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Abstract. In the dynamic landscape of industrial evolution, Industry 4.0 (I4.0) presents 
opportunities to revolutionise products, processes, and production. It is now clear that enabling 
technologies of this paradigm, such as the industrial internet of things (IIoT), artificial intelligence 
(AI), and Digital Twins (DT), have reached an adequate level of technical maturity in the decade 
that followed the inception of I4.0. These technologies enable more agile, modular, and efficient 
operations, which are desirable business outcomes for particularly biomanufacturing companies 
seeking to deliver on a heterogeneous pipeline of treatments and drug product portfolios. Despite the 
widespread interest in the field, the level of adoption of industry 4.0 technologies in the 
biomanufacturing industry is scarce, often reserved to the big pharmaceutical manufacturers that 
can invest the capital in experimenting with new operating models, even though by now AI and 
IIoT have been democratised. This shift in approach to digitalisation is hampered by the lack of 
common standards and know-how describing ways I4.0 technologies should come together. As 
such, for the first time, this work provides a pragmatic review of the field, key patterns, trends, and 
potential standard operating models for smart biopharmaceutical manufacturing. This analysis 
aims to describe how the Quality by Design framework can evolve to become more profitable under 
industry 4.0, the recent advancements in digital twin development and how the expansion of the 
Process Analytical Technology (PAT) toolbox could lead to smart manufacturing. Ultimately, we 
aim to summarise guiding principles for executing a digital transformation strategy and outline 
operating models to encourage future adoption of I4.0 technologies in the biopharmaceutical 
industry.
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List of Acronyms

Acronym Definition
AI Artificial Intelligence

ALVEN Algebraic Learning Via Elastic Net

ANOVA Analysis of Variance
APC Advanced Process Control
AR Augmented Reality

CAPA Corrective and Preventive Action

CDMO Contract Development and Manufacturing Organization

CPP Critical Process Parameter
CQA Critical Quality Attribute
CVP Continued Process Verification
DCS Distributed Control System
DoE Design of Experiments
DT Digital Twin
ERP Enterprise Resource Planning
FBA Flux Balance Analysis
FDA Food and Drug Administration

FMEA Failure Mode and Effects Analysis

FKDPP Factorial Kernel Dynamic Policy Programming

GEM Genome Scale Model
GMP Good Manufacturing Practice

ICB Integrated Continuous Biomanufacturing

ICH International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 
Human Use

IIoT Industrial Internet of Things

ISPE International Society for Pharmaceutical Engineering

IT Information Technology
KPI Key Performance Indicator

MES Manufacturing Execution System

ML Machine Learning
MIMO Multi-Input Multi-Output
MPC Model Predictive Control
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MQTT Message Queuing Telemetry Transport

MVDA Multivariate Data Analysis

NMPC Nonlinear Model Predictive Control

OEE Overall Equipment Effectiveness

OPC UA Open Platform Communication Unified Architecture

OT Operations Technology
PAR Process Acceptance Range
PAT Process Analytical Technology
PCS Process Control System
PQS Pharmaceutical Quality System

PID Proportional-Integral-Derivative

PLS Projection To Latent Structures
PP Process Parameter

PPQ Process Performance Qualification

QbC Quality by Control
QbD Quality by Design
QbDD Quality by Digital Design
QbT Quality by Testing
QTPP Quality Target Product Profile
R&D Research and Development
RL Reinforcement Learning
RLS Recursive Least Squares
ROI Return on Investment
RSM Response Surface Methodology
RTRT Real-Time Release Testing
SOP Standard Operating Procedure
SOTA State of the Art

SCADA Supervisory Control and Data Acquisition

SST Single Source of Truth
UPS Upstream Processing
UKF Unscented Kalman Filters
VR Virtual Reality
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5

1 Introduction

The adoption of industry 4.0 technologies in the biomanufacturing industry is often referred to as 

Bioprocessing 4.0, a term that is rapidly growing in popularity. The term comes from Industrie 4.0 1, which 

was an initiative that began in Germany around 2010, where the interconnection of business models, supply 

chain 2, and processes through the Industrial Internet of Things (IIoT) was strategically used to drive 

manufacturing forward 3. The final objective of the initiative was to develop intelligent adaptive factories 

capable of delivering a more diverse and personalised product portfolio while running autonomously 3. 

However, since this manufacturing initiative did not involve bio-manufacturing 4, at the time of writing, 

biomanufacturing is still undergoing its third industrial revolution 3.

Figure 1 shows the evolution in digital maturity of the biopharmaceutical manufacturing industry since 

its inception. In its early years biomanufacturing has been predominantly performed using manual batch 

processes reliant on a paper-based manufacturing execution system (MES). Consequently, the revisions 

published by the US Food and Drugs Administrations (FDA) and subsequently consolidated by the 

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use 

(ICH), have led to an increased level of automation and digitalisation that marked a move towards industry 

3.0. Interestingly, although the third industrial revolution led to large-scale operations in other 

manufacturing industries such as oil and gas, where higher throughput is more desirable, in 

biomanufacturing, it began to foster a shift towards more efficient and smaller-scale operations. This is 

characterised by bioprocess intensification efforts aiming to ”do more with less” by developing smaller, more 

modular factories that can produce various pharmaceuticals and require less resources to operate and build, 

while maintaining comparable levels of productivity 5. 

Technologies like single-use, plug-and-play, and advancements in cell-line development have unlocked 

transformative productivity gains in the previous decades. For example, using single-use bioreactors and 

modern cell lines, an expression level of 5 g/L can be achieved, making a 2000 L bioreactor as productive 

as a 20,000 L bioreactor from 20 years ago 6. Given the smaller operating volumes upstream, downstream 

processing is facilitated, thereby making the modern single-use bioreactors more attractive. Moreover, the 

development of end-to-end integrated continuous biomanufacturing (ICB) platforms comprising N-1 

bioreactors, perfusion in production, multicolumn chromatography, simulated moving beds, true moving 

beds and single pass tangential flow filtration is advancing this trend further. The innovation in continuous 

bioprocessing culminated in 2019, when BiosanaPharma produced the first monoclonal antibody (mAb) using 
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6

a fully integrated continuous biomanufacturing process 6. BiosanaPharma claimed that this continuous 

process significantly reduced production time, increased yield, and reduced costs compared to traditional 

batch manufacturing 7. 

Figure 1: The progression of digital integration in the biomanufacturing sector from 1970 onwards, mapped 
against significant milestones in the wider manufacturing industry. The y-axis represents the increasing level 
of digital maturity, while the X-axis denotes time. Key developments, such as regulatory changes, the 
introduction of industry-specific initiatives, and technological advancements are pinpointed. These 
milestones serve as semi-qualitative references of the biomanufacturing industry’s journey from its 
inception to the adoption of fully digitalised biomanufacturing processes, highlighting the rapid developments 
of the biomanufacturing industry, despite the relatively late beginnings compared to other manufacturing 
industries.

More recently, these developments have received regulatory support with the release of Q13 (2023) 8, 

which aims to provide guidelines to support continuous pharmaceutical manufacturing. As such, despite 

the relatively recent origins of this industry, the speed of technology transfer has been considerably faster 

compared to other manufacturing industries, as shown in Figure 1. To this end, digital biomanufacturing 

represents one of the most recent attempts to enhance productivity. On October 15th, 2019, Sanofi launched 

a facility in Framingham, Massachusetts 9, that can be considered the first example of digital 

biomanufacturing. With a substantial investment of 4 billion dollars over five years, Sanofi established a 

digitally integrated biomanufacturing facility and was awarded the Facility of The Year Award in 2020 9. This 

facility featured paperless and data-driven manufacturing, continuous, intensified biologics production, 

connected and integrated processes, digital twins, as well as augmented reality.

1.1 The Reality of Bioprocessing 4.0

There have been many Bioprocessing 4.0 initiatives in Centres of Excellence (COE) 10, expositions and re- 
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7

viewed in the literature 11, 12, 13, 14, 15, 16. This has led to a fragmentation in the Bioprocessing 4.0 landscape 

with many small technical islands. Various companies and research institutes around the world are starting 

to implement Digital Twins, Artificial intelligence (AI) such as Computer Vision 17, augmented reality (AR) 

18 and additive manufacturing 19. There are even examples of robots performing automated aseptic 

sampling 20 and implementations of blockchain technology to collect data from supply chains as proposed 

during the COVID-19 pandemic. However, there seems to be a lack of an overarching goal and an operating 

model for Bioprocessing 4.0 which clearly outlines how these technologies should come together 21. This 

could be attributed to a misconception of Industry 4.0 as it is often described as being the application of 

machine learning (ML), Cyber Physical Systems (CPS), Internet of Things (IoT) and other technologies in 

a manufacturing setting 22. However, applications of AI in biomanufacturing go back to the early 1990s 23, 

thus merely applying these in manufacturing is neither novel nor will lead to tangible productivity gains as 

experienced in industry 3.0. The misconception/misalignment hypothesis is supported by a survey carried 

out by the University College Cork in Ireland in 2020 where 78 respondents, representatives of the Irish 

multinational sector and thus global manufacturing scene were surveyed and they found that ”Across all 

survey respondents, only 42% indicated any knowledge of 4.0” 24.

