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A B S T R A C T

X-ray photoelectron spectroscopy (XPS) is a powerful technique for surface analysis, but its application can be
hindered by uncertainty in modelling spectra. Often, many spectral models have a similar goodness of fit, and
distinguishing between them can be impossible without additional information. A further challenge is found in
interpreting spectra from samples consisting of multiple chemical compounds. We show here how correlation
analysis can be used to interpret large XPS datasets. Correlations in atomic concentrations and binding energies
of core lines can be interpreted within a framework of an underlying chemical model and this can yield addi-
tional information compared with analysis of each spectrum individually. We give examples of the usage of this
analysis on some simple systems, and discuss the potential and limitations of the technique.

1. Introduction

The use of X-ray Photoelectron Spectroscopy (XPS) for materials
analysis is now well established. As a surface sensitive technique, XPS is
able to provide chemical and compositional information that is difficult
or impossible to obtain through other methods [1]. When combined
with complementary techniques such as Ar+ ion depth profiling, Raman
spectroscopy, Reflectance Electron Energy Loss Spectroscopy (REELS),
scanning probe microscopy, diffraction methods, Ion Scattering Spec-
troscopy (ISS) and others, XPS forms part of a powerful multi-technique
platform increasingly used in advanced materials science research [2].

XPS provides quantitative compositional information by comparing
the intensities of photoemission peaks from different elements. Addi-
tionally, chemical state information can be obtained by measuring the
binding energy of core lines [3]. The chemical shift in binding energy
between different chemical environments of the same element can be
small compared with the peak width. This means individual chemical
environments are often not resolved, and peak modelling is needed to
determine their binding energies and concentrations. A peak model is
the combination of a background function and one or more synthetic
peak functions (often of Gaussian-Lorentzian form). Fitting such a peak
model to experimental data by varying some of the model parameters to
minimise the residual is known as peak fitting [4]. This kind of data
analysis plays a major role in the interpretation of XPS spectra [5]. As
has been highlighted recently, there are many possible pitfalls in peak
fitting, and it is unfortunately common in the scientific literature for

conclusions to be stated that are not properly supported by the experi-
mental XPS data [6,7].

A good XPS peak model in materials analysis requires three things:

1. A good fit to the experimental data. This can be measured by sta-
tistical methods or assessed by eye (or maybe in future with Artificial
Intelligence).

2. To be consistent with spectroscopic theory. Peak shapes, peak
widths, peak positions, and background functions should be in
accordance with physical theory that describes the photoemission
process, and the instrumental parameters of the spectrometer. In
some cases it is impractical to physically account for all photoemis-
sion processes – for example, background functions account for in-
elastic emission of electrons, but this kind of emission is often too
complex to model and so accepted practice is to employ simple
empirical background functions.

3. To be consistent with chemical theory. The model should reflect an
underlying, coherent, chemical description of the sample, one that
conforms to known chemical laws.

Point 1 is the easiest to achieve in isolation, as a peak model can be
made to fit arbitrarily well to any data by simply adding more param-
eters to the model. A model that meets point 1 but neither points 2 nor 3
is unfortunately not rare in the published literature, but is clearly not
able to support any scientific conclusions about the sample.

Point 2 requires knowledge of the physical processes that occur
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during photoemission spectroscopy. Peak widths, shapes and binding
energies are typically interpreted based on physical theory, for example,
contributions to the peak width include the lifetime of the core hole
created by photoemission, and the vibrational properties of the emitting
atoms [8]. Spin orbit coupling affects photoemission according to the
properties of atomic orbitals. The background is due to inelastically
scattered photoelectrons and secondary electrons. Binding energy shifts
can be understood by initial and final state considerations [9]. Energy
loss features can be caused by valence electron rearrangement [10].
Instrumental parameters influence observed peak width, and can
introduce satellites. Sample treatment, such as sputtering, can introduce
artifacts or change the measured chemical composition. Each of these
factors, and more, should be considered when constructing a model and
assigning features to specific atoms in specific chemical environments.
The majority of XPS analysis work in the literature at least attempts to
build models consistent with spectroscopic theory. However, even when
this point is well implemented, there may still be many different models
that fit a particular spectrum or set of spectra equally or nearly equally
well. For example, symmetric or almost symmetric spectra can be fitted
with a wide range of two component models with almost equal goodness
of fit. These models might lead the analyst to similar conclusions, but it
can certainly be the case the different models may each fulfil points 1
and 2 while leading to completely different conclusions about the
sample in question.

Point 3 is the most often overlooked in material analysis by XPS. In
all practical cases, samples are composed of atoms in certain ratios as
described by chemical laws. Consistency with chemical theory means
that the overall conclusions of the analysis should agree with an un-
derlying chemical model. For example, if a component of the C 1 s core
line is identified as belonging to a − CF3 group, there should be a F 1 s
environment with the same assignment, and that F 1 s environment
should be in a 3:1 concentration ratio with the C 1 s environment.
Introducing underlying chemical models into XPS fitting provides an
additional method to distinguish otherwise similar peak models that
may meet points 1 and 2 equally well. It is important to note that the
surface chemistry present in the low pressure conditions of a typical XPS
measurement may differ from the bulk chemistry under standard
conditions.

