s source code. The distribution suggests that many

functions maintain a lower complexity level, facilitating test-

ing and maintenance. Functions marked as outliers exhibit

higher complexity, indicating more intricate control �ow

which could impact understandability and error-proneness.

• Local Variable Count: most functions use a modest number

of local variables, which aids in keeping the function’s logic

straightforward. Outliers, however, indicate functions with

a high local variable count, pointing towards more complex

computations or state management within those functions.

In our qualitative analysis, we chose to classify the function met-

rics in relation to the potential impact of the vulnerabilities (column

Impact of the csv). The boxplots below provide an illustrative com-

parison across the varying levels of impact (‘−’, Low, Informational,

Medium, High, Optimization) for three di�erent metrics: Function

calls, Cyclomatic Complexity, and Number of Parameters at func-

tion level, the �rst boxplot (related to ‘−’) indicates functions in the

dataset found to be without vulnerabilities.

In the �rst plot, Fig. 6, analysing the Function Calls, we observe a

higher median and a wider interquartile range in contracts marked

with “High” impact, suggesting that functions with a critical impact

on contract behaviour tend to engage more frequently with other

functions. The “Optimization” category shows a lower median,

implying that functions within this category are likely more self-

contained, possibly indicating a design that’s optimised for gas

e�ciency or other performance measures.

The Cyclomatic Complexity plot (Fig. 7) illustrates a noticeably

higher median in the “High” impact category as well, which could

indicate a correlation between the complexity of a function’s logic

and the potential impact of its vulnerabilities. It’s evident that as

the perceived impact rises, so does the complexity, underlining the

increased risk and the need for review and testing.

The plot for the Number of Parameters (Fig. 8) shows a generally

increasing trend from “Low” to “High” impact, hinting that func-

tions deemed to have a more signi�cant impact may have more

complex interfaces, taking in multiple parameters. This could be

re�ective of the functions’ multifaceted nature and the critical role

they play in the contract’s operations.

Overall, comparing across categories, ’High’ impact functions

tend to exhibit higher complexity and interaction, as evidenced by

Figure 6: Distribution of Function Calls

Figure 7: Distribution of Cyclomatic Complexity

Figure 8: Distribution of Number of Parameters

greater median values and spreads in the related metrics. ’Optimiza-

tion’ functions often show the opposite, with reduced complexity
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and interactions, suggesting a focus on streamlined e�ciency. This

di�erentiation in metrics distributions across impact categories

highlights the potential need for varied approaches to testing, re-

view, and optimisation in smart contract development.

6 RESEARCH OPPORTUNITIES

The dataset presented in this study opens several avenues for fu-

ture research, particularly in the �eld of predictive models and

data analytics. Here, we outline potential directions for using this

dataset:

• Predictive modeling for vulnerability detection: the set of vul-

nerability data and software metrics in our dataset provides

an ideal basis for developing predictive models aimed at iden-

tifying potential security vulnerabilities in smart contracts.

Researchers can use machine learning algorithms to analyse

patterns and correlations between metrics and known vul-

nerabilities, creating models that can predict the likelihood

of vulnerabilities in unseen contracts.

• Enhancing security practices through data analytics: the

dataset can be used to conduct data-driven analysis on com-

mon coding practices and their impact on contract security.

This could lead to the development of guidelines and best

practices for writing safer smart contracts, supported by

empirical evidence from the dataset.

• Automated tools for smart contract analysis: there is a sig-

ni�cant opportunity to develop automated tools that inte-

grate predictive models derived from the dataset. Such tools

could assist developers in real-time by providing warnings

or suggestions for improving contract security during the

development process.

• Evaluating the e�ectiveness of security measures: by compar-

ing contracts with known vulnerabilities against those that

have employed certain security measures, researchers can

quantitatively assess the e�ectiveness of di�erent security

practices and tools in mitigating vulnerabilities.

7 THREATS TO VALIDITY

Dataset representativeness: our dataset is drawn exclusively

from the Smart Sanctuary dataset, containing over 200,000 veri�ed

smart contracts from Ethereum’s main network. This collection,

while extensive, may not capture every contract coding practice.

Such omissions could a�ect our understanding of the relationships

between software metrics and the occurrence of vulnerabilities.

Additionally, our focus on main network contracts means we might

miss out on valuable insights from contracts on test networks.

These environments often serve as experimental grounds where

developers test new ideas, which could provide unique case studies

that enhance our dataset and subsequent analyses.

However, including contracts from test networks introduces its

own set of challenges. Test networks are playgrounds for develop-

ers, leading to the deployment of multiple iterations of the same

contract for testing purposes. This could signi�cantly increase the

presence of duplicate contracts in our dataset, complicating the

analysis. Distinguishing between genuine variations and mere du-

plicates would require a more detailed approach to dataset curation,

ensuring that our repository remains both complete and relevant

to our research objectives. In future work, developing strategies

to incorporate test network contracts without compromising data

quality will be an important step towards a more representative

and insightful dataset.

Contracts compilation issues: successfully compiling smart

contracts from external repositories presents a set of challenges.

A key issue involves selecting the correct compiler version, es-

pecially for contracts with pragma directives that span multiple

versions. This task is far from straightforward, as it requires a de-

tailed analysis of contract functionalities to determine the most

suitable compiler version for accurate compilation.