As such, characterising the industry 4.0 strategy by the technologies it leverages misses the core idea 

that has been successfully applied in other digitally transformed industries. The core idea is to connect 

Information Technologies (IT) and Operations Technologies (OT) 17 14 such as Downstream Processing (DSP) 

and Upstream Processing (UPS) unit operations. In the original Industrie 4.0 vision, the composition of 

asset and administration shell was referred to as an Industry 4.0 component25 and the exchange of data and 

services within an industry 4.0 architecture forms a service oriented architecture (SOA) where every 

component along the industrial automation stack such as Enterprise Resource Planning (ERP), MES and 

Supervisory Control and Data Acquisition (SCADA) are connected. In this paradigm, data comes from 

various sources, including anything from raw materials distribution to market performance forming what 

was referred to as the value chain 2.

Consequently, technologies can be considered tools rather than characteristics of the strategy, should be 

deployed to solve the technical issues that arise from the desire to connect IT and OT. As a result, the 

convergence of IT and OT can lead to the development of CPS which help to monitor and automate parts of 

the manufacturing process 2 26. Therefore, one could argue that the culmination of a digital transformation 

journey is the development of high-fidelity digital representations which are a replica of the manufacturing 

process. These are often referred to as Digital Twins (DT). Using the analogy mentioned earlier, digital 

twins are the most effective tool to tackle the most complex business objectives where optimal handling of
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materials, maintenance scheduling, and automation can present significant Return on Investment (ROI). The 

development of digital twins comprises data integration and process modelling. These two parts of digital twin 

development, should be explored in a complementary way. However, there has not been enough discourse 

around the data framework and the technologies available from other digitally transformed industries that 

can be readily applied to the biomanufacturing industry. As such, digital twins are the key technology to 

transform industrial automation facilities from automated, as seen in Bioprocessing 3.0, to autonomous and 

achieve ”The Smart Factory of the Future” capable of making intelligent decisions on its own 14.

However, without understanding the underlying principles and problems that DTs and Industry 4.0 (I

4.0) technologies attempt to solve, those solutions may be seen as a black box by biomanufacturers that will 

not be able to effectively troubleshoot, customise, upgrade, or review their digital tools required by ICH, 

EMA, and FDA guidelines 27. Additionally, I4.0 opens up new forms of communications and automation 

that can disrupt the current operating models in the biopharmaceutical industry. This can unlock numerous 

opportunities for IT automation and advanced control strategies which need to be explored. In 2015, the 

International Society for Pharmaceutical Engineering (ISPE) trademarked the Pharma 4.0 initiative and 

organised Special Interest Groups (SIG) to come up with the Pharma 4.0 Operating Model, which aims 

to combine the original Industrie 4.0 model for organising manufacturing with the Pharmaceutical Quality 

System (PQS) outlined by ICH Q10 27. At the core of the Pharma 4.0 vision, there is the holistic control 

strategy which aims to interconnect and automate processes across the pharmaceutical value chain from 

supply through to patient feedback. Thanks to the structured nature of the PQS which present opportunities 

for automation, and with the advent of IIoT technologies, these objectives are now achievable. The work of 

ISPE serves as a guiding framework that can reduce the technical risk of moving some of the I4.0 technologies 

from COE and process development to full GMP manufacturing 27. Furthermore, in the literature, many 

roadmaps and frameworks can be found to start adopting Process Analytical Technologies (PAT) 28 and 

Digital Twins 29. In addition, the BioPhorum IT Digital Plant team has developed a maturity assessment 

tool to be used alongside the Digital Plant Maturity Model (DPMM) 30.

Another key enabler of Bioprocessing 4.0 is the Industrial Internet of Things (IIoT). However, contrary to 

popular belief the technology and problems that IIoT is trying to solve have been partly addressed by SCADA 

systems, since the late 1990s. The implementation of SCADA enabled the monitoring and control of various 

components of large industrial infrastructures such as oil pipelines, from a remote location via streaming data 

often referred to as “telemetry”. As such, SCADA can be considered a pre-cursor of modern IIoT. 

Nevertheless, IIoT represents a philosophical shift from point-to-point integration to interoperability and 
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interconnection across the stack, to accommodate the increasingly event-driven nature of industrial 

operations. This is made possible by technologies such as, Message Queuing Telemetry Transport (MQTT) 

for efficient and scalable data transmission and Open Platform Communication Unified Architecture (OPC 

UA) for machine- to-machine communication across SCADA, MES, and Process Control Systems (PCS). 

Additionally, thanks to gateway technologies provided by OT connectivity platforms such as Cogent 

DataHub and KEPserverEX that can convert traditional communication protocols i.e. Modbus into OPC UA, 

biomanufacturers can now leverage IIoT architectures. Nevertheless, the interconnection of IT and OT leads 

to data management challenges rising from the inconsistent identification of “tags”, assets, process variables 

and status codes across disparate MES, DCS and SCADA systems. A framework that is gaining popularity in 

industrial circles is the Unified Namespace, popularised by Walker Reynolds. This leverages common 

standards such as ISA-95 which provide a hierarchical structure that can be used to represent the plant 

digitally 31. This framework allows the coherent contextualisation of all the manufacturing events that can be 

used to automate resource planning and manufacturing execution. Complementing IIoT, the democratisation 

of ML, AI and cloud computing provides transformative opportunities for the biomanufacturing industry. 

Deploying ML models to production where they can communicate with other manufacturing equipment and 

data collection systems, nowadays is as easy as configuring a Dockerfile. Whereas in only 20 lines of code 

state-o -the-art (SOTA) ML models can be used to uncover patterns in large data sets which are not easy to 

find using traditional methods. 

Another technology that can take advantage of IIoT connectivity are AR (Augmented Reality) and VR 

(Virtual Reality) technologies. These technologies are predominantly used for troubleshooting and training 

personnel or assisting in executing complex workflows. They offer significant benefits when connected to a 

centralized data hub containing Standard Operating Procedures (SOPs), real-time data collection and 

feedback. In bioprocessing, AR can overlay real-time data onto equipment, guiding operators through 

diagnostic procedures, thereby improving quality control and efficiency. For example, factory employees 

using smart glasses can control virtual equipment with hand gestures and receive real-time updates, such 

as maintenance reminders or alerts for worn-out parts. VR can simulate real-world scenarios, providing 

hands-on experience without the risks associated with actual operations. This immersive experience makes 

complex models easier to interact with and understand, thereby enhancing the effectiveness of digital twins. 

These technologies have shown promising results in areas requiring complex, safer, scalable training, such 

as scientific research and laboratory procedures as exemplified by Lab 427 developed by Dr Stephen Hilton 

32, and industrial settings as shown by K örber Pharma’s products 33. 
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Overall, the technical maturity of I4.0 technologies, the guiding frameworks from the ISPE and the 

growing number of success stories in digital manufacturing, provide the right foundations to enable the fourth 

industrial revolution in the biomanufacturing industry. As such, in the present paper, we aim to synthesise 

the ongoing dialogues and initiatives in literature, regulatory environments, industry, and global institutions 

focused on the digital transformation of biomanufacturing adopting the Bioprocessing 4.0 strategy. We 

particularly focus on biopharmaceutical drug manufacturing, often termed red biotechnology, primarily on 

post-identification and profiling of risks phases of the target drug product within the Quality-by-Design 

framework. The objective is to identify key patterns, trends, and potential standard operating models for 

smart factories. This analysis will assist pharmaceutical companies embarking on a digital transformation 

journey, offering insights into the Bioprocessing 4.0 ecosystem. Additionally, the review aims to assist digital 

twin developers by outlining a pragmatic methodology to iteratively improve, connect and deploy digital 

twins in biomanufacturing. Finally, the perspective aims to highlight feasible future directions for the
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biomanufacturing industry and the Quality-by-Design framework in the context of Industry 4.0.

2 The Evolution of the Quality by Design (QbD) framework to- 

wards Bioprocessing 4.0

To discuss the evolution of biomanufacturing and the role of technology in shaping process development and 

compliance with current Good Manufacturing Practices (cGMP), it is useful to focus on how these advances 

have transformed process validation and quality assurance. While the methods of ensuring product quality 

in the biomanufacturing industry have evolved over time, the fundamental goals of these processes have 

remained consistent, reflecting the unique requirements and challenges of this sector. As such, in this 

section, an account of the evolution in process development and validation is provided through the lenses 

of four quality frameworks, Quality by Testing (QbT), Quality by Design (QbD), Quality by Digital Design 

(QbDD), and Quality by Control (QbC). In Figure 2 the quality frameworks are laid out according to 

their digital maturity, level of complexity and the level of adoption as indicated by the intensity of the colour. 

In what follows, we will describe how the development and operation of biomanufacturing processes have 

evolved through regulatory and technological advances. Additionally, a technical perspective of how 

bioprocess development and operation will evolve under Bioprocessing 4.0 is provided.