Several approaches have been advocated to improve confidence in a
peakmodel. Chemical informatics have been increasingly applied to XPS
spectra, making use of advanced statistical methods, principal compo-
nent analysis, multivariate curve resolution, and cluster analysis
[11,12]. A related method is use of Bayesian estimation to fit complex
core lines [13]. Computational methods can be used to calculate the
energies of core lines of different environments which can greatly aid
assignment of experimental spectra [14–17]. Fitting over multiple
spectra simultaneously can greatly increase confidence in a fit [18], and
this is an avenue we explore further in this work.

Here we propose a simple method to interpret XPS data from large
datasets, especially from those samples that contain multiple com-
pounds, surface contamination or surface oxidation. It is based on a
method used to determine the ratios of intensities two known com-
pounds, described in detail by AG Shard [5]. In that method, a surface
known to consist of varying proportions of two phases is measured at
several points, and the correlation between intensities of the measured
features used to determine the relative intensity ratios of the pure
phases. Here we extend this method for use in a wide range of systems.
Our analysis relies not on advanced statistical analysis but on underlying
chemical models, which we term phase models, applying the laws of
chemistry to better understand XPS spectra.

2. Correlation analysis

We introduce here the concept of correlation analysis for XPS data.
Correlation analysis in general is an established statistical procedure for
revealing relationships (which may be causal or coincidental) between

variables [19]. The first variable we suggest for correlation analysis in
XPS is the concentration of elements, or individual chemical environ-
ments of elements, usually measured in relative atomic % (rel. at. %).
Element concentration is obtained from core line peak area scaled using
relative sensitivity factors that are well established for the most common
excitation energies [20,21]. To understand, explain and predict the
correlations that may occur in XPS datasets, we use a model of the phase
composition of the system. A chemical compound is defined by the ratio
of elements it contains, and so we would expect to find particular cor-
relations in the rel. at. % values we measure in XPS between elements or
chemical environments present in the same phase. In general, we use the
term ‘phase’ for a part of the sample with fixed elemental composition. A
phase may be molecular or non-molecular, and may consist of one
element or many. The sample itself may consist of one phase or several.
We describe a proposed set of phases present in a sample as the ‘phase
model’. The amount of each phase present can vary, and this is given by
the phase fractions, which sum to unity: XA, XB, XC would be the phase
fractions of phases A, B and C, respectively.

The second variable we suggest to undergo correlation analysis is
binding energy (BE). Despite very common reliance on absolute (or
carbon corrected) binding energies for identification of chemical envi-
ronments, such absolute BEs are difficult to measure reliably due to is-
sues such as charging, and deficiencies of using internal standards such
as adventitious carbon are well known [22,23]. However, BE differences
between spectral features can usually be measured reliably on a well
calibrated spectrometer, if both features have sufficient intensity. From
the early days of XPS analysis, it was suggested that binding energy
differences between core lines from functional groups could be used to
identify such groups [24]. More recent theoretical calculations can give
the expected BE differences between functional groups in organic mol-
ecules [17]. Here we develop this idea further, and apply to both organic
and inorganic materials. We plot correlation graphs of absolute BEs of
different spectral features against one another, and relate these corre-
lations to phase models.

Binding energy shifts in XPS can be caused by several factors. The
most ubiquitous is sample charging. The build-up of a surface potential
on a sample during photoemission is well studied, and it is known that
different components of the sample can exhibit different amounts of
charging under the same conditions, depending on factors such as their
conductivity and morphology [25,26]. For example, metallic samples
grounded to the spectrometer typically show almost zero surface po-
tential, whereas insulators can show steady state potentials of tens of
volts. Surface potential leads to shifts in the measured binding energy.

A second way that BE shifts can occur in semiconductors is by a
change of the Fermi level. Unlike metals, the Fermi level can be altered
by several electronvolts in many semiconductors through relatively
minor changes in the defect chemistry [27–29]. Fermi level shifts cause
the measured binding energy of core lines to shift by an equivalent
energy.

We can now consider the effects of these forms of BE shift from the
perspective of the chemical phase model of a sample. Core lines arising
from atoms in the same phase will be expected to experience the same
BE shift due to charging, as long as the surface potential is homogeneous
on the atomic scale. Since the conductivity is a property of the material
as a whole, not the individual atoms that make it up, this is a reasonable
assumption. Likewise, the BE changes due to Fermi level shift can be
thought of as applying to all atoms within a phase equally. The
conclusion is that in the absence of major chemical changes to a phase
(e.g. significant oxidation or reduction), the chemical environments that
are together in the same phase will undergo BE shift of the same amount
by charging and by Fermi level changes, that is, they will exhibit a
constant BE difference. Therefore, we would expect the absolute BEs of
chemical environments in the same phase to show a linear correlation
with a gradient close to one. We use this to identify chemical environ-
ments that may be in the same phase.

Examples of both atomic % correlations and BE correlations will be
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given in the sections that follow. For correlation analysis to be effective,
many individual sets of XPS spectra on the same or related samples are
needed. There are several ways to achieve this. For example, a depth
profile is typically carried out by recording spectra, etching the sample,
and repeating this process for many cycles. This results in a collection of
many sets of spectra (each set being the different core lines and, in some
cases, survey). XPS mapping over a large sample, where many sets of

spectra are recorded at different points may also be suitable, as will
measurement of many samples of the same type or collection of data on
the same sample at different pressures or with different photon energies.
We refer to any such collection comprising of several sets of data as a
‘dataset’.