Handling external dependencies adds another layer of complex-

ity. Smart contracts frequently do not include a complete list of

their dependencies, complicating the compilation process. While

certain dependencies are readily available through package man-

agers like npm—for instance,@openzeppelin/contracts8—others may

be unique or bespoke to the contract, lacking mainstream package

management support. Ensuring that these dependencies not only

are present but also are compatible with the contract’s speci�ed

pragma version adds to the challenge.

The situation is further complicated when contracts are devel-

oped using speci�c frameworks like Tru�e9 or Hardhat10. In such

cases, key dependencies tied to these development environments

might not be explicitly listed, hindering straightforward compila-

tion. Addressing these complications demands an approach, involv-

ing both the tracking of dependencies and a �exible strategy for

compiler version selection. Future e�orts in this area might focus on

developing tools or methodologies that streamline the compilation

process, especially for contracts with complex dependency require-

ments or those developed within popular blockchain development

frameworks.

Vulnerability detection tools limitations: in our study, we

employ Slither for vulnerability detection, acknowledging its status

as a leading tool in the �eld. Despite Slither’s e�ectiveness and

widespread use, it is important to recognise its inherent limitations,

particularly its reliance on static analysis. This methodology pre-

vents Slither from identifying vulnerabilities that require dynamic

analysis to uncover, such as certain types of denial of service (DoS)

issues. Slither shows constrained capabilities in spotting speci�c

vulnerabilities like arithmetic over�ows and under�ows [13], indi-

cating areas where its analysis might be supplemented.

To address these gaps, incorporating additional vulnerability

detection tools could signi�cantly enrich our dataset and re�ne

our �ndings. Yet, the challenge lies in selecting the most appro-

priate tools to complement Slither. An exhaustive application of

every available open-source vulnerability detection tool is unreal-

istic within the bounds of time and resource constraints. A more

practical approach would involve a carefully chosen subset of tools,

including dynamic analysis solutions like Mythril, to capture a

broader spectrum of vulnerabilities not detectable through static

analysis alone.

It is also important to consider tool compatibility with contract

pragma versions. Tools such as Osiris and Oyente have limitations,

8https://www.npmjs.com/package/@openzeppelin/contracts
9https://archive.tru�esuite.com/
10https://hardhat.org/
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mainly supporting contracts written in Solidity version 0.4. There-

fore, tool selection must take into account not just the breadth

of vulnerabilities covered but also compatibility with the range

of pragma versions present in our dataset. Future enhancements

to our methodology could include a strategic integration of both

static and dynamic analysis tools, calibrated to e�ectively cover

a comprehensive range of vulnerabilities across various Solidity

versions.

8 FUTUREWORKS

Recognising the limitations identi�ed in our analysis, our future

e�orts will focus on several key improvements. We aim to con-

tinuously update and expand our dataset by incorporating newer

contracts from the Smart Sanctuary and other repositories, thereby

enhancing the diversity and volume of vulnerability reports and

software metrics available for analysis. A critical aspect of our forth-

coming work involves re�ning the selection and con�guration of

vulnerability detection tools. We see signi�cant value in integrat-

ing Mythril into our toolkit. Its dynamic analysis capabilities are

expected to complement Slither’s static approach, allowing us to

uncover a broader array of vulnerability patterns. Furthermore, we

plan to tackle the challenges of smart contract compilation and

dependency resolution head-on. The lack of comprehensive tools

and frameworks in current academic literature to address these

speci�c issues underscores a pressing need. As a response, we are

committed to developing a novel framework or toolset designed to

streamline the compilation process and manage dependencies more

e�ectively, addressing a critical gap in smart contract development

and analysis.

9 CONCLUSIONS

This work has introduced a repository of Ethereum smart contracts,

compiled to serve as a foundational tool for advancing research

in smart contract security. By integrating detailed vulnerability

reports generated by Slither with a wide set of software metrics at

both contract and function level, we have provided researchers and

developers with a rich resource for exploring the complex inter-

play between contract characteristics and security vulnerabilities.

Our analysis, rooted in the examination of 50k contracts from the

Smart Sanctuary dataset, has revealed insights into prevalent vul-

nerabilities and coding patterns, emphasising the need for ongoing

vigilance and innovation in smart contract development practices.

The challenges identi�ed in compiling and analysing smart con-

tracts—ranging from the selection of appropriate compiler versions

to the handling of external dependencies—underscore the complexi-

ties of ensuring contract security in a evolving ecosystem.Moreover,

the reliance on static analysis tools like Slither, has highlighted the

limitations of current methodologies in capturing the full spectrum

of potential vulnerabilities.

Looking ahead, we are committed to expanding our dataset and

re�ning our analysis methodology. The integration of dynamic anal-

ysis tools, along with the development of frameworks designed to

streamline the compilation process, represents key avenues for fu-

ture work. These e�orts will enhance the robustness of our dataset

and contribute to a deeper understanding of smart contract vulner-

abilities.

Our dataset is available on Zenodo11 o�ering a repository encom-

passing valuable resources such as smart contracts source codes,

and associated software metrics and vulnerability reports, encour-

aging researchers and developers to enhance the current literature

in SC security and analysis.
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