2.1 Quality by Testing (QbT)

As of now, the biopharmaceutical manufacturing industry is still considered a relatively new field. Although, 

bioprocessing of products such as beer and wine has been around for centuries, the first biopharmaceutical drug was 

approved by the FDA and commercialised around 40 years ago. At that time, biopharmaceuticals were 

produced in batches 5. These batches were produced at specific operating conditions approved by regulatory 

bodies, and their quality was tested at the end of the process 34 35. This practice was called Quality by Testing 

(QbT) 34 and required significant regulatory oversight. Adequate monitoring and analytical tools capable of 

capturing the multivariate state of bioprocesses were not available, making it difficult for biomanufacturers 

to know the quality of the batch until the end of the process. Additionally, process validation was seen as an 

activity on top of process development as multiple Process Performance Qualification (PPQ) runs would be 

required, often leading to sub-optimal biomanufacturing operations 36 which could not be changed without 

regulatory notice. Furthermore, the quality control of drug products relied heavily on multiple univariate 

specifications. This approach, while useful, had its limitations as it often failed to detect anomalies that 
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would only become apparent when multiple factors were analysed in conjunction, thereby overlooking 

complex interactions between variables. Consequently, this left potential outliers and critical variances in the 

production process undetected.

Figure 2: Summary of the four quality frameworks in the evolution of the digital tools in biomanufacturing 
industry (red circles). Process testing and validation activities are highlighted for each framework. The 
frameworks are qualitatively overlayed on top of a colour scale of the level of adoption (in red) with the 
most GMP factories still using QbT methods, a minority of GMP manufacturing are starting to transition to 
Real Time Release Testing and QbD and the most advanced are utilizing digital twins and other digital tools 
in process development (QbDD). Advanced process control and autonomation (QbC) has only been 
demonstrated in a few Centres of Excellence (COEs).

Around the same time, the field of multivariate data analysis (MVDA) started to gain popularity. MVDA 

techniques such as Principal Component Analysis (PCA) 37 have been used in fault detection and review

of historical batch records since the early 90s, which enabled the rapid identification of outliers in the

multivariate space. Further developments of this technique saw its applications in batch monitoring in real-

time 38 39. These developments were accompanied by the emergence of chemometrics and by the use of 

Projection To Latent Structures (PLS) as a ”calibration” technique which enabled the use of soft sensors 

that can estimate physical properties from spectral measurements. The growing popularity of MVDA 

techniques led to the development of software packages such as CAMO Analytics ® and subsequently 
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Umetrics SIMCA ®, a package developed by the pioneers of Multivariate Statistical Process Control (MSPC), 

and chemometrics. At the time of writing, the software package has been acquired by Sartorius and is now   part of 

the Umetrics ® Software Suite 40. Additionally, MSPC capabilities have now been integrated in other 

products such as PharmaMV ® from Perceptive Engineering and can be developed using open-source 

programming languages such as R (with plotly, shiny, PCAtools and chemometrics libraries) and python 

(with Dash and pyphi).

2.2 Quality by Design (QbD)

In 2004, the US FDA published a revision of cGMP with a ”risk-based approach” 41. The idea of this revision 

was that ”quality cannot be tested into products, but rather should be built-in by design”, in other words, by 

designing biomanufacturing processes which can consistently produce products with the predefined quality 

and specification; this was referred to as the Quality by Design (QbD). QbD starts with the end in mind; the 

first stage involves understanding the product by identifying the Quality Target Product Profile (QTPP) 42,

which is a summary of the quality characteristics of the drug product to ensure safety and efficacy.

The second phase involves understanding the process by carrying out preliminary experiments and by 

using risk assessment tools such as Fishbone Diagrams (Ishikawa) and Failure-Mode-Effect Analysis (FMEA) 

to identify critical quality attributes (CQA) 43, which are quality attributes with critical impact to the efficacy 

of the drug . This is accompanied by the use of statistical techniques such as Full Factorial Design of 

Experiments (DoE) and Response Surface Methodology (RSM), where the multivariate relationship between 

CQAs and process parameters (PP) is explored to find any statistically significant correlation. The PPs that 

correlate the most with the CQAs can be considered critical process parameters (CPPs) which are important 

to map out in the design space. This leads to the third phase, the process design, which involves finding the 

right combination of CPPs that can consistently produce the desired drug product. Finally, a control 

strategy needs to be developed with the goal of identifying process acceptance ranges (PAR) within the 

design space where the process can be controlled to produce optimal results. As such, the FDA provided 

important regulatory guidance by identifying a class of tools that can be used to monitor, analyse, and 

control processes referred to as Process Analytical Technologies (PAT) 44. This led to a philosophical shift 

from QbT to real-time release testing (RTRT) 34 , a more responsive approach that can reduce the variability 
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of the final product by adjusting the process in real time within the predefined PAR.

Additionally, the QbD framework outlined by the FDA was also subsequently promoted by the ICH, 

which published various quality guidelines to highlight the importance of pharmaceutical development Q8 

(2005) 42, quality risk management Q9 (2005) and the Pharmaceutical Quality System (PQS) Q10 (2008) 45 

thus introducing PQS elements for a more holistic approach. The PQS included management participation, 

corrective and preventive action (CAPA), change management systems enabled by robust knowledge 

management and quality risk management. At the time of writing, these developments constitute the 

standard operating model in the manufacturing of pharmaceutical medicines.

2.3 Quality by Digital Design (QbDD)

Issues with the QbD framework have been raised by a few reports 46 29. One of the most notable problems of 

the framework is the lack of use of existing and acquired process knowledge to speed up process development 

and reduce its costs. A more detailed business case for knowledge driven process development is provided 

by von Stosch et. al. 47. It is widely accepted that QbD can only be cost effective if knowledge is transferred 

from one product to the next, iteratively decreasing the number of experiments required to generate process 

understanding 48. However, given the extensive use of statistical tools such as Full Factorial DoE, which 

assumes no knowledge of the current bioprocess under development and provides almost a brute-force 

approach to explore its design space, QbD remains resource intensive. Even considering a Fractional 

Factorial Design approach, that can reduce experimental efforts, without supplementary experiments to 

study the centre points of the design space, this may miss higher-order interactions and often provide 

inadequate levels of resolution. Furthermore, although RSM provides a robust methodology for identifying 

statistically significant relationships in the experimental data, it gives unsatisfactory performance when 

modeling highly non-linear systems 49.

The quality by digital design (QbDD) is a framework that is gaining popularity in the literature 50 36 51 52 53  . 

This framework aims to leverage digital tools and process models to shift a significant amount of experimental 

design planning and execution, design space exploration and what-if-analysis from in-vitro or in-vivo to in-

silico, thereby enabling knowledge-based process development 54 and computer aided QbD 36. By doing so, 

experimental effort has been reported to be reduced from 67% 55 up to 75% 54. This can make the QbD 

framework more profitable by reducing the amount of time and raw materials used in process development 

thereby increasing the lifetime of the drug in the market 29.

Figure 3a provides a semi-quantitative illustration of how the number of experiments required in process 

development reduce exponentially as the initial model accuracy is improved by transferring knowledge from 
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one bioprocess to the next. For this exercise, data driven models can be used to take advantage of historical 

data. A base model can be trained on existing data coming from other bioprocesses with the same cell-line 

with similar CPPs and CQAs, or the same bioprocess at different scales 56. Subsequently, the data-driven 

model parameters can be fine-tuned using data coming from the new process. This technique is illustrated in 

Figure 3b and is often referred to as transfer learning. This allows the development of new models using 

historical data and a small amount of new data, while maintaining accuracy comparable to models trained 

solely on new data 57. Additionally, by exclusively conducting experiments in areas where the model exhibits 

significant uncertainty, this approach effectively minimises the number of necessary experiments. This method 

is displayed in Figure 3c and is often referred to as active learning, which can drastically improve the 

sampling efficiency of the experimental campaign. 

Figure 3: a. a semi-quantitative illustration of the effect that transferring knowledge from one bioprocess 
(or product) to the next has on the number of experiments required and the accuracy of the initial model. 

a. c.

b.
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When existing data can be used to improve the initial model accuracy, the number of experiments for new 
products for each subsequent bioprocess will be reduced exponentially as the initial model will make more 
accurate predictions by learning characteristics of other bioprocesses which are similar to the new one. The 
following two subfigures illustrate how this can be achieved in more detail. b. Transfer learning is illustrated 
via two strategies of model development. In example A, an initial base model trained on historical data is 
then fine-tuned on the new data with a few experimental runs on the new process. In example B a new 
model is developed, trained solely on new data, thereby requiring more experimental runs with the new 
bioprocess even though the same model accuracy as example A is achieved. c. illustrates how the use of a 
model to answer process related questions can allow quick acquisition of in-silico insights (example A). Thus, 
experiments can be performed exclusively when the model shows high uncertainty in the response (example 
B). The active learning step occurs when the new experimental data is integrated back into the model to 
reduce its uncertainty in future predictions.

In a pivotal study by Hutter et. al. 57, knowledge from one product to the other was efficiently transferred 

by modifying a Gaussian Process (GP) model. Here a novel method to represent different products (such as 

therapeutic proteins or vaccines) by embedding vectors, which are learned from bioprocess data using a GP 

model, has been proposed. The embedding vectors capture the similarities and differences between 

products and enable knowledge transfer across products. This novel method shows that the GP can reach 

comparable levels of accuracy to the model trained solely on new data, after only four experimental runs.