Fig. 1. Spectra from the depth profile of Al foil with a native oxide layer. (a) Al 2p, (b) O 1s. The three models descried in the text are shown in (c), (d), (e), applied to
the same experimental data. The model for the O 1s peak shown in (f) was used in all cases.
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2.1. Example 1: Aluminium foil native oxide

To illustrate the concepts discussed so far, we introduce the first
example: depth profile analysis of aluminium foil with a native oxide
layer at the surface. The Al 2p and O 1s spectra are shown in Fig. 1 (the C
1s spectra are shown in Fig. S1). We can have high confidence that our
sample in this case will consist of an Al2O3 phase representing the oxide
layer, and an Al phase representing the bulk of the foil: this is the phase
model we will use for this system. The phases Al and Al2O3 are said to be
isoelemental as they share a common element (Al). On etching the foil
using Ar+ ion etching, we would expect to gradually remove the Al2O3
layer. The dataset produced from such a depth profile would consist of
sets of spectra with varying proportions of the two phases (Al and
Al2O3), i.e. different phase fractions, XAl and XAl2O3. If XAl2O3 were 100
% (i.e. no Al metal present) then the total at. % of Al would be 40 % and
O would be 60 %, according to the formula Al2O3. If XAl were 100 %,
then clearly the total at. % of Al would be 100 % and that of O would be
0 %. Any mix of the two phases will fall in a line between these two
limits, and so in this case the correlation between at. % Al and at. %O for
a mixed Al/Al2O3 sample is linear with a gradient of − 1. Fig. 2(a) shows
the experimental correlation plot of at. % compositions between Al and
O for the dataset from etching of the native oxide layer on Al foil. The
first level, the as-presented surface, contained a significant amount of
carbon and this level was excluded from the dataset (Fig. S1). Carbon
was however included in the at. % calculation for all levels. Past the first
level, the remainder of the experimental data shows the predicted cor-
relation between Al and O at. %, with an experimental gradient of
− 0.97. This in itself is not surprising, as for any system predominantly
made up of two elements, this gradient in their correlation should exist.
We can also observe the largest value for the at. % O is around 45 at. %,
less than the stochiometric limit of 60 at. % when XAl2O3 = 100 %.

The above analysis considered the different Al environments
together, but it is possible to separate them, since the chemical shift
between Al(metal) and Al(oxide) in the Al 2p peak is large.

Here we show how correlation analysis can help distinguish between
competing models. We use three different models, labelled A, B, C, in
increasing order of complexity, to fit the same dataset. All use a Shirley
background defined over the same range. Model A consists of two 70 %
Gaussian 30 % Lorentzian sum components: one to represent the Al

oxide and one to represent the Al metal environments. For each spec-
trum in the dataset, the FWHM and position is refined. This model
represents a naïve approach, deliberately omitting several important
features of the physics of photoemission.

Model B uses a spin orbit doublet for both metal and oxide envi-
ronments. The separation is fixed at 0.44 eV and the intensity ratio at
2:1. A symmetrical Gaussian-Lorentzian sum is used for all components.
The FWHM for the oxide and metal environments were individually set
using the first and last (most oxide rich and most metal rich) spectra
respectively, and this was set for the whole dataset.

Model C is the same as Model B but the Al metal peaks are given
asymmetry using an exponential tail on the high BE side, as described by
Sherwood [30]. All peak fitting parameters are summarised in detail in
Table S1.

The correlation between the Al 2p (oxide) and O 1 s atomic per-
centages for each model is shown in Fig. 2(a). The Al 2p (oxide) envi-
ronment should have a positive correlation with the O 1s in atomic %
with a gradient of 1.5, which reflects the Al2O3 stoichiometry, and is
indicated by the dashed line in Fig. 2(a). For models A and B, many of
the correlation points fall below the expected line. This indicates that the
model is higher in Al 2p (oxide) concentration than should be expected
for a given concentration of oxygen. We also see that the deviation from
the expected correlation is greater for lower amounts of oxygen. This
suggests that the problem is with the description in models A and B of
the Al 2p (metal) peak, which is more prevalent when the amount of
oxide is low, and so will have a greater impact on the overall fit at low
levels of oxygen.

In this case it is clear that improper description of the Al 2p (metal)
peaks inmodels A and Bmeans the contribution of the metal peaks to the
intensity in the region of the Al 2p (oxide) peaks is not properly
accounted for. Correcting this, first by adding spin orbit coupling in
Model B improves the situation, and finally by adding in asymmetry to
the metal peaks (Model C) results in a good match to the expected
correlation based on chemistry. We observe gradients of 2.03, 1.94 and
1.57 respectively for models A, B and C respectively for the correlation
under discussion, with the expected value being 1.5.

Turning to the correlation between binding energy of spectral fea-
tures, the correlation plots between the Al 2p (oxide) and O 1s BEs
shown in Fig. 2(b). Since the concentration of Al 2p (oxide) falls very low

Fig. 2. Correlation plots of experimental dataset from the etching of Al foil with native oxide layer. (a) correlation between Al 2p (oxide) and O 1s atomic % (b)
correlation between Al 2p (oxide) and O 1s binding energy. The gradient of each linear fit, m, is shown in the legend of each panel.
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in later etch levels, leading to large instability in the refined positions of
the oxide peaks, only the first 10 levels are considered, where the Al 2p
(oxide) environment is above 10 at. %. The binding energies of Al 2p
(oxide) and O 1s show no strong correlation for peak models A and B,
even in this surface oxide rich region (Fig. 2b). The poor match between
the expectations from the phase model, and the correlations produced
by the more naïve peak models, might cause the analyst to consider
alternatives. Model C, however, gives a roughly linear correlation, with
gradient close to 1 (m= 1.14), as expected for chemical environments in
the same phase. We note that the Al 2p (metal) and C 1s peaks show no
correlation with the O 1s or Al 2p (oxide) peaks, again showing they are
not in the same phase.

In this way, the three models can be compared based not only on
their correspondence to one spectrum, but across a whole dataset, and
not only against statistical goodness of fit, but against the fit to the
underlying chemical model. Clearly in this case, Model C is superior.

In this example we used a system with a high degree of certainty
about the phases present. The native oxide on aluminium foil is well
characterised, and only one oxide of aluminium is known. Under these
circumstances, we can use the confidence in our phase model to test
different peak models for their adherence to the phase model using cor-
relation analysis.

We will now consider some general features of correlation analysis
and the phase model in XPS before further experimental examples.

Firstly, it is clear that to predict correlations in atomic %, a phase
model must contain two or more phases, and these phases must be able
to vary in phase fraction across the dataset. A one phase model, or a
model where the phase fractions are fixed (which is functionally the
same as a one phase model from an atomic % correlation point of view),
will only ever have one value of concentration of each element by
definition, so meaningful correlations beyond this one value will not
result. It would still be possible to carry out binding energy correlations
to test ideas of which elements belonged to the same phase, in our
framework these would be expected to have linear correlations of
binding energy with a gradient of 1. But no meaningful concentration
correlations would be possible.

The simplest case of a multi-phase model is one where no phases
share any common elements – we call such phases anisoelemental (i.e.
containing no common elements). In a phase model consisting of two
anisoelemental phases, A and B, the at. % correlation of two elements
can be understood as follows. First consider two points on the at. %
correlation graph that result from phase fractions, XB=100 %, and
XA=100 %. When XA=100 %, naturally XB is zero, and so elements in
phase B have zero concentration and the atomic percentages of the el-
ements in Phase A are those present in the pure phase, for example if the
elements are in equal stoichiometry in phase A then then each element
will be at 50 at. % when XA=100 %. Any lower value of XA will result in
points along the straight line between the points on the correlation plot
representing XB=100 % and XA=100 %.We refer to such a line that links
the points representing XA=100 % and XB=100 % as a ‘tie line’ for
phases A and B, and we refer to this line as TA,B.

It follows that in a phase model with only anisoelemental phases, the
expected at. % correlation between elements in the same phase will be
the tie line – it will always be linear with positive gradient equal to the
stoichiometry ratio on the phase, and with an intercept of zero. Elements
in different anisoelemental phases A and B will be negatively linearly
correlated if there are exactly two phases, and points will lie along the
tie line for those phases.

If there are three or more anisoelemental phases then the correlation
graph between a pair of elements in different phases, A and B, will have
an upper bound of the tie line of phases A and B. Points may exist below
TA,B and these represent cases where elements of a third phase makes up
some portion of the atomic % of the sample. The practical result is that
for three or more anisoelemental phase, and all three phases are present
in similar proportion, there can appear to be no correlation between
elements in different phases.

2.2. Example 2: Tin oxides

The next consideration is phase models that involve at least some
isoelemental phases, i.e. elements that share a common element. In a
two-phase system with isoelemental phases A and B (such as the case of
Al and Al2O3 given above) the at. % correlation graph that includes a
shared element will be linear and will fall along the tie line, TA,B, for
phases A and B. For phase models with three or more phases, correlation
graphs for elements in isoelemental phases will be bounded by the tie
lines for those phases. This arrangement is illustrated in the following
example. Here, we consider a system consisting of two oxides of tin, SnO
and SnO2. We also consider a third phase representing an impurity that
contains neither Sn nor O. We label this phase C. The elemental
composition of phase C is not important for this discussion, but this
could be for example, adventitious carbon or some other impurity.

We consider the atomic % correlation graph between Sn and O. Fig. 3
shows four simulations of this correlation graph for this system. In each
case three tie lines are depicted. The purple dashed tie line is TSnO, SnO2,
this tie line therefore joins the points where XSnO=100 % and XSnO2 =

100 %. The orange tie line is TSnO2, C and the green tie line is for where
TSnO,C. The possible values for this phase model for the Sn – O correla-
tion graph are bounded by these three tie lines, and so fall in the
triangular areas shown in Fig. 3. We simulate datasets in the phase
model by plotting 50 points with randomly determined phase fractions
of each of the three phases (SnO, SnO2 and C). In Fig. 3(a), the random
distributions SnO and SnO2 are equally weighted, with the amount of
Phase C weighted three times more highly. The points are evenly
distributed throughout the triangular region bounded by the tie lines,
with a weak positive correlation between Sn and C atomic %. In Fig. 3
(b), the simulated phase distribution is still random but the SnO phase is
given a weighting of 20 times that of SnO2. This represents a set of
samples where SnO is the main Sn containing phase. The points in this
simulation lie close to the green tie line, i.e. TSnO,C. Fig. 3(c) shows a
distribution with a low amount of Phase C, and equally weighted
random amounts of SnO and SnO2. Here the points lie close to the blue
tie line (TSnO2,SnO), with gradient close to − 1, showing that the large
proportion of the sample is Sn oxides with minor impurities. Lastly Fig. 3
(d) shows the situation where the SnO weighting in the simulation is 20
times less than that of the SnO2 phase. The points lie close to the red tie
line (TSnO2,C), and this is representative of a system where the majority
of the Sn present in the system is in a SnO2 phase. The gradient is close to
2, which comes from the stoichiometry of the SnO2 phase.