Nevertheless, in biomanufacturing, process knowledge often outweighs the amount of data available, 

especially during the early stages of process development. Therefore, first principle, mechanistic models have 

received a lot of attention in the literature 58 due to their ability to capture expert knowledge. One of the most 

common process models is the macroscopic material balance with Monod-type kinetics, since it can 

satisfactorily describe cell growth and transport phenomena.  However, when more data is available, hybrid 

semi-parametric models where machine learning and other statistical techniques have been used to 

describe the kinetics of the cell cultures with better performance.  A more detailed account of these 

modelling techniques is provided in section 3.1. However, the application of mechanistic process models in 

QbD under a QbDD framework has been presented in various scenarios 59 60 52 55. Two main scenarios where 

QbDD can be applied have been identified: (i) There are multiple competing hypothesis of bioprocess model 

structure. (ii) There are similar models available a priori from the literature or from similar bioprocesses.

In the first case, QbDD is applied via a model-based Design of Experiments (mbDoE) approach. This is 

a two-part exercise; initially competing model structures are discriminated systematically and then the 

selected model parameters are calibrated using information rich optimal experimental design 61. A list of 

optimal experimental designs has been provided by Herwig et. al. 56. However, one of the most common 
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schemes for the mbDoE framework is the D-optimal design where the determinant of the Fisher Information 

Matrix 62 of the model is calculated to obtain the best candidate experiments and reduce the variance in the 

model parameters 46. Once an accurate model is developed, this can be used for in-silico design space 

exploration and identification of CPPs. For example, van de Berg et. al. 52 used variance based Global 

Sensitivity Analysis (GSA) by calculating Sobol Indices for all the inputs of the process model and ranking 

them in order of their level of contribution to the change in output. This narrowed down the number of PPs 

to investigate for design space optimisation.

It should be noted that the application of mbDoE has found more challenges in its adoption within the 

literature 56. However, this technique allows process developers to predict the information content of the next 

set of experiments which can consist of sequential or parallel experiments or can be a combination of both 46, 

thereby providing flexibility in the execution of those experiments. As such, with the commercialisation of 

the Ambr ® 250, Sartorius, high-throughput experiments (HTE) have been made more accessible enabling 

process developers to perform parallel experiments which will facilitate mbDoE campaigns with parallel 

designs which makes the model discrimination phase less resource intensive 63. Additionally, open-source 

libraries such as AlgDesign and DoE.wrapper in R or pyDOE2 and statsmodels in python provide support 

for calculating D-optimal experimental designs and other crucial components of mbDoE. JMP ® by SAS is 

also a popular option as it provides an interactive low-code, no-code graphical user interface that does not 

require programming experience.

In the second case, the QbDD applications show the most promising results. In this scenario, it is possible 

to use model assisted Design of Experiments (mDoE) where a Latin Hypercube Sampling (LHS) or sim ilar 

screening experiments as shown by Benjamin Bayer et. al. 56 can be performed to fit the initial model for 

calibration. The model is then used to explore in-silico (via simulations) various experimental designs 56 and 

boundary conditions providing insights as to what experiments are the most promising. The simulated data 

is then analysed using Analysis of Variance (ANOVA) and RSM to find the boundary process conditions 

where the response surface peaks and the PPs that explain the most variance in the response, thereby 

reducing the experimental space for the successive set of experiments. These set of experiments can be run 

and simulated using the model to then update the model with the obtained experimental observations 54. It 

is important to clarify that the main differences between mbDoE and mDoE are in the use of the

model. In model assisted DoE the model is used to assist the experimental campaign and different designs 

are simulated and analysed in-silico in order to find optimal process conditions, whereas in mbDoE the 

models are used to suggest optimal experiments which can improve its structure or parameters 56.
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If no initial process models are available, data-driven models can be used to develop adaptive sampling 

strategies which can reduce the experimental burden. Most notably, Bayesian Optimisation (BO) workflows, 

have been instrumental in enabling self-driving experiments in the small-molecule pharmaceutical industry 

and is now starting to see adoption in the bioprocess industry. In a study conducted by Rosa et.al. 60, mRNA 

production was maximised using a surrogate model in a BO workflow. The surrogate model was interpreted 

using SHAP (SHapley Additive exPlanations) which provides a ranking of the process parameters level of 

impact on the model output. The surrogate model was also used to optimise the bioprocess and suggest 

optimal experiments.

Finally, during the IFAC Workshop Series on Control Systems and Data Science Toward Industry 4.0, 

Professor Richard Braatz discussed the progressive shift towards fully digitised process development in 

Bioprocessing 4.0, driven by the increasing reliance on in-silico experiments and digital tools 64. He 

highlighted a case where his team successfully designed a continuous pharmaceutical manufacturing plant 

entirely in-silico, which, upon actual construction, produced pharmaceuticals meeting all purity standards, 

while halving the total costs by eliminating experimental efforts 65. This demonstrates the benefits of the 

extensive use of computer aided QbD or QbDD. Additionally, his group at MIT, developed Algebraic Learning 

Via Elastic Net (ALVEN) a smart analytics algorithm which can be used to automate the data-driven model 

selection process in the absence of process knowledge 66. According to the professor, Automated Machine 

Learning (AutoML) tools, which select the optimal data driven model for a given data problem, combined 

with automated micro- scale technologies, which can perform experiments in parallel at a fraction of the 

cost, will become pillars of advanced manufacturing.

2.4 Quality by Control (QbC)

So far, the use of digital tools to optimise process development has been discussed. However, the emerging 

trend of using these tools to optimise bioprocesses in operation could potentially disrupt the biomanufacturing 

industry in the upcoming years. This is because digital tools can enable autonomous UPS operation, which 

could lead to more profitable, sustainable, and efficient operations.

Quality by control (QbC) is characterised by controlling the quality of the biopharmaceutical drug product 

via advanced process control (APC) strategies in real-time using the process knowledge and technologies 

developed during process development 35 67. As noted by Sommergger et. al. 46, the PAT guidance provided by 

the FDA ”reads like a guide to realise APC” even though this is not explicitly addressed. Arguably, the
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models developed to relate CPPs and CQAs and the PARs can be used as dynamic process models and set 

points in APC 46.

However, in the biomanufacturing industry, an adequate control system needs to be able to cope with

both uncertainty and the nonlinearities of bioprocesses which make the use of PID controllers redundant 68. 

Bioprocesses are stochastic and complex in nature, and to predict their dynamics accurately and 

systematically, a number of advanced control strategies have been proposed in the literature 68. Model based 

control methods have shown promising results in the control of mammalian bioprocesses 69. Nonlinear Model 

Predictive Control (NMPC) can achieve more satisfactory controls than PID as it can handle nonlinear 

dynamics, suitable for Multi-Input Multi-Output (MIMO) systems where various process control loops 

interact. NMPC represent the SOTA in APC 46 and can leverage the information gained through process 

development according to the QbD strategy and capture the complex dynamics and nonlinearities in 

mammalian cell culture processes to optimise the process inputs. NMPC can be manipulated, such that 

contradicting objectives i.e. minimal deviation of selected process states from the set-points and minimal 

control effort, are met in a suitable compromise 46. 

However, in the biomanufacturing industry measuring CQAs and Key Performance Indicators (KPIs)

such as yield in real-time is significantly challenging. Therefore, given that NMPC excels when coupled with 

real-time CQA and CPP data, soft sensors capable of predicting or estimating NMPC inputs have become 

increasingly important. One such example are chemometric models used to predict the composition of the 

broth from Raman spectroscopy data. This technique gained popularity in the bioprocess industry from 

around 2011 70. Around that time, a pivotal study by Craven et al. 34 demonstrated the successful integration 

of Raman spectroscopy with a NMPC in a 15-litre bioreactor cultivating CHO cells. In this setup, Raman 

spectra were collected every 6 minutes to predict the concentrations of key metabolites such as glucose, 

glutamine, lactate, and ammonia using a PLS model. The NMPC then used these predictions to adjust the 

feeding rates, effectively maintaining a consistent glucose concentration in the bioreactor. This integration 

not only demonstrated enhanced bioprocess control but also showed a strong correlation with offline reference 

measurements. Controlling UPS in continuous biomanufacturing with the use of perfusion bioreactors is 

crucial, as the medium can often be expensive. In the literature, there are also successful implementations of 

MPC towards ICBs in perfusion bioreactors 71. On the other hand, DSP presents different control challenges 

that can be tackled by right sizing the downstream operation to handle the load generated upstream.

For DSP the common control objectives are to ensure that the control can be adjusted to changes in load 

coming from UPS and that uncertain perturbations are rejected 68. Nevertheless, just like in UPS the most 
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promising control strategies for DSP unit operations are spectroscopy instruments together with MVDA and 

mechanistic based MPC 72.

However, building non-linear mathematical models to be used in NMPC using classical DoE approaches is 

impractical. This is because classical DoE does not capture the profiles of the factors, but rather explores its 

corners. As such, it does not take in consideration process dynamics as it uses end of process measurements 

disregarding the process evolution over time. The intensified Design of Experiments (iDoE) framework was 

designed to address this issue and enable a consideration of the process dynamics 73 74. Moreover, hybrid 

semi-parametric models can be developed to account for nonlinear behaviour of bioprocesses 55 by combining 

existing process knowledge to the process control dynamics. The use of hybrid semi-parametric models for 

bioprocess control has been discussed by over a decade 75. In the study, von Stosch provides a general model 

agnostic framework that can be implemented to incorporate process knowledge and control parameters.

Some of the issues of NMPC relate to its reliance on accurate process models with predictive power and 

its inefficient computational time. However, the aforementioned framework addresses this issue as an 

accurate model can be developed with varying levels of a priori process knowledge by integrating empirical 

process control dynamics. Nevertheless, one of the major limitations of MPC comes from the difficulty in 

tuning its parameters, such as the control horizon, which dictates the number of future control moves to be 

optimised, the prediction horizon, which is the number of future time steps predicted, and the weighting 

matrices, which balance the importance of different control objectives.76 However, what favours NMPC 

applications in ICBs is that its use of nonlinear online optimisation algorithm that can take up to several 

minutes is acceptable for mammalian bioprocesses, due to the lengthy bioprocessing time (typically in 

weeks) 68 46. Another pertinent concern is the lack of explicit economic considerations in classical NMPC 

algorithms, which often present conflicting objective functions to the ones used in Economic MPC (EMPC). 

As such, traditionally economic optimisation has been performed by higher-level systems which determine 

the appropriate set-points for the NMPC controller 76.

For this goal, Real Time Optimisation (RTO) can be used to provide optimal references which aim 

to maximise profitability 76. RTO systems have been widely adopted in other industries, as evidenced by 

many successful implementations over recent decades 77. These systems typically use first-principles models 

updated in real-time with process data measurements followed by a re-run of the optimisation process. These

optimisation algorithms are run less often than in MPC as they might run once every hour. In cases where 

the optimisation interval significantly exceeds the closed-loop process dynamics, steady-state models are 

often used for optimisation 77. This dual-step approach to RTO is both straightforward and widely used,
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but can impede the achievement of the optimum of the actual plant. The main issue arises from the lack of

integration between the model update and the optimisation phase, particularly when there is a discrepancy 

between the plant and the model 77 often referred to as plant-model mismatch which leads to convergence 

towards the wrong optimum.

There are various approaches to address this issue. One approach consists of using recalibration algorithms 

to re-estimate the parameters of the model to better match the plant outputs, thereby making the real time 

model adaptive and converge towards an optimal operation. However, this method is not effective if the 

model used has structural mismatches, i.e. incorrect assumptions and simplifications which can come from 

neglecting potentially dominant transport phenomena or reactions that have not been accounted for. To 

address structural mismatches, discrepancy models and trust regions can be implemented to converge to the 

true plant optimal conditions 77. On one hand, discrepancy models are data driven models that learn the 

discrepancy between the plant’s real data and the model’s predictions. By incorporating this error model 

into the optimisation process, they can continually refine the model based on new plant data, leading to 

more accurate predictions and better optimisation results 77. Trust regions, on the other hand, have been 

discussed in a pivotal study from Del Rio Chanona et. al. 77. These can be incorporated to manage how far 

the optimisation algorithm should ’trust’ the model at each step. The idea is to restrict the optimisation 

steps to regions where the model was more likely to be accurate, thus avoiding significant errors due to model 

inaccuracies 78.

Another direction explored in the literature to address the lack of first-principles models with the right 

structure as defined in section 2.3 in early stages of the QbD process is the use of ML. Intelligent control 

systems (ICS) such as Artificial Neural Networks (ANN) and their applications to the biomanufacturing 

industry have been discussed extensively in the literature 79 68. Some of the success in the adoption of ICLs 

comes from modeling CPPs as a sequence of time series measurements. Recurrent Neural Networks (RNN) 

are an ANN architecture that has excelled at modeling sequences. Its application in control systems 

has seen better performance than PID controllers since, given enough data, they can model more complex 

dynamics and thus track set points more efficiently. As such, ICS have often been adopted in model predictive 

control for nonlinear system identification 80. This is especially true for architectures such as Long Short-

Term Memory (LSTMs) which can better handle long-term dependencies in sequences. One of the most

established nonparametric models used in control is the Nonlinear AutoRegressive network with eXogenous 

inputs (NARX), which can be used in systems identification to model the plants dynamics. NARX have 

been used to represent numerous discrete-time nonlinear models used in NMPC such as Hammerstein and 
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Wiener models, Volterra models, and polynomial autoregressive moving average model with exogenus inputs 

(polynomial ARMAX) 76. These have been applied by Sargantanis and Karim et.al. 81 to control Dissolved 

Oxygen (DO) in a bioprocess as early as 1999.

A more modern ICS method which sees the application of RNN in conjunction with Reinforcement 

Learning (RL) was studied by Petsagkourakis et. al. 82. The study applies Policy Gradient methods from RL 

to update a control policy batch-to-batch, using a recurrent neural network (RNN). The proposed RL strategy 

is compared to the traditional NMPC, showing advantages in handling uncertainties and computational 

efficiency. However, the main issue with RL which is true for ICS in general, is that they are data hungry. 

This issue was addressed by Petsagkourakis via transfer learning to train the model offline first, which sped 

up the online learning phase, thus requiring significantly less new data to tune the RL model. Additionally, 

apprenticeship learning, and inverse RL can be used to provide an initial example to the RL agent, thereby 

obtaining similar results. Another major issue with the application of RL in control systems is that it 

performs poorly at handling constrains. This is why RL has seen little use in industrial biomanufacturing 

processes where optimal operating points often lie within hard constraints. In a study by Pan et. al. 83 a novel 

algorithm that combines trust regions, GPs, and acquisition functions to solve the constrained RL problem 

efficiently and reliably has been discussed. It could be argued that, despite the computational drawbacks 

introduced by incorporating RTO in RL, its application in biomanufacturing, where bioprocesses can span 

weeks, remains acceptable.

Altogether, ICS applications remain an active area of research. NMPC can be considered the best 

candidate to unlock automation in ICBs and implement QbC.

3 Digital Twins construction and use cases

DT development in biomanufacturing is an iterative process, where each iteration is driven by a business 

objective and can span the entire drug product life-cycle, from process development to continued process 

verification (CVP). It is important to highlight that DTs are a digital solution, therefore, to develop this 

successfully, embracing IT operating models is crucial. Thus, a version-controlled single source of truth 

(SST) of the DT for the entire biomanufacturing process should be maintained throughout its life cycle. 

Additionally, concepts from IT such as Continuous Integration and Continuous Deployment (CI/CD) can 

be useful in integrating disparate models owned by various teams into the SST.

3.1 Digital Twin Construction
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As mentioned in section 2.3 Digital twin development in the bioprocess industry begins with identifying an 

adequate first principal model. This section will focus on mechanistic models for cell-based UPS; how- ever, 

the underlying modelling principles discussed are also applicable to cell-free bioprocesses where kinetic 

parameters and model structures can be adjusted in the same way.

Figure 4a, illustrates the three main stages of digital twin development. The first step consists of

developing initial models, usually steady-state or dynamic models 84, that can be derived from macroscopic 

mass balances 85. These models may use empirical relations to describe parameters such as growth rate or 

product formation rate and can be fit using adequate experimental designs as discussed and represent a 

static model of the process.

The second step usually consists of developing a digital shadow of the process 84. This step can begin as 

soon as real-time data from a similar processes or scaled-down versions of the bioprocess become available. 

To connect real-time data to the static models, OPC UA and other IIoT communication protocols can be 

used as mentioned in the section 1.1 and in the review by Chen et. al. 86. Consequently, a digital shadow can 

be developed by making the mechanistic models adaptive to the process data and recalibrate its parameters 

in real time. Least squares is a widely used method for parameter estimation. However, it is not suitable for 

real-time parameter estimation as it requires the entire data set to be available before the estimation can be 

performed. In contrast, real-time parameter estimation requires the use of recursive algorithms that update 

the parameter estimates as new data become available. This can be achieved by applying state estimation 

algorithms such as Recursive Least Squares (RLS) or Kalman Filters, more specifically, Extended Kalman 

Filter (EKF) and Unscented Kalman Filters (UKF). According to Wan et. al. 87 UKF can deal better with 

higher order nonlinearities whilst being as computationally efficient as EFK. For those interested, this 

reference provides a comprehensive discussion on the application and advantages of UKF.87 The third step 

consists of using the real-time adaptive digital shadow to control the operation. This can be achieved 

using popular PCS software such as Emmerson Delta-V that can control UPS 88

and provide support for OPC UA and model-based control methods. As mentioned earlier, the evidence 

shows that MPC is the most appropriate strategy for real-time control. For this step, an Adaptive MPC is 

often required to close the loop and use the digital twin to perform feedback and feed forward control. In 

Markana et. al. 89, EFK was combined with an Economic Model Predictive Control for a fed-batch reactor. 

In Nimmegeers et. al. 90 an algorithm which combines MPC with moving-horizon estimation was combined 

with UKF to obtain comparable results.