In systems that contain isoelemental phases (such as SnO and SnO2)
in addition to other phases, the correlation between the atomic % of
common elements may be weak or non-existent if a significant amount
of a third phase is present, as in Fig. 3(a). Thus it is important to note
that absence of correlation in the rel. atomic % of elements does not rule
out the possibility that those elements exist in the same phases.

Following the consideration of the SnO2/SnO/C phase model, we
now apply this model to an experimental dataset. Our dataset consists of
a depth profile of a commercial SnO powder which was oxidised at the
surface by heating at 400 ◦C in air for 1 h. The intention was to create a
SnO2 rich surface, which could then be etched revealing more SnO. The
powder was pressed onto carbon tape, and analysed by XPS. Ar+ ion
depth profiling was used to remove the surface layer. Fig. 4 shows the Sn
3d, O 1s and C 1s spectra in this dataset.

First, the total atomic composition for each of the three elements
were calculated, without any peak fitting. The correlation between Sn
and O at. % is shown in Fig. 5 as the pink circles (total atomic %). It can
be seen that some points are outside the tie lines defined earlier for this
phase model – at the first and second depth profile levels, where the O:
Sn ratio is too high to correspond to any possible mixture of SnO2 and
SnO. This indicates that, assuming there is no previously unknown
higher oxide of Sn, that the O 1s peak must contain contribution from
another oxygen environment. We fit the O 1s with two components, a
broad higher energy component which is assigned to organic oxygen,
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present in the surface contamination layer. This component has fixed
FWHM of 2.12 eV and a BE that can vary in the between 531–532 eV.
The lower binding energy, sharper peak we assign as the oxide envi-
ronment, in either SnO or SnO2 (Fig. S3, Table S2). This peak has a fixed
FWHM of 1.36 eV. The Sn/O correlation, where only the O 1s (oxide)
environment is included, is shown as yellow triangles in Fig. 5. As can be
seen, adoption of this fitting model moves the correlation plot inside the
tie lines, meaning it is consistent with the SnO2/SnO/C phase model.
The order of the datapoints, i.e. from start to end of the depth profile, is
indicated by the arrows in Fig. 5. When the O 1s fitting model is used, the

correlation shows that the surface begins as almost pure SnO2 + C, with
very little contribution from SnO. As the etching proceeds, the amount of
contaminant phase C decreases (shown by movement towards the
SnO+SnO2 tie line) and the amount of SnO increases (shown by move-
ment towards the SnO composition, i.e. 1:1 Sn:O). Thus, the changing
atomic composition from the dataset can be interpreted as a changing
phase composition within the proposed phase model. This gives some
confidence that the fitting used to produce this correlation (in this case
fitting of the O 1s peak to separate organic oxygen) is at least consistent
with the phase model proposed, and the expected variation of the phases

Fig. 3. Atomic % correlation plots between Sn and O for four simulated datasets for SnO2/SnO/C model. Marked lines are the tie lines between the indicated phases.
Each simulated dataset has 50 points with phase compositions randomly determined but weighted differently. (a) A random mixture of all three phases – there is a
weak positive correlation between Sn and O atomic %. (b) A mixture of SnO+C, with small amounts of SnO2. The points lie close to the SnO+C tie line, with a
gradient close to 1, the ratio of Sn:O in SnO. (c) A mixture of SnO2 + SnO, with small amounts of C. The points lie on the SnO+SnO2 tie line, with gradient close to − 1.
(d) A mixture of SnO2 + C, with small amounts of SnO. The points lie on the SnO2 + C tie line, with gradient close to 2, i.e. the ratio of Sn:O in SnO2.
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with etching.
Close examination of the Sn 3d spectra in Fig. 4 shows the presence of

low binding energy peak that grows with etching time. Considering the
BE of these features, it is assigned to Sn metal produced by etching
damage. The presence of this Sn phase will allow the Sn:O ratio to fall
below the SnO+C tie line – i.e. to become more Sn rich than is possible
with our phase model. This does not actually occur in our experiment,
but with extended etching time it may do. This could be accounted for by
addition of a Sn metal phase to the phase model.

Using this method, the phase fraction of SnO, and therefore the
average oxidation state of Sn, can be determined at any point in the

depth profile. We further studied whether a model of Sn 3d peak could
be used to separate the Sn(II) and Sn(IV) environments. Unlike in the
case of Al2O3 and Al above, we found no way to model the Sn 3d peak
that would separate the chemical environments of Sn and give a result
consistent with the average oxidation states determined from our anal-
ysis. We therefore agree with the established view taken by previous
authors who studied tin oxide XPS, which is that the Sn 3d peak has no
discernible chemical shift between SnO and SnO2 [31,32]. Determining
the average oxidation state by consideration of the metal to oxygen
stoichiometry has been used many times previously, for example In a
well-known study of the oxides of vanadium [33]. We believe the
framing of this analysis in terms of atomic correlations provides a new
viewpoint on this method.