Overall, the use of state estimation algorithms for monitoring and process control in real time can 
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demonstrate satisfactory performance, however, these methods are often computationally expensive to run 

in real time. Additionally, RLS and Kalman Filter recalibrate the model to provide good estimates of the 

local state of the system. However, historical patterns in the data might not be captured due to the 

recalibration window not being large enough. As mentioned in section 2.4 ML models can capture these 

patterns very effectively. More specifically, Artificial Neural Networks (ANNs) are currently the most 

popular ML technique in bioprocess engineering 79. One of the most common applications of ML in DT 

development is illustrated in Figure 4a. This involves combining macroscopic material balance equations of 

extracellular species with ML modeling method, predominantly shallow Feed Forward Neural Networks 

(FFNNs). These FFNNs are often configured with a single hidden layer often using the hyperbolic tangent 

as an activation function 91. This technique is often referred to as hybrid semi-parametric modelling (HSM) 

or grey box modelling and has been discussed extensively in the literature, most notably the work of von 

Stosch et. al 92 93 94 95 96on use case and refinement of the technique. This technique gained popularity since 

prediction accuracy of hybrid models has been always proven superior to the mechanistic models 91. HSM can 

significantly speed up process development especially at the early stages where data for the new bioprocess 

is scarce and the model structure is not well-understood. In scenarios where the latter is a limiting factor, 

a parallel model structure, where the data-driven models are trained using the same inputs used for the 

mechanistic model, can be used to rectify its predictions 96. However, as more knowledge about the process 

becomes available and the mechanistic model structure is improved, the serial structure should be preferred 

as it can perform better than the parallel 96. Trade-offs in the model structure selection have been explored 

in two reviews on the technique 96 92. Other notable improvements have been highlighted 95 where bagging 

and stacking methods have been discussed to improve model validation and performance. In bagging, the 

data are re-partitioned several times, one model is developed on every partition, and then, the models are 

aggregated. The stacking is an ensemble method in which the contributions of each neural network to the 

final prediction are weighted according to their performance on the input domain. 95 Deep Neural Networks 

based on convolution neural networks (CNN), LSTM and physics-informed neural networks (PINNs) have also 

been reported in the literature with promising results 85.

However, even though significant model improvements can be obtained through this methodology, in 

later stages of the process development, explaining the relationship in the data from first principles becomes 

increasingly important as it can lead to better extrapolation. Opportunities for structural improvements of 

the bioprocess macroscopic models are given by an increase in the variability rather than the volume of the 

data. Through technologies such as ’omics’ and system-biology, which have gained popularity around the 
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early 2000s 97 a large amount of data regarding intracellular activity can be obtained. These data have been 

organised into several online databases with information regarding interactions and metabolic pathways 98. 

This can provide a good infrastructure to build multiscale mechanistic models that are generally regarded in 

the literature as a good candidate for DT 99 100. Figure 4c illustrates how mechanistic bioprocess models can 

be classified. This includes unstructured, structured, segregated, and unsegregated 56 101. Structured 

models take into account the intracellular activities in a fermentation process including metabolic fluxes, 

cellular division, and substrate uptake mechanisms. Segregated models, on the other hand, describe cell 

cultures as heterogeneous populations and attempts to group cells with identical properties such as age, size, 

or mass, together. Segregated models can be developed from population balance models (PBM). On the 

other hand, there are two main approaches to developing structured models. Using kinetic models which 

consider intracellular compartments such as cytosol, mitochondria, or nucleus 97, these are often referred to 

as Genome Scale Models (GEM). GEMs can be derived from assuming well-mixed compartments 97 and all 

cells are equal and change as one with time 101. However, the balance is performed over the concentrations 

of intracellular species (metabolites, proteins, RNA/ DNA, and other chemical constituents), which are 

involved in a very complex network of physio-chemical transformations 97.
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Figure 4: a. Illustration of the steps required to develop a digital twin. The first step involves integration 
of data from various pieces of equipment and developing a model that can simulate the process. The second 
step involves connecting the data streams integrated to a Gateway to connect to the model and adjusting 
the model to be re-calibrated in real time. The final step involves connecting the process control systems to 
the adaptive models to implement model-based control strategies. b. representation of hybrid modelling 
using a DNN and a first-principal model adapted from 49 c. Various categories of mathematical models used 
to describe cell cultures. In general, a model which accounts for the biotic phase referred to as a structured 
model, whilst a model which considered population differences referred to as segregated.

Alternatively, Flux Balance Analysis (FBA), avoids the definition of kinetic rates 97 . This is a popular 

technique from system-biology that defines the function of optimizing based on a cellular objective 100. 

Examples include maximization of growth rate, ATP production, minimization of ATP consumption, or 

minimization of NADH production 100. In the FDA, intracellular metabolic fluxes (fluxome) are estimated 

based on some experimental data 98, such as the consumption / production rates of extracellular compounds 
98. Isotopomer experiments, in which labelled substrates are administered to the cells and the fate of the 

label is further analysed by nuclear magnetic resonance (NMR) or mass spectrometry (MS) 98, can also 

provide useful information on intracellular flux distributions that can be included in the model 98. However, 

FBA is less rigorous as it does not have knowledge of the kinetics 97 and thus it often leads to underestimating 

the rates of certain sets of intracellular reactions 100. To derive a digital twin using a structured segregated 

model, various approaches could be attempted under the umbrella term of multiscale modelling. The first 

a.

b. c.
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approach could be to integrate an intracellular model into the macroscopic mass balance 97. 

However, given the very large number of species and reactions involved in intracellular processes 100, it is 

critical to reduce Genome Scale Models (GEMs) to the reactor operating conditions 97. Alternatively, 

Population Balance Models (PBM) could be integrated with macroscopic balance equations by modifying the 

reaction rates r to include the influence of traits (such as age, mass, size of cell populations). The most 

promising technique has been the former since, as empirical evidence shows, segregated model capabilities 

can be simulated from accurate intracellular structured models. A pivotal study [102] in which a structured 

dynamic model describing whole animal cell metabolism was developed. The model was capable of 

simulating cell population dynamics (segregated model characteristics), the concentrations of extracellular 

and intracellular viral components, and the heterologous product titres. The dynamic simulation of the model 

in batch and fed-batch mode gave good agreement between model predictions and experimental data. The 

model considers the concentration of about 40 key metabolites, including fatty acids, amino acids, sugars, 

and intermediates of metabolic pathways like glycolysis and the tricarboxylic acid cycle (TCA).

However, the aforementioned structured segregated model is use case-specific, and developing a multi-

product digital twin out of such a technique would be considerably inefficient. In Moser et. al. 99 an 

interesting case for a digital twin development framework via a Generalised Structured Modular Model 

(GSM) which can be applied to various cell lines has been proposed. This was achieved by dividing the cell 

into six compartments that enabled capture of two key physicochemical phenomena involved in culture 

processes at the cellular level, transmembrane transport, which governs nutrient uptake and product 

secretion, and the metabolic reactions in the intracellular environment 100. In the study Moser represents the 

substrates by grouping it into carbon (SC), nitrogen (SN) and amino acid substrates (SAA). These substrates 

are used in the model for biomass and product formation, as well as for maintenance metabolism. 

Furthermore, several interconnected submodels are embedded in the developed GSM model, which makes 

use of a sigmoid function as a simple flag mechanism to enable the decoupling of submodels 99. Thus, 

potential effects of factors like pH or temperature on rates or yield coefficients can be integrated into the 

model structure and will be discriminated against by the sigmoid function through parametrisation when 

those effects are negligible.

An obvious point to highlight is that with the increased complexity, the model structure warrants 

adjustments to be used in RTO. Overall, digital twins can provide high-fidelity simulations and more 

accurately predict operational changes and extreme scenarios which are impractical to measure from 

experimentation, thereby solving many problems related to imbalanced data sets in ML. As such, digital 

twins can often be used to simulate a large amount of data to train agents or build surrogate models. This 

technique enables the integration of Computational Fluid Dynamics (CFD) models and thus the entire 

abiotic (cell environment) conditions of the bioprocess. In a study conducted by Del Rio Chanona et. al. 103 
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a CFD model was used to generate data points for different scenarios of photobioreactor design and operation, 

which were then used to train a convolutional neural network (CNN) as a surrogate model. The CNN was 

able to learn the complex fluid dynamics and kinetic mechanisms of the CFD model and predict the system 

performance under new design conditions. Simulating training data for a surrogate model could also be used 

for system identification and state space modelling 104. 

In addition, simplifications of the full DT by different submodels can be used in MPC. Unlike in 

intracellular kinetic models which have no dynamic predictive power 105, dynamic FBA has been 

incorporated into a nonlinear MPC application by coupling the intracellular metabolism with the reactor 

kinetics 100. Population Balance Models have also been used in MPC control 106.In the case of training an 

agent, this can be achieved through deep reinforcement learning by simulating stochastic data using the 

digital twin 82. These capabilities allow for various use cases, which will be discussed in the next section.

3.2 Digital Twins Use Cases

Figure 5 shows some of the use cases of DT in bioprocess development and operation. As discussed earlier, 

there are many examples of the use of digital twins in the literature in model-based 55 and model-assisted 56 

Design of Experiments and for digital process design in line with QbDD expectations 53.