Lastly, we consider the binding energy correlation between ele-
ments. Fig. 6(a) shows a linear correlation between the binding energies
of the Sn 3d5/2 and the O 1s spectral maxima. The gradient is 0.92,
reasonably close to the gradient of 1 expected for elements in the same
phase. This adds evidence to the hypothesis that the SnO and SnO2 en-
vironments of both Sn 3d and O 1s peaks are indistinguishable – i.e. they
each behave as one peak and their binding energies are correlated. In
contrast, there is no correlation between the BEs of C 1s and Sn 3d5/2
peaks, showing that, as expected, these elements are not in the same
phase. The lack of correlation between C 1s and any of the other peaks in
the sample seems to be an indication that binding energy referencing to
C 1s is not suitable in this case.

2.3. Example 3: Polymer mix

The final example uses organic polymers. We take a mixture of two
polymers and approach this problem from the opposite perspective to
the other examples. Previously, we proposed a phase model first and
from this built a peak model, to then interpreted correlations in terms of
those models, changing one or other of the models if needed to find
agreement. Here we first build a peak model, then observe correlations
and finally attempt to build a useful phase model. In reality, the identity
of the polymers was known to us throughout, but we believe the pro-
cedure described here could be used to identify unknown phases in some
circumstances.

The sample consisted of inhomogenously mixed powders of the two
polymers spread over carbon tape with area of approximately 15 x 5
mm. No special cleaning steps were taken, this was to simulate a more
‘realistic’ sample in XPS analysis which is likely to contain impurity
phases alongside the phases of interest; as we will discuss below, im-
purity phases played a role in this example, as is likely many real
analysis problems. A grid of 121 points was defined over the sample
area; survey and high resolution core line spectra were recorded at each

Fig. 4. XPS spectra from depth profile of oxidised SnO powder. (a) Sn 3d, (b) O 1s, (c) C 1s. No charge correction was applied to any spectrum.

Fig. 5. Atomic % correlation between Sn and O for an experimental dataset. Tie
lines relate to the SnO2/SnO/C model described in the text. Pink circles show
datapoints from the total atomic concentrations (without fitting). Yellow tri-
angles show datapoints when the O 1s core line is fitted to distinguish organic
oxygen and oxide components, with only the oxide components included in the
correlation plot. The two crosses show the positions of pure SnO2 and SnO as
labelled. Arrows show the order of the datapoints in each series, from start to
end of the depth profile. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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point under the same collection conditions. These spectra together
represent the dataset. Initial analysis showed carbon and oxygen, and a
small (<5 at. %) amount of silicon. Examination of the C 1s and O 1s
regions suggested that they consisted of multiple overlapping
components.

We begin to construct a peak model for the C 1s and O 1s high res-
olution spectra as follows. A Shirley background was added across each
core line. Two components were added to the model and were con-
strained to have equal FWHM. No constraints on intensity or position
were imposed, and the peak shape was fixed at a 30 % Lorentzian, 70 %
Gaussian sum, detailed in Table S3. The model was fitted over all spectra
in the dataset. If the model left clearly unfitted intensity, judged by eye
rather than statistically, another component was added with the same
constraints, and the process repeated. This led to a O 1smodel with two
components, and a C 1smodel with four components. Components were
labelled A,B,C,D with increasing BE.

C 1s components were found around 284.5 eV (A), 285.0 eV (B)
286.4 eV (C), and 288.5 eV (D). O 1s components were found around
531.7 eV (A) and 533.7 eV (B). Individual components moved by less
than 0.8 eV across the whole 121 spectrum dataset. Possible assignments
based on the tabulation of Smith et al. [34] are shown in Table 1, and a
sample spectrum fitted with this method for each core line is shown in
Fig. S4.

Use of an equal FWHM model is not always optimum, but in the
absence of any other knowledge of the sample, and for 1s spectra, we
believe it is an effective starting point. In this case, the result is a total of
six different components. An issue we found was that the fitting was
unstable in the intensities of the C 1s (A) and C 1s (B) components, which
have BEs ≈ 0.5 eV apart. For C 1s spectra of similar shape, the best fit
might have very different contributions from C 1s (A) and C 1s (B), due
to the close spacing of these components. This issue complicated the
correlation analysis, and so we took the step of summing C 1s (A) and C

1s (B), considering them as a single component for the purposes of
atomic % correlation.

Fig. 7 shows the pairwise % at. concentration correlations between
the now five components (as C 1s (A) and C 1s (B) summed together).
The gradients of linear trendlines fitted to these correlations are shown
in Table 1.

There are several ways to approach the problem of building a phase
model from the correlations shown in Fig. 7. Statistical methods might
be used to assess a large number of plausible models against the re-
lationships shown in Fig. 7. Here we take a more chemically intuitive
approach that will likely be more flexible for a wider range of situations.