In operation, digital twins can provide a lot of value when integrated within the existing industrial 

automation stack 107. By integrating MES data to the DT, these can assist with all the aspects of 

manufacturing operations, from predicting maintenance to Out of Spec batches. Moreover, higher level 

metrics such as Overall Equipment Effectiveness (OEE) can be leveraged for advanced 

automation.Additionally, using ERP data, material shortages can be predicted and accounted for in 

operation. ERP data can also help provide financial context to what-if-analysis studies, which can inform 

operational changes and provide overall support with drug product life-cycle management in CVP. The 

adaptive capabilities discussed earlier will allow the digital twin to improve over time and more accurately 

represent the various aspects of the physical systems.

Nevertheless, as mentioned earlier DTs can be used to train AI models that can control operations 

autonomously. A crucial example of the use of RL in APC was showcased by Yokogawa demonstrating the 

successful autonomous operation of a distillation column for 35 days 108. Yokogawa Electric Corporation 

and ENEOS Materials Corporation have tested an AI algorithm called Factorial Kernel Dynamic Policy 

Programming (FKDPP) to control a distillation column at an ENEOS Materials chemical plant. The AI 

algorithm has demonstrated a high level of performance while controlling the distillation column for almost 
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an entire year 108. The AI controlled the distillation column directly, stabilising quality, achieving high yield, 

and saving energy 108.  

Figure 5: Overview of how various industry 4.0 technologies including Digital Twins, Cloud Storage, 
Blockchain, Big Data Analytics and Virtual Reality can come together to improve every aspect of digital 
manufacturing. Data from various sources including the process, financial data and supply chain logged in 
blockchains is stored in the cloud. This large variety and volume of data can then be analysed via ANNs to 
predict key indicators. Digital workflows and SOPs are accessed by VR which can be used to train new 
personnel. A digital twin can also use data from the cloud data storage to control the process autonomously 
or contextualise its predictions (using financial or supply chain information).

The AI solution could control distillation operations that were beyond the capabilities of existing control 

methods (PID control/APC) and had necessitated manual control of valves based on the judgements of 

experienced plant personnel 108. The AI maintained stable control of the liquid levels and maximised the 

use of waste heat, even in winter and summer weather, with external temperatures changes by about 40ºC, 

by eliminating the production of off-spec products, the autonomous control AI reduced fuel, labour, and other 

costs, and made efficient use of raw materials 108. While producing good quality products that met shipping 

standards, the AI autonomous control reduced steam consumption and CO2
 emissions by 40% compared to 

Page 29 of 47 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
4 

8:
58

:4
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4DD00127C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00127c


30

conventional manual control.

4 Digital transformation in Bioprocessing 4.0

Digital transformation in biomanufacturing refers to the process of going from semi-automated or paper-based 

manufacturing to autonomous, digital manufacturing. This process revolves around the adoption of an IIoT 

architecture that makes all the events within the business accessible to the right people in real-time. However, 

digital transformation is not a project and should not be treated as such, neither in its engineering execution 

nor in its business evaluation. Therefore, for a successful digital transformation plan, it is crucial to achieve 

technological advancements with a short time to value, ensuring a quick ROI to prove the business value of 

the initiative early on. This can be achieved by working in an agile manner and utilising early and frequent 

stakeholder feedback to guide technological development. This iterative and gradual approach was adopted 

by companies such as Novartis, when developing a centralised view for their clinical trials, namely Nerve 

Live 109 and Pfizer, in an attempt to make manufacturing more productive using less resources. This allows 

management to comprehend the value of each phase in the digital transformation strategy as it demonstrates 

tangible business results throughout its evolution. This methodology aligns with IT project management 

philosophies and lean manufacturing, emphasising continuous improvement and short, iterative innovation 

cycles which is a major shift from the current waterfall approach which many engineering projects adopt in 

biomanufacturing. In the literature and industry there are numerous case studies of digital transformations, 

three primary ways to execute on such a plan have been observed:

(i) Partnering with Integrators for Customisable Solutions: Companies are increasingly collab- 

orating with systems integrators to develop customisable digital solutions. An example of this approach is 

Tulip which has embraced the industry 4.0 paradigm by focusing on operator-centric solutions and collab- 

orating with the ISPE to align their offerings with the Pharma 4.0 vision. For this solution, the integrator 

provides the necessary infrastructure, allowing for tailored customisation based on specific needs of operators 

and managers. K örber Pharma are also providing diverse Industry 4.0 solutions to integrate with existing 

disparate systems. With the Werum PAS-X MES Software Suite, that integrates with the existing 

infrastructure, Virtual Reality (VR)/Augmented Reality (AR) tools for remote equipment troubleshooting 

(such as Xpert View) and personnel training (with Line Optimiser). Additionally, using their platform teams 

can deploy digital twins on top of the MES giving them its full digital context. Similarly, Merck’s Bio4C 

ProcessPad™ which can collect data from multiple sources including process data from batches, ERP, MES, 

LIMS, Historians, process equipment, and manual sources into a single, validated data source whilst 
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keeping their records compliant with 21 CFR part 11. Bio4C™ Suite is based on their “4C strategy” 

(control, connect, collect, and collaborate), designed to provide aids in gradual digital 

transformation via different functional capabilities. This model is becoming the preferred method 

for digital transformation in the pharmaceutical industry as it requires low to no level of digital 

maturity to begin with. Another noteworthy partnership between GlaxoSmithKline (GSK), Atos 

and Siemens lead to the development of a digital twin of the mRNA vaccine manufacturing process 

110. This was equipped with PAT sensors and in-silico models to

run optimisations online and simulate process changes.

(ii) Purchasing off-the-shelf Solutions: Many companies opt for ready-made digital solutions avail- 

able in the market. Notable examples of providers in this category include Siemens, Sartorius, Emerson, and 

Cytiva. For example, Cytiva’s GoSilico ® software can be used to calibrate digital twins of downstream 

chromatography columns. These off-the-shelf solutions offer a range of standardised digital tools that can be 

directly implemented into existing systems in a plug and play fashion. However, this solution often requires 

some existing internal competence with industry 4.0 technologies and a clear vision on how these tools 

integrate with the existing infrastructure. Additionally, they might not be customisable enough to deal with 

specific edge-cases at the plant.

(iii) Developing In-House Solutions: Some companies choose to build their digital solutions 

internally. Notable examples include Novartis as mentioned earlier with Nerve Live and also data42, a data 

lake initiative that aims to enhance the understanding of diseases and patient insights using clinical trial 

data. Similarly, GSK has developed its technology stack, indicating a trend towards internal development for 

more tailored and company-specific digital solutions. However, these solutions often require a deep 

understanding of digital tools which is not applicable for most biomanufacturing companies.

The digital integration of the data across the enterprise will potentially provide opportunities for big 

data analytics, as ANN can be used to analyse these various data sources and find patterns in a higher 

dimensional space that we are capable of analysing. This could lead to the transformative productivity gains 

experienced in the previous decades.

5 Conclusion and Future Perspective

The transition from an Integrated Continuous Biomanufacturing (ICB) platform to a smart factory represents 

a significant, yet manageable, shift. While moving from batch to continuous processes posed considerable 
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challenges, the key technological hurdles for smart factory integration have already been addressed in other 

industries. Solutions such as OPC UA for interoperability and connectivity, cloud computing for data storage 

in data lakes provided by cloud service providers, and the established AI algorithms for big data analysis have 

laid a strong foundation. Additionally, this evolution is supported by numerous roadmaps and frameworks 

and a wide range of business partnerships.

However, since its inception, industry 4.0 has become a bit of a buzzword and is hard to justify an 

expectation of the orders of magnitude in productivity gains promised by any industrial revolution. This 

could be attributed to the poor execution of the strategies. Although manufacturing processes are 

interconnected, perhaps the lack of a central hub and FAIR data standardisation across the enterprise, might 

prevent companies from experiencing the true gains in productivity. Perhaps, there is a disconnect between 

strategy and technology. The future factory aims to enhance productivity in industries where agility, product 

personalisation, and diversity are the desired business outcomes, such as in biomanufacturing, rather than 

focusing solely on high production volumes. This could also be attributed to the fact that a smart factory 

makes operation exponentially more agile over time and with the current slowing down of drug approval 

rates, the effects of increasing availability of high-quality historical data still need to be experienced. 

Ultimately, it is relatively early to make any definitive statements about the impact of Industry 4.0 since it 

was launched in less than 15 years ago.

Another clear observation is that the transition from the third to the fourth industrial revolution seems 

more evolutionary than revolutionary. The paradigms of quality by digital design (QbDD) and quality by 

control (QbC) which have been identified in the literature and explored in this manuscript, are essentially 

advanced iterations of quality by design (QbD). QbDD accelerates process development using digital tools, 

it is the result of a natural expansion of the PAT toolbox. On the other hand, QbC refers to autonomous 

operation within a pre-defined design space which could also be considered an evolution of continuous 

automation. Compared to the shift from quality by testing (QbT) to QbD, these are not revolutions but natural 

progressions in utilizing PAT for developing and operating validated processes more automatically. However, 

the use of AI algorithms might necessitate regulatory alignment and adjustments in process validation to 

ensure quality risk mitigation, this will also arguably bring revolutionary modes of operation which are still 

unclear.

What is clear is that biomanufacturing’s future lies in multi-product integrated intensified continuous 

platforms that are modular, flexible, and capable of delivering a broad range of biologics. Bioprocessing 4.0 

should encompass the shift from in-vivo or in-vitro to in-silico process development and control, with plant- 
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wide modeling and simulation at its core. Companies will develop unique digital twins encapsulating all 

process knowledge, updated as more insights are gained. Experimental teams will perform only information 

rich experiments suggested by the model, and the digital twin will be used for autonomous operation within 

validated ranges. Engineers will focus on troubleshooting and advanced analysis, supported by AR and VR 

technologies integrated with data from MES and centralised data hubs. Handovers will become less risky 

with access to contextualised data from the cloud and training new personnel will be increasingly less costly 

as workflows and SOPs will be digitised.

As explored in the manuscript, I4.0 technologies have achieved the appropriate level of technical 

maturity to be integrated in today’s biomanufacturing operations, as evidenced by the abundant availability 

of commercially available I4.0 solutions. This represents a paradigm shift towards more agile, proactive, 

and reactive biomanufacturing operations, driven by advanced digital technologies and data integration, 

fundamentally transforming the industry’s approach to process development and control.
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[22] James Clovis Kabugo, Sirkka Liisa J äms ä-Jounela, Robert Schiemann, and Christian Binder. Industry

4.0 based process data analytics platform: A waste-to-energy plant case study. International Journal of 

Electrical Power and Energy Systems, 115, 2 2020. ISSN 01420615. doi: 10.1016/j.ijepes.2019.105508.

[23] M. N. Karim and S. L. Rivera. Comparison of feed-forward and recurrent neural networks for bioprocess 

state estimation. Computers and Chemical Engineering, 16:S369–S377, 1992. ISSN 00981354. doi: 

10.1016/S0098-1354(09)80044-6.

[24] Ingrid Carla Reinhardt, Dr Jorge C. Oliveira, and Dr Denis T. Ring. Current Perspectives on the De- 

velopment of Industry 4.0 in the Pharmaceutical Sector. Journal of Industrial Information Integration, 

18, 6 2020. ISSN 2452414X. doi: 10.1016/j.jii.2020.100131.

[25] Juan David Contreras, Jose Isidro Garcia, and Juan David D´ıaz Pastrana. Developing of industry 4.0 

applications. International Journal of Online Engineering, 13(10):30–47, 1 2017. ISSN 18612121. doi: 

10.3991/ijoe.v13i10.7331.

[26] Rahat Iqbal, Faiyaz Doctor, Brian More, Shahid Mahmud, and Usman Yousuf. Big Data analyt- 

ics and Computational Intelligence for Cyber–Physical Systems: Recent trends and state of the art 

applications. Future Generation Computer Systems, 105:766–778, 4 2020. ISSN 0167739X. doi: 

10.1016/j.future.2017.10.021.

Page 36 of 47Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
4 

8:
58

:4
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4DD00127C

http://arxiv.org/abs/2308.08841
http://arxiv.org/abs/2308.08841
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00127c


37

[27] ICH. Q10 Pharmaceutical Quality System. Technical report, 2009. URL http://www.fda.gov/cder/ 

guidance/index.htmhttp://www.fda.gov/cber/guidelines.htm.

[28] Dhanuka P. Wasalathanthri, Matthew S. Rehmann, Yuanli Song, Yan Gu, Luo Mi, Chun Shao, Letha 

Chemmalil, Jongchan Lee, Sanchayita Ghose, Michael C. Borys, Julia Ding, and Zheng Jian Li. Tech- 

nology outlook for real-time quality attribute and process parameter monitoring in biopharmaceutical 

development—A review, 10 2020. ISSN 10970290.

[29] Moritz von Stosch, Rui MC Portela, and Christos Varsakelis. A roadmap to AI-driven in silico process 

development: bioprocessing 4.0 in practice, 9 2021. ISSN 22113398.

[30] A BEST PRACTICE GUIDE TO USING THE BIOPHORUM DIGITAL PLANT MATURITY 

MODEL AND ASSESSMENT TOOL CONNECT COLLABORATE ACCELERATE TM. Techni-

cal report.

[31] I Imanol Arzac, Mattia Vallerio, Carlos Perez-Galvan, and Francisco J Navarro-Brull. Industrial Data 

Science for Batch Manufacturing Processes. Technical report, 2022.

[32] Nature. “Scientists applaud plans for UK-style advanced research agency in Japan”. Nature, 2023. 

URL: https://www.nature.com/articles/d41586-023-02688-1. 

[33] Körber Pharma. Revolutionize Your Pharma Training: Reduce Errors and Enhance Learning 

Efficiency with Augmented Reality. URL: https://www.koerber-pharma.com/en/blog/revolutionize-

your-pharma-training-reduce-errors-and-enhance-learning-efficiency-with-augmented-reality. 

[34] Karen A. Esmonde-White, Maryann Cuellar, Carsten Uerpmann, Bruno Lenain, and Ian R. Lewis. 

Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and biopro- 

cessing, 1 2017. ISSN 16182650.

[35] Isuru A. Udugama, Sara Badr, Keita Hirono, Benedikt X. Scholz, Yusuke Hayashi, Masahiro Kino-oka, 

and Hirokazu Sugiyama. The role of process systems engineering in applying quality by design (QbD) 

in mesenchymal stem cell production, 4 2023. ISSN 00981354.

[36] Steven Sachio, Cleo Kontoravdi, and Maria M. Papathanasiou. A model-based approach towards 

accelerated process development: A case study on chromatography. Chemical Engineering Research 

and Design, 197:800–820, 9 2023. ISSN 02638762. doi: 10.1016/j.cherd.2023.08.016.

[37] Svante Wold, Kim Esbensen, and Paul Geladi. Principal Component Analysis. Technical report.

Page 37 of 47 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
4 

8:
58

:4
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4DD00127C

http://www.fda.gov/cder/
http://www.fda.gov/cber/guidelines.htm
https://www.nature.com/articles/d41586-023-02688-1
https://www.koerber-pharma.com/en/blog/revolutionize-your-pharma-training-reduce-errors-and-enhance-learning-efficiency-with-augmented-reality
https://www.koerber-pharma.com/en/blog/revolutionize-your-pharma-training-reduce-errors-and-enhance-learning-efficiency-with-augmented-reality
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00127c


38

[38] Paul Nomikos and John F. MacGregor. Monitoring batch processes using multiway principal compo- 

nent analysis. AIChE Journal, 40(8):1361–1375, 1994. ISSN 15475905. doi: 10.1002/aic.690400809.

[39] Paul Nomikos and John F Macgregor. American Society for Quality Multivariate SPC Charts for 

Monitoring Batch Processes. Technical Report 1, 1995.

Page 38 of 47Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
4 

8:
58

:4
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4DD00127C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00127c


39

[40] Umetrics® Suite of data analytics software.

[41] US FDA. PHARMACEUTICAL CGMPS FOR THE 21 ST CENTURY-A RISK-BASED APPROACH

FINAL REPORT. Technical report, 2004.

[42] ICH. INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIRE- 

MENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE PHARMACEUTI-

CAL DEVELOPMENT Q8(R2). Technical report, 2009.

[43] Axel Schmidt, Heribert Helgers, Florian Lukas Vetter, Steffen Zobel-Roos, Alina Hengelbrock, and 

Jochen Strube. Process Automation and Control Strategy by Quality-by-Design in Total Continuous 

mRNA Manufacturing Platforms. Processes, 10(9), 9 2022. ISSN 22279717. doi: 10.3390/pr10091783.

[44] Fda. Guidance for Industry PAT - A Framework for Innovative Pharmaceutical Development, manu- 

facturing, and Quality Assurance. Technical report, 2004. URL http://www.fda.gov/cvm/guidance/ 

published.html.

[45] ICH. Q10 Pharmaceutical Quality System. Technical report, 2009. URL http://www.fda.gov/cder/ 

guidance/index.htmhttp://www.fda.gov/cber/guidelines.htm.

[46] Wolfgang Sommeregger, Bernhard Sissolak, Kulwant Kandra, Moritz von Stosch, Martin Mayer, and 

Gerald Striedner. Quality by control: Towards model predictive control of mammalian cell culture 

bioprocesses, 7 2017. ISSN 18607314.

[47] Moritz von Stosch, Rui MC Portela, and Christos Varsakelis. A roadmap to AI-driven in silico process 

development: bioprocessing 4.0 in practice, 9 2021. ISSN 22113398.

[48] Moritz von Stosch, Rui MC Portela, and Christos Varsakelis. A roadmap to AI-driven in silico process 

development: bioprocessing 4.0 in practice, 9 2021. ISSN 22113398.
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[98] Ana P. Teixeira, Nuno Carinhas, Jo ão M.L. Dias, Pedro Cruz, Paula M. Alves, Manuel J.T. Carrondo, 

and Rui Oliveira. Hybrid semi-parametric mathematical systems: Bridging the gap between systems 

biology and process engineering. Journal of Biotechnology, 132(4):418–425, 12 2007. ISSN 01681656. 

doi: 10.1016/j.jbiotec.2007.08.020.
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