In Fig. 7, panels (a), (c) and (h) show the most strongly linear cor-
relations, which we discuss first. It is immediately noticeable that the
correlation between C 1s (D) and O 1s (A) has a gradient close to unity
(Fig. 7 (a), Table 2), consistent with a situation where these two envi-
ronments are together in the same phase in a 1:1 ratio, and not present in
another phase. Looking at the BEs of these environments, 288.6 eV and
531.7 eV for C 1s (D) and O 1s (A), these correspond to reported values
for the elements in a carbonyl group, C=O [34], and that the 1:1 stoi-
chiometry also matches the expected value for that functional group.
Thus we place C 1s (D) and O 1s (A) as a carbonyl group present in only
one of the phases. There is also a strong linear correlation between C 1s
(D) and C 1s (A+B) (Fig. 7h). The negative gradient of this correlation
shows that the phase containing the carbonyl functional group is less
rich in aliphatic/graphitic carbon than the other phase.

The remaining carbon environment is C 1s (C). This has a BE of
around 286.4 eV, close to that expected for alcohols or ether groups
[35]. The C 1s (C) concentration shows a positive correlation with C 1s
(D) environment, but the gradient is far below 1 (the value is + 0.23,
Table 2). If the C 1s (D) concentration is extrapolated to zero, then
approximately 9.0 atomic % of C 1s (C) would remain. This shows that
unlike the carbonyl group, the C-O environment appears in both phases.
This is confirmed with similar analysis on the O 1s (B) which seems to be
the oxygen counterpart of the C 1s (C) environment. O 1s (B) appears at
533.7 eV, at the top end of the range for alcohols and ethers, the slightly
higher BE for O 1s (B) may be due to O bound to an aromatic system or in
an ester group [34]. The O 1s (B)/C 1s (C) pair show a positive corre-
lation with gradient of + 0.75, close to but not exactly 1.

Thus we conclude that both phases contain a C-O group, and only
one phase contains a C=O group. The latter is less rich in aliphatic/
graphitic carbon. We may continue from here by trialling certain
structures, and assessing the predicted correlations against the measured
ones. We believe doing so would yield further information on the un-
known polymers.

As stated, the polymers were known to us, and were poly(methyl
methacrylate) (PMMA) and poly(4-vinylphenol) (PVPh). PMMA and

Fig. 6. Binding energy correlation between (a) O 1s and Sn 3d5/2 and (b) C 1s and Sn 3d5/2.

Table 1
Peak model used to fit the mixed polymer sample, alongside possible assign-
ments from Smith et al. [34].

Carbon
environment

Possible identity Oxygen
environment

Possible identity

C 1s (A) 284.5
eV

C–C–C O 1 s (A) 531.7
eV

C=O

C 1s (B) 285.0
eV

Aromatic, C–C-X
(X=heteroatom)

O 1 s (B) 533.7
eV

C-O aromatic or
aliphatic

C 1s (C) 286.4
eV

C-O − −

C 1s (D) 288.5
eV

C=O, O=C-O − −
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PVPh have both been well studied by XPS and assignments that relate to
the four carbon and two oxygen environments can be seen in Supple-
mentary information Fig. S4 [36,37]. PVPh contains an aromatic ring
and a OH group, the latter accounting for the C 1s (C) and O 1s (B)
environment in that phase.

Given the known structures of the two polymers, and the assignment
of each carbon and oxygen to one of the identified environments, it is
possible to calculate the expected gradients of all of the correlations.
Theoretical linear gradients were calculated by taking conventional
modelling of the two polymers, shown in S4. This phase model leads to
the theoretical atomic % and correlation gradients shown in Table S1
and S2.

We can now discuss the successes and failures of the correlation
approach in this example. Firstly, we were correctly able to identify
functional groups, and to which phase they belonged, by their correla-
tions. The measured gradients for the C 1s (A+B) and C 1s (C) envi-
ronments were close to those of the correct phase model. This also
allowed us to determine which of the phases had more aliphatic/

graphitic carbon.
However, the gradients measured for the correlations involving C 1s

(C) were far from the theoretical values. This was a challenging
component to model because it actually represented two different en-
vironments (aromatic alcohol and ester group in the different phases,
Fig. S4), it had low intensity and also overlapped with C 1s (B). In
contrast, C 1s (D) correlations were very close to the theoretical values.
This was because C 1s (D) was not significantly overlapped with another
component, so even though its intensity was similar to C 1s (C), it was
able to be modelled much more accurately across the dataset.

The O 1s (B) correlations were also significantly different from the
theoretical. This is likely due to the presence of oxygen (and silicon)
from the underlying carbon tape in some places in the dataset, which
increased the O 1s (B) signal anomalously.

Using correlation analysis to build a phase model from scratch, as
attempted in this final example, is clearly challenging. Some success was
found here through a strategy of identifying the most strongly linear
correlations and attempting to identify them, despite sample contami-
nation. Although a complete phase model could not be obtained from
this information alone, important insights on functional group identifi-
cation could be made which would have been much more difficult from
the individual spectra in isolation. In most practical cases, some addi-
tional information will be known about the sample and this may be used
to improve the phase model.

3. Conclusions

We present a simple method of correlation analysis in XPS. This
method seeks to identify correlations between both atomic

Fig. 7. Correlations between concentrations of the five components of the C 1s and O 1s regions identified in the polymer mix dataset. The binding energies of each
component are stated in the text.

Table 2
Gradients of linear trendlines fitted to the correlation plots of the five environ-
ments identified in the polymer mix. The table is arranged in the same was as
Fig. 7 and is intended to be read alongside it.

C 1s (D) C 1s (C) C 1s (AþB) O 1s (B)

O 1s (A) +0.94 +2.31 − 0.38 +2.34
O 1s (B) +0.29 +0.75 − 0.12
C 1s (AþB) − 2.45 − 6.5
C 1s (C) +0.23
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concentration and binding energies of different species across large
datasets. These correlations are then understood on the basis of a phase
model: a description of the chemical compounds present in the sample.

This method can be used in several ways:
Firstly, if a likely phase model is known for the system under

investigation, then correlation analysis can be used to test whether XPS
peak fitting is consistent with that phase model, and to assess competing
peak models against each other, based not only on statistical measures of
goodness of fit but also fit to a coherent chemical model. In our examples
of the depth profiling of Al foil, which is well known to have a native
oxide layer. Use of both the total Al concentration, as well as fitting to
distinguish Al(III) and Al(0), agreed closely with the predicted correla-
tions, and the superiority of one peak fitting model over the other was
clear.

Secondly, once a phase model is accepted, then a dataset can be
interpreted in terms of phase fractions rather than atomic % of indi-
vidual elements. We showed the use of this with the SnO/SnO2 system,
where phase fractions, and hence average Sn oxidation states, for each
level could be obtained, even though the Sn 3d peak cannot be suc-
cessfully fitted with Sn(II) and Sn(IV) components. By considering the
range of possible Sn:O correlations, we identified that the surface con-
sisted of an oxygen containing contaminant, showing that correlation
analysis can be used to complement the standard use of survey spectra to
identify contaminants, which we assert should still be carried out in all
cases.

Lastly, if the phase model is not known, correlations can be used to
gain some insight of the functional groups or chemical environments
possible. This is the most challenging application and is helped by input
from other analytical methods wherever possible.

There are several assumptions we have made. We assume that the
compositions obtained from XPS peak area analysis are accurate, and
this implies the relative sensitivity factors (RSFs) are correct. Correla-
tions may occur by chance and not due to underlying chemistry. We
assume that chemical environments that occur in the same phase will
have constant binding energy separation. This would benefit from
further testing on a wider range of samples.

We believe correlation analysis, and the use of phase models, will
assist analysis of complex XPS datasets.

4. Experimental section

X-ray photoelectron spectroscopy (XPS) was carried out in a Thermo
NEXSA spectrometer. The instrument utilized a 72 W monochromated
Al Kα X-ray source (E=1486.6 eV) focused to a spot of 400 μm diameter
at the sample surface. Charge compensation was accomplished by use of
a dual beam (electron and Ar+ ion) flood gun. The electron energy
analyser consisted of a double focusing 180◦ hemisphere with mean
radius 125 mm, operated in constant analyser energy (CAE) mode, and a
128 channel position sensitive detector. The pass energy was set to 200
eV for survey scans and 40 eV for high resolution regions. The binding
energy scale of the instrument is regularly calibrated using a three-point
energy reference (Ag, Au, Cu). No calibration of the BE scale was carried
out (e.g. by alignment of C 1s to a particular BE value). Samples were
immobilized on conductive carbon tape for analysis. Stability was
assessed by time-resolved measurements of the core lines; no changes
were observed indicating that beam damage was not detectable on the
time scale of these experiments. Ar ion etching was carried out using a
mono Ar+ ion gun with beam energy of 2000 eV rastered over a 4 mm2

area of the sample. Where area scans were carried out, a rectangular grid
of regularly spaced points were measured. Data was processed in
Thermo Avantage software.

4.1. Glossary

Correlation analysis: the plotting of either the atomic % of the
binding energy of two elements against each other over a dataset

consisting of many sets of spectra taken on the same system. Correlation
analysis considers an underlying phase model and compares the ex-
pected correlations from that model with those seen experimentally.
This can be used to identify which phases are present, or to validate peak
fitting models used in XPS to quantify different chemical environments.

Phase: A region with a fixed chemical composition, and within which
the elements experience uniform variation in electrical potential relative
to the spectrometer. Elements within a phase have a fixed ratio, and core
lines from elements in the same phase are assumed to have constant
difference in binding energy.

Phase model: A proposed collection of phases that are present in a
system. This is a physical model that underlies the understanding of
correlation graphs. A phase model allows the proportion of each phase
to vary (including to zero).

Dataset: A collection of spectra from the same system. Depth profiles,
area maps, time resolved spectra are examples of different kinds of
datasets.

System: A sample or samples to which one phase model applies. This
may be a single sample or a collection of samples, as long as they can be
described well by the same phase model.

Phase fraction: the molar proportion of a phase present, expressed as
a percentage.

Isoelemental phases: phases that share one or more common ele-
ments. The opposite is anioselemental phases that do not share any
common elements. The concept can be broadened by the ability of XPS
to distinguish chemical environments of the same element. If an accu-
rate peak fitting model of chemical states can be applied to the core line
spectra, then the chemical environments may be quantified separately
and isoelemental phases may be able to be treated as anisoelemental
phases for correlation analysis.

Tie line: a line on an atomic % correlation graph that links the points
where XA=0% and XA=100 %.